1
|
Jaffali C, Synytsya A, Khadhri A, Aschi-Smiti S, Bleha R, Jozífek M, Kvasnička F, Klouček P. Structure and strain specificity for polysaccharides from king oyster mushroom (Pleurotus eryngii) fruiting bodies. Int J Biol Macromol 2025; 295:139286. [PMID: 39765292 DOI: 10.1016/j.ijbiomac.2024.139286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/26/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025]
Abstract
King oyster mushroom Pleurotus eryngii is cultivated worldwide for culinary and to improve human health. However, the potential of some Mediterranean representatives of this species is still not evaluated. This work focuses on the study of polysaccharides from fruiting bodies of two Tunisian strains, P. eryngii var. elaeoselini and P. eryngii var. ferulae, and, for comparison, one deposited P. eryngii originated from Korea. Polysaccharides were successively extracted with hot water using microwave heating and 1 mol L-1 aqueous sodium hydroxide. The crude hot water extracts were purified by treating them with proteolytic enzymes, and the alkaline extracts were purified by re-dissolving with dimethyl sulphoxide. In both cases, a decrease or removal of proteins was detected. Glucans predominated in all these products; the insoluble parts also contained chitin. The purified hot water extracts contained glycogen, β-d-glucans and mannogalactan. Branching (1 → 3)(1 → 6)-β-d-glucan was the major polysaccharide in the alkali-soluble fractions, while (1 → 3)-α-d-glucan was only a minor component. The Tunisian strains demonstrated a higher proportion of water-soluble polysaccharides, compared to the alkaline soluble ones, and more β-d-glucan in the insoluble chitin-glucan complexes. Fruiting body proteins of these strains are more available for solubilisation and enzymatic or alkaline degradation and, thus, may have higher nutritional value than those of the reference strain. As a source of proteins or polysaccharides, the Tunisian endemic P. eryngii strains of this study are promising for the domestication and cultivation of fruiting bodies for gastronomic purposes in the North African region.
Collapse
Affiliation(s)
- Chahrazed Jaffali
- Laboratory of Plant, Soil and Environment Interactions, Faculty of Sciences, University of El-Manar, Campus Academia, 2092 Tunis, Tunisia; Department of Carbohydrates and Cereals, University of Chemistry and Technology Prague, Czech Republic
| | - Andriy Synytsya
- Department of Carbohydrates and Cereals, University of Chemistry and Technology Prague, Czech Republic.
| | - Ayda Khadhri
- Laboratory of Plant, Soil and Environment Interactions, Faculty of Sciences, University of El-Manar, Campus Academia, 2092 Tunis, Tunisia
| | - Samira Aschi-Smiti
- Laboratory of Plant, Soil and Environment Interactions, Faculty of Sciences, University of El-Manar, Campus Academia, 2092 Tunis, Tunisia
| | - Roman Bleha
- Department of Carbohydrates and Cereals, University of Chemistry and Technology Prague, Czech Republic
| | - Miroslav Jozífek
- Department of Horticulture, Czech University of Life Sciences Prague, Czech Republic
| | - František Kvasnička
- Department of Food Preservation, University of Chemistry and Technology Prague, Czech Republic
| | - Pavel Klouček
- Department of Crop Production, Czech University of Life Sciences Prague, Czech Republic
| |
Collapse
|
2
|
