1
|
Liu Y, Aimutis WR, Drake M. Dairy, Plant, and Novel Proteins: Scientific and Technological Aspects. Foods 2024; 13:1010. [PMID: 38611316 PMCID: PMC11011482 DOI: 10.3390/foods13071010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Alternative proteins have gained popularity as consumers look for foods that are healthy, nutritious, and sustainable. Plant proteins, precision fermentation-derived proteins, cell-cultured proteins, algal proteins, and mycoproteins are the major types of alternative proteins that have emerged in recent years. This review addresses the major alternative-protein categories and reviews their definitions, current market statuses, production methods, and regulations in different countries, safety assessments, nutrition statuses, functionalities and applications, and, finally, sensory properties and consumer perception. Knowledge relative to traditional dairy proteins is also addressed. Opportunities and challenges associated with these proteins are also discussed. Future research directions are proposed to better understand these technologies and to develop consumer-acceptable final products.
Collapse
Affiliation(s)
- Yaozheng Liu
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (Y.L.); (W.R.A.)
| | - William R. Aimutis
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (Y.L.); (W.R.A.)
- North Carolina Food Innovation Lab, North Carolina State University, Kannapolis, NC 28081, USA
| | - MaryAnne Drake
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (Y.L.); (W.R.A.)
| |
Collapse
|
2
|
Kazura W, Michalczyk K, Stygar D. The Relationship between the Source of Dietary Animal Fats and Proteins and the Gut Microbiota Condition and Obesity in Humans. Nutrients 2023; 15:3082. [PMID: 37513500 PMCID: PMC10385089 DOI: 10.3390/nu15143082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The relationship between gut microbiota and obesity is well documented in humans and animal models. Dietary factors can change the intestinal microbiota composition and influence obesity development. However, knowledge of how diet, metabolism, and intestinal microbiota interact and modulate energy metabolism and obesity development is still limited. Epidemiological studies show a link between consuming dietary proteins and fats from specific sources and obesity. Animal studies confirm that proteins and fats of different origins differ in their ability to prevent or induce obesity. Protein sources, such as meat, dairy products, vegetables, pulses, and seafood, vary in their amino acid composition. In addition, the type and level of other factors, such as fatty acids or persistent organic pollutants, vary depending on the source of dietary protein. All these factors can modulate the intestinal microbiota composition and, thus, may influence obesity development. This review summarizes selected evidence of how proteins and fats of different origins affect energy efficiency, obesity development, and intestinal microbiota, linking protein and fat-dependent changes in the intestinal microbiota with obesity.
Collapse
Affiliation(s)
- Wojciech Kazura
- Department of Physiology, Faculty of Medical Sciences, Medical University of Silesia, Jordana Street 19, 41-808 Zabrze, Poland
| | - Katarzyna Michalczyk
- Department of Physiology, Faculty of Medical Sciences, Medical University of Silesia, Jordana Street 19, 41-808 Zabrze, Poland
| | - Dominika Stygar
- Department of Physiology, Faculty of Medical Sciences, Medical University of Silesia, Jordana Street 19, 41-808 Zabrze, Poland
- SLU University Animal Hospital, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| |
Collapse
|
3
|
O’Mahony S, O’Donovan CB, Collins N, Burke K, Doyle G, Gibney ER. Reformulation of Processed Yogurt and Breakfast Cereals over Time: A Scoping Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3322. [PMID: 36834017 PMCID: PMC9964677 DOI: 10.3390/ijerph20043322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Poor diet is responsible for a quarter of European non-communicable disease (NCD)-related deaths. The reformulation of sugar, salt, and saturated fat in processed packaged foods offers an opportunity to reduce consumption of nutrients of concern and also support a reduction in energy intake. To date, there have been no publications measuring progress in food reformulation by compiling published evidence for a food category. The aim of this scoping review was to identify, characterize and summarise the findings of studies analysing the reformulation of processed yogurt and breakfast cereals. The review answered the research question: "What is the impact of food reformulation on the nutrient quality of yogurt and breakfast cereals available in the retail environment?" The research protocol was defined based on PRISMA-ScR guidelines. Five databases were searched in May 2022. Thirteen studies, published between 2010 and 2021 and completed across seven countries were eligible for inclusion. There were sufficient eligible studies to identify trends in sodium, salt, and sugar reduction in breakfast cereals. However, there was minimal or no reduction in energy, which may bring into question the use of food reformulation as part of an overall health strategy for obesity reduction.
Collapse
Affiliation(s)
- Sinead O’Mahony
- Food Safety Authority of Ireland, The Exchange, Georges Dock, D01 P2V6 Dublin, Ireland
- Institute of Food and Health, School of Agriculture and Food Science, University College Dublin (UCD), Belfield, D04 V1W8 Dublin, Ireland
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Clare B. O’Donovan
- Food Safety Authority of Ireland, The Exchange, Georges Dock, D01 P2V6 Dublin, Ireland
| | - Nuala Collins
- Food Safety Authority of Ireland, The Exchange, Georges Dock, D01 P2V6 Dublin, Ireland
| | - Kevin Burke
- Department of Mathematics and Statistics, University of Limerick, V94 T9PX Limerick, Ireland
| | - Gerardine Doyle
- College of Business, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
- UCD Geary Institute of Public Policy, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Eileen R. Gibney
- Institute of Food and Health, School of Agriculture and Food Science, University College Dublin (UCD), Belfield, D04 V1W8 Dublin, Ireland
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| |
Collapse
|
4
|
Application of electrical impedance spectroscopy for the characterisation of yoghurts. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
5
|
Asaithambi N, Singha P, Singh SK. Recent application of protein hydrolysates in food texture modification. Crit Rev Food Sci Nutr 2022; 63:10412-10443. [PMID: 35653113 DOI: 10.1080/10408398.2022.2081665] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The demand for clean labels has increased the importance of natural texture modifying ingredients. Proteins are unique compounds that can impart unique textural and structural changes in food. However, lack of solubility and extensive aggregability of proteins have increased the demand for enzymatically hydrolyzed proteins, to impart functional and structural modifications to food products. The review elaborates the recent application of various proteins, protein hydrolysates, and their role in texture modification. The impact of protein hydrolysates interaction with other food macromolecules, the effect of pretreatments, and dependence of various protein functionalities on textural and structural modification of food products with controlled enzymatic hydrolysis are explained in detail. Many researchers have acknowledged the positive effect of enzymatically hydrolyzed proteins on texture modification over natural protein. With enzymatic hydrolysis, various textural properties including foaming, gelling, emulsifying, water holding capacity have been effectively improved. It is evident that each protein is unique and imparts exceptional structural changes to different food products. Thus, selection of protein requires a fundamental understanding of its structure-substrate property relation. For wider applicability in the industrial sector, more studies on interactions at the molecular level, dosage, functionality changes, and sensorial attributes of protein hydrolysates in food systems are required.
