1
|
Silva M, Donati S, Dvořák P. Advances in engineering substrate scope of Pseudomonas cell factories. Curr Opin Biotechnol 2025; 92:103270. [PMID: 39978295 DOI: 10.1016/j.copbio.2025.103270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/14/2025] [Accepted: 01/29/2025] [Indexed: 02/22/2025]
Abstract
Most current industrial bioprocesses use well-established model microorganisms and simple sugar substrates from edible starch or molasses. To broaden and sustain bioprocesses, we need to explore new robust microbial hosts with desirable traits and ideally exploit diverse waste-derived substrates. Pseudomonas species are prime candidates for new generation of industrial biotechnology due to their resilient physiology and adaptable metabolism. However, natural isolates are not always suitable for demanding biotechnological applications. Despite pseudomonads' typically broad substrate range, their catabolism can be further enhanced through metabolic engineering, synthetic biology, and/or laboratory evolution to efficiently degrade, utilize, and valorize alternative waste substrates derived from lignocellulosic residues, synthetic plastics, C1 compounds, or their mixtures.
Collapse
Affiliation(s)
- Miguel Silva
- Department of Experimental Biology (Section of Microbiology), Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Stefano Donati
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Pavel Dvořák
- Department of Experimental Biology (Section of Microbiology), Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic.
| |
Collapse
|
2
|
Li A, Yuan F, Li L, Gu J, Zhang Y, Li F, Tang T, Liu F. Interactions between nanoplastics and Tetrahymena thermophila: Low toxicity vs. potential biodegradation. CHEMOSPHERE 2025; 373:144166. [PMID: 39914086 DOI: 10.1016/j.chemosphere.2025.144166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/09/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025]
Abstract
Nanoplastics (NPs) are prevalent throughout the environment and have raised growing environmental concerns. Although numerous studies have examined the toxicological aspects of NPs, few have investigated their environmental fate and behavior when affected by organisms other than bacteria or fungi. Planktonic ciliates are essential components of aquatic ecosystems and play important roles in decomposing organic matter and transferring energy from the microbial food web to higher trophic levels. To investigate the interplay between NPs and the ciliate Tetrahymena thermophila, we executed a sequence of feeding experiments utilizing 50 nm polystyrene nanoplastics (PS-NPs). In the presence of sufficient nutrition, exposure to PS-NPs (even at concentrations up to 500 mg/L) did not significantly inhibit growth in Tetrahymena thermophila, indicating only a mild toxic effect of PS-NPs. When ingested by T. thermophila, the PS-NPs are repackaged into aggregates with lysosomal components in the food vacuole and finally expelled as compacted "fecal pellets". This process modifies the physical attributes of PS-NPs, including their hydrophilicity, aggregability, and buoyancy, influencing their transportation, retention, deposition dynamics, and ultimately their bioavailability within the environment. A total of 73 proteins were identified from the fecal pellets, containing various hydrolases. Gel permeation chromatography (GPC), Fourier transform infrared (FTIR), and thermogravimetric analysis (TGA) were used to identify changes in molecular weights, functional groups, and thermal stabilities of PS-NP residues in fecal pellets. The results verified the degradation of PS-NPs during the passage through the T. thermophila cell.
Collapse
Affiliation(s)
- Aiyun Li
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Fengyu Yuan
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Lianshan Li
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Jihai Gu
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Yuming Zhang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Fengchao Li
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Ting Tang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China.
| | - Fengsong Liu
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China; Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China.
| |
Collapse
|
3
|
Burd BS, Mussagy CU, Bebber C, Sant'Ana Pegorin Brasil G, Dos Santos LS, Guerra NB, Persinoti GF, Jucaud V, Goldbeck R, Herculano RD. Can the insects Galleria mellonella and Tenebrio molitor be the future of plastic biodegradation? THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178879. [PMID: 40022971 DOI: 10.1016/j.scitotenv.2025.178879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/24/2025] [Accepted: 02/15/2025] [Indexed: 03/04/2025]
Abstract
Plastics have been an integral part of human lives, enhancing the functionality and safety of many everyday products, contributing significantly to our overall well-being. However, petroleum-based plastics can take hundreds or even thousands of years to decompose, resulting in an unprecedented plastic waste accumulation in the environment. Widely used conventional plastic disposal methods as landfilling and incineration are also environmentally harmful, frequently leading to soil/water contamination and the release of microplastics. To overcome these limitations, researchers have been investigating novel sustainable alternatives for plastic waste management, such as the use of microorganisms, microbial-based enzymes, and, more recently, some insect larvae, being Galleria mellonella and Tenebrio molitor the most promising ones. In this review, we explore different methods of plastic waste disposal focusing on recent discoveries regarding biological plastic degradation using insects as alternative methods. We also discuss the plastic degradation mechanisms employed by G. mellonella and T. molitor larvae known so far, as salivary enzymes and the pool of microorganisms in their gut. Finally, this review highlights key challenges in plastic biodegradation, such as standardization and experimental comparability, while proposing innovative perspectives like using insects as bioreactors and exploring unexplored research directions.
Collapse
Affiliation(s)
- Betina Sayeg Burd
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km 1 Araraquara Jaú Highway, 14800-903 Araraquara, SP, Brazil; Institute of Chemistry, São Paulo State University (UNESP), 55 Prof Francisco Degni Street, 14800-900 Araraquara, SP, Brazil.
| | - Cassamo Ussemane Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile
| | - Camila Bebber
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km 1 Araraquara Jaú Highway, 14800-903 Araraquara, SP, Brazil
| | - Giovana Sant'Ana Pegorin Brasil
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km 1 Araraquara Jaú Highway, 14800-903 Araraquara, SP, Brazil; Institute of Chemistry, São Paulo State University (UNESP), 55 Prof Francisco Degni Street, 14800-900 Araraquara, SP, Brazil
| | - Lindomar Soares Dos Santos
- Faculty of Philosophy, Sciences and Languages of Ribeirão Preto, Universidade de São Paulo, University (USP), 3900 Bandeirantes Avenue, 14.040-901 Ribeirão Preto, SP, Brazil
| | - Nayrim Brizuela Guerra
- School of Science, São Paulo State University (UNESP), 14-01 Eng. Luiz Edmundo Carrijo Coube, Avenue, Bauru, SP, Brazil
| | - Gabriela Felix Persinoti
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA
| | - Rosana Goldbeck
- Bioprocess and Metabolic Engineering Laboratory, School of Food Engineering, University of Campinas, UNICAMP Monteiro Lobato no. 80, Campinas, São Paulo 13083-862, Brazil
| | - Rondinelli Donizetti Herculano
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km 1 Araraquara Jaú Highway, 14800-903 Araraquara, SP, Brazil; Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA.
| |
Collapse
|
4
|
Rotilio L, Bayer T, Meinert H, Teixeira LMC, Johansen MB, Sommerfeldt A, Petersen AR, Sandahl A, Keller MB, Holck J, Paiva P, Otzen DE, Bornscheuer UT, Wei R, Fernandes PA, Ramos MJ, Westh P, Morth JP. Structural and Functional Characterization of an Amidase Targeting a Polyurethane for Sustainable Recycling. Angew Chem Int Ed Engl 2025; 64:e202419535. [PMID: 39611359 DOI: 10.1002/anie.202419535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Global plastic production exceeded 400 million tons in 2022, urgently demanding improved waste management and recycling strategies for a circular plastic economy. While the enzymatic hydrolysis of polyethylene terephthalate (PET) has become feasible on industrial scales, efficient enzymes targeting other hydrolyzable plastic types, such as polyurethanes (PURs), are lacking. Recently, enzymes of the amidase signature (AS) family, capable of cleaving urethane bonds in a polyether-PUR analog and a linear polyester-PUR, have been identified. Herein, we present high-resolution crystal structures of the AS enzyme UMG-SP3 in three states: ligand-free, bound with a suicidal inhibitor mimicking the transition state, and bound with a monomeric PUR degradation product. Besides revealing the conserved core and catalytic triad akin to other AS family members, the UMG-SP3 structures show remarkable flexibility of loop regions. Particularly, Arg209 in loop 3 adopts two induced-fit conformations upon ligand binding. Through structure-guided kinetic studies and enzyme engineering, we mapped structural key elements that determine the enhanced hydrolysis of urethane and amide bonds in various small molecules, including a linear PUR fragment analog. Our findings contribute critical insights into urethanase activity, aiding PUR degradation campaigns and sustainable plastic recycling efforts in the future.
Collapse
Affiliation(s)
- Laura Rotilio
- EnZync Center for Enzymatic Deconstruction of Thermoset Plastics
- Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800, Kongens Lyngby, Denmark
| | - Thomas Bayer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Hannes Meinert
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Luis M C Teixeira
- EnZync Center for Enzymatic Deconstruction of Thermoset Plastics
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Martin B Johansen
- EnZync Center for Enzymatic Deconstruction of Thermoset Plastics
- Danish Technological Institute, Kongsvang Alle 29, 8000, Aarhus, Denmark
| | - Andreas Sommerfeldt
- EnZync Center for Enzymatic Deconstruction of Thermoset Plastics
- Danish Technological Institute, Kongsvang Alle 29, 8000, Aarhus, Denmark
| | - Allan R Petersen
- EnZync Center for Enzymatic Deconstruction of Thermoset Plastics
- Danish Technological Institute, Kongsvang Alle 29, 8000, Aarhus, Denmark
| | - Alexander Sandahl
- EnZync Center for Enzymatic Deconstruction of Thermoset Plastics
- Danish Technological Institute, Kongsvang Alle 29, 8000, Aarhus, Denmark
| | - Malene B Keller
- Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800, Kongens Lyngby, Denmark
| | - Jesper Holck
- Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800, Kongens Lyngby, Denmark
| | - Pedro Paiva
- EnZync Center for Enzymatic Deconstruction of Thermoset Plastics
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Daniel E Otzen
- EnZync Center for Enzymatic Deconstruction of Thermoset Plastics
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Ren Wei
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Pedro A Fernandes
- EnZync Center for Enzymatic Deconstruction of Thermoset Plastics
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Maria J Ramos
- EnZync Center for Enzymatic Deconstruction of Thermoset Plastics
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Peter Westh
- EnZync Center for Enzymatic Deconstruction of Thermoset Plastics
- Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800, Kongens Lyngby, Denmark
| | - J Preben Morth
- EnZync Center for Enzymatic Deconstruction of Thermoset Plastics
- Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800, Kongens Lyngby, Denmark
| |
Collapse
|
5
|
Zhang L, Cao K, Liu H, Wang Y, Zhang B, Han H, Cui Z, Cao H. Discovery of a polyester polyurethane-degrading bacterium from a coastal mudflat and identification of its degrading enzyme. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136659. [PMID: 39612876 DOI: 10.1016/j.jhazmat.2024.136659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/30/2024] [Accepted: 11/24/2024] [Indexed: 12/01/2024]
Abstract
Biodegradation of polyurethane (PU) plastics is a lower cost and more environmentally friendly approach to the regeneration of waste plastics than the landfill or incineration alternatives. Currently, however, the lack of efficient degradation strains and their enzymes is restricting the development of viable large-scale waste PU regeneration. In this study, a wild strain (LTX1) is isolated from a coastal mudflat, and then a mutant strain (MLTX1) with higher degradation efficiency is obtained by UV mutagenesis. Both the LTX1 and MLTX1 strains are able to achieve a more than 80 % weight loss of PU foam after 12 days treatment, making them the most efficient PU foam-degrading strains available to date. The PU foam degradation is characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). A novel gene, purh, encoding one of the cutinases is cloned using genomics and transcriptomics, and its recombinant PurH, capable of efficiently degrading PU foam, is expressed in Escherichia coli and identified. The discovery of this highly-efficient PU foam-degrading strain and its enzyme may represent a leap forward in the biological depolymerization and recycling of PU foam.
Collapse
Affiliation(s)
- Liting Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaixun Cao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Hao Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuwei Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Bo Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Heming Han
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China; Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Cao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
6
|
Welsing G, Wolter B, Kleinert GEK, Göttsch F, Besenmatter W, Xue R, Mauri A, Steffens D, Köbbing S, Dong W, Jiang M, Bornscheuer UT, Wei R, Tiso T, Blank LM. Two-step biocatalytic conversion of post-consumer polyethylene terephthalate into value-added products facilitated by genetic and bioprocess engineering. BIORESOURCE TECHNOLOGY 2025; 417:131837. [PMID: 39557102 DOI: 10.1016/j.biortech.2024.131837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/27/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Solving the plastic crisis requires high recycling quotas and technologies that allow open loop recycling. Here a biological plastic valorization approach consisting of tandem enzymatic hydrolysis and monomer conversion of post-consumer polyethylene terephthalate into value-added products is presented. Hydrolysates obtained from enzymatic degradation of pre-treated post-consumer polyethylene terephthalate bottles in a stirred-tank reactor served as the carbon source for a batch fermentation with an engineered Pseudomonas putida strain to produce 90mg/L of the biopolymer cyanophycin. Through fed-batch operation, the fermentation could be intensified to 1.4 g/L cyanophycin. Additionally, the upcycling of polyethylene terephthalate monomers to the biosurfactants (hydroxyalkanoyloxy)alkanoates and rhamnolipids is presented. These biodegradable products hold significant potential for applications in areas such as detergents, building blocks for novel polymers, and tissue engineering. In summary, the presented bio-valorization process underscores that addressing challenges like the plastic crisis requires an interdisciplinary approach.