Krupodorova T, Barshteyn V, Gafforov Y, Rašeta M, Zaichenko T, Blume Y. Comparative evaluation of free radical scavenging activity and total metabolite profiles among 30 macrofungi species. BIORESOUR BIOPROCESS 2025; 12:13. [PMID: 39982581 DOI: 10.1186/s40643-025-00841-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/23/2025] [Indexed: 02/22/2025] Open
Abstract
The high antioxidant content of mushrooms such as polyphenols, polysaccharides, carotenoids, ergothioneine, glutathione, vitamins, and other compounds, has sparked interest in their potential use in preventive and therapeutic medicine. Therefore, this study aimed to evaluate the antioxidant potential of various macrofungi by measuring 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging activity and quantifying two classes of compounds: phenolics (TPC) and polysaccharides, both endo- (IPS) and exopolysaccharides (EPS). Species-specific abilities to produce mycelium, polysaccharides, and polyphenols were observed under submerged cultivation without agitation over 14 days. Mycelium productivity (PM) ranged significantly from 292 ± 11 to 1110 ± 37 mg·L⁻1·day⁻1, with the highest values observed in Ophiocordyceps sinensis (1110 ± 37 mg·L⁻1 ·day⁻1), Pleurotus djamor (1090 ± 14 mg·L⁻1·day⁻1), and Cordyceps militaris (1080 ± 90 mg· L⁻1·day⁻1). The DPPH inhibition values of the extracts varied from 4.30 ± 0.20 to 87.9 ± 0.80%, while TPC ranged from 0.35 ± 0.10 to 34.6 ± 0.80 mg GAE/g d.w. Lentinula edodes was the best source of produced IPS (10.3 ± 0.35 g·L-1), while Hypsizygus marmoreus exhibited the highest EPS content (2.24 ± 0.30 g·L-1). Overall, IPS levels across species were higher, ranging from 1.56 to 10.3 g·L-1. In half of the fungal species, the mycelium exhibited superior antioxidant activity compared to culture broth. However, in the majority (66.7%), TPC was higher in the culture broth than in the fungal mycelium. Distinct scavenging abilities and metabolite profiles were observed among different isolates. Notably, the mycelium of Fomitopsis pinicola and L. edodes showed the highest DPPH inhibition and TPC. The antioxidant activity and TPC varied depending on the culture medium, and solvents used. The highest DPPH inhibition (90%) and TPC (38.5 ± 0.40 mg GAE/g d.w.) were observed in the methanol (MeOH) extract of F. pinicola mycelium grown in Sabouraud dextrose medium. Similarly, MeOH and ethyl acetate (EtOAc) extracts demonstrated strong DPPH inhibition (over 87%), while the maximum TPC (40.0 ± 0.60 mg GAE/g d.w.) was detected in the water (H2O) extract of L. edodes mycelium cultivated in glucose-peptone-yeast medium. A positive correlation was found between TPC and antioxidant activity, with Pearson's coefficient of 0.6615 for fungal mycelium, 0.1192 for culture broth, and 0.8924 and 0.7143 for F. pinicola and L. edodes, respectively. Both fungal mycelium and culture broth exhibit significant potential as natural antioxidants. These can be applied in nutraceuticals, food products, and nutritional supplements, offering diverse health benefits. Additionally, this study is a pioneering exploration of Auriporia aurea, Hohenbuehelia myxotricha, Lepista luscina, Oxyporus obducens, and Pseudospongipellis litschaueri, highlighting their largely unexplored potential for antioxidant applications.
Collapse
Affiliation(s)
- Tetiana Krupodorova
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine, 2a Baidy-Vyshnevetskoho Str., Kyiv, 04123, Ukraine.