Collapse
Affiliation(s)
- Niveditha Asaithambi
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela, India
| | - Poonam Singha
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela, India
| | - Sushil Kumar Singh
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela, India
| |
Collapse
|
6
|
Whey-Adapted versus Natural Cow's Milk Formulation: Distinctive Feeding Responses and Post-Ingestive c-Fos Expression in Laboratory Mice. Foods 2022; 11:foods11020141. [PMID: 35053873 PMCID: PMC8774298 DOI: 10.3390/foods11020141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 01/10/2023] Open
Abstract
The natural 20:80 whey:casein ratio in cow’s milk (CM) for adults and infants is adjusted to reflect the 60:40 ratio of human milk, but the feeding and metabolic consequences of this adjustment have been understudied. In adult human subjects, the 60:40 CM differently affects glucose metabolism and hormone release than the 20:80 CM. In laboratory animals, whey-adapted goat’s milk is consumed in larger quantities. It is unknown whether whey enhancement of CM would have similar consequences on appetite and whether it would affect feeding-relevant brain regulatory mechanisms. In this set of studies utilizing laboratory mice, we found that the 60:40 CM was consumed more avidly than the 20:80 control formulation by animals motivated to eat by energy deprivation and by palatability (in the absence of hunger) and that this hyperphagia stemmed from prolongation of the meal. Furthermore, in two-bottle choice paradigms, whey-adapted CM was preferred against the natural 20:80 milk. The intake of the whey-adapted CM induced neuronal activation (assessed through analysis of c-Fos expression in neurons) in brain sites promoting satiation, but importantly, this activation was less pronounced than after ingestion of the natural 20:80 whey:casein CM. Activation of hypothalamic neurons synthesizing anorexigenic neuropeptide oxytocin (OT) was also less robust after the 60:40 CM intake than after the 20:80 CM. Pharmacological blockade of the OT receptor in mice led to an increase in the consumption only of the 20:80 CM, thus, of the milk that induced greater activation of OT neurons. We conclude that the whey-adapted CM is overconsumed compared to the natural 20:80 CM and that this overconsumption is associated with weakened responsiveness of central networks involved in satiety signalling, including OT.
Collapse
|
7
|
A Cross-Sectional Audit of Nutrition and Health Claims on Dairy Yoghurts in Supermarkets of the Illawarra Region of New South Wales, Australia. Nutrients 2021; 13:nu13061835. [PMID: 34072130 PMCID: PMC8229526 DOI: 10.3390/nu13061835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 11/18/2022] Open
Abstract
Health and nutrition claims are used by consumers to guide purchasing decisions. In consequence, monitoring and evaluation of such claims to ensure they are accurate and transparent is required. The aim of this study was to investigate the use of nutrition and health claims on dairy-yoghurt products within select Australian supermarkets and assess their compliance with the revised Food Standards Code (FSC). Nutrition, health, and related claims on yoghurt products were assessed in a cross-sectional audit of five supermarkets in the Illawarra region of New South Wales. Claim prevalence, type, and compliance were assessed and products were compared against current rating measures. A total of n = 340 dairy yoghurt products were identified. Most products (97.9%) carried at least one nutrition and/or health claim, with nutrition-content claims (93.9%) the most prevalent. Most products (n = 277) met the nutrient profiling scoring criterion; while 87.9% of products did not carry the health star rating. Almost all claims surveyed (97.4%) were compliant with the FSC. Health and nutrition claims are highly prevalent across yoghurt categories, with the majority of these compliant with regulations. The ambiguity surrounding the wording and context of claims challenges researchers to investigate consumers’ interpretations of health messaging within the food environment.
Collapse
|
8
|
Role of High Energy Breakfast "Big Breakfast Diet" in Clock Gene Regulation of Postprandial Hyperglycemia and Weight Loss in Type 2 Diabetes. Nutrients 2021; 13:nu13051558. [PMID: 34063109 PMCID: PMC8148179 DOI: 10.3390/nu13051558] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 01/15/2023] Open
Abstract
Postprandial hyperglycemia (PPHG) is strongly linked with the future development of cardiovascular complications in type 2 diabetes (T2D). Hence, reducing postprandial glycemic excursions is essential in T2D treatment to slow progressive deficiency of β-cell function and prevent cardiovascular complications. Most of the metabolic processes involved in PPHG, i.e., β-cell secretory function, GLP-1 secretion, insulin sensitivity, muscular glucose uptake, and hepatic glucose production, are controlled by the circadian clock and display daily oscillation. Consequently, postprandial glycemia displays diurnal variation with a higher glycemic response after meals with the same carbohydrate content, consumed at dusk compared to the morning. T2D and meal timing schedule not synchronized with the circadian clock (i.e., skipping breakfast) are associated with disrupted clock gene expression and is linked to PPHG. In contrast, greater intake in the morning (i.e., high energy breakfast) than in the evening has a resetting effect on clock gene oscillations and beneficial effects on weight loss, appetite, and reduction of PPHG, independently of total energy intake. Therefore, resetting clock gene expression through a diet intervention consisting of meal timing aligned to the circadian clock, i.e., shifting most calories and carbohydrates to the early hours of the day, is a promising therapeutic approach to improve PPHG in T2D. This review will focus on recent studies, showing how a high-energy breakfast diet (Bdiet) has resetting and synchronizing actions on circadian clock genes expression, improving glucose metabolism, postprandial glycemic excursions along with weight loss in T2D.
Collapse
|
9
|
Adjustment of Whey:Casein Ratio from 20:80 to 60:40 in Milk Formulation Affects Food Intake and Brainstem and Hypothalamic Neuronal Activation and Gene Expression in Laboratory Mice. Foods 2021; 10:foods10030658. [PMID: 33808819 PMCID: PMC8003661 DOI: 10.3390/foods10030658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Adjustment of protein content in milk formulations modifies protein and energy levels, ensures amino acid intake and affects satiety. The shift from the natural whey:casein ratio of ~20:80 in animal milk is oftentimes done to reflect the 60:40 ratio of human milk. Studies show that 20:80 versus 60:40 whey:casein milks differently affect glucose metabolism and hormone release; these data parallel animal model findings. It is unknown whether the adjustment from the 20:80 to 60:40 ratio affects appetite and brain processes related to food intake. In this set of studies, we focused on the impact of the 20:80 vs. 60:40 whey:casein content in milk on food intake and feeding-related brain processes in the adult organism. By utilising laboratory mice, we found that the 20:80 whey:casein milk formulation was consumed less avidly and was less preferred than the 60:40 formulation in short-term choice and no-choice feeding paradigms. The relative PCR analyses in the hypothalamus and brain stem revealed that the 20:80 whey:casein milk intake upregulated genes involved in early termination of feeding and in an interplay between reward and satiety, such as melanocortin 3 receptor (MC3R), oxytocin (OXT), proopiomelanocortin (POMC) and glucagon-like peptide-1 receptor (GLP1R). The 20:80 versus 60:40 whey:casein formulation intake differently affected brain neuronal activation (assessed through c-Fos, an immediate-early gene product) in the nucleus of the solitary tract, area postrema, ventromedial hypothalamic nucleus and supraoptic nucleus. We conclude that the shift from the 20:80 to 60:40 whey:casein ratio in milk affects short-term feeding and relevant brain processes.