Collapse
Affiliation(s)
- Gina Welsing
- RWTH Aachen University, Institute of Applied Microbiology (iAMB), Worringer Weg 1, 52074 Aachen, Germany.
| | - Birger Wolter
- RWTH Aachen University, Institute of Applied Microbiology (iAMB), Worringer Weg 1, 52074 Aachen, Germany.
| | - Greta E K Kleinert
- RWTH Aachen University, Institute of Applied Microbiology (iAMB), Worringer Weg 1, 52074 Aachen, Germany.
| | - Frederike Göttsch
- University of Greifswald, Institute of Biochemistry, Department of Biotechnology & Enzyme Catalysis, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany.
| | | | - Rui Xue
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, 30 South Puzhu Road, Nanjing Tech University, Nanjing, Jiangsu 211800, PR China.
| | - Alessandra Mauri
- RWTH Aachen University, Institute of Applied Microbiology (iAMB), Worringer Weg 1, 52074 Aachen, Germany.
| | - Dominik Steffens
- RWTH Aachen University, Institute of Applied Microbiology (iAMB), Worringer Weg 1, 52074 Aachen, Germany.
| | - Sebastian Köbbing
- RWTH Aachen University, Institute of Applied Microbiology (iAMB), Worringer Weg 1, 52074 Aachen, Germany.
| | - Weiliang Dong
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, 30 South Puzhu Road, Nanjing Tech University, Nanjing, Jiangsu 211800, PR China.
| | - Min Jiang
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, 30 South Puzhu Road, Nanjing Tech University, Nanjing, Jiangsu 211800, PR China.
| | - Uwe T Bornscheuer
- University of Greifswald, Institute of Biochemistry, Department of Biotechnology & Enzyme Catalysis, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany.
| | - Ren Wei
- University of Greifswald, Institute of Biochemistry, Department of Biotechnology & Enzyme Catalysis, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany.
| | - Till Tiso
- RWTH Aachen University, Institute of Applied Microbiology (iAMB), Worringer Weg 1, 52074 Aachen, Germany.
| | - Lars M Blank
- RWTH Aachen University, Institute of Applied Microbiology (iAMB), Worringer Weg 1, 52074 Aachen, Germany.
| |
Collapse
|
7
|
Belabbas H, Djinni I, Djoudi W, Reti W, Hamma A, Souagui S, Haddad S, Kecha M. Streptomyces coeruleorubidus strain SALG1 derived seashore plastic bottle for the biodegradation of untreated plastic polymers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:5381-5398. [PMID: 39930097 DOI: 10.1007/s11356-025-36027-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/24/2025] [Indexed: 02/28/2025]
Abstract
Plastic pollution has become a significant environmental concern due to the widespread use and persistence of polyethylene (PE) in various industries. In this study, soil samples containing plastic waste were collected from a public landfill site, along with plastic bottles gathered from the shore of Sidi Ali Lebher in the Bejaia region, Algeria. In total, nine strains of PE-degrading actinobacteria were isolated using PE as sole carbon source. The SALG1 strain was isolated from plastic bottles and selected for its high enzymatic potential and effectiveness in degrading PE. Selected from nine actinobacteria isolates, it was identified as Streptomyces coeruleorubidus with 98.28% similarity to Streptomyces coeruleorubidus type strain ISP 5145 T based on the 16S rRNA gene sequence analysis. The growth of SALG1 was evaluated using polyethylene glycol (PEG) as the sole carbon source, demonstrating a significant reduction in PEG concentration over a 14-day period, accompanied by biomass accumulation. Furthermore, SALG1 exhibited biosurfactant production and hydrophobicity, indicating its potential to interact with hydrophobic substrates like PE. Biodegradation experiments conducted over 2 and 6 months revealed SALG1's capability to degrade colorless and black PE (9.18% and 5.22%), as well as polystyrene (PS) and polyethylene terephthalate (PET) (0.25% and 0.42%) in both liquid and solid media. Moreover, the presence of Tween 80 enhanced degradation percentages, particularly in liquid media, suggesting its utility as a potential biostimulant. Structural changes induced by SALG1 activity in polymer films were characterized using X-ray diffraction (XRD) and infrared spectrophotometry (ATR), as well as the thermogravimetric analysis (TG/DTG) providing valuable insights into the degradation mechanism.
Collapse
Affiliation(s)
- Hanane Belabbas
- Faculté Des Sciences de La Nature Et de La Vie, Laboratoire de Microbiologie Appliquée, Université de Bejaia, 06000, Bejaia, Algérie
| | - Ibtissem Djinni
- Faculté Des Sciences de La Nature Et de La Vie, Laboratoire de Microbiologie Appliquée, Université de Bejaia, 06000, Bejaia, Algérie.
| | - Warda Djoudi
- Faculté Des Sciences de La Nature Et de La Vie, Laboratoire de Microbiologie Appliquée, Université de Bejaia, 06000, Bejaia, Algérie
| | - Wissam Reti
- Faculté Des Sciences de La Nature Et de La Vie, Laboratoire de Microbiologie Appliquée, Université de Bejaia, 06000, Bejaia, Algérie
| | - Amel Hamma
- Faculté Des Sciences de La Nature Et de La Vie, Des Sciences de La Terre Et de L'Univers, Département Des Sciences Alimentaires, Université Mohamed El Bachir El Ibrahimi, 34030, Bordj Bou Arreridj, Algérie
- Unité de Recherche Matériaux Emergents, Université Ferhat Abbes Sétif 1, Campus El Maabouda, 19000, Setif, Algérie
| | - Samiha Souagui
- Faculté Des Sciences de La Nature Et de La Vie, Laboratoire de Microbiologie Appliquée, Université de Bejaia, 06000, Bejaia, Algérie
| | - Sara Haddad
- Faculté Des Sciences de La Nature Et de La Vie, Laboratoire de Microbiologie Appliquée, Université de Bejaia, 06000, Bejaia, Algérie
| | - Mouloud Kecha
- Faculté Des Sciences de La Nature Et de La Vie, Laboratoire de Microbiologie Appliquée, Université de Bejaia, 06000, Bejaia, Algérie
| |
Collapse
|
8
|
Ayafor C, Chang AC, Patel A, Abid U, Xie D, Sobkowicz MJ, Wong H. In-Situ Product Removal for the Enzymatic Depolymerization of Poly(ethylene terephthalate) via a Membrane Reactor. CHEMSUSCHEM 2025; 18:e202400698. [PMID: 39227316 PMCID: PMC11789978 DOI: 10.1002/cssc.202400698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/19/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024]
Abstract
Poly(ethylene terephthalate) (PET) is a common single-use plastic and a major contributor to plastic waste. PET upcycling through enzymatic depolymerization has drawn significant interests, but lack of robust enzymes in acidic environments remains a challenge. This study investigates in-situ product removal (ISPR) of protons and monomers from enzymatic PET depolymerization via a membrane reactor, focusing on the ICCG variant of leaf branch compost cutinase. More than two-fold improvements in overall PET depolymerization and terephthalic acid yields were achieved employing ISPR for an initial PET loading of 10 mgPET mlbuffer -1. The benefit of ISPR was reduced for a lower initial loading of 1 mgPET mlbuffer -1 due to decreased need for pH stabilization of the enzyme-containing solutions. A back-of-envelop analysis suggests that at a modest dilution ratio, ISPR could help achieve savings on caustic base solutions used for pH control in a bioreactor. Our study provides valuable insights for future ISPR developments for enzymatic PET depolymerization, addressing the pressing need for more sustainable solutions towards plastic recycling and environmental conservation.
Collapse
Affiliation(s)
- Christian Ayafor
- Energy Engineering ProgramUniversity of Massachusetts LowellLowellMA-01854USA
| | - Allen C. Chang
- Department of Plastics EngineeringUniversity of Massachusetts LowellLowellMA-01854USA
| | - Akanksha Patel
- Department of Plastics EngineeringUniversity of Massachusetts LowellLowellMA-01854USA
| | - Umer Abid
- Department of Chemical EngineeringUniversity of Massachusetts LowellLowellMA-01854USA
| | - Dongming Xie
- Department of Chemical EngineeringUniversity of Massachusetts LowellLowellMA-01854USA
| | - Margaret J. Sobkowicz
- Department of Plastics EngineeringUniversity of Massachusetts LowellLowellMA-01854USA
| | - Hsi‐Wu Wong
- Department of Chemical EngineeringUniversity of Massachusetts LowellLowellMA-01854USA
| |
Collapse
|
9
|
Buhari SB, Ghahremani Nezhad N, Normi YM, Mohd Shariff F, Leow TC. Homology modeling and thermostability enhancement of Vibrio palustris PETase via hydrophobic interactions. J Biomol Struct Dyn 2025:1-14. [PMID: 39844700 DOI: 10.1080/07391102.2024.2440646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/21/2024] [Indexed: 01/24/2025]
Abstract
The quest for sustainable solutions to plastic pollution has driven research into plastic-degrading enzymes, offering promising avenues for polymer recycling applications. However, enzymes derived from natural sources often exhibit suboptimal thermostability, hindering their industrial viability. Protein engineering techniques have emerged as a powerful approach to enhance the desired properties of these biocatalysts. This study aims to conduct a comprehensive analysis of the thermostability of Vibrio palustris PETase (VpPETase) through an integrated computational approach encompassing homology modeling, site-specific molecular docking, molecular dynamics (MD) simulations, and comparative evaluation of a single-point mutation (V195F) against the wild-type enzyme. Homology modeling was used to predict VpPETase model using multiple templates. Model quality was rigorously assessed using Ramachandran plot analysis, ProSA, Verify 3D, and ERRAT. Molecular docking elucidated the catalytic region comprising residues His149, Asp117, and Ser71, while highlighting the pivotal roles of His149, Tyr1, and Ser71 in substrate binding affinity. MD simulations at various temperatures revealed higher stability at 313.15 K over a 100 ns trajectory, as evidenced by analyses of root-mean-square deviation (RMSD), radius of gyration (Rg), solvent-accessible surface area (SASA), hydrogen bonding, and root-mean-square fluctuation (RMSF). The V195F mutant exhibited a slight increase in stability compared to wild-type. While this study provides valuable insights into the thermostability of VpPETase, further investigations, including experimental validation of thermostability enhancements and in vitro characterization, are warranted to fully exploit the potential of this enzyme for industrial applications in plastic recycling.
Collapse
Affiliation(s)
- Sunusi Bataiya Buhari
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nima Ghahremani Nezhad
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yahaya M Normi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Fairolniza Mohd Shariff
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
10
|
Zhang S, Wang X, Shen H, Zhang J, Dong W, Yu Z. Scalable nanoplastic degradation in water with enzyme-functionalized porous hydrogels. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137196. [PMID: 39823878 DOI: 10.1016/j.jhazmat.2025.137196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/30/2024] [Accepted: 01/11/2025] [Indexed: 01/20/2025]
Abstract
The prevalence of nanoplastics in water has led to significant environmental and health concerns, yet effective and scalable strategies for mitigating this contamination remain limited. Here, we report a straightforward, efficient, and scalable approach to degrade nanoplastics in water using enzyme-loaded hydrogel granules with an interconnected porous structure and adjustable properties. These porous hydrogels were synthesized via a polymerization-induced phase separation method, allowing easy scaling-up. Our results show that enzyme-functionalized porous hydrogels slightly outperform free cutinase in nanoplastic degradation. Furthermore, immobilized enzymes exhibited enhanced stability under harsh conditions, achieving a 104.1 % higher PET removal rate at pH 5 than free cutinase. Notably, the immobilized enzyme retained 39.9 % of its initial degradation activity after five cycles, demonstrating good reuse stability. This method offers a promising and practical solution for using enzymes to address nanoplastic pollution in aquatic environments.
Collapse
Affiliation(s)
- Shaobin Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China
| | - Xuan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China
| | - Haixia Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China
| | - Jing Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China.
| | - Ziyi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China.
| |
Collapse
|
11
|
Najam M, Javaid S, Iram S, Pasertsakoun K, Oláh M, Székács A, Aleksza L. Microbial Biodegradation of Synthetic Polyethylene and Polyurethane Polymers by Pedospheric Microbes: Towards Sustainable Environmental Management. Polymers (Basel) 2025; 17:169. [PMID: 39861242 PMCID: PMC11769026 DOI: 10.3390/polym17020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
This study attempted to isolate and identify pedospheric microbes originating in dumpsites and utilized them for the degradation of selected synthetic polymers for the first time in a cost-effective, ecologically favorable and sustainable manner. Specifically, low-density polyethylene (LDPE) and polyurethane (PUR) were converted by the isolated fungi, i.e., Aspergillus flavus, A terreus, A. clavatus, A. nigers and bacterial coccus and filamentous microbes and assessed in a biotransformative assay under simulated conditions. Commendable biodegradative potentials were exhibited by the isolated microbes against polymers that were analyzed over a span of 30 days. Among the selected fungal microbes, the highest activity was achieved by A. niger, expressing 55% and 40% conversion of LDPE and PUR, respectively. In the case of bacterial strains, 50% and 40% conversion of LDPE and PUR degradation was achieved by coccus. Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA) were utilized to analyze the degradative patterns in terms of vibrational and thermal characteristics, and stereomicroscopic analysis was performed for the visual assessment of morphological variations. Profound structural transformations were detected in FT-IR spectra and TGA thermograms for the selected microbes. Stereomicroscopic analysis was also indicative of the remarkable transformation of the surface morphology of these polymers after degradation by microbes in comparison to the reference samples not treated with any pedospheric microbes. The results are supportive of the utilization of the selected pedospheric microbes as environmental remediators for the cleanup of persistent polymeric toxins. This current work can be further extended for the successful optimization of further augmented percentages by using other pedospheric microbes for the successful adoption of these biotechnological tools at a practical level.