| | - Victor Barshteyn
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine, 2a Baidy-Vyshnevetskoho Str., Kyiv, 04123, Ukraine
| | - Yusufjon Gafforov
- Central Asian Center for Development Studies, New Uzbekistan University, Tashkent, 100007, Uzbekistan
| | - Milena Rašeta
- Department of Chemistry, Biochemistry and Enviromental Protection, Faculty of Science, University of Novi Sad, Novi Sad, 21000, Serbia
| | - Tetiana Zaichenko
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine, 2a Baidy-Vyshnevetskoho Str., Kyiv, 04123, Ukraine
| | - Yaroslav Blume
- Department of Genomics and Molecular Biotechnology, Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine, 2a Baidy-Vyshnevetskoho Str, Kyiv, 04123, Ukraine
| |
Collapse
|
3
|
Ma G, Tao Q, Li X, Han Y, Du H, Hu Q, Xiao H. Metabolomics study of dietary Pleurotus eryngii β-type glycosidic polysaccharide on colitis induced by dextran sodium sulfate in mice - Exploration for the potential metabolic indicators in urine and serum. Food Chem 2024; 458:140195. [PMID: 38954951 DOI: 10.1016/j.foodchem.2024.140195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
Pleurotus eryngii, an edible mushroom recognized for its potent polysaccharides, demonstrates significant regulatory effects on metabolic processes. β-glucan (WPEP) derived from P. eryngii has been noted for its therapeutic potential, exhibiting notable benefits in alleviating colonic inflammation and restructuring gut microbiota in mice treated with dextran sodium sulfate (DSS). This study focuses on utilizing DSS-induced colitis mice to explore the efficacy and underlying mechanisms of WPEP in ameliorating colitis, employing a metabolomics approach analyzing urine and serum. The findings reveal that WPEP administration effectively regulates metabolic imbalances in DSS mice, impacting purine metabolism, pentose and glucuronic acid interconversion, amino acid metabolism, primary bile acid biosynthesis, citric acid cycle, and lipid metabolism. Furthermore, WPEP demonstrates a capacity to modulate colitis by regulating diverse metabolic pathways, consequently influencing intestinal barrier integrity, motility, inflammation, oxidative stress, and immunity. These insights suggest that WPEP is a promising food component for managing inflammatory bowel diseases.
Collapse
Affiliation(s)
- Gaoxing Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, People's Republic of China
| | - Qi Tao
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, People's Republic of China
| | - Xinyi Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, People's Republic of China
| | - Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, MA 01002, USA
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, MA 01002, USA
| | - Qiuhui Hu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, People's Republic of China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01002, USA.
| |
Collapse
|
4
|
Hong L, Ma Z, Jing X, Yang H, Ma J, Pu L, Zhang J. Effects of dietary supplementation of polysaccharide from Agaricus blazei Murr on productive performance, egg quality, blood metabolites, intestinal morphology and microbiota of Korean quail. Anim Biosci 2024; 37:1452-1462. [PMID: 38575122 PMCID: PMC11222865 DOI: 10.5713/ab.23.0441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/15/2023] [Accepted: 02/08/2024] [Indexed: 04/06/2024] Open
Abstract
OBJECTIVE This study aimed to investigate the effects of dietary supplementation with Agaricus blazei polysaccharide (ABP) at varying concentrations on the performance, egg quality, blood biochemistry, intestinal morphology, and microflora of quail. METHODS The study involved a total of 2,700 Korean quails, which were randomly divided into three groups. The measured variables encompassed productive performance, egg parameters, carcass parameters, serum metabolites, immune response parameters, antioxidative properties, and gut microbiome. RESULTS The addition of ABP did not have a significant effect on average daily feed intake. However, it was found to increase the average daily egg weight and egg production rate, reduce the feed-egg ratio. There were no significant impacts on egg quality measures such as egg shape index, egg yolk index and color, egg yolk and protein content. However, ABP supplementation significantly increased the Hough unit (p<0.01) and decreased the rate of unqualified eggs (p<0.01). Regarding serum parameters, the inclusion led to an increase in total protein concentration (p<0.05) and a reduction in low-density lipoprotein cholesterol (p<0.05). There were no significant effects observed on immune indicators such as immunoglobulin A (IgA) and IgM. ABP supplementation increased the levels of serum antioxidant indicators, including glutathione peroxidase, total superoxide dismutase (p<0.05), and total antioxidant capacity colorimeter (p<0.05). Furthermore, ABP supplementation significantly elevated the intramuscular fatty acid content in quail meat. Additionally, ABP supplementation demonstrated a significant improvement in the diversity of gut microbiota and induced alterations in the composition of the gut microbiota. CONCLUSION The findings of this study indicate that dietary supplementation of ABP enhanced production performance and antioxidant capacity while increasing the levels of polyunsaturated fatty acids in quail muscle.