Collapse
|
10
|
Tallis J, Shelley S, Degens H, Hill C. Age-Related Skeletal Muscle Dysfunction Is Aggravated by Obesity: An Investigation of Contractile Function, Implications and Treatment. Biomolecules 2021; 11:372. [PMID: 33801275 PMCID: PMC8000988 DOI: 10.3390/biom11030372] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity is a global epidemic and coupled with the unprecedented growth of the world's older adult population, a growing number of individuals are both old and obese. Whilst both ageing and obesity are associated with an increased prevalence of chronic health conditions and a substantial economic burden, evidence suggests that the coincident effects exacerbate negative health outcomes. A significant contributor to such detrimental effects may be the reduction in the contractile performance of skeletal muscle, given that poor muscle function is related to chronic disease, poor quality of life and all-cause mortality. Whilst the effects of ageing and obesity independently on skeletal muscle function have been investigated, the combined effects are yet to be thoroughly explored. Given the importance of skeletal muscle to whole-body health and physical function, the present study sought to provide a review of the literature to: (1) summarise the effect of obesity on the age-induced reduction in skeletal muscle contractile function; (2) understand whether obesity effects on skeletal muscle are similar in young and old muscle; (3) consider the consequences of these changes to whole-body functional performance; (4) outline important future work along with the potential for targeted intervention strategies to mitigate potential detrimental effects.
Collapse
Affiliation(s)
- Jason Tallis
- Centre for Applied Biological and Exercise Sciences, Alison Gingell Building, Coventry University, Priory Street, Coventry CV15FB, UK;
| | - Sharn Shelley
- Centre for Applied Biological and Exercise Sciences, Alison Gingell Building, Coventry University, Priory Street, Coventry CV15FB, UK;
| | - Hans Degens
- Research Centre for Musculoskeletal Science & Sports Medicine, Department of Life Sciences, Manchester Metropolitan University, Manchester M15 6BH, UK;
- Institute of Sport Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania
| | - Cameron Hill
- Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, Guy’s Campus, King’s College London, London SE1 1UL, UK;
| |
Collapse
|
11
|
Ren H, Liu TC, Lu Y, Zhang K, Xu Y, Zhou P, Tang X. A comparison study of the influence of milk protein versus whey protein in high-protein diets on adiposity in rats. Food Funct 2021; 12:1008-1019. [PMID: 33502407 DOI: 10.1039/d0fo01960g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
High-protein diets are known to reduce weight and fat deposition. However, there have been only a few studies on the efficacy of different types of high-protein diets in preventing obesity. Therefore, the emphasis of this study lies in comparing the efficacy of two high-protein diets (milk protein and whey protein) in preventing obesity and exploring specific mechanisms. Eighty Sprague Dawley rats were divided into two groups and fed with milk protein concentrate (MPC) and whey protein concentrate (WPC) for 12 weeks. Each group was divided into four levels: two low-fat regimens with either low or high protein content (L-14%, L-40%) and two high-fat regimens with either low or high protein content (H-14%, H-40%). The studies we have performed showed that rats treated with MPC at the 40% protein level had significantly reduced body weight, fat weight and fat ratio gain induced by a high-fat diet, while the protein level in the WPC group had no effect on body weight or body fat in rats fed with a high-fat diet. What is more, rats fed with MPC at the H-40% energy level showed a significant decrease in plasma triglyceride, total cholesterol and low-density lipoprotein cholesterol levels and a significant increase in plasma high-density lipoprotein cholesterol levels compared with the H-14% energy level group. In contrast, in the WPC groups, increasing the protein content in high-fat diets had no significant influence on plasma lipid levels. The results of the amino acid composition of the two proteins and plasma showed that the MPC diet of 40% protein level increased the transsulfuration pathway in rats, thereby increasing the level of H2S. This research work has shown that not all types of high-protein diets can effectively prevent obesity induced by high-fat diets, as effectiveness depends on the amino acid composition of the protein.
Collapse
Affiliation(s)
- Haoyi Ren
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | | | | | | | | | | | | |
Collapse
|
12
|
Ahnen RT, Jonnalagadda SS, Slavin JL. Role of plant protein in nutrition, wellness, and health. Nutr Rev 2021; 77:735-747. [PMID: 31322670 DOI: 10.1093/nutrit/nuz028] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Plant-based diets, and more specifically plant-based proteins, have been the subject of growing interest from researchers and consumers because of their potential health benefits as well as their positive environmental impact. Of course, plant proteins are found in plant foods, and positive health benefits of plant foods are linked to dietary fiber, vitamins, minerals, and phytochemicals. In epidemiological studies it is not possible to separate out the health benefits of plant foods in general as opposed to plant proteins specifically. Additionally, few vegans, who consume only plant-based proteins, are included in existing prospective cohort studies. Isolated plant proteins (soy, pea) have been used in intervention trials, but often to improve biomarkers linked to disease risk, including serum lipids or blood pressure. This review is an overview of plant proteins, the whole foods they are associated with, and the potential health benefits linked to consumption of protein from plant sources. Plant proteins and their potential for reducing the risk of developing metabolic syndrome, diabetes management, cancer prevention, and weight management are each discussed, as are the various rating systems currently used to determine protein quality from plant sources. Although additional research is needed that focuses specifically on the role that plant protein plays in the prevention and management of these chronic illnesses, rather than the role played by a more general plant-based diet, evidence suggests that plant proteins offer nutritional benefits to those who consume them. Limitations to plant proteins, including lower protein quality, must also be considered in this discussion.
Collapse
Affiliation(s)
- Rylee T Ahnen
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | | | - Joanne L Slavin
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
13
|
Panico A, Tumolo MR, Leo CG, Donno AD, Grassi T, Bagordo F, Serio F, Idolo A, Masi RD, Mincarone P, Sabina S. The influence of lifestyle factors on miRNA expression and signal pathways: a review. Epigenomics 2020; 13:145-164. [PMID: 33355508 DOI: 10.2217/epi-2020-0289] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The term 'lifestyle' includes different factors that contribute to the maintenance of a good health status. Increasing evidences suggest that lifestyle factors may influence epigenetic mechanisms, such as miRNAs expression. The dysregulation of miRNAs can modify the expression of genes and molecular pathways that may lead to functional alterations. This review summarizes human studies highlighting that diet, physical activity, smoking and alcohol consumption may affect the miRNA machinery and several biological functions. Most miRNAs are involved in molecular pathways that influence inflammation, cell cycle regulation and carcinogenesis resulting in the onset or progression of pathological conditions. Investigating these interactions will be pivotal for understanding the etiology of pathologic processes, the potential new treatment strategies and for preventing diseases.