Collapse
Affiliation(s)
- Maryam Najam
- Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, Rawalpindi 46000, Pakistan; (M.N.); (S.J.)
| | - Sana Javaid
- Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, Rawalpindi 46000, Pakistan; (M.N.); (S.J.)
| | - Shazia Iram
- Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, Rawalpindi 46000, Pakistan; (M.N.); (S.J.)
| | - Kingkham Pasertsakoun
- Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary; (K.P.); (M.O.); (A.S.)
| | - Marianna Oláh
- Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary; (K.P.); (M.O.); (A.S.)
| | - András Székács
- Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary; (K.P.); (M.O.); (A.S.)
| | - László Aleksza
- Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary; (K.P.); (M.O.); (A.S.)
- Profikomp Environmental Technologies Inc., Kühne Ede u. 7, H-2100 Gödöllő, Hungary
| |
Collapse
|
12
|
Xie Y, Cai P, Cao X, Chen B, Pan Y. Water-Resistant Poly(vinyl alcohol)/ZnO Nanopillar Composite Films for Antibacterial Packaging. ACS OMEGA 2024; 9:50403-50413. [PMID: 39741812 PMCID: PMC11684479 DOI: 10.1021/acsomega.4c07173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/24/2024] [Accepted: 12/02/2024] [Indexed: 01/03/2025]
Abstract
To solve the problems that poly(vinyl alcohol) (PVA) easily breeds bacteria and swells in a humid environment, PVA and ZnO nanopillar (ZnO NP) components were composed to generate PVA/ZnO NP composite films via a simple combination process of blending and heat treatment in this study. Here, ZnO NPs endowed composite films with good antibacterial properties, and the etherification and dehydration of hydroxyl groups between PVA molecular chains induced by heat treatment resulted in the composite films having excellent water-swelling resistance. Most importantly, PVA/ZnO NP composite films revealed excellent tensile strength in both humid (52.85 MPa) and dry (74.63 MPa) environments. In addition, PVA/ZnO NP composite films showed good antibacterial and antisepsis abilities as well as preservation functions in the packaging test of half-cut apples. The current work disclosed an easy strategy for producing a PVA-based antibacterial film for packaging materials that are water-resistant and highly strong, making them suitable for applications in humid environments.
Collapse
Affiliation(s)
- Yuanjian Xie
- Guangxi
Key Laboratory of Green Chemical Materials and Safety Technology,
Guangxi Engineering Research Center for New Chemical Materials and
Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Pingxiong Cai
- Guangxi
Key Laboratory of Green Chemical Materials and Safety Technology,
Guangxi Engineering Research Center for New Chemical Materials and
Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Xiaofeng Cao
- Guangxi
Key Laboratory of Green Chemical Materials and Safety Technology,
Guangxi Engineering Research Center for New Chemical Materials and
Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Bo Chen
- Guangxi
Key Laboratory of Green Chemical Materials and Safety Technology,
Guangxi Engineering Research Center for New Chemical Materials and
Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Yuanfeng Pan
- Guangxi
Colleges and Universities Key Laboratory of New Technology and Application
in Resource Chemical Engineering, School of Chemistry and Chemical
Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
13
|
Song Q, Zhang Y, Ju C, Zhao T, Meng Q, Cong J. Microbial strategies for effective microplastics biodegradation: Insights and innovations in environmental remediation. ENVIRONMENTAL RESEARCH 2024; 263:120046. [PMID: 39313172 DOI: 10.1016/j.envres.2024.120046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Microplastics (MPs), diminutive yet ubiquitous fragments arising from the degradation of plastic waste, pervade environmental matrices, posing substantial risks to ecological systems and trophic dynamics. This review meticulously examines the origins, distribution, and biological impacts of MPs, with an incisive focus on elucidating the molecular and cellular mechanisms underpinning their toxicity. We highlight the indispensable role of microbial consortia and enzymatic pathways in the oxidative degradation of MPs, offering insights into enhanced biodegradation processes facilitated by innovative pretreatment methodologies. Central to our discourse is the interplay between MPs and biota, emphasizing the detoxification capabilities of microbial metabolisms and enzymatic functions in ameliorating MPs' deleterious effects. Additionally, we address the practical implementations of MP biodegradation in environmental remediation, advocating for intensified research to unravel the complex biodegradation pathways and to forge effective strategies for the expeditious elimination of MPs from diverse ecosystems. This review not only articulates the pervasive challenges posed by MPs but also positions microbial strategies at the forefront of remedial interventions, thereby paving the way for groundbreaking advancements in environmental conservation.
Collapse
Affiliation(s)
- Qianqian Song
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Yun Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Cuiping Ju
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266000, China
| | - Tianyu Zhao
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Qingxuan Meng
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Jing Cong
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
14
|
Lu Q, Tang D, Liang Q, Wang S. Biotechnology for the degradation and upcycling of traditional plastics. ENVIRONMENTAL RESEARCH 2024; 263:120140. [PMID: 39395553 DOI: 10.1016/j.envres.2024.120140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/14/2024]
Abstract
Traditional plastics, predominantly derived from petrochemicals, are extensively utilized in modern industry and daily life. However, inadequate management and disposal practices have resulted in widespread environmental contamination, with polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate, and polystyrene being the most prevalent pollutants. Biological methods for plastic degradation have garnered significant attention due to their cost-effectiveness and potential for resource recovery, positioning them as promising strategies for sustainable plastic waste management. While polyethylene terephthalate, characterized by its relatively less stable C-O bonds, has been extensively studied and demonstrates significant potential for biodegradation. In contrast, the biodegradation of other plastics remains a significant challenge due to the inherent stability of their C-C backbone structures. This review comprehensively examines the state-of-the-art biotechnology for treating these traditional plastics, focusing on: (1) the roles of specific microorganisms and enzymes, their taxonomic classifications, and the metabolic pathways involved in plastic biodegradation; and (2) a proposed two-stage hybrid approach integrating physicochemical and biological processes to enhance the biodegradation or upcycling of these traditional plastics. Additionally, the review highlights the critical role of multi-omics approaches and tailored strategies in enhancing the efficiency of plastic biodegradation while examining the impact of plastic molecular structures and additives on their degradation potential. It also addresses key challenges and delineates future research directions to foster the development of innovative biological methods for the effective and sustainable management of plastic waste.
Collapse
Affiliation(s)
- Qihong Lu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Daoyu Tang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Qi Liang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shanquan Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
15
|
Zampolli J, Collina E, Lasagni M, Di Gennaro P. Insights into polyethylene biodegradative fingerprint of Pseudomonas citronellolis E5 and Rhodococcus erythropolis D4 by phenotypic and genome-based comparative analyses. Front Bioeng Biotechnol 2024; 12:1472309. [PMID: 39726982 PMCID: PMC11669507 DOI: 10.3389/fbioe.2024.1472309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/08/2024] [Indexed: 12/28/2024] Open
Abstract
Polyethylene (PE) is the most-produced polyolefin, and consequently, it is the most widely found plastic waste worldwide. PE biodegradation is under study by applying different (micro)organisms in order to understand the biodegradative mechanism in the majority of microbes. This study aims to identify novel bacterial species with compelling metabolic potential and strategic genetic repertoires for PE biodegradation. Pseudomonas citronellolis E5 is newly isolated from solid organic waste contaminated with plastic debris, and Rhodococcus erythropolis D4 was selected for its promising potential in biodegradable plastic determined by its genetic repertoire. P. citronellolis E5 was selected for its ability to grow on PE as the only carbon and energy source. Meaningful extracellular secreted laccase activity was also characterized for D4 during growth on PE (E5 and D4 strains have a laccase activity of (2 ± 1)×10-3 U mg-1 and (3 ± 1)×10-3 U mg-1, respectively). Despite the highest level of cell numbers recorded at 7 days of growth on PE for both strains, the patterns of the metabolic products obtained and degraded during 60 days on PE were dissimilar in the two bacteria at different sampling times. However, they mainly produced metabolites belonging to carboxylic acids and alkanes with varying numbers of carbons in the aliphatic chains. Whole-genome sequence analyses of P. citronellolis E5 compared to R. erythropolis D4 and genetic determinant prediction (by gene annotation and multiple sequence alignment with reference gene products) have been performed, providing a list of 16 and 42 gene products putatively related to different metabolic steps of PE biodegradation. Altogether, these results support insights into PE biodegradation by bacteria of the Pseudomonas and Rhodococcus genera from metabolic and genetic perspectives as a base to build up novel biotechnological platforms.
Collapse
Affiliation(s)
- Jessica Zampolli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Elena Collina
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Marina Lasagni
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
16
|
Colachis M, Lilly JL, Trigg E, Kucharzyk KH. Analytical tools to assess polymer biodegradation: A critical review and recommendations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176920. [PMID: 39461538 DOI: 10.1016/j.scitotenv.2024.176920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/29/2024]
Abstract
Many petroleum-derived plastic materials are highly recalcitrant and persistent in the environment, posing significant threats to human and ecological receptors due to their accumulation in ecosystems. In recent years, research efforts have focused on advancing biological methods for polymer degradation. Enzymatic depolymerization has emerged as particularly relevant for biobased plastic recycling, potentially scalable for industrial use. Biodegradation involves adsorption to the plastic solid surface, followed by an interfacial reaction, resulting in cleavage of bonds of polymer chains exposed on the surface. Here, widely varying substrate-specific kinetics are observed, with the polymer's properties possessing a significant impact on the rate of this interfacial catalysis. Thus, there is a critical need for sensitive and accurate characterization of the material surface during and after interfacial depolymerization to fully understand the reaction mechanisms. Here, we provide a critical review of a range of techniques used in the analysis of material surfaces to characterize the chemical, topological, and morphological features relevant to the study of enzymatic biocatalysis, including microscopy techniques, spectroscopic techniques (e.g., X-ray diffraction analysis, Fourier transform infrared attenuated total reflectance spectroscopy, and mass spectrometry detection of analytes associated with degradation). Techniques for evaluation of surface energy and topology in their relevancy for sensitive detection of biological surface modifications are also discussed. In addition, this paper provides an overview of the strengths of these techniques and compares their performance in both sensitivity and throughput, including emerging techniques, which can be useful, particularly for the rapid analysis of the surface properties of polymeric materials in high-throughput screening of candidate biocatalysts. This research serves as a starting point in selecting and applying appropriate methodologies that provide direct evidence to the ongoing biotic degradation of polymeric materials.
Collapse
Affiliation(s)
- Matthew Colachis
- Battelle Memorial Institute, 505 King Ave, Columbus, OH 43201, United States
| | - Jacob L Lilly
- Battelle Memorial Institute, 505 King Ave, Columbus, OH 43201, United States
| | - Edward Trigg
- Cambium Biomaterials, 626 Bancroft Way, Suite A, Berkeley, California 94710, United States
| | | |
Collapse
|
17
|
Yang B, Dong Z, Tan Z, Cai Y, Xie S. Roles of carbon dioxide in the conversion of biomass or waste plastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176882. [PMID: 39423883 DOI: 10.1016/j.scitotenv.2024.176882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Under the current trend of pursuing sustainable development and environmental protection, the important application of carbon dioxide (CO2) in the conversion process of biomass or waste plastics has become a research direction of concern. The goal of this conversion process is to achieve the efficient use of carbon dioxide, providing a process for the efficient use of biomass, and solving the environmental problems caused by plastics. Remarkable progress has been made in the study of the reaction of CO2 with other substances to produce methane, low-carbon hydrocarbons, methanol, formic acid, and its derivatives, as well as ethers, aldehydes, gasoline, low-carbon alcohols, and other chemicals. In this paper, the important role of CO2 in the conversion of alcohol, sugar, cellulose, and waste plastics was reviewed, with emphasis on the important applications of CO2 as a carbon source, reactant, reaction medium, enhancing agent, solvent, and carrier gas in the conversion of biomass or waste plastics and the basic insights of the reaction mechanism. The emerging CO2 new roles not only put forward the green application of CO2 but also have guiding significance for the utilization of biomass resources and the treatment of waste plastics.
Collapse
Affiliation(s)
- Bo Yang
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zhun Dong
- SinoHykey Technology Company Ltd., 8 Hongyuan Road, Huangpu District, Guangzhou 510760, PR China
| | - Zixuan Tan
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yihong Cai
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Shaoqu Xie
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering, Jieyang Center, Jieyang 515200, PR China.
| |
Collapse
|
18
|
Raczyńska A, Góra A, André I. An overview on polyurethane-degrading enzymes. Biotechnol Adv 2024; 77:108439. [PMID: 39241969 DOI: 10.1016/j.biotechadv.2024.108439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Polyurethanes (PUR) are durable synthetic polymers widely used in various industries, contributing significantly to global plastic consumption. PUR pose unique challenges in terms of degradability and recyclability, as they are characterised by intricate compositions and diverse formulations. Additives and proprietary structures used in commercial PUR formulations further complicate recycling efforts, making the effective management of PUR waste a daunting task. In this review, we delve into the complex challenge of enzymatic degradation of PUR, focusing on the structural and functional attributes of both enzymes and PUR. We also present documented native enzymes with reported efficacy in hydrolysing specific bonds within PUR, analysis of these enzyme structures, reaction mechanisms, substrate specificity, and binding site architecture. Furthermore, we propose essential features for the future redesign of enzymes to optimise PUR biodegradation efficiency. By outlining prospective research directions aimed at advancing the field of enzymatic biodegradation of PUR, we aim to contribute to the development of sustainable solutions for managing PUR waste and reducing environmental pollution.