Collapse
Affiliation(s)
- Liang Hong
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392,
China
- Tianjin Key Laboratory of Green Ecological Feed, Tianjin 301800,
China
| | - Zheng Ma
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392,
China
- College of Animal Science and Technology, Guangxi University, Guangxi 530000,
China
| | - Xueyi Jing
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392,
China
| | - Hua Yang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392,
China
| | - Jifei Ma
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392,
China
| | - Lei Pu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392,
China
| | - Jianbin Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392,
China
- Tianjin Key Laboratory of Green Ecological Feed, Tianjin 301800,
China
| |
Collapse
|
5
|
Yin Z, Zhang J, Qin J, Guo L, Guo Q, Kang W, Ma C, Chen L. Anti-inflammatory properties of polysaccharides from edible fungi on health-promotion: a review. Front Pharmacol 2024; 15:1447677. [PMID: 39130633 PMCID: PMC11310034 DOI: 10.3389/fphar.2024.1447677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Edible fungus polysaccharides have garnered significant attention from scholars due to their safety and potential anti-inflammatory activity. However, comprehensive summaries of their anti-inflammatory properties are still rare. This paper provides a detailed overview of the anti-inflammatory effects and mechanisms of these polysaccharides, as well as their impact on inflammation-related diseases. Additionally, the relationship between their structure and anti-inflammatory activity is discussed. It is believed that this review will greatly enhance the understanding of the application of edible fungus polysaccharides in anti-inflammatory treatments, thereby significantly promoting the development and utilization of edible fungi.
Collapse
Affiliation(s)
- Zhenhua Yin
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Huanghe Science and Technology College, Zhengzhou, China
- National R and D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
| | - Juanjuan Zhang
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Huanghe Science and Technology College, Zhengzhou, China
| | - Jingjing Qin
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Huanghe Science and Technology College, Zhengzhou, China
| | - Lin Guo
- National R and D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
| | - Qingfeng Guo
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Huanghe Science and Technology College, Zhengzhou, China
| | - Wenyi Kang
- National R and D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Function Food Engineering Technology Research Center, Kaifeng, China
| | - Changyang Ma
- National R and D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Function Food Engineering Technology Research Center, Kaifeng, China
| | - Lin Chen
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Huanghe Science and Technology College, Zhengzhou, China
| |
Collapse
|
6
|
Fu Y, Wang Q, Guo Y, Koci M, Lu Z, Zeng X, Wang Y, Tang Y, Ma Q, Ji C, Zhao L. Pleurotus eryngii polysaccharides alleviate aflatoxin B 1-induced liver inflammation in ducks involving in remodeling gut microbiota and regulating SCFAs transport via the gut-liver axis. Int J Biol Macromol 2024; 271:132371. [PMID: 38750861 DOI: 10.1016/j.ijbiomac.2024.132371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/30/2024]
Abstract
Aflatoxin B1 (AFB1) is one of the most widespread contaminants in agricultural commodities. Pleurotus eryngii (PE) is widely used as a feed additive for its anti-inflammatory properties, and its major active substance is believed to be polysaccharides. This study aims to explore the underlying mechanism of dietary PE polysaccharides alleviating AFB1-induced toxicity in ducks. The major monosaccharide components of PE polysaccharides were identified as glucose, mannose, galactose, glucuronic acid, and fucose. The results showed that dietary PE polysaccharides could alleviate liver inflammation, alleviate intestinal barrier dysfunction, and change the imbalanced gut microbiota induced by AFB1 in ducks. However, PE polysaccharides failed to exert protective roles on the liver and intestine injury induced by AFB1 in antibiotic-treated ducks. The PE + AFB1-originated microbiota showed a positive effect on intestinal barrier and inflammation, the SCFAs transport via the gut-liver axis, and liver inflammation compared with the AFB1-originated microbiota in ducks. These findings provided a possible mechanism that PE polysaccharides alleviated AFB1-induced liver inflammation in ducks by remodeling gut microbiota, regulating microbiota-derived SCFAs transport via the gut-liver axis, and inhibiting inflammatory gene expressions in the liver, which may provide new insight for therapeutic methods against AFB1 exposure in animals.