Collapse
Affiliation(s)
- Alessandra Panico
- Department of Biological & Environmental Sciences & Technology, University of Salento, via Monteroni 165, Lecce, 73100, Italy
| | - Maria R Tumolo
- Institute for Research on Population & Social Policies, National Research Council, Research Unit of Brindisi, c/o ex Osp. Di Summa, Piazza Di Summa, Brindisi, 72100, Italy
| | - Carlo G Leo
- Institute of Clinical Physiology, National Research Council, Branch of Lecce, c/o Ecotekne via Monteroni, Lecce, 73100, Italy
| | - Antonella De Donno
- Department of Biological & Environmental Sciences & Technology, University of Salento, via Monteroni 165, Lecce, 73100, Italy
| | - Tiziana Grassi
- Department of Biological & Environmental Sciences & Technology, University of Salento, via Monteroni 165, Lecce, 73100, Italy
| | - Francesco Bagordo
- Department of Biological & Environmental Sciences & Technology, University of Salento, via Monteroni 165, Lecce, 73100, Italy
| | - Francesca Serio
- Department of Biological & Environmental Sciences & Technology, University of Salento, via Monteroni 165, Lecce, 73100, Italy
| | - Adele Idolo
- Department of Biological & Environmental Sciences & Technology, University of Salento, via Monteroni 165, Lecce, 73100, Italy
| | - Roberto De Masi
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, 'F. Ferrari' Hospital, Casarano, Lecce, 73042, Italy
| | - Pierpaolo Mincarone
- Institute for Research on Population & Social Policies, National Research Council, Research Unit of Brindisi, c/o ex Osp. Di Summa, Piazza Di Summa, Brindisi, 72100, Italy
| | - Saverio Sabina
- Institute of Clinical Physiology, National Research Council, Branch of Lecce, c/o Ecotekne via Monteroni, Lecce, 73100, Italy
| |
Collapse
|
14
|
Impact of Protein Intake in Older Adults with Sarcopenia and Obesity: A Gut Microbiota Perspective. Nutrients 2020; 12:nu12082285. [PMID: 32751533 PMCID: PMC7468805 DOI: 10.3390/nu12082285] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
The continuous population increase of older adults with metabolic diseases may contribute to increased prevalence of sarcopenia and obesity and requires advocacy of optimal nutrition treatments to combat their deleterious outcomes. Sarcopenic obesity, characterized by age-induced skeletal-muscle atrophy and increased adiposity, may accelerate functional decline and increase the risk of disability and mortality. In this review, we explore the influence of dietary protein on the gut microbiome and its impact on sarcopenia and obesity. Given the associations between red meat proteins and altered gut microbiota, a combination of plant and animal-based proteins are deemed favorable for gut microbiota eubiosis and muscle-protein synthesis. Additionally, high-protein diets with elevated essential amino-acid concentrations, alongside increased dietary fiber intake, may promote gut microbiota eubiosis, given the metabolic effects derived from short-chain fatty-acid and branched-chain fatty-acid production. In conclusion, a greater abundance of specific gut bacteria associated with increased satiation, protein synthesis, and overall metabolic health may be driven by protein and fiber consumption. This could counteract the development of sarcopenia and obesity and, therefore, represent a novel approach for dietary recommendations based on the gut microbiota profile. However, more human trials utilizing advanced metabolomic techniques to investigate the microbiome and its relationship with macronutrient intake, especially protein, are warranted.
Collapse
|
15
|
Analysis of Anabolic Agents in Whey Protein by Gas Chromatography Coupled to Triple Quadrupole Mass Spectrometry. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01813-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Oliva L, Aranda T, Alemany M, Fernández-López JA, Remesar X. Unconnected Body Accrual of Dietary Lipid and Protein in Rats Fed Diets with Different Lipid and Protein Content. Mol Nutr Food Res 2020; 64:e2000265. [PMID: 32521082 DOI: 10.1002/mnfr.202000265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/15/2020] [Indexed: 12/14/2022]
Abstract
SCOPE Eating large amounts of fat is usually associated with fat accumulation. However, different types of diets (not only lipids) elicit different metabolic responses. METHODS AND RESULTS Male and female rats (10 week-old) are distributed in four groups and fed for 1 month a standard diet (SD), or this diet enriched with either lipid (high-fat diet, HF) or protein (high-protein diet, HP), or a cafeteria diet (CAF). Both HF and CAF diets share the percentage of energy from lipids (40%) but these are different. Protein-derived energy in the HP diet is also 40%. Feeding SD, HF, and HP diets does not result in differences in energy intake, energy expenditure, total body weight, or lipid content. However, the CAF-fed groups show increases in these parameters, which are more marked in the male rats. The CAF diet increases the mass of adipose tissue while the HF diet does not. CONCLUSION Different diets produce substantial changes in the fate of ingested nutrient energy. Dietary lipids are not essential for sustaining an increase in body lipid (or adipose tissue) content. Body protein accrual is unrelated to dietary lipids and overall energy intake. Both protein and lipid accrual are more efficient in male rats.
Collapse
Affiliation(s)
- Laia Oliva
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Av. Diagonal 643, Barcelona, Catalonia, 08028, Spain
| | - Tania Aranda
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Av. Diagonal 643, Barcelona, Catalonia, 08028, Spain
| | - Marià Alemany
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Av. Diagonal 643, Barcelona, Catalonia, 08028, Spain.,Institute of Biomedicine (IBUB), University of Barcelona, Av. Diagonal 643, Barcelona, Catalonia, 08028, Spain.,CIBER OBN, Research Web, Barcelona, Av. Diagonal 643, Barcelona, Catalonia, 08028, Spain
| | - José-Antonio Fernández-López
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Av. Diagonal 643, Barcelona, Catalonia, 08028, Spain.,Institute of Biomedicine (IBUB), University of Barcelona, Av. Diagonal 643, Barcelona, Catalonia, 08028, Spain.,CIBER OBN, Research Web, Barcelona, Av. Diagonal 643, Barcelona, Catalonia, 08028, Spain
| | - Xavier Remesar
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Av. Diagonal 643, Barcelona, Catalonia, 08028, Spain.,Institute of Biomedicine (IBUB), University of Barcelona, Av. Diagonal 643, Barcelona, Catalonia, 08028, Spain.,CIBER OBN, Research Web, Barcelona, Av. Diagonal 643, Barcelona, Catalonia, 08028, Spain
| |
Collapse
|
17
|
Manufacture of high-protein yogurt without generating acid whey – Impact of the final pH and the application of power ultrasound on texture properties. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2019.104541] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
18
|
Whey Protein Supplementation Compared to Collagen Increases Blood Nesfatin Concentrations and Decreases Android Fat in Overweight Women: A Randomized Double-Blind Study. Nutrients 2019; 11:nu11092051. [PMID: 31480676 PMCID: PMC6770102 DOI: 10.3390/nu11092051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 12/18/2022] Open
Abstract
Protein supplements are usually used to control body weight, however, the impact of protein quality on body fat attenuation is unknown. We investigated the effects of isocaloric isoproteic supplementation of either whey protein (WG) or hydrolysed collagen supplementation (CG) on dietary intake, adiposity and biochemical markers in overweight women. Methods: In this randomized double-blind study, 37 women, [mean ± SE, age 40.6 ± 1.7 year; BMI (kg/m2) 30.9 ± 0.6], consumed sachets containing 40 g/day of concentrated whey protein (25 g total protein, 2.4 leucine, 1.0 valine, 1.5 isoleucine, n = 17) or 38 g/day of hydrolysed collagen (26 g total protein, 1.02 leucine, 0.91 valine, 0.53 isoleucine, n = 20) in the afternoon snack. The compliance was set at >70% of the total theoretical doses. The dietary intake was evaluated by a 6-day food record questionnaire. At the beginning and after eight weeks of follow-up, body composition was evaluated by using dual-energy X-ray absorptiometry and lipid profile, insulin resistance, C-reactive protein, adiponectin, leptin and nesfastin plasma concentrations were analyzed. Results: Supplements were isocaloric and isoproteic. There were no differences in caloric intake (p = 0.103), protein (p = 0.085), carbohydrate (p = 0.797) and lipids (p = 0.109) intakes. The branched chain amino acids (BCAA) (GC: 1.8 ± 0.1 g vs. WG: 5.5 ± 0.3 g, p < 0.001) and leucine intake (CG: 0.1 ± 0.1 g vs. WG: 2.6 ± 0.1 g, p < 0.001) were higher in WG compared to CG. BMI increased in the CG (0.2 ± 1.1 kg/m2, p = 0.044) but did not change in WG. WG decreased the android fat (−0.1 ± 0.3 kg, p = 0.031) and increased nesfatin concentrations (4.9 ± 3.2 ng/mL, p = 0.014) compared to CG. Conclusions: Whey protein supplementation in overweight women increased nesfatin concentrations and could promote increase of resting metabolic rate as part of body composition improvement programs compared to collagen supplementation for 8 weeks. Additionally, our findings suggest that collagen may not be an effective supplement for overweight women who are attempting to alter body composition.