Collapse
Affiliation(s)
- Agata Raczyńska
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, ul. Krzywoustego 8, 44-100 Gliwice, Poland; Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 avenue de Rangueil, F-31077 Toulouse Cedex, France; Faculty of Chemistry, Silesian University of Technology, ul. Strzody 9, 44-100 Gliwice, Poland
| | - Artur Góra
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, ul. Krzywoustego 8, 44-100 Gliwice, Poland.
| | - Isabelle André
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 avenue de Rangueil, F-31077 Toulouse Cedex, France.
| |
Collapse
|
19
|
Bagiyan V, Ghazanchyan N, Khachaturyan N, Gevorgyan S, Barseghyan S, Davidyan T, Chitchyan K. Fungal microbiota of biodamages of various polymeric materials. Braz J Microbiol 2024; 55:3251-3260. [PMID: 39441516 PMCID: PMC11711409 DOI: 10.1007/s42770-024-01547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
Data on microbial fouling of various synthetic polymer materials, including those used in space technology, are summarized. It has been established that the dominant groups of microbiota of polymer fouling are the genera of mitosporous fungi Aspergillus, Penicillium, Alternaria, Trichoderma. The enzymatic properties of fungal strains from the collection of microbial cultures of the Microbial Depository Center of the National Academy of Sciences of Armenia were studied. It has been shown that Aspergillus fumigatus, Penicillium chrysogenum, P. steckii, Juxtiphoma eupyrena and a number of other fungi have biofouling activity towards polyethylene, polyethylene terephthalate and some other synthetic polymers. New fungal kits have been developed and proposed to evaluate the fungal resistance of polymeric materials. They include fungi isolated from bio-damaged polymers used in space technology and contain 2 to 5 fungal strains instead of 7 to 9 strains in previously used kits. Taking into account the obtained data, a comparative assessment of the fungal resistance of samples of synthetic polymeric materials of various classes that passed accelerated climatic tests has been carried out. It has been established that the kits of biodegradant fungi, composed of cultures of bio-damaged space technology, generally exceeded the activity of the previously used kits, based on which one can judge the obvious advantages of strains isolated from bio-damaged space technology. In the future, these kits could find application not only for biodegradation of polymers, but also for testing the biostability of various polymers, to use for the construction of aviation and space techniques. Moreover, new optimized kits may be developed based on the strains involved in this study.
Collapse
Affiliation(s)
- Valeri Bagiyan
- Microbial Depository Center of the Scientific and Production Center of "Armbiotechnology" of NAS RA, Yerevan, 0056, Armenia.
| | - Narine Ghazanchyan
- Microbial Depository Center of the Scientific and Production Center of "Armbiotechnology" of NAS RA, Yerevan, 0056, Armenia
| | - Nune Khachaturyan
- Microbial Depository Center of the Scientific and Production Center of "Armbiotechnology" of NAS RA, Yerevan, 0056, Armenia
| | - Sona Gevorgyan
- Microbial Depository Center of the Scientific and Production Center of "Armbiotechnology" of NAS RA, Yerevan, 0056, Armenia
| | - Sona Barseghyan
- Microbial Depository Center of the Scientific and Production Center of "Armbiotechnology" of NAS RA, Yerevan, 0056, Armenia
| | - Tamara Davidyan
- Microbial Depository Center of the Scientific and Production Center of "Armbiotechnology" of NAS RA, Yerevan, 0056, Armenia
| | - Karine Chitchyan
- Microbial Depository Center of the Scientific and Production Center of "Armbiotechnology" of NAS RA, Yerevan, 0056, Armenia
| |
Collapse
|
20
|
Seong HJ, Kim H, Ko YJ, Yao Z, Baek SB, Kim NJ, Jang YS. Enhancing polyethylene degradation: a novel bioprocess approach using Acinetobacter nosocomialis pseudo-resting cells. Appl Microbiol Biotechnol 2024; 108:86. [PMID: 38189951 DOI: 10.1007/s00253-023-12930-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 01/09/2024]
Abstract
Despite the discovery of several bacteria capable of interacting with polymers, the activity of the natural bacterial isolates is limited. Furthermore, there is a lack of knowledge regarding the development of bioprocesses for polyethylene (PE) degradation. Here, we report a bioprocess using pseudo-resting cells for efficient degradation of PE. The bacterial strain Acinetobacter nosocomialis was isolated from PE-containing landfills and characterized using low-density PE (LDPE) surface oxidation when incubated with LDPE. We optimized culture conditions to generate catalytic pseudo-resting cells of A. nosocomialis that are capable of degrading LDPE films in a bioreactor. After 28 days of bioreactor operation using pseudo-resting cells of A. nosocomialis, we observed the formation of holes on the PE film (39 holes per 217 cm2, a maximum diameter of 1440 μm). This study highlights the potential of bacteria as biocatalysts for the development of PE degradation processes. KEY POINTS: • New bioprocess has been proposed to degrade polyethylene (PE). • Process with pseudo-resting cells results in the formation of holes in PE film. • We demonstrated PE degradation using A. nosocomialis as a biocatalyst.
Collapse
Affiliation(s)
- Hyeon Jeong Seong
- Division of Applied Life Science (BK21 Four), Department of Applied Life Chemistry, Institute of Agriculture & Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hyejin Kim
- Division of Applied Life Science (BK21 Four), Department of Applied Life Chemistry, Institute of Agriculture & Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Young-Joon Ko
- Department of Agricultural Biology, National Institute of Agriculture Sciences, Rural Development Administration, Wanju, 54875, Republic of Korea
| | - Zhuang Yao
- Division of Applied Life Science (BK21 Four), Department of Applied Life Chemistry, Institute of Agriculture & Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Song-Bum Baek
- Transportation and Environment Bureau, Jinju City Hall, Jinju, 52789, Republic of Korea
| | - Nam-Jung Kim
- Department of Agricultural Biology, National Institute of Agriculture Sciences, Rural Development Administration, Wanju, 54875, Republic of Korea.
| | - Yu-Sin Jang
- Division of Applied Life Science (BK21 Four), Department of Applied Life Chemistry, Institute of Agriculture & Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
21
|
Rezaei Z, Dinani AS, Moghimi H. Cutting-edge developments in plastic biodegradation and upcycling via engineering approaches. Metab Eng Commun 2024; 19:e00256. [PMID: 39687771 PMCID: PMC11647663 DOI: 10.1016/j.mec.2024.e00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/25/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
The increasing use of plastics has resulted in the production of high quantities of plastic waste that pose a serious risk to the environment. The upcycling of plastics into value-added products offers a potential solution for resolving the plastics environmental crisis. Recently, various microorganisms and their enzymes have been identified for their ability to degrade plastics effectively. Furthermore, many investigations have revealed the application of plastic monomers as carbon sources for bio-upcycling to generate valuable materials such as biosurfactants, bioplastics, and biochemicals. With the advancement in the fields of synthetic biology and metabolic engineering, the construction of high-performance microbes and enzymes for plastic removal and bio-upcycling can be achieved. Plastic valorization can be optimized by improving uptake and conversion efficiency, engineering transporters and enzymes, metabolic pathway reconstruction, and also using a chemo-biological hybrid approach. This review focuses on engineering approaches for enhancing plastic removal and the methods of depolymerization and upcycling processes of various microplastics. Additionally, the major challenges and future perspectives for facilitating the development of a sustainable circular plastic economy are highlighted.
Collapse
Affiliation(s)
- Zeinab Rezaei
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Amir Soleimani Dinani
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hamid Moghimi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
22
|
Kong D, Wang L, Yuan Y, Xia W, Liu Z, Shi M, Wu J. Review of key issues and potential strategies in bio-degradation of polyolefins. BIORESOURCE TECHNOLOGY 2024; 414:131557. [PMID: 39357608 DOI: 10.1016/j.biortech.2024.131557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/11/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Polyolefins are the most widely used plastic product and a major contributor to white pollution. Currently, studies on polyolefin degradation systems are mainly focused on microorganisms and some redox enzymes, and there is a serious black-box phenomenon. The use of polyolefin-degrading enzymes is limited because of the small number of enzymes; in addition, the catalytic efficiency of these enzymes is poor and their catalytic mechanism is unclear, which leads to the incomplete degradation of polyolefins to produce microplastics. In this review, three questions are addressed: the generation and degradation of action targets that promote the degradation of polyolefins, the different modes by which enzymes bind substrates and their application scenarios, and possible multienzyme systems in a unified system. This review will be valuable for mining or modifying polyolefin degradation enzymes and constructing polyolefins degradation systems and may provide novel ideas and opportunities for polyolefin degradation.
Collapse
Affiliation(s)
- Demin Kong
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Lei Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yuan Yuan
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Wei Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhanzhi Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Meng Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jing Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
23
|
Razzaq S, Shahid S, Nawab Y. Applications and environmental impact of biodegradable polymers in textile industry: A review. Int J Biol Macromol 2024; 282:136791. [PMID: 39461644 DOI: 10.1016/j.ijbiomac.2024.136791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
With the increasing global population, the disposal of waste has risen, especially over the last century. The Environmental Protection Agency (EPA) reported that 11 million tons of textile-related waste were landfilled in the USA in 2018, and this amount is projected to increase to 4.5 billion tons by 2040. Bio-based polymers have gained attention due to their remarkable properties. The most important biodegradable polymers include PLA, PHA, PHB, PCL, PBS, bamboo fibers, and banana fibers. Global biopolymer production capacity is expected to rise significantly, from around 2.18 million tons in 2023 to approximately 7.43 million tons by 2028. In the textile industry, the linear waste model presents numerous challenges, such as environmental damage and resource shortages. Shifting from a linear to a circular economy is essential to address these issues. Reducing, reusing, and recycling are the three key actions and strategies that form the foundation of the circular economy. This paper presents the current state of knowledge and technological advancements in biodegradable polymers in the textile industry, along with their products and applications. The study explores the cost-effectiveness, limitations, opportunities, and advancements in their manufacturing technologies. Biodegradable polymers in the textile sector are regarded as green alternatives to non-biodegradable polymers.
Collapse
Affiliation(s)
- Sadia Razzaq
- National Center for Composite Materials, School of Engineering and Technology, National Textile University, Faisalabad 37600, Pakistan
| | - Salma Shahid
- Department of Biochemistry, Government College Women University, Faisalabad, Pakistan.
| | - Yasir Nawab
- National Center for Composite Materials, School of Engineering and Technology, National Textile University, Faisalabad 37600, Pakistan
| |
Collapse
|
24
|
Jiang R, Yue Z, Shang L, Wang D, Wei N. PEZy-miner: An artificial intelligence driven approach for the discovery of plastic-degrading enzyme candidates. Metab Eng Commun 2024; 19:e00248. [PMID: 39310048 PMCID: PMC11414552 DOI: 10.1016/j.mec.2024.e00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/14/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Plastic waste has caused a global environmental crisis. Biocatalytic depolymerization mediated by enzymes has emerged as an efficient and sustainable alternative for plastic treatment and recycling. However, it is challenging and time-consuming to discover novel plastic-degrading enzymes using conventional cultivation-based or omics methods. There is a growing interest in developing effective computational methods to identify new enzymes with desirable plastic degradation functionalities by exploring the ever-increasing databases of protein sequences. In this study, we designed an innovative machine learning-based framework, named PEZy-Miner, to mine for enzymes with high potential in degrading plastics of interest. Two datasets integrating information from experimentally verified enzymes and homologs with unknown plastic-degrading activity were created respectively, covering eleven types of plastic substrates. Protein language models and binary classification models were developed to predict enzymatic degradation of plastics along with confidence and uncertainty estimation. PEZy-Miner exhibited high prediction accuracy and stability when validated on experimentally verified enzymes. Furthermore, by masking the experimentally verified enzymes and blending them into homolog dataset, PEZy-Miner effectively concentrated the experimentally verified entries by 14∼30 times while shortlisting promising plastic-degrading enzyme candidates. We applied PEZy-Miner to 0.1 million putative sequences, out of which 27 new sequences were identified with high confidence. This study provided a new computational tool for mining and recommending promising new plastic-degrading enzymes.
Collapse
Affiliation(s)
- Renjing Jiang
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States
| | - Zhenrui Yue
- School of Information Sciences, University of Illinois Urbana-Champaign, Champaign, IL, 61820, United States
| | - Lanyu Shang
- School of Information Sciences, University of Illinois Urbana-Champaign, Champaign, IL, 61820, United States
| | - Dong Wang
- School of Information Sciences, University of Illinois Urbana-Champaign, Champaign, IL, 61820, United States
| | - Na Wei
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States
| |
Collapse
|
25
|
Fang T, Jiang W, Zheng T, Yao X, Zhu W. Catalyst- and Solvent-Free Upcycling of Poly(Ethylene Terephthalate) Waste to Biodegradable Plastics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403728. [PMID: 39097946 DOI: 10.1002/adma.202403728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/10/2024] [Indexed: 08/06/2024]
Abstract
Poly(ethylene terephthalate) (PET) is an important polymer with annual output second only to polyethylene. Due to its low biodegradability, a large amount of PET is recycled for sustainable development. However, current strategies for PET recycling are limited by low added value or small product scale. It is urgent to make a breakthrough on the principle of PET macromolecular reaction and efficiently prepare products with high added value and wide applications. Here, the catalyst- and solvent-free synthesis of biodegradable plastics are reported through novel carboxyl-ester transesterification between PET waste and bio-based hydrogenated dimer acid (HDA), which can directly substitute some terephthalic acid (TPA) units in PET chain by HDA unit. This macromolecular reaction can be facilely carried out on current equipment in the polyester industry without any additional catalyst and solvent, thus enabling low-cost and large-scale production. Furthermore, the product semi-bio-based copolyester shows excellent mechanical properties, regulable flexibility and good biodegradability, which is expected to substitute poly(butylene adipate-co-terephthalate) (PBAT) plastic as high value-added biodegradable materials. This work provides an environmental-friendly and economic strategy for the large-scale upcycling of PET waste.