Collapse
Affiliation(s)
- Yutong Fu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming yuan, Beijing 100193, PR China
| | - Qianqian Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming yuan, Beijing 100193, PR China
| | - Yongpeng Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Matthew Koci
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Zhengda Lu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming yuan, Beijing 100193, PR China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming yuan, Beijing 100193, PR China
| | - Yanan Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming yuan, Beijing 100193, PR China
| | - Yu Tang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming yuan, Beijing 100193, PR China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming yuan, Beijing 100193, PR China
| | - Cheng Ji
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming yuan, Beijing 100193, PR China
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming yuan, Beijing 100193, PR China.
| |
Collapse
|
7
|
Ma G, Ma S, Du H, Li X, Tao Q, Hu Q, Xiao H. Interactions between intestinal microbial fermentation products of Pleurotus eryngii polysaccharide with gut mucus. Food Funct 2024; 15:1476-1488. [PMID: 38226839 DOI: 10.1039/d3fo04787c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Recently, Pleurotus eryngii (P. eryngii) polysaccharide (PEP) has received a lot of attention from many researchers as the primary active substance. The PEP influences the gut microbiota in several ways, including the interaction of fermentation products with the intestinal mucus layer (IML) and intestinal epithelial cells. Herein, we characterized interactions between the IML and PEP after degradation by the gut microbes. Our results showed that fermented P. eryngii polysaccharide (FPEP) can interact with intestinal mucus (IM), and this interaction can reduce the degree of molecular aggregation of polysaccharides. At the same time, the fermentation time of FPEP also affects the interaction between the two. SEM showed that the FPEP solution tended to aggregate into larger particles, while with the addition of IM, the FPEP molecules were dispersed. Particle size measurements unveil substantial differences in the fermented polysaccharides' particle size between the group with supplementary IM (0 hours of fermentation: 485.1 ± 11.3 nm) and the group without IM (0 hours of fermentation: 989.33 ± 21.3 nm). Remarkably, within the group with added IM, the particle size reached its maximum at 24 hours of fermentation (585.87 ± 42.83 nm). Additionally, turbidity assessments demonstrate that, during the 12-hour interaction period, the 24-hour fermented polysaccharides consistently exhibit the highest OD values, ranging between 0.57 and 0.61. This work investigates the interaction between FPEP and IM, predicting the adhesion of polysaccharides to IM. Meanwhile, this provides a theoretical basis for further studies on the absorption and transport pathways of PEP and provides a novel research viewpoint on intestinal digestion and absorption.
Collapse
Affiliation(s)
- Gaoxing Ma
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Sai Ma
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, MA 01002, USA.
| | - Xinyi Li
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Qi Tao
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Qiuhui Hu
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01002, USA.
| |
Collapse
|
8
|
Tacchini M, Sacchetti G, Guerrini A, Paganetto G. Mycochemicals against Cancer Stem Cells. Toxins (Basel) 2023; 15:360. [PMID: 37368660 DOI: 10.3390/toxins15060360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/08/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Since ancient times, mushrooms have been considered valuable allies of human well-being both from a dietary and medicinal point of view. Their essential role in several traditional medicines is explained today by the discovery of the plethora of biomolecules that have shown proven efficacy for treating various diseases, including cancer. Numerous studies have already been conducted to explore the antitumoural properties of mushroom extracts against cancer. Still, very few have reported the anticancer properties of mushroom polysaccharides and mycochemicals against the specific population of cancer stem cells (CSCs). In this context, β-glucans are relevant in modulating immunological surveillance against this subpopulation of cancer cells within tumours. Small molecules, less studied despite their spread and assortment, could exhibit the same importance. In this review, we discuss several pieces of evidence of the association between β-glucans and small mycochemicals in modulating biological mechanisms which are proven to be involved with CSCs development. Experimental evidence and an in silico approach are evaluated with the hope of contributing to future strategies aimed at the direct study of the action of these mycochemicals on this subpopulation of cancer cells.