Collapse
|
19
|
El Khoury D, Vien S, Sanchez-Hernandez D, Kung B, Wright A, Goff HD, Anderson GH. Increased milk protein content and whey-to-casein ratio in milk served with breakfast cereal reduce postprandial glycemia in healthy adults: An examination of mechanisms of action. J Dairy Sci 2019; 102:6766-6780. [PMID: 31229285 DOI: 10.3168/jds.2019-16358] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/25/2019] [Indexed: 12/24/2022]
Abstract
This study describes the effects on glycemic response and the underlying mechanisms of action of increasing the protein concentration and decreasing the casein-to-whey ratio in milk when consumed with a high glycemic breakfast cereal. Twelve healthy men and women, aged 18 to 30 yr and with a body mass index of 20 to 24.9 kg/m2, consumed (in random order) milk beverages (250 mL) containing either 3.1 or 9.3% protein and casein-to-whey ratios of either 80:20 or 40:60. We measured postprandial appetite, glucose, regulatory hormones, and stomach emptying rate over 200 min, as well as food intake at an ad libitum meal at 120 min. Although pre-meal appetite was suppressed to a greater extent with milk beverages that had high (9.3%) compared with regular (3.1%) protein content, food intake was similar among all 4 treatments. Pre-meal mean blood glucose was lower with beverages that had high rather than regular milk protein content, with the lowest glucose peaks after the high milk protein treatment with the 40:60 casein-to-whey ratio. Pre-meal insulin and C-peptide levels were not affected by milk protein content or casein-to-whey ratio, but pre-meal glucagon-like peptide 1 was higher after the treatment containing high milk protein and the 40:60 casein-to-whey ratio, and pre-meal cholecystokinin was higher after the treatments containing high milk protein content. Plasma paracetamol response was also lower after the treatments containing high compared with regular milk protein content. When consumed with carbohydrate, milk beverages with high protein content and (to a lesser extent) a decreased casein-to-whey ratio lowered postprandial glycemia through insulin-independent mechanisms, primarily associated with delayed stomach emptying.
Collapse
Affiliation(s)
- Dalia El Khoury
- Department of Family Relations and Applied Nutrition, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Shirley Vien
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Diana Sanchez-Hernandez
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Bonnie Kung
- Department of Food Science, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Amanda Wright
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - H Douglas Goff
- Department of Food Science, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - G Harvey Anderson
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8.
| |
Collapse
|
20
|
Ramzan F, Mitchell CJ, Milan AM, Schierding W, Zeng N, Sharma P, Mitchell SM, D'Souza RF, Knowles SO, Roy NC, Sjödin A, Wagner KH, Cameron-Smith D. Comprehensive Profiling of the Circulatory miRNAome Response to a High Protein Diet in Elderly Men: A Potential Role in Inflammatory Response Modulation. Mol Nutr Food Res 2019; 63:e1800811. [PMID: 30892810 DOI: 10.1002/mnfr.201800811] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/21/2019] [Indexed: 12/11/2022]
Abstract
SCOPE MicroRNA are critical to the coordinated post-transcriptional regulation of gene expression, yet few studies have addressed the influence of habitual diet on microRNA expression. High protein diets impact cardiometabolic health and body composition in the elderly suggesting the possibility of a complex systems response. Therefore, high-throughput small RNA sequencing technology is applied in response to doubling the protein recommended dietary allowance (RDA) over 10 weeks in older men to examine alterations in circulating miRNAome. METHODS AND RESULTS Older men (n = 31; 74.1 ± 0.6 y) are randomized to consume either RDA (0.8 g kg-1 day-1 ) or 2RDA (1.6 g kg-1 day-1 ) of protein for 10 weeks. Downregulation of five microRNAs (miR-125b-5p, -100-5p, -99a-5p, -23b-3p, and -203a) is observed following 2RDA with no changes in the RDA. In silico functional analysis highlights target gene enrichment in inflammation-related pathways. qPCR quantification of predicted inflammatory genes (TNFα, IL-8, IL-6, pTEN, PPP1CB, and HOXA1) in peripheral blood mononuclear cells shows increased expression following 2RDA diet (p ≤ 0.05). CONCLUSION The study findings suggest a possible selective alteration in the post-transcriptional regulation of the immune system following a high protein diet. However, very few microRNAs are altered despite a large change in the dietary protein.
Collapse
Affiliation(s)
- Farha Ramzan
- Liggins Institute, The University of Auckland, Auckland, 1023, New Zealand.,Riddet Institute, Massey University, Palmerston North, 4442, New Zealand
| | - Cameron J Mitchell
- Liggins Institute, The University of Auckland, Auckland, 1023, New Zealand
| | - Amber M Milan
- Liggins Institute, The University of Auckland, Auckland, 1023, New Zealand
| | - William Schierding
- Liggins Institute, The University of Auckland, Auckland, 1023, New Zealand
| | - Nina Zeng
- Liggins Institute, The University of Auckland, Auckland, 1023, New Zealand
| | - Pankaja Sharma
- Liggins Institute, The University of Auckland, Auckland, 1023, New Zealand.,Riddet Institute, Massey University, Palmerston North, 4442, New Zealand
| | - Sarah M Mitchell
- Liggins Institute, The University of Auckland, Auckland, 1023, New Zealand.,Riddet Institute, Massey University, Palmerston North, 4442, New Zealand
| | - Randall F D'Souza
- Liggins Institute, The University of Auckland, Auckland, 1023, New Zealand
| | - Scott O Knowles
- Food Nutrition and Health Team, AgResearch Ltd., Grasslands Research Centre, Palmerston North, 4442, New Zealand
| | - Nicole C Roy
- Food Nutrition and Health Team, AgResearch Ltd., Grasslands Research Centre, Palmerston North, 4442, New Zealand.,Riddet Institute, Massey University, Palmerston North, 4442, New Zealand.,The High-Value Nutrition National Science Challenge, Auckland, 1023, New Zealand
| | - Anders Sjödin
- Department of Nutrition, Exercise and Sport, Copenhagen University, 1165, Denmark
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences and Research Platform Active Ageing, University of Vienna, 1010, Vienna, Austria
| | - David Cameron-Smith
- Liggins Institute, The University of Auckland, Auckland, 1023, New Zealand.,Riddet Institute, Massey University, Palmerston North, 4442, New Zealand.,Food & Bio-Based Products Group, AgResearch Ltd., Hamilton, 3214, New Zealand
| |
Collapse
|
21
|
Abstract
We provide an overview of studies on seafood intake in relation to obesity, insulin resistance and type 2 diabetes. Overweight and obesity development is for most individuals the result of years of positive energy balance. Evidence from intervention trials and animal studies suggests that frequent intake of lean seafood, as compared with intake of terrestrial meats, reduces energy intake by 4–9 %, sufficient to prevent a positive energy balance and obesity. At equal energy intake, lean seafood reduces fasting and postprandial risk markers of insulin resistance, and improves insulin sensitivity in insulin-resistant adults. Energy restriction combined with intake of lean and fatty seafood seems to increase weight loss. Marine n-3 PUFA are probably of importance through n-3 PUFA-derived lipid mediators such as endocannabinoids and oxylipins, but other constituents of seafood such as the fish protein per se, trace elements or vitamins also seem to play a largely neglected role. A high intake of fatty seafood increases circulating levels of the insulin-sensitising hormone adiponectin. As compared with a high meat intake, high intake of seafood has been reported to reduce plasma levels of the hepatic acute-phase protein C-reactive protein level in some, but not all studies. More studies are needed to confirm the dietary effects on energy intake, obesity and insulin resistance. Future studies should be designed to elucidate the potential contribution of trace elements, vitamins and undesirables present in seafood, and we argue that stratification into responders and non-responders in randomised controlled trials may improve the understanding of health effects from intake of seafood.