Collapse
Affiliation(s)
- Tianxiang Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Weipo Jiang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Tengfei Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xuxia Yao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China
- Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
26
|
Zhang Y, Wang Z, Wang F, Zhou H, Zhang L, Xie B. Anaerobic Degradation of Aromatic and Aliphatic Biodegradable Plastics: Potential Mechanisms and Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19462-19474. [PMID: 39424349 DOI: 10.1021/acs.est.4c07554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Biodegradable plastics (BDPs) have been widely used as substitutes for traditional plastics, and their environmental fate is a subject of intense research interest. Compared with the aerobic degradation of BDPs, their biodegradability under anaerobic conditions in environmental engineering systems remains poorly understood. This study aimed to investigate the degradability of BDPs composed of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactide acid) (PLA), and their blends, and explore the mechanism underlying their microbial degradation under conditions of anaerobic digestion (AD). The BDPs readily depolymerized under thermophilic conditions but were hydrolyzed at a slow rate under conditions of mesophilic AD. After 45 days of thermophilic AD, a decrease in the molecular weight and significant increase in the production of methane and carbon dioxide production were observed. Network and metagenomics analyses identified AD as reservoirs of plastic-degrading bacteria that produce multiple plastic-degrading enzymes. PETase was identified as the most abundant plastic-degrading enzyme. A potential pathway for the anaerobic biodegradation of BDPs was proposed herein. The polymers of high molecular weight were subjected to abiotic hydrolysis to form oligomers and monomers, enabling subsequent microbial hydrolysis and acetogenesis. Ultimately, complete degradation was achieved predominantly via the pathway involved in the conversion of acetic acid to methane. These findings provide novel insight into the mechanism underlying the anaerobic degradation of BDPs and the microbial resources crucial for the efficient degradation of BDPs.
Collapse
Affiliation(s)
- Yuchen Zhang
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zijiang Wang
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Feng Wang
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Hansheng Zhou
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Liangmao Zhang
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
27
|
Williams WA, Aravamudhan S. Micro-Nanoparticle Characterization: Establishing Underpinnings for Proper Identification and Nanotechnology-Enabled Remediation. Polymers (Basel) 2024; 16:2837. [PMID: 39408547 PMCID: PMC11479023 DOI: 10.3390/polym16192837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/08/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Microplastics (MPLs) and nanoplastics (NPLs) are smaller particles derived from larger plastic material, polymerization, or refuse. In context to environmental health, they are separated into the industrially-created "primary" category or the degradation derivative "secondary" category where the particles exhibit different physiochemical characteristics that attenuate their toxicities. However, some particle types are more well documented in terms of their fate in the environment and potential toxicological effects (secondary) versus their industrial fabrication and chemical characterization (primary). Fourier Transform Infrared Spectroscopy (FTIR/µ-FTIR), Raman/µ-Raman, Proton Nuclear Magnetic Resonance (H-NMR), Curie Point-Gas Chromatography-Mass Spectrometry (CP-gc-MS), Induced Coupled Plasma-Mass Spectrometry (ICP-MS), Nanoparticle Tracking Analysis (NTA), Field Flow Fractionation-Multiple Angle Light Scattering (FFF-MALS), Differential Scanning Calorimetry (DSC), Thermogravimetry (TGA), Differential Mobility Particle [Sizing] (DMPS), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Scanning Transmission X-ray Microspectroscopy (STXM) are reviewed as part of a suite of characterization methods for physiochemical ascertainment and distinguishment. In addition, Optical-Photothermal Infrared Microspectroscopy (O-PTIR), Z-Stack Confocal Microscopy, Mueller Matrix Polarimetry, and Digital Holography (DH) are touched upon as a suite of cutting-edge modes of characterization. Organizations, like the water treatment or waste management industry, and those in groups that bring awareness to this issue, which are in direct contact with the hydrosphere, can utilize these techniques in order to sense and remediate this plastic polymer pollution. The primary goal of this review paper is to highlight the extent of plastic pollution in the environment as well as introduce its effect on the biodiversity of the planet while underscoring current characterization techniques in this field of research. The secondary goal involves illustrating current and theoretical avenues in which future research needs to address and optimize MPL/NPL remediation, utilizing nanotechnology, before this sleeping giant of a problem awakens.
Collapse
Affiliation(s)
- Wesley Allen Williams
- Aravamudhan Lab, Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA;
| | | |
Collapse
|
28
|
Meng Q, Yi X, Zhou H, Song H, Liu Y, Zhan J, Pan H. Isolation of marine polyethylene (PE)-degrading bacteria and its potential degradation mechanisms. MARINE POLLUTION BULLETIN 2024; 207:116875. [PMID: 39236493 DOI: 10.1016/j.marpolbul.2024.116875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/17/2024] [Accepted: 08/17/2024] [Indexed: 09/07/2024]
Abstract
Microbial degradation of polyethylene (PE) offers a promising solution to plastic pollution in the marine environment, but research in this field is limited. In this study, we isolated a novel marine strain of Pseudalkalibacillus sp. MQ-1 that can degrade PE. Scanning electron microscopy and water contact angle results showed that MQ-1 could adhere to PE films and render them hydrophilic. Analyses using X-ray diffraction, fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy showed a decrease in relative crystallinity, the appearance of new functional groups and an increase in the oxygen-to‑carbon ratio of the PE films, making them more susceptible to degradation. The results of gel permeation chromatography and liquid chromatography-mass spectrometry indicated the depolymerization of the long PE chains, with the detection of an intermediate, decanediol. Furthermore, genome sequencing was employed to investigate the underlying mechanisms of PE degradation. The results of genome sequencing analysis identified the genes associated with PE degradation, including cytochrome P450, alcohol dehydrogenase, and aldehyde dehydrogenase involved in the oxidative reaction, monooxygenase related to ester bond formation, and esterase associated with ester bond cleavage. In addition, enzymes involved in fatty acid metabolism and intracellular transport have been identified, collectively providing insights into the metabolic pathway of PE degradation.
Collapse
Affiliation(s)
- Qian Meng
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Xianliang Yi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China.
| | - Hao Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Hongyu Song
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Yang Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Jingjing Zhan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Haixia Pan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China.
| |
Collapse
|
29
|
Mohamed SF, Narayanan R. Enterobacter cloacae-mediated polymer biodegradation: in-silico analysis predicts broad spectrum degradation potential by Alkane monooxygenase. Biodegradation 2024; 35:969-991. [PMID: 39001975 DOI: 10.1007/s10532-024-10091-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024]
Abstract
Plastic pollution poses a significant environmental challenge. In this study, the strain Enterobacter cloacae O5-E, a bacterium displaying polyethylene-degrading capabilities was isolated. Over a span of 30 days, analytical techniques including x-ray diffractometry, scanning electron microscopy, optical profilometry, hardness testing and mass spectrometric analysis were employed to examine alterations in the polymer. Results revealed an 11.48% reduction in crystallinity, a 50% decrease in hardness, and a substantial 25-fold increase in surface roughness resulting from the pits and cracks introduced in the polymer by the isolate. Additionally, the presence of degradational by-products revealed via gas chromatography ascertains the steady progression of degradation. Further, recognizing the pivotal role of alkane monooxygenase in plastic degradation, the study expanded to detect this enzyme in the isolate molecularly. Molecular docking studies were conducted to assess the enzyme's affinity with various polymers, demonstrating notable binding capability with most polymers, especially with polyurethane (- 5.47 kcal/mol). These findings highlight the biodegradation potential of Enterobacter cloacae O5-E and the crucial involvement of alkane monooxygenase in the initial steps of the degradation process, offering a promising avenue to address the global plastic pollution crisis.
Collapse
Affiliation(s)
- Shafana Farveen Mohamed
- Department of Genetic Engineering, School of Bioengineering and Faculty of Engineering and Technology, College of Engineering & Technology (CET), SRM Institute of Science and Technology, Kattankulathur, Kanchipuram, Chennai, Tamil Nadu, 603203, India
| | - Rajnish Narayanan
- Department of Genetic Engineering, School of Bioengineering and Faculty of Engineering and Technology, College of Engineering & Technology (CET), SRM Institute of Science and Technology, Kattankulathur, Kanchipuram, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
30
|
Bayer T, Palm GJ, Berndt L, Meinert H, Branson Y, Schmidt L, Cziegler C, Somvilla I, Zurr C, Graf LG, Janke U, Badenhorst CPS, König S, Delcea M, Garscha U, Wei R, Lammers M, Bornscheuer UT. Structural Elucidation of a Metagenomic Urethanase and Its Engineering Towards Enhanced Hydrolysis Profiles. Angew Chem Int Ed Engl 2024; 63:e202404492. [PMID: 38948941 DOI: 10.1002/anie.202404492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024]
Abstract
While plastics like polyethylene terephthalate can already be degraded efficiently by the activity of hydrolases, other synthetic polymers like polyurethanes (PUs) and polyamides (PAs) largely resist biodegradation. In this study, we solved the first crystal structure of the metagenomic urethanase UMG-SP-1, identified highly flexible loop regions to comprise active site residues, and targeted a total of 20 potential hot spots by site-saturation mutagenesis. Engineering campaigns yielded variants with single mutations, exhibiting almost 3- and 8-fold improved activity against highly stable N-aryl urethane and amide bonds, respectively. Furthermore, we demonstrated the release of the corresponding monomers from a thermoplastic polyester-PU and a PA (nylon 6) by the activity of a single, metagenome-derived urethanase after short incubation times. Thereby, we expanded the hydrolysis profile of UMG-SP-1 beyond the reported low-molecular weight carbamates. Together, these findings promise advanced strategies for the bio-based degradation and recycling of plastic materials and waste, aiding efforts to establish a circular economy for synthetic polymers.
Collapse
Affiliation(s)
- Thomas Bayer
- Department of Biotechnology & Enzyme Catalysis Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Gottfried J Palm
- Department of Synthetic & Structural Biochemistry Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Leona Berndt
- Department of Synthetic & Structural Biochemistry Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Hannes Meinert
- Department of Biotechnology & Enzyme Catalysis Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Yannick Branson
- Department of Biotechnology & Enzyme Catalysis Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Louis Schmidt
- Department of Pharmaceutical & Medicinal Chemistry Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489, Greifswald, Germany
| | - Clemens Cziegler
- Department of Biotechnology & Enzyme Catalysis Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Ina Somvilla
- Department of Biotechnology & Enzyme Catalysis Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Celine Zurr
- Department of Biotechnology & Enzyme Catalysis Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Leonie G Graf
- Department of Synthetic & Structural Biochemistry Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Una Janke
- Department of Biophysical Chemistry Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Christoffel P S Badenhorst
- Department of Biotechnology & Enzyme Catalysis Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Stefanie König
- Department of Pharmaceutical & Medicinal Chemistry Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489, Greifswald, Germany
| | - Mihaela Delcea
- Department of Biophysical Chemistry Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Ulrike Garscha
- Department of Pharmaceutical & Medicinal Chemistry Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489, Greifswald, Germany
| | - Ren Wei
- Department of Biotechnology & Enzyme Catalysis Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Michael Lammers
- Department of Synthetic & Structural Biochemistry Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| |
Collapse
|
31
|
Ong A, Teo JYQ, Lim JYC. Interfacial Reactions in Chemical Recycling and Upcycling of Plastics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46975-46987. [PMID: 39214617 PMCID: PMC11403610 DOI: 10.1021/acsami.4c09315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Depolymerization of plastics is a leading strategy to combat the escalating global plastic waste crisis through chemical recycling, upcycling, and remediation of micro-/nanoplastics. However, critical processes necessary for polymer chain scission, occurring at the polymer-catalyst or polymer-fluid interfaces, remain largely overlooked. Herein, we spotlight the importance of understanding these interfacial chemical processes as a critical necessity for optimizing kinetics and reactivity in plastics recycling and upcycling, controlling reaction outcomes, product distributions, as well as improving the environmental sustainability of these processes. Several examples are highlighted in heterogeneous processes such as hydrogenation over solid catalysts, reaction of plastics in immiscible media, and biocatalysis. Ultimately, judicious exploitation of interfacial reactivity has practical implications in developing practical, robust, and cost-effective processes to reduce plastic waste and enable a viable post-use circular plastics economy.
Collapse
Affiliation(s)
- Albert Ong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Jerald Y Q Teo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Jason Y C Lim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, Singapore 117576, Singapore
| |
Collapse
|
32
|
Polo G, Lionetto F, Giordano ME, Lionetto MG. Interaction of Micro- and Nanoplastics with Enzymes: The Case of Carbonic Anhydrase. Int J Mol Sci 2024; 25:9716. [PMID: 39273668 PMCID: PMC11396312 DOI: 10.3390/ijms25179716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Microplastics (MPs) and nanoplastics (NPs) have emerged as significant environmental pollutants with potential detrimental effects on ecosystems and human health. Several studies indicate their interaction with enzymes; this topic represents a multifaceted research field encompassing several areas of interest from the toxicological and ecotoxicological impact of MPs and NPs on humans and wildlife to the biodegradation of plastics by microbial enzymes. This review aims to provide a critical analysis of the state-of-the-art knowledge of the interaction of MPs and NPs on the enzyme carbonic anhydrase (CA), providing recent insights, analyzing the knowledge gaps in the field, and drawing future perspectives of the research and its application. CA is a widespread and crucial enzyme in various organisms; it is critical for various physiological processes in animals, plants, and bacteria. It catalyzes the reversible hydration of CO2, which is essential for respiration, acid-base balance, pH homeostasis, ion transport, calcification, and photosynthesis. Studies demonstrate that MPs and NPs can inhibit CA activity with mechanisms including adsorption to the enzyme surface and subsequent conformational changes. In vitro and in silico studies highlight the role of electrostatic and hydrophobic interactions in these processes. In vivo studies present mixed results, which are influenced by factors like particle type, size, concentration, and organism type. Moreover, the potentiality of the esterase activity of CA for plastic degradation is discussed. The complexity of the interaction between CA and MPs/NPs underscores the need for further research to fully understand the ecological and health impacts of MPs and NPs on CA activity and expression and glimpses of the potentiality and perspectives in this field.