Collapse
Affiliation(s)
- Massimo Tacchini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Gianni Sacchetti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandra Guerrini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Guglielmo Paganetto
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
9
|
Zhao Y, Zhang Z, Wang L, Li W, Du J, Zhang S, Chen X. Hypolipidemic mechanism of Pleurotus eryngii polysaccharides in high-fat diet-induced obese mice based on metabolomics. Front Nutr 2023; 10:1118923. [PMID: 36761225 PMCID: PMC9905146 DOI: 10.3389/fnut.2023.1118923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Objective In this study, the structure of Pleurotus eryngii polysaccharides (PEPs) was characterized, and the mechanism of PEP on obesity and hyperlipidemia induced by high-fat diet was evaluated by metabonomic analysis. Methods The structure of PEPs were characterized by monosaccharide composition, Fourier transform infrared spectroscopy and thermogravimetry. In animal experiments, H&E staining was used to observe the morphological difference of epididymal adipose tissue of mice in each group. Ultrahigh performance liquid chromatography (UHPLC)-(QE) HFX -mass spectrometry (MS) was used to analyze the difference of metabolites in serum of mice in each group and the related metabolic pathways. Results The PEPs contained nine monosaccharides: 1.05% fucose, 0.30% arabinose, 17.94% galactose, 53.49% glucose, 1.24% xylose, 23.32% mannose, 1.30% ribose, 0.21%galacturonic acid, and 1.17% glucuronic acid. The PEPs began to degrade at 251°C (T0), while the maximum thermal degradation rate temperature (Tm) appeared at 300°C. The results histopathological observation demonstrated that the PEPs had signifificant hypolipidemic activities. After PEPs intervention, the metabolic profile of mice changed significantly. A total of 29 different metabolites were selected as adjunctive therapy to PEPs, for treatment of obesity and hyperlipidemia-related complications caused by a high-fat diet. These metabolites include amino acids, unsaturated fatty acids, choline, glycerol phospholipids, and other endogenous compounds, which can prevent and treat obesity and hyperlipidemia caused by a high-fat diet by regulating amino acid metabolism, fatty acid metabolism, and changes in metabolic pathways such as that involved in the citric cycle (TCA cycle). Conclusions The presented results indicate that PEPs treatment can alleviate the obesity and hyperlipidemia caused by a high-fat diet and, thus, may be used as a functional food adjuvant, providing a theoretical basis and technical guidance for the prevention and treatment of high-fat diet-induced obesity and hyperlipidemia.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Zhen Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Li Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Wen Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Jianming Du
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Shengxiang Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China,*Correspondence: Xuefeng Chen ✉
| |
Collapse
|
10
|
Boulaka A, Mantellou P, Stanc GM, Souka E, Valavanis C, Saxami G, Mitsou E, Koutrotsios G, Zervakis GI, Kyriacou A, Pletsa V, Georgiadis P. Genoprotective activity of the Pleurotus eryngii mushrooms following their in vitro and in vivo fermentation by fecal microbiota. Front Nutr 2022; 9:988517. [PMID: 36082029 PMCID: PMC9445615 DOI: 10.3389/fnut.2022.988517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022] Open
Abstract
Pleurotus eryngii mushrooms are commercially cultivated and widely consumed due to their organoleptic properties, and the low caloric and high nutritional value. In addition, they contain various biologically active and health-promoting compounds; very recently, their genoprotective effect in Caco-2 cells after their fermentation by the human fecal microbiota was also documented. In the current study, the effect of P. eryngii pre- and post-fermentation supernatants in micronuclei formation was evaluated in human lymphocytes. In addition, the genoprotective properties of increasing concentrations of aqueous extracts from P. eryngii mushrooms (150, 300, 600 mg/kg) against the cyclophosphamide-induced DNA damage were studied in young and elderly female and male mice in bone marrow and whole blood cells. The ability of the highest dose (600 mg/kg) to regulate the main cellular signaling pathways was also evaluated in gut and liver tissues of female animals by quantifying the mRNA expression of NrF2, Nfkβ, DNMT1, and IL-22 genes. P. eryngii post-fermentation, but not pre-fermentation, supernatants were able to protect human lymphocytes from the mitomycin C-induced DNA damage in a dose-dependent manner. Similarly, genoprotection was also observed in bone marrow cells of mice treated by gavage with P. eryngii extract. The effect was observed in all the experimental groups of mice (young and elderly, male and female) and was more potent in young female mice. Overexpression of all genes examined was observed in both tissues, mainly among the elderly animals. In conclusion, P. eryngii mushrooms were shown to maintain genome integrity through protecting cells from genotoxic insults. These beneficial effects can be attributed to their antioxidant and immunomodulatory properties, as well as their ability to regulate the cell's epigenetic mechanisms and maintain cell homeostasis.