Collapse
|
22
|
|
23
|
Madsen L, Myrmel LS, Fjære E, Liaset B, Kristiansen K. Links between Dietary Protein Sources, the Gut Microbiota, and Obesity. Front Physiol 2017; 8:1047. [PMID: 29311977 PMCID: PMC5742165 DOI: 10.3389/fphys.2017.01047] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/30/2017] [Indexed: 12/22/2022] Open
Abstract
The association between the gut microbiota and obesity is well documented in both humans and in animal models. It is also demonstrated that dietary factors can change the gut microbiota composition and obesity development. However, knowledge of how diet, metabolism and gut microbiota mutually interact and modulate energy metabolism and obesity development is still limited. Epidemiological studies indicate an association between intake of certain dietary protein sources and obesity. Animal studies confirm that different protein sources vary in their ability to either prevent or induce obesity. Different sources of protein such as beans, vegetables, dairy, seafood, and meat differ in amino acid composition. Further, the type and level of other factors, such as fatty acids and persistent organic pollutants (POPs) vary between dietary protein sources. All these factors can modulate the composition of the gut microbiota and may thereby influence their obesogenic properties. This review summarizes evidence of how different protein sources affect energy efficiency, obesity development, and the gut microbiota, linking protein-dependent changes in the gut microbiota with obesity.
Collapse
Affiliation(s)
- Lise Madsen
- National Institute of Nutrition and Seafood Research, Bergen, Norway.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,BGI-Shenzhen, Shenzhen, China
| | - Lene S Myrmel
- National Institute of Nutrition and Seafood Research, Bergen, Norway
| | - Even Fjære
- National Institute of Nutrition and Seafood Research, Bergen, Norway
| | - Bjørn Liaset
- National Institute of Nutrition and Seafood Research, Bergen, Norway
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
24
|
Pasiakos SM, Berryman CE, Carrigan CT, Young AJ, Carbone JW. Muscle Protein Turnover and the Molecular Regulation of Muscle Mass during Hypoxia. Med Sci Sports Exerc 2017; 49:1340-1350. [PMID: 28166119 DOI: 10.1249/mss.0000000000001228] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
: Effects of environmental hypoxia on fat-free mass are well studied. Negative energy balance, increased nitrogen excretion, and fat-free mass loss are commonly observed in lowlanders sojourning at high altitude. Reductions in fat-free mass can be minimized if energy consumption matches energy expenditure. However, in nonresearch settings, achieving energy balance during high-altitude sojourns is unlikely, and myofibrillar protein mass is usually lost, but the mechanisms accounting for the loss of muscle mass are not clear. At sea level, negative energy balance reduces basal and blunts postprandial muscle protein synthesis, with no relevant change in muscle protein breakdown. Downregulations in muscle protein synthesis and loss of fat-free mass during energy deficit at sea level are largely overcome by consuming at least twice the recommended dietary allowance for protein. Hypoxia may increase or not affect resting muscle protein synthesis, blunt postexercise muscle protein synthesis, and markedly increase proteolysis independent of energy status. Hypoxia-induced mTORC1 dysregulation and an upregulation in calpain- and ubiquitin proteasome-mediated proteolysis may drive catabolism in lowlanders sojourning at high altitude. However, the combined effects of energy deficit, exercise, and dietary protein manipulations on the regulation of muscle protein turnover have never been studied at high altitude. This article reviews the available literature related to the effects of high altitude on fat-free mass, highlighting contemporary studies that assessed the influence of altitude exposure (or hypoxia) on muscle protein turnover and intramuscular regulation of muscle mass. Knowledge gaps are addressed, and studies to identify effective and feasible countermeasures to hypoxia-induced muscle loss are discussed.
Collapse
Affiliation(s)
- Stefan M Pasiakos
- 1Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA; 2Oak Ridge Institute for Science and Education, Oak Ridge, TN; and 3School of Health Sciences, Eastern Michigan University, Ypsilanti, MI
| | | | | | | | | |
Collapse
|
25
|
Jakubowicz D, Wainstein J, Landau Z, Ahren B, Barnea M, Bar-Dayan Y, Froy O. High-energy breakfast based on whey protein reduces body weight, postprandial glycemia and HbA 1C in Type 2 diabetes. J Nutr Biochem 2017; 49:1-7. [PMID: 28863364 DOI: 10.1016/j.jnutbio.2017.07.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/27/2017] [Accepted: 07/07/2017] [Indexed: 01/28/2023]
Abstract
Acute studies show that addition of whey protein at breakfast has a glucose-lowering effect through increased incretin and insulin secretion. However, whether this is a long-term effect in Type 2 diabetes is unknown. Fifty-six Type 2 diabetes participants aged 58.9±4.5 years, BMI 32.1±0.9 kg/m2 and HbA1C 7.8±0.1% (61.6±0.79 mmol/mol) were randomized to one of 3 isocaloric diets with similar lunch and dinner, but different breakfast: 1) 42 g total protein, 28 g whey (WBdiet, n=19); 2) 42 g various protein sources (PBdiet, n=19); or 3) high-carbohydrate breakfast, 17 g protein from various sources (CBdiet, n=18). Body weight and HbA1C were examined after 12 weeks. All participants underwent three all-day meal challenges for postprandial glycemia, insulin, C-peptide, intact glucagon-like peptide 1 (iGLP-1), ghrelin and hunger and satiety scores. Overall postprandial AUCglucose was reduced by 12% in PBdiet and by 19% in WBdiet, compared with CBdiet (P<.0001). Compared with PBdiet and CBdiet, WBdiet led to a greater postprandial overall AUC for insulin, C-peptide, iGLP-1 and satiety scores, while postprandial overall AUC for ghrelin and hunger scores were reduced (P<.0001). After 12 weeks, HbA1C was reduced after WBdiet by 0.89±0.05% (11.5±0.6 mmol/mol), after PBdiet by 0.6±0.04% (7.1±0.31 mmol/mol) and after CBdiet by 0.36±0.04% (2.9±0.31 mmol/mol) (P<.0001). Furthermore, the participants on WBdiet lost 7.6±0.3 kg, PBdiet 6.1±0.3 kg and CBdiet 3.5±0.3 kg (P<.0001). Whey protein-based breakfast is an important adjuvant in the management of Type 2 diabetes.