Collapse
Affiliation(s)
- Gregorio Polo
- Department of Mathematics and Physics, University of Salento, Via per Arnesano, 73100 Lecce, Italy
| | - Francesca Lionetto
- Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Maria Elena Giordano
- Department of Environmental and Biological Sciences and Technologies (DiSTeBA), University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Maria Giulia Lionetto
- Department of Environmental and Biological Sciences and Technologies (DiSTeBA), University of Salento, Via per Monteroni, 73100 Lecce, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
33
|
Ramamurthy K, Thomas NP, Gopi S, Sudhakaran G, Haridevamuthu B, Namasivayam KR, Arockiaraj J. Is Laccase derived from Pleurotus ostreatus effective in microplastic degradation? A critical review of current progress, challenges, and future prospects. Int J Biol Macromol 2024; 276:133971. [PMID: 39032890 DOI: 10.1016/j.ijbiomac.2024.133971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/28/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Exploration of Pleurotus ostreatus as a biological agent in the degradation of persistent plastics like polyethylene, polystyrene, polyvinyl chloride, and polyethylene terephthalate, revealing a promising avenue toward mitigating the environmental impacts of plastic pollution. Leveraging the intrinsic enzymatic capabilities of this fungus, mainly its production of laccase, presents a sustainable and eco-friendly approach to breaking down complex polymer chains into less harmful constituents. This review focused on enhancements in the strain's efficiency through genetic engineering, optimized culture conditions, and enzyme immobilization to underscore the potential for scalability and practical application of this bioremediation process. The utilization of laccase from P. ostreatus in plastic waste management demonstrates a vital step forward in pursuing sustainable environmental solutions. By using the potential of fungal bioremediation, researchers can move closer to a future in which the adverse effects of plastic pollution are significantly mitigated, benefiting the health of our planet and future generations.
Collapse
Affiliation(s)
- Karthikeyan Ramamurthy
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur 603203, Chengalpattu District, Tamil Nadu, India
| | - N Paul Thomas
- Department of Biochemistry, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur 603203, Chengalpattu District, Tamil Nadu, India
| | - Sanjay Gopi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur 603203, Chengalpattu District, Tamil Nadu, India
| | - Gokul Sudhakaran
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Instituite of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur 603203, Chengalpattu District, Tamil Nadu, India
| | - Karthick Raja Namasivayam
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Instituite of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 602105, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
34
|
Srivastava P, Saji J, Manickam N. Biodegradation of polyethylene terephthalate (PET) by Brucella intermedia IITR130 and its proposed metabolic pathway. Biodegradation 2024; 35:671-685. [PMID: 38459363 DOI: 10.1007/s10532-024-10070-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/18/2024] [Indexed: 03/10/2024]
Abstract
Accumulation of polyethylene terephthalate (PET) polyester in ecosystems across the globe is a major pollution of concern. Microbial degradation recently generated novel insights into the biodegradation of varieties of plastics. In this study, a PET degrading bacterium Brucella intermedia IITR130 was isolated from a contaminated lake ecosystem at Pallikaranai, Chennai, India. Incubation of the bacterium along with the PET sheet (0.1 mm thickness) for 60 days resulted in 26.06% degradation, indicating a half-life of 137.8 days. Considerable changes in the surface morphology of the PET sheet were found as holes, pits, and cracks on incubation with strain IITR130, as revealed by scanning electron microscopy (SEM). After bacterial treatment of PET, the formation of new functional groups, most notably in the area of 3326 cm-1 suggestive of O-H stretch, leading to carboxylic acid and alcohol as products were suggested by fourier transform infrared (FTIR) analysis. Monomethyl terephthalate (MMT) and terephthalic acid (TPA) were identified by gas chromatography-mass spectrometry (GC-MS) analysis as PET degradation metabolites. Tributyrin clearance assay confirmed the presence of a lipase/esterase enzyme in the strain IITR130. In this study, a degradation pathway for PET by an isolated and identified bacterium Brucella intermedia IITR130 was characterized in detail.
Collapse
Affiliation(s)
- Pallavi Srivastava
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Joel Saji
- Drug and Chemical Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
| | - Natesan Manickam
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
35
|
Pham VHT, Kim J, Chang S. A Valuable Source of Promising Extremophiles in Microbial Plastic Degradation. Polymers (Basel) 2024; 16:2109. [PMID: 39125136 PMCID: PMC11314448 DOI: 10.3390/polym16152109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Plastics have accumulated in open environments, such as oceans, rivers, and land, for centuries, but their effect has been of concern for only decades. Plastic pollution is a global challenge at the forefront of public awareness worldwide due to its negative effects on ecological systems, animals, human health, and national economies. Therefore, interest has increased regarding specific circular economies for the development of plastic production and the investigation of green technologies for plastic degradation after use on an appropriate timescale. Moreover, biodegradable plastics have been found to contain potential new hazards compared with conventional plastics due to the physicochemical properties of the polymers involved. Recently, plastic biodegradation was defined as microbial conversion using functional microorganisms and their enzymatic systems. This is a promising strategy for depolymerizing organic components into carbon dioxide, methane, water, new biomass, and other higher value bioproducts under both oxic and anoxic conditions. This study reviews microplastic pollution, the negative consequences of plastic use, and the current technologies used for plastic degradation and biodegradation mediated by microorganisms with their drawbacks; in particular, the important and questionable role of extremophilic multi-enzyme-producing bacteria in synergistic systems of plastic decomposition is discussed. This study emphasizes the key points for enhancing the plastic degradation process using extremophiles, such as cell hydrophobicity, amyloid protein, and other relevant factors. Bioprospecting for novel mechanisms with unknown information about the bioproducts produced during the plastic degradation process is also mentioned in this review with the significant goals of CO2 evolution and increasing H2/CH4 production in the future. Based on the potential factors that were analyzed, there may be new ideas for in vitro isolation techniques for unculturable/multiple-enzyme-producing bacteria and extremophiles from various polluted environments.
Collapse
Affiliation(s)
- Van Hong Thi Pham
- Department of Environmental Energy Engineering, College of Creative Engineering, Kyonggi University, Suwon 16227, Republic of Korea;
- Department of Life Science, College of Natural Science, Kyonggi University, Suwon 16227, Republic of Korea
| | - Jaisoo Kim
- Department of Life Science, College of Natural Science, Kyonggi University, Suwon 16227, Republic of Korea
| | - Soonwoong Chang
- Department of Environmental Energy Engineering, College of Creative Engineering, Kyonggi University, Suwon 16227, Republic of Korea;
| |
Collapse
|
36
|
Ferreira-Filipe DA, Oliveira L, Paço A, Fernandes AJS, Costa FM, Duarte AC, Rocha-Santos T, Patrício Silva AL. Biodegradation of e-waste microplastics by Penicillium brevicompactum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173334. [PMID: 38763191 DOI: 10.1016/j.scitotenv.2024.173334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Electronic and electric waste (e-waste) management strategies often fall short in dealing with the plastic constituents of printed circuit boards (PCB). Some plastic materials from PCB, such as epoxy resins, may release contaminants, but neither potential environmental impact has been assessed nor mitigation strategies have been put forward. This study assessed the biodegradation of microplastics (1-2 mm in size) from PCB by the fungus Penicillium brevicompactum over 28 days, thus contributing to the discussion of mitigation strategies for decreasing the environmental impact of such plastics in the environment. The capacity of P. brevicompactum to induce microplastic fragmentation and degradation has been determined by the increased the number of smaller-sized particles and microplastic mass reduction (up to 75 % within 14 days), respectively. The occurrence of chain scission and oxidation of microplastics exposed to P. brevicompactum when compared with the control conditions (which occurred only after 28 days of exposure) can be observed. Furthermore, Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy performed in dried biomass put in evidence an increase in the absorption intensities in regions that could be attributed to functional groups associated with carbohydrates. The results underline the potential role of the genus Penicillium, particularly P. brevicompactum, in the biodegradation of microplastics from PCB, thus providing the basis for further exploration of its potential for e-waste bioremediation and research on the underlying mechanisms for sustainable approaches to mitigate e-waste pollution.
Collapse
Affiliation(s)
- Diogo A Ferreira-Filipe
- Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro, Portugal.
| | | | - Ana Paço
- Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro, Portugal
| | | | | | - Armando C Duarte
- Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro, Portugal
| | - Teresa Rocha-Santos
- Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro, Portugal
| | - Ana L Patrício Silva
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Portugal
| |
Collapse
|
37
|
Alvarado E, Castro R, Castro-Rodríguez JA, Navarro A, Farrés A. Poly(lactic acid) Degradation by Recombinant Cutinases from Aspergillus nidulans. Polymers (Basel) 2024; 16:1994. [PMID: 39065311 PMCID: PMC11281152 DOI: 10.3390/polym16141994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Poly(lactic-acid) (PLA) is a biodegradable polymer widely used as a packaging material. Its monomer, lactic acid, and its derivatives have been used in the food, cosmetic, and chemical industries. The accumulation of PLA residues leads to the development of green degrading methodologies, such as enzymatic degradation. This work evaluates the potential use of three cutinolytic enzymes codified in the Aspergillus nidulans genome to achieve this goal. The results are compared with those obtained with proteinase K from Tritirachium album, which has been reported as a PLA-hydrolyzing enzyme. The results show that all three cutinases act on the polymer, but ANCUT 1 releases the highest amount of lactic acid (25.86 mM). Different reaction conditions assayed later led to double the released lactic acid. A decrease in weight (45.96%) was also observed. The enzyme showed activity both on poly L lactic acid and on poly D lactic acid. Therefore, this cutinase offers the potential to rapidly degrade these package residues, and preliminary data show that this is feasible.
Collapse
Affiliation(s)
| | | | | | | | - Amelia Farrés
- Departamento de Alimentos y Biotecnología, Facultad de Química, UNAM, Mexico City 04510, Mexico; (E.A.); (R.C.); (J.A.C.-R.); (A.N.)
| |
Collapse
|
38
|
Dar MA, Xie R, Zabed HM, Pawar KD, Dhole NP, Sun J. Current paradigms and future challenges in harnessing gut bacterial symbionts of insects for biodegradation of plastic wastes. INSECT SCIENCE 2024. [PMID: 38990171 DOI: 10.1111/1744-7917.13417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/30/2024] [Accepted: 05/22/2024] [Indexed: 07/12/2024]
Abstract
The ubiquitous incorporation of plastics into daily life, coupled with inefficient recycling practices, has resulted in the accumulation of millions of metric tons of plastic waste, that poses a serious threat to the Earth's sustainability. Plastic pollution, a global problem, disrupts the ecological balance and endangers various life forms. Efforts to combat plastic pollution are underway, with a promising avenue being biological degradation facilitated by certain insects and their symbiotic gut microorganisms, particularly bacteria. This review consolidates existing knowledge on plastic degradation by insects and their influence on gut microbiota. Additionally, it delves into the potential mechanisms employed by insects in symbiosis with gut bacteria, exploring the bioconversion of waste plastics into value-added biodegradable polymers through mineralization. These insights hold significant promise for the bio-upcycling of plastic waste, opening new horizons for future biomanufacturing of high-value chemicals from plastic-derived compounds. Finally, we weigh the pros and cons of future research endeavors related to the bioprospection of plastic-degrading bacteria from underexplored insect species. We also underscore the importance of bioengineering depolymerases with novel characteristics, aiming for their application in the remediation and valorization of waste plastics.
Collapse
Affiliation(s)
- Mudasir A Dar
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra, India
| | - Rongrong Xie
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Hossain M Zabed
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Kiran D Pawar
- School of Nanoscience and Biotechnology, Shivaji University, Vidyanagar, Kolhapur, Maharashtra, India
| | - Neeraja P Dhole
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra, India
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
39
|
Chen H, Huang D, Zhou W, Deng R, Yin L, Xiao R, Li S, Li F, Lei Y. Hotspots lurking underwater: Insights into the contamination characteristics, environmental fates and impacts on biogeochemical cycling of microplastics in freshwater sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135132. [PMID: 39002483 DOI: 10.1016/j.jhazmat.2024.135132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
The widespread presence of microplastics (MPs) in aquatic environments has become a significant concern, with freshwater sediments acting as terminal sinks, rapidly picking up these emerging anthropogenic particles. However, the accumulation, transport, degradation and biochemical impacts of MPs in freshwater sediments remain unresolved issues compared to other environmental compartments. Therefore, this paper systematically revealed the spatial distribution and characterization information of MPs in freshwater (rivers, lakes, and estuaries) sediments, in which small-size (<1 mm), fibers, transparent, polyethylene (PE), and polypropylene (PP) predominate, and the average abundance of MPs in river sediments displayed significant heterogeneity compared to other matrices. Next, the transport kinetics and drivers of MPs in sediments are summarized, MPs transport is controlled by the particle diversity and surrounding environmental variability, leading to different migration behaviors and transport efficiencies. Also emphasized the spatio-temporal evolution of MPs degradation processes and biodegradation mechanisms in sediments, different microorganisms can depolymerize high molecular weight polymers into low molecular weight biodegradation by-products via secreting hydrolytic enzymes or redox enzymes. Finally, discussed the ecological impacts of MPs on microbial-nutrient coupling in sediments, MPs can interfere with the ecological balance of microbially mediated nutrient cycling by altering community networks and structures, enzyme activities, and nutrient-related functional gene expressions. This work aims to elucidate the plasticity characteristics, fate processes, and potential ecological impact mechanisms of MPs in freshwater sediments, facilitating a better understanding of environmental risks of MPs in freshwater sediments.