Collapse
Affiliation(s)
- Athina Boulaka
- Laboratory of Environment and Health, Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Panagiota Mantellou
- Laboratory of Environment and Health, Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Gabriela-Monica Stanc
- Department of Pathology, Molecular Pathology Unit, Metaxa Cancer Hospital, Piraeus, Greece
| | - Efthymia Souka
- Department of Pathology, Molecular Pathology Unit, Metaxa Cancer Hospital, Piraeus, Greece
| | - Christoς Valavanis
- Department of Pathology, Molecular Pathology Unit, Metaxa Cancer Hospital, Piraeus, Greece
| | - Georgia Saxami
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Evdokia Mitsou
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Georgios Koutrotsios
- Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, Athens, Greece
| | - Georgios I. Zervakis
- Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, Athens, Greece
| | | | - Vasiliki Pletsa
- Laboratory of Environment and Health, Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Panagiotis Georgiadis
- Laboratory of Environment and Health, Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| |
Collapse
|
11
|
Wu Y, Liu J, Hao H, Hu L, Zhang X, Luo L, Zeng J, Zhang W, Nam Wong I, Huang R. A new polysaccharide from Caulerpa chemnitzia induces molecular shifts of immunomodulation on macrophages RAW264.7. Food Chem X 2022; 14:100313. [PMID: 35539819 PMCID: PMC9079710 DOI: 10.1016/j.fochx.2022.100313] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 04/07/2022] [Accepted: 04/15/2022] [Indexed: 11/18/2022] Open
Abstract
CCP showed significant immunomodulatory effects. CCP raising the level of NO, TNF-α, and IL-6 of macrophages RAW264.7. Investigation on the metabolites and genes changes in CCP-induced RAW264.7. Potential immunostimulatory mechanism of CCP on RAW264.7 was elucidated.
Investigation on Caulerpa chemnitzia polysaccharides led to the finding of a new polysaccharide (CCP). The basic components of CCP were the total sugar (59.18% ± 0.57%), the uronic acids (36.75% ± 0.28%) and the sulfate (42.50% ± 0.42%), in total content. The physicochemical analysis revealed that CCP was a heteropolysaccharide with a molecular weight of 321.6 KDa, and composed of arabinose, fucose, glucose, mannose, galactose, xylose, fructose, ribose, glucuronic acid and galacturonic acid. The immunomodulatory assay showed that CCP played an important role in activating cell viability, the nitric oxide product and cytokines (IL-6 and TNF-α) secretion. Furthermore, the transcript-metabolic analysis displayed a total of 7692 differentially expressed genes (DEGs) and 95 differentially accumulated metabolites (DAMs), and revealed that CCP may play an immunomodulatory effect by activating NF-κB signaling pathway and arachidonic acid metabolism pathway. These findings will provide a basic understanding to further investigation of Caulerpa polysaccharides.
Collapse
Affiliation(s)
- Yulin Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jun Liu
- Laboratory of Pathogenic Biology, The Marine Biomedical Research Institute, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Huili Hao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Lianxiang Luo
- Laboratory of Pathogenic Biology, The Marine Biomedical Research Institute, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Jincheng Zeng
- Laboratory of Pathogenic Biology, The Marine Biomedical Research Institute, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines and Macau Institute for Applied Research in Medicine and Health, Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Io Nam Wong
- State Key Laboratory of Quality Research in Chinese Medicines and Macau Institute for Applied Research in Medicine and Health, Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Corresponding author.