Collapse
Affiliation(s)
- Daniela Jakubowicz
- Diabetes Unit, Wolfson Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Holon, Israel; Department of Internal Medicine, Diabetes Unit, Hospital de Clinicas Caracas, Central University, Caracas, Venezuela.
| | - Julio Wainstein
- Diabetes Unit, Wolfson Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Holon, Israel
| | - Zohar Landau
- Diabetes Unit, Wolfson Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Holon, Israel
| | - Bo Ahren
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Maayan Barnea
- Department of Molecular Genetics, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Yosefa Bar-Dayan
- Diabetes Unit, Wolfson Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Holon, Israel
| | - Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
26
|
Sayer RD, Speaker KJ, Pan Z, Peters JC, Wyatt HR, Hill JO. Equivalent reductions in body weight during the Beef WISE Study: beef's role in weight improvement, satisfaction and energy. Obes Sci Pract 2017; 3:298-310. [PMID: 29071106 PMCID: PMC5598025 DOI: 10.1002/osp4.118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 05/27/2017] [Accepted: 05/29/2017] [Indexed: 12/26/2022] Open
Abstract
Objective The objective of this randomized equivalence trial was to determine the impact of consuming lean beef as part of a high protein (HP) weight‐reducing diet on changes in body weight, body composition and cardiometabolic health. Methods A total of 120 adults (99 female) with overweight or obesity (BMI: 35.7 ± 7.0 kg m−2) were randomly assigned to consume either a HP diet with ≥4 weekly servings of lean beef (B; n = 60) or a HP diet restricted in all red meats (NB; n = 60) during a 16‐week weight loss intervention. Results Body weight was reduced by 7.8 ± 5.9% in B and 7.7 ± 5.5% in NB (p < 0.01 for both). Changes in percent body weight were equivalent between B and NB (mean difference: 0.06%, 90% confidence interval: (−1.7, 1.8)). Fat mass was reduced in both groups (p < 0.01; B: 8.0 ± 0.6 kg, NB: 8.6 ± 0.6 kg), while lean mass was not reduced in either group. Improvements in markers of cardiometabolic health (total cholesterol, low‐density lipoprotein cholesterol, triglycerides and blood pressure) were not different between B and NB. Conclusion Results of this study demonstrate that HP diets – either rich or restricted in red meat intakes – are effective for decreasing body weight and improving body composition and cardiometabolic health.
Collapse
Affiliation(s)
- R D Sayer
- University of Colorado Anschutz Health and Wellness Center University of Colorado Anschutz Medical Campus Aurora CO USA
| | - K J Speaker
- University of Colorado Anschutz Health and Wellness Center University of Colorado Anschutz Medical Campus Aurora CO USA
| | - Z Pan
- Department of Pediatrics Children's Hospital Colorado Research Institute, Anschutz Medical Campus Aurora CO USA
| | - J C Peters
- University of Colorado Anschutz Health and Wellness Center University of Colorado Anschutz Medical Campus Aurora CO USA
| | - H R Wyatt
- University of Colorado Anschutz Health and Wellness Center University of Colorado Anschutz Medical Campus Aurora CO USA
| | - J O Hill
- University of Colorado Anschutz Health and Wellness Center University of Colorado Anschutz Medical Campus Aurora CO USA
| |
Collapse
|
27
|
Gene-Dairy Food Interactions and Health Outcomes: A Review of Nutrigenetic Studies. Nutrients 2017; 9:nu9070710. [PMID: 28684688 PMCID: PMC5537825 DOI: 10.3390/nu9070710] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/10/2017] [Accepted: 07/03/2017] [Indexed: 12/23/2022] Open
Abstract
Each person differs from the next by an average of over 3 million genetic variations in their DNA. This genetic diversity is responsible for many of the interindividual differences in food preferences, nutritional needs, and dietary responses between humans. The field of nutrigenetics aims to utilize this type of genetic information in order to personalize diets for optimal health. One of the most well-studied genetic variants affecting human dietary patterns and health is the lactase persistence mutation, which enables an individual to digest milk sugar into adulthood. Lactase persistence is one of the most influential Mendelian factors affecting human dietary patterns to occur since the beginning of the Neolithic Revolution. However, the lactase persistence mutation is only one of many mutations that can influence the relationship between dairy intake and disease risk. The purpose of this review is to summarize the available nutrigenetic literature investigating the relationships between genetics, dairy intake, and health outcomes. Nonetheless, the understanding of an individual’s nutrigenetic responses is just one component of personalized nutrition. In addition to nutrigenetic responses, future studies should also take into account nutrigenomic responses (epigenomic, transcriptomic, proteomic, metabolomic), and phenotypic/characteristic traits (age, gender, activity level, disease status, etc.), as these factors all interact with diet to influence health.
Collapse
|
28
|
|
29
|
Lodi A, Karsten B, Bosco G, Gómez-López M, Brandão PP, Bianco A, Paoli A. The Effects of Different High-Protein Low-Carbohydrates Proprietary Foods on Blood Sugar in Healthy Subjects. J Med Food 2016; 19:1085-1095. [PMID: 27754766 DOI: 10.1089/jmf.2016.0072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to analyze the effects on blood sugar concentrations through the calculation of the glycemic score (GS) of 10 different high-protein low-carbohydrates (CHOs) proprietary foods that are commonly used as meals during very low-CHO ketogenic diets or during low-CHO diets. Fourteen healthy females were tested for their glycemic response curve elicited by 1000 kJ of glucose three times within a 3-week period (one test each week) compared with one of 10 test foods once on separate days twice a week. After determining the GS of each food in each individual, the mean GS of each test food was calculated. All test foods, compared with glucose, produced a significantly lower glycemic response. The GS of all test food resulted in being lower than 25 and the difference between the mean glycemia after the intake of glucose (mean 122 ± 15 mg/dL) and after the intake of the sweet test foods (mean 89 ± 7 mg/dL) was 33 mg/dL (P < .001), whereas the difference between the mean glycemia after the intake of glucose and after the intake of savory test foods (mean 91 ± 8 mg/dL) was of 31 mg/dL (P < .001). CONCLUSIONS The reformulation of ultraprocessed ready-to-consume foods in a low-CHO, high-protein version can produce a significantly lower glycemic response whilst maintaining the valued ready-to-use format and high palatability demanded by consumers. The low impact on postprandial glycemia and the nutritional characteristics of these proprietary foods makes them useful in both weight control management strategies and in the care management of diabetes.