Collapse
Affiliation(s)
- Haojie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong, PR China.
| | - Wei Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Rui Deng
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Lingshi Yin
- College of Water Resources & Civil Engineering, Hunan Agricultural University, Changsha 410128, PR China
| | - Ruihao Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Sai Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Fei Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yang Lei
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
40
|
Pires CS, Costa L, Barbosa SG, Sequeira JC, Cachetas D, Freitas JP, Martins G, Machado AV, Cavaleiro AJ, Salvador AF. Microplastics Biodegradation by Estuarine and Landfill Microbiomes. MICROBIAL ECOLOGY 2024; 87:88. [PMID: 38943017 PMCID: PMC11213754 DOI: 10.1007/s00248-024-02399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/10/2024] [Indexed: 06/30/2024]
Abstract
Plastic pollution poses a worldwide environmental challenge, affecting wildlife and human health. Assessing the biodegradation capabilities of natural microbiomes in environments contaminated with microplastics is crucial for mitigating the effects of plastic pollution. In this work, we evaluated the potential of landfill leachate (LL) and estuarine sediments (ES) to biodegrade polyethylene (PE), polyethylene terephthalate (PET), and polycaprolactone (PCL), under aerobic, anaerobic, thermophilic, and mesophilic conditions. PCL underwent extensive aerobic biodegradation with LL (99 ± 7%) and ES (78 ± 3%) within 50-60 days. Under anaerobic conditions, LL degraded 87 ± 19% of PCL in 60 days, whereas ES showed minimal biodegradation (3 ± 0.3%). PE and PET showed no notable degradation. Metataxonomics results (16S rRNA sequencing) revealed the presence of highly abundant thermophilic microorganisms assigned to Coprothermobacter sp. (6.8% and 28% relative abundance in anaerobic and aerobic incubations, respectively). Coprothermobacter spp. contain genes encoding two enzymes, an esterase and a thermostable monoacylglycerol lipase, that can potentially catalyze PCL hydrolysis. These results suggest that Coprothermobacter sp. may be pivotal in landfill leachate microbiomes for thermophilic PCL biodegradation across varying conditions. The anaerobic microbial community was dominated by hydrogenotrophic methanogens assigned to Methanothermobacter sp. (21%), pointing at possible syntrophic interactions with Coprothermobacter sp. (a H2-producer) during PCL biodegradation. In the aerobic experiments, fungi dominated the eukaryotic microbial community (e.g., Exophiala (41%), Penicillium (17%), and Mucor (18%)), suggesting that aerobic PCL biodegradation by LL involves collaboration between fungi and bacteria. Our findings bring insights on the microbial communities and microbial interactions mediating plastic biodegradation, offering valuable perspectives for plastic pollution mitigation.
Collapse
Affiliation(s)
- Cristina S Pires
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Luís Costa
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Sónia G Barbosa
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Diogo Cachetas
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - José P Freitas
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Gilberto Martins
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Vera Machado
- IPC - Institute for Polymers and Composites, University of Minho, Guimarães, Portugal
| | - Ana J Cavaleiro
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal.
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - Andreia F Salvador
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
41
|
Enache AC, Grecu I, Samoila P. Polyethylene Terephthalate (PET) Recycled by Catalytic Glycolysis: A Bridge toward Circular Economy Principles. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2991. [PMID: 38930360 PMCID: PMC11205646 DOI: 10.3390/ma17122991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Plastic pollution has escalated into a critical global issue, with production soaring from 2 million metric tons in 1950 to 400.3 million metric tons in 2022. The packaging industry alone accounts for nearly 44% of this production, predominantly utilizing polyethylene terephthalate (PET). Alarmingly, over 90% of the approximately 1 million PET bottles sold every minute end up in landfills or oceans, where they can persist for centuries. This highlights the urgent need for sustainable management and recycling solutions to mitigate the environmental impact of PET waste. To better understand PET's behavior and promote its management within a circular economy, we examined its chemical and physical properties, current strategies in the circular economy, and the most effective recycling methods available today. Advancing PET management within a circular economy framework by closing industrial loops has demonstrated benefits such as reduced landfill waste, minimized energy consumption, and conserved raw resources. To this end, we identified and examined various strategies based on R-imperatives (ranging from 3R to 10R), focusing on the latest approaches aimed at significantly reducing PET waste by 2040. Additionally, a comparison of PET recycling methods (including primary, secondary, tertiary, and quaternary recycling, along with the concepts of "zero-order" and biological recycling techniques) was envisaged. Particular attention was paid to the heterogeneous catalytic glycolysis, which stands out for its rapid reaction time (20-60 min), high monomer yields (>90%), ease of catalyst recovery and reuse, lower costs, and enhanced durability. Accordingly, the use of highly efficient oxide-based catalysts for PET glycolytic degradation is underscored as a promising solution for large-scale industrial applications.
Collapse
Affiliation(s)
| | | | - Petrisor Samoila
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.-C.E.); (I.G.)
| |
Collapse
|
42
|
Awewomom J, Ashie WB, Dzeble F. Microplastics in Ghana: An in-depth review of research, environmental threats, sources, and impacts on ecosystems and human health. Heliyon 2024; 10:e32554. [PMID: 38961990 PMCID: PMC11219484 DOI: 10.1016/j.heliyon.2024.e32554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024] Open
Abstract
Microplastics pose significant challenges on a global scale. In Ghana, these tiny pollutants infiltrate diverse ecosystems such as coastal areas, rivers, lakes, and forests, vital to the nation's economy and social well-being. This review examines the current depth of knowledge in research and the escalating concern of microplastics, identifying significant gaps in research and understanding. The findings highlight the limited understanding of the extent and distribution of microplastic pollution across different environmental compartments, primarily focusing on coastal environments. Additionally, detection and quantification techniques for microplastics face several complexities and limitations in the Ghanaian context due to constraints such as infrastructure, resources, and expertise. Despite some research efforts, particularly along the coastline, there is still a distinct lack of attention in various regions and ecosystems within Ghana. This imbalance in research focus hinders the understanding and effective mitigation of microplastics in the country. This therefore necessitates the implementation of systematic policy frameworks, emphasizing the importance of recycling and upcycling as effective strategies to address the challenges of microplastics in Ghana with more targeted research and public engagement. This review serves as a call to action for a strategic approach to research and policy-making on microplastic research and pollution in Ghana.
Collapse
Affiliation(s)
- Jonathan Awewomom
- College of Natural Sciences, Department of Earth and Environmental Sciences, Michigan State University, East Lansing, United States
| | - Winfred Bediakoh Ashie
- Faculty Of Physical and Computational Sciences, Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Felicia Dzeble
- Department of Tropical Hydrogeology and Environmental Engineering, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
43
|
Taxeidis G, Nikolaivits E, Nikodinovic-Runic J, Topakas E. Mimicking the enzymatic plant cell wall hydrolysis mechanism for the degradation of polyethylene terephthalate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124347. [PMID: 38857840 DOI: 10.1016/j.envpol.2024.124347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Plastic pollution presents a global challenge, impacting ecosystems, wildlife, and economies. Polyethylene terephthalate (PET), widely used in products like bottles, significantly contributes to this issue due to poor waste collection. In recent years, there has been increasing interest in plant biomass-degrading enzymes for plastic breakdown, due to the structural and physicochemical similarities between natural and synthetic polymers. Filamentous fungi involved in hemicellulose degradation have developed a complex mode of action that includes not only enzymes but also biosurfactants; surface-active molecules that facilitate enzyme-substrate interactions. For this reason, this study aimed to mimic the mechanism of biomass degradation by repurposing plant cell wall degrading enzymes including a cutinase and three esterases to cooperatively contribute to PET degradation. Surfactants of different charge were also introduced in the reactions, as their role is similar to biosurfactants, altering the surface tension of the polymers and thus improving enzymes' accessibility. Notably, Fusarium oxysporum cutinase combined with anionic surfactant exhibited a 2.3- and 1.6-fold higher efficacy in hydrolyzing amorphous and semi-crystalline PET, respectively. When cutinase was combined with either of two ferulic acid esterases, it resulted in complete conversion of PET intermediate products to TPA, increasing the overall product release up to 1.9- fold in presence of surfactant. The combination of cutinase with a glucuronoyl esterase demonstrated significant potential in plastic depolymerization, increasing degradation yields in semi-crystalline PET by up to 1.4-fold. The approach of incorporating enzyme cocktails and surfactants emerge as an efficient solution for PET degradation in mild reaction conditions, with potential applications in eco-friendly plastic waste management.
Collapse
Affiliation(s)
- George Taxeidis
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou, 15772, Athens, Greece
| | - Efstratios Nikolaivits
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou, 15772, Athens, Greece
| | - Jasmina Nikodinovic-Runic
- Eco-Biotechnology & Drug Development Group, Laboratory for Microbial Molecular Genetics and Ecology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000, Belgrade, Serbia
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou, 15772, Athens, Greece.
| |
Collapse
|
44
|
Parida M, Jena T, Mohanty S, Nayak SK. Advancing sustainable agriculture: Evaluation of Poly (lactic acid) (PLA) based mulch films and identification of biodegrading microorganisms among soil microbiota. Int J Biol Macromol 2024; 269:132085. [PMID: 38723836 DOI: 10.1016/j.ijbiomac.2024.132085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024]
Abstract
Non-biodegradable polyolefin based plastic mulch residues in agricultural fields after the end of a crop cycle have raised several concerns as an environmental pollutant in recent years. This study explores the potential of Poly (lactic acid) (PLA) and Poly (butylene adipate-co-terephthalate) (PBAT) based compostable films reactively blended with compatibilizers and chain extenders as a promising solution to environmental challenges associated with traditional plastic mulch films. Epoxidized soybean oil (ESO) and Epoxy-functionalized styrene acrylic copolymer (ESA) have been used as reactive compatibilizers and chain extenders respectively. In-depth analysis of the mechanical, thermal, and barrier properties of the developed films, revealed that the PLA/PBAT blend films at 75:25 weight ratio in the presence of 5 phr ESO and 0.5 phr ESA exhibit improved performance characteristics for application as mulch films. Furthermore, the films were subjected to 360-h UV exposure to gauge their stability under prolonged exposure, specifically investigating changes in the carbonyl index. Additionally, a rigorous real-time field trial of the mulch films spanning eight months with various crops was carried out to understand their performance in practical agricultural settings. The study also involved the identification of microorganisms responsible for the degradation of the developed mulch films employing 16S rRNA sequencing.
Collapse
Affiliation(s)
- Manmath Parida
- Central Institute of Petrochemicals Engineering and Technology (CIPET): SARP - LARPM, B-25, CNI Complex, Patia, Bhubaneswar, Odisha 751024, India
| | - Tapaswini Jena
- Central Institute of Petrochemicals Engineering and Technology (CIPET): SARP - LARPM, B-25, CNI Complex, Patia, Bhubaneswar, Odisha 751024, India
| | - Smita Mohanty
- Central Institute of Petrochemicals Engineering and Technology (CIPET): SARP - LARPM, B-25, CNI Complex, Patia, Bhubaneswar, Odisha 751024, India.
| | | |
Collapse
|
45
|
Peña-Montes C, Bermúdez-García E, Castro-Ochoa D, Vega-Pérez F, Esqueda-Domínguez K, Castro-Rodríguez JA, González-Canto A, Segoviano-Reyes L, Navarro-Ocaña A, Farrés A. ANCUT1, a novel thermoalkaline cutinase from Aspergillus nidulans and its application on hydroxycinnamic acids lipophilization. Biotechnol Lett 2024; 46:409-430. [PMID: 38416309 PMCID: PMC11055803 DOI: 10.1007/s10529-024-03467-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/17/2023] [Accepted: 01/08/2024] [Indexed: 02/29/2024]
Abstract
One of the four cutinases encoded in the Aspergillus nidulans genome, ANCUT1, is described here. Culture conditions were evaluated, and it was found that this enzyme is produced only when cutin is present in the culture medium, unlike the previously described ANCUT2, with which it shares 62% amino acid identity. The differences between them include the fact that ANCUT1 is a smaller enzyme, with experimental molecular weight and pI values of 22 kDa and 6, respectively. It shows maximum activity at pH 9 and 60 °C under assayed conditions and retains more than 60% of activity after incubation for 1 h at 60 °C in a wide range of pH values (6-10) after incubations of 1 or 3 h. It has a higher activity towards medium-chain esters and can modify long-chain length hydroxylated fatty acids constituting cutin. Its substrate specificity properties allow the lipophilization of alkyl coumarates, valuable antioxidants and its thermoalkaline behavior, which competes favorably with other fungal cutinases, suggests it may be useful in many more applications.