| |
Collapse
|
12
|
Dedhia N, Marathe SJ, Singhal RS. Food polysaccharides: A review on emerging microbial sources, bioactivities, nanoformulations and safety considerations. Carbohydr Polym 2022; 287:119355. [DOI: 10.1016/j.carbpol.2022.119355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 12/13/2022]
|
13
|
Wen XY, Jing P. Dietary cerebrosides in seven edible mushrooms: One step detection, quantification, and Si-SPE assisted isolation. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Sharma A, Sharma A, Tripathi A. Biological activities of Pleurotus spp. polysaccharides: A review. J Food Biochem 2021; 45:e13748. [PMID: 33998679 DOI: 10.1111/jfbc.13748] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 11/27/2022]
Abstract
Mushrooms are consumed for their nutrients and therapeutic bioactive compounds and are used medicinally in Chinese and Japanese medicine traditions since time immemorial. Members of the genus Pleurotus form a heterogeneous group of edible species with outstanding nutritional profiles rich in fiber, vitamins (thiamine, riboflavin, ascorbic acid, ergosterine, and niacin), micro and macro-elements (phosphorus and iron), and carbohydrates. Pleurotus is one of the most diversified medicinal and edible mushrooms related to the composition of chemical structures such as polysaccharides, glycoproteins, and secondary metabolites such as alkaloids and betalains. The cultivation of Pleurotus spp. on lignocellulosic wastes represents one of the most economically and cost-effective organic recycling processes, especially for the utilization of different feasible and cheap recyclable residues. Also, several Pleurotus spp. have the ability to remove phenolic compounds from wastewater with the action of phenoloxidase activity. Here, we have reviewed the chemistry of such polysaccharides and their reported biological activities, namely, anti-inflammatory, immunomodulatory, anti-diabetic, anti-tumor, antioxidant, etc. The mechanism of action and effects of novel polysaccharides extracted from various species of Pleurotus have been studied. The current study will be beneficial for guiding future research projects on the above concept and investigating more deeply the health of human beings. PRACTICAL APPLICATIONS: Mushrooms are one of the most delicious foods around the globe and have many medicinal properties for decades. Various Pleurotus species have been in focus in recent years because of their palatability and medicinal importance too. It contains many bioactive compounds among which polysaccharides are valued to a great extent. Many biological activities are exerted by polysaccharides derived from the Pleurotus spp., namely, anti-tumor, antioxidant, and many more. They are responsible for significant physiological responses in animals, animal-alternative in vitro models, and humans. Their important physicochemical characteristics benefit their use in the food industry as well. So, the biological activities of these Pleurotus spp. polysaccharides will provide an insight to develop Pleurotus spp. as functional foods, because of their nutritional value and presence of bioactive components.
Collapse
Affiliation(s)
- Aparajita Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Aditi Sharma
- Faculty of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Astha Tripathi
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| |
Collapse
|
15
|
Ma G, Du H, Hu Q, Yang W, Pei F, Xiao H. Health benefits of edible mushroom polysaccharides and associated gut microbiota regulation. Crit Rev Food Sci Nutr 2021; 62:6646-6663. [PMID: 33792430 DOI: 10.1080/10408398.2021.1903385] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Edible mushrooms have been an important part of the human diet for thousands of years, and over 100 varieties have been cultivated for their potential human health benefits. In recent years, edible mushroom polysaccharides (EMPs) have been studied for their activities against obesity, inflammatory bowel disease (IBD), and cancer. Particularly, accumulating evidence on the exact causality between these health risks and specific gut microbiota species has been revealed and characterized, and most of the beneficial health effects of EMPs have been associated with its reversal impacts on gut microbiota dysbiosis. This demonstrates the key role of EMPs in decreasing health risks through gut microbiota modulation effects. This review article compiles and summarizes the latest studies that focus on the health benefits and underlying functional mechanisms of gut microbiota regulation via EMPs. We conclude that EMPs can be considered a dietary source for the improvement and prevention of several health risks, and this review provides the theoretical basis and technical guidance for the development of novel functional foods with the utilization of edible mushrooms.
Collapse
Affiliation(s)
- Gaoxing Ma
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China.,Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Qiuhui Hu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Wenjian Yang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Fei Pei
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|