Collapse
Affiliation(s)
- Alessandra Lodi
- 1 Department of Biomedical Sciences, University of Padova , Padova, Italy
| | - Bettina Karsten
- 2 Department of Life and Sports Sciences, University of Greenwich , Medway, United Kingdom
| | - Gerardo Bosco
- 1 Department of Biomedical Sciences, University of Padova , Padova, Italy
| | - Manuel Gómez-López
- 3 Department of Physical Activity and Sport, University of Murcia , Murcia, Spain
| | - Paula Paraguassú Brandão
- 4 Human Kinetics Laboratory of the Federal University of the State of Rio de Janeiro , Rio de Janeiro, Brazil
| | - Antonino Bianco
- 5 Sport and Exercise Sciences Research Unit, University of Palermo , Palermo, Italy
| | - Antonio Paoli
- 1 Department of Biomedical Sciences, University of Padova , Padova, Italy
| |
Collapse
|
30
|
Margolis LM, Rivas DA, Berrone M, Ezzyat Y, Young AJ, McClung JP, Fielding RA, Pasiakos SM. Prolonged Calorie Restriction Downregulates Skeletal Muscle mTORC1 Signaling Independent of Dietary Protein Intake and Associated microRNA Expression. Front Physiol 2016; 7:445. [PMID: 27761114 PMCID: PMC5050214 DOI: 10.3389/fphys.2016.00445] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 09/20/2016] [Indexed: 01/18/2023] Open
Abstract
Short-term (5-10 days) calorie restriction (CR) downregulates muscle protein synthesis, with consumption of a high protein-based diet attenuating this decline. Benefit of increase protein intake is believed to be due to maintenance of amino acid-mediated anabolic signaling through the mechanistic target of rapamycin complex 1 (mTORC1), however, there is limited evidence to support this contention. The purpose of this investigation was to determine the effects of prolonged CR and high protein diets on skeletal muscle mTORC1 signaling and expression of associated microRNA (miR). Twelve-week old male Sprague Dawley rats consumed ad libitum (AL) or calorie restricted (CR; 40%) adequate (10%, AIN-93M) or high (32%) protein milk-based diets for 16 weeks. Body composition was determined using dual energy X-ray absorptiometry and muscle protein content was calculated from muscle homogenate protein concentrations expressed relative to fat-free mass to estimate protein content. Western blot and RT-qPCR were used to determine mTORC1 signaling and mRNA and miR expression in fasted mixed gastrocnemius. Independent of dietary protein intake, muscle protein content was 38% lower (P < 0.05) in CR compared to AL. Phosphorylation and total Akt, mTOR, rpS6, and p70S6K were lower (P < 0.05) in CR vs. AL, and total rpS6 was associated with muscle protein content (r = 0.64, r2 = 0.36). Skeletal muscle miR expression was not altered by either energy or protein intake. This study provides evidence that chronic CR attenuates muscle protein content by downregulating mTORC1 signaling. This response is independent of skeletal muscle miR and dietary protein.
Collapse
Affiliation(s)
- Lee M Margolis
- Nutrition, Exercise, Physiology, and Sarcopenia Laboratory, U.S. Department of Agriculture Jean Mayer Human Nutrition Research Center on Aging, Tufts UniversityBoston, MA, USA; Military Nutrition Division, US Army Research Institute of Environmental MedicineNatick, MA, USA
| | - Donato A Rivas
- Nutrition, Exercise, Physiology, and Sarcopenia Laboratory, U.S. Department of Agriculture Jean Mayer Human Nutrition Research Center on Aging, Tufts University Boston, MA, USA
| | - Maria Berrone
- Nutrition, Exercise, Physiology, and Sarcopenia Laboratory, U.S. Department of Agriculture Jean Mayer Human Nutrition Research Center on Aging, Tufts University Boston, MA, USA
| | - Yassine Ezzyat
- Nutrition, Exercise, Physiology, and Sarcopenia Laboratory, U.S. Department of Agriculture Jean Mayer Human Nutrition Research Center on Aging, Tufts University Boston, MA, USA
| | - Andrew J Young
- Military Nutrition Division, US Army Research Institute of Environmental Medicine Natick, MA, USA
| | - James P McClung
- Military Nutrition Division, US Army Research Institute of Environmental Medicine Natick, MA, USA
| | - Roger A Fielding
- Nutrition, Exercise, Physiology, and Sarcopenia Laboratory, U.S. Department of Agriculture Jean Mayer Human Nutrition Research Center on Aging, Tufts University Boston, MA, USA
| | - Stefan M Pasiakos
- Military Nutrition Division, US Army Research Institute of Environmental Medicine Natick, MA, USA
| |
Collapse
|
31
|
Rotondo F, Sanz T, Fernández-López JA, Alemany M, Remesar X. Stable isotope analysis of dietary arginine accrual and disposal efficiency in male rats fed diets with different protein content. RSC Adv 2016. [DOI: 10.1039/c6ra11039h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The administration of diets with different protein/energy ratios induce variable but distinctive responses in rats; an excessive protein content tends to decrease fat accumulation, but reversion of this ratio tends to increase adipose tissue mass.
Collapse
Affiliation(s)
- Floriana Rotondo
- Department of Biochemistry and Molecular Medicine
- Faculty of Biology
- University of Barcelona
- 08023 Barcelona
- Spain
| | - Tania Sanz
- Department of Biochemistry and Molecular Medicine
- Faculty of Biology
- University of Barcelona
- 08023 Barcelona
- Spain
| | | | - Marià Alemany
- Department of Biochemistry and Molecular Medicine
- Faculty of Biology
- University of Barcelona
- 08023 Barcelona
- Spain
| | - Xavier Remesar
- Department of Biochemistry and Molecular Medicine
- Faculty of Biology
- University of Barcelona
- 08023 Barcelona
- Spain
| |
Collapse
|
32
|
Sources and Amounts of Animal, Dairy, and Plant Protein Intake of US Adults in 2007-2010. Nutrients 2015; 7:7058-69. [PMID: 26308049 PMCID: PMC4555161 DOI: 10.3390/nu7085322] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 08/03/2015] [Accepted: 08/10/2015] [Indexed: 11/29/2022] Open
Abstract
Dietary guidelines suggest consuming a mixed-protein diet, consisting of high-quality animal, dairy, and plant-based foods. However, current data on the distribution and the food sources of protein intake in a free-living, representative sample of US adults are not available. Data from the National Health and Nutrition Examination Survey (NHANES), 2007–2010, were used in these analyses (n = 10,977, age ≥ 19 years). Several US Department of Agriculture (USDA) databases were used to partition the composition of foods consumed into animal, dairy, or plant components. Mean ± SE animal, dairy, and plant protein intakes were determined and deciles of usual intakes were estimated. The percentages of total protein intake derived from animal, dairy, and plant protein were 46%, 16%, and 30%, respectively; 8% of intake could not be classified. Chicken and beef were the primary food sources of animal protein intake. Cheese, reduced-fat milk, and ice cream/dairy desserts were primary sources of dairy protein intake. Yeast breads, rolls/buns, and nuts/seeds were primary sources of plant protein intake. This study provides baseline data for assessing the effectiveness of public health interventions designed to alter the composition of protein foods consumed by the American public.
Collapse
|