Collapse
Affiliation(s)
- Carolina Peña-Montes
- Tecnológico Nacional de México/IT Veracruz, Unidad de Investigación y Desarrollo en Alimentos (UNIDA), Calzada Miguel Angel de Quevedo, 2779. Col. Formando Hogar, Veracruz, México, CP 91897
| | - Eva Bermúdez-García
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, CP 04510, Ciudad de México, Mexico
| | - Denise Castro-Ochoa
- Tecnológico Nacional de México/IT Mochis, Juan de Dios Batiz y 20 de Noviembre, CP 81259, Los Mochis, Sinaloa, Mexico
| | - Fernanda Vega-Pérez
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, CP 04510, Ciudad de México, Mexico
| | - Katia Esqueda-Domínguez
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, CP 04510, Ciudad de México, Mexico
| | - José Augusto Castro-Rodríguez
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, CP 04510, Ciudad de México, Mexico
| | - Augusto González-Canto
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Hospital General de México, Dr. Balmis, 148, CP 06726, Ciudad de México, Mexico
| | - Laura Segoviano-Reyes
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, CP 04510, Ciudad de México, Mexico
| | - Arturo Navarro-Ocaña
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, CP 04510, Ciudad de México, Mexico
| | - Amelia Farrés
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, CP 04510, Ciudad de México, Mexico.
| |
Collapse
|
46
|
Feng S, Xue M, Xie F, Zhao H, Xue Y. Characterization of Thermotoga maritima Esterase Capable of Hydrolyzing Bis(2-hydroxyethyl) Terephthalate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12045-12056. [PMID: 38753963 DOI: 10.1021/acs.jafc.4c01973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The gene-encoding carboxylesterase (TM1022) from the hyperthermophilic bacterium Thermotoga maritima (T. maritima) was cloned and expressed in Escherichia coli Top10 and BL21 (DE3). Recombinant TM1022 showed the best activity at pH 8.0 and 85 °C and retained 57% activity after 8 h cultivation at 90 °C. TM1022 exhibited good stability at pH 6.0-9.0, maintaining 53% activity after incubation at pH 10.0 and 37 °C for 6 h. The esterase TM1022 exhibited the optimum thermo-alkali stability and kcat/Km (598.57 ± 19.97 s-1mM-1) for pN-C4. TM1022 hydrolyzed poly(ethylene terephthalate) (PET) degradation intermediates, such as bis(2-hydroxyethyl) terephthalate (BHET) and mono(2-hydroxyethyl) terephthalate (MHET). The Km, kcat, and kcat/Km values for BHET were 0.82 ± 0.01 mM, 2.20 ± 0.02 s-1, and 2.67 ± 0.02 mM-1 s-1, respectively; those for MHET were 2.43 ± 0.07 mM, 0.04 ± 0.001 s-1, and 0.02 ± 0.001 mM-1 s-1, respectively. When purified TM1022 was added to the cutinase BhrPETase, hydrolysis of PET from drinking water bottle tops produced pure terephthalic acids (TPA) with 166% higher yield than those obtained after 72 h of incubation with BhrPETase alone as control. The above findings demonstrate that the esterase TM1022 from T. maritima has substantial potential for depolymerizing PET into monomers for reuse.
Collapse
Affiliation(s)
- Sizhong Feng
- Department of Food Science and Nutrition, College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Mengke Xue
- Department of Food Science and Nutrition, College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Fang Xie
- Department of Food Science and Nutrition, College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Hongyang Zhao
- Department of Food Science and Nutrition, College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Yemin Xue
- Department of Food Science and Nutrition, College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| |
Collapse
|
47
|
Roman VA, Crable BR, Wagner DN, Gryganskyi A, Zelik S, Cummings L, Hung CS, Nadeau LJ, Schratz L, Haridas S, Pangilinan J, Lipzen A, Na H, Yan M, Ng V, Grigoriev IV, Barlow D, Biffinger J, Kelley-Loughnane N, Crookes-Goodson WJ, Stamps B, Varaljay VA. Identification and recombinant expression of a cutinase from Papiliotrema laurentii that hydrolyzes natural and synthetic polyesters. Appl Environ Microbiol 2024; 90:e0169423. [PMID: 38624219 PMCID: PMC11205760 DOI: 10.1128/aem.01694-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/21/2024] [Indexed: 04/17/2024] Open
Abstract
Given the multitude of extracellular enzymes at their disposal, many of which are designed to degrade nature's polymers (lignin, cutin, cellulose, etc.), fungi are adept at targeting synthetic polyesters with similar chemical composition. Microbial-influenced deterioration of xenobiotic polymeric surfaces is an area of interest for material scientists as these are important for the conservation of the underlying structural materials. Here, we describe the isolation and characterization of the Papiliotrema laurentii 5307AH (P. laurentii) cutinase, Plcut1. P. laurentii is basidiomycete yeast with the ability to disperse Impranil-DLN (Impranil), a colloidal polyester polyurethane, in agar plates. To test whether the fungal factor involved in this clearing was a secreted enzyme, we screened the ability of P. laurentii culture supernatants to disperse Impranil. Using size exclusion chromatography (SEC), we isolated fractions that contained Impranil-clearing activity. These fractions harbored a single ~22 kD band, which was excised and subjected to peptide sequencing. Homology searches using the peptide sequences identified, revealed that the protein Papla1 543643 (Plcut1) displays similarities to serine esterase and cutinase family of proteins. Biochemical assays using recombinant Plcut1 confirmed that this enzyme has the capability to hydrolyze Impranil, soluble esterase substrates, and apple cutin. Finally, we confirmed the presence of the Plcut1 in culture supernatants using a custom antibody that specifically recognizes this protein. The work shown here supports a major role for the Plcut1 in the fungal degradation of natural polyesters and xenobiotic polymer surfaces.IMPORTANCEFungi play a vital role in the execution of a broad range of biological processes that drive ecosystem function through production of a diverse arsenal of enzymes. However, the universal reactivity of these enzymes is a current problem for the built environment and the undesired degradation of polymeric materials in protective coatings. Here, we report the identification and characterization of a hydrolase from Papiliotrema laurentii 5307AH, an aircraft-derived fungal isolate found colonizing a biodeteriorated polymer-coated surface. We show that P. laurentii secretes a cutinase capable of hydrolyzing soluble esters as well as ester-based compounds forming solid surface coatings. These findings indicate that this fungus plays a significant role in biodeterioration through the production of a cutinase adept at degrading ester-based polymers, some of which form the backbone of protective surface coatings. The work shown here provides insights into the mechanisms employed by fungi to degrade xenobiotic polymers.
Collapse
Affiliation(s)
- Victor A. Roman
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
- UES, Inc., Dayton, Ohio, USA
| | - Bryan R. Crable
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
- UES, Inc., Dayton, Ohio, USA
| | - Dominique N. Wagner
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
- UES, Inc., Dayton, Ohio, USA
| | - Andrii Gryganskyi
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
- UES, Inc., Dayton, Ohio, USA
| | - Stephen Zelik
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
- UES, Inc., Dayton, Ohio, USA
| | - Logan Cummings
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
- UES, Inc., Dayton, Ohio, USA
| | - Chia S. Hung
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
| | - Lloyd J. Nadeau
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
| | - Lucas Schratz
- Chemistry Department, University of Dayton, Dayton, Ohio, USA
| | - Sajeet Haridas
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jasmyn Pangilinan
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Hyunsoo Na
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Mi Yan
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Vivian Ng
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Igor V. Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | | | | | - Nancy Kelley-Loughnane
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
| | | | - Blake Stamps
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
| | - Vanessa A. Varaljay
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
- The Ohio State University, Infectious Diseases Institute, Columbus, Ohio, USA
| |
Collapse
|
48
|
Ren T, Zhan H, Xu H, Chen L, Shen W, Xu Y, Zhao D, Shao Y, Wang Y. Recycling and high-value utilization of polyethylene terephthalate wastes: A review. ENVIRONMENTAL RESEARCH 2024; 249:118428. [PMID: 38325788 DOI: 10.1016/j.envres.2024.118428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
Polyethelene terephthalate (PET) is a well-known thermoplastic, and recycling PET waste is important for the natural environment and human health. This study provides a comprehensive overview of the recycling and reuse of PET waste through energy recovery and physical, chemical, and biological recycling. This article summarizes the recycling methods and the high-value products derived from PET waste, specifically detailing the research progress on regenerated PET prepared by the mechanical recycling of fiber/yarn, fabric, and composite materials, and introduces the application of PET nanofibers recycled by physical dissolution and electrospinning in fields such as filtration, adsorption, electronics, and antibacterial materials. This article explains the energy recovery of PET through thermal decomposition and comprehensively discusses various chemical recycling methods, including the reaction mechanisms, catalysts, conversion efficiencies, and reaction products, with a brief introduction to PET biodegradation using hydrolytic enzymes provided. The analysis and comparison of various recycling methods indicated that the mechanical recycling method yielded PET products with a wide range of applications in composite materials. Electrospinning is a highly promising recycling strategy for fabricating recycled PET nanofibers. Compared to other methods, physical recycling has advantages such as low cost, low energy consumption, high value, simple processing, and environmental friendliness, making it the preferred choice for the recycling and high-value utilization of waste PET.
Collapse
Affiliation(s)
- Tianxiang Ren
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Zhejiang Sub-center of National Carbon Fiber Engineering Technology Research Center, Shaoxing Sub-center of National Engineering Research Center for Fiber-based Composites, Shaoxing Key Laboratory of High Performance fibers & products, College of Textile and Garment, Shaoxing University, Shaoxing, 312000, China
| | - Haihua Zhan
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Zhejiang Sub-center of National Carbon Fiber Engineering Technology Research Center, Shaoxing Sub-center of National Engineering Research Center for Fiber-based Composites, Shaoxing Key Laboratory of High Performance fibers & products, College of Textile and Garment, Shaoxing University, Shaoxing, 312000, China
| | - Huaizhong Xu
- Department of Biobased Materials Science, Kyoto Institute of Technology, Matsugasaki, Sakyo-Ku, Kyoto, 606-8585, Japan
| | - Lifeng Chen
- Shaoxing Baojing Composite Materials Co., Ltd., Shaoxing, 312000, China
| | - Wei Shen
- Shaoxing Baojing Composite Materials Co., Ltd., Shaoxing, 312000, China
| | - Yudong Xu
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, China
| | - Defang Zhao
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Zhejiang Sub-center of National Carbon Fiber Engineering Technology Research Center, Shaoxing Sub-center of National Engineering Research Center for Fiber-based Composites, Shaoxing Key Laboratory of High Performance fibers & products, College of Textile and Garment, Shaoxing University, Shaoxing, 312000, China; School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China; Hailiang Group Co., Ltd., Hangzhou, 310000, China.
| | - Yuanyi Shao
- College of Textiles, Donghua University, Shanghai, 201620, China.
| | - Yongtao Wang
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
49
|
Wu Y, Hu Q, Che Y, Niu Z. Opportunities and challenges for plastic depolymerization by biomimetic catalysis. Chem Sci 2024; 15:6200-6217. [PMID: 38699266 PMCID: PMC11062090 DOI: 10.1039/d4sc00070f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024] Open
Abstract
Plastic waste has imposed significant burdens on the environment. Chemical recycling allows for repeated regeneration of plastics without deterioration in quality, but often requires harsh reaction conditions, thus being environmentally unfriendly. Enzymatic catalysis offers a promising solution for recycling under mild conditions, but it faces inherent limitations such as poor stability, high cost, and narrow substrate applicability. Biomimetic catalysis may provide a new avenue by combining high enzyme-like activity with the stability of inorganic materials. Biomimetic catalysis has demonstrated great potential in biomass conversion and has recently shown promising progress in plastic degradation. This perspective discusses biomimetic catalysis for plastic degradation from two perspectives: the imitation of the active centers and the imitation of the substrate-binding clefts. Given the chemical similarity between biomass and plastics, relevant work is also included in the discussion to draw inspiration. We conclude this perspective by highlighting the challenges and opportunities in achieving sustainable plastic recycling via a biomimetic approach.
Collapse
Affiliation(s)
- Yanfen Wu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Qikun Hu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Yizhen Che
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Zhiqiang Niu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| |
Collapse
|
50
|
Mishra R, Modi A, Pandit R, Sadhwani J, Joshi C, Patel AK. Cloning and characterization of FMN-dependent azoreductases from textile industry effluent identified through metagenomic sequencing. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2024; 74:335-344. [PMID: 38407923 DOI: 10.1080/10962247.2024.2322513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
Azo dyes, when released untreated in the environment, cause detrimental effects on flora and fauna. Azoreductases are enzymes capable of cleaving commercially used azo dyes, sometimes in less toxic by-products which can be further degraded via synergistic microbial cometabolism. In this study, azoreductases encoded by FMN1 and FMN2 genes were screened from metagenome shotgun sequences generated from the samples of textile dye industries' effluents, cloned, expressed, and evaluated for their azo dye decolorization efficacy. At pH 7 and 45°C temperature, both recombinant enzymes FMN1 and FMN2 were able to decolorize methyl red at 20 and 100 ppm concentrations, respectively. FMN2 was found to be more efficient in decolorization/degradation of methyl red than FMN1. This study offers valuable insights into the possible application of azoreductases to reduce the environmental damage caused by azo dyes, with the hope of contributing to sustainable and eco-friendly practices for the environment management. This enzymatic approach offers a promising solution for the bioremediation of textile industrial effluents. However, the study acknowledges the need for further process optimization to enhance the efficacy of these enzymes in large-scale applications.Implications: The study underscores the environmental hazards associated with untreated release of azo dyes into the environment and emphasizes the potential of azoreductases, specifically those encoded by FMN1 and FMN2 genes, to mitigate the detrimental effects. The study emphasizes the ongoing commitment to refining and advancing the enzymatic approach for the bioremediation of azo dye-containing effluents, marking a positive stride toward more sustainable industrial practices.
Collapse
Affiliation(s)
- Roshani Mishra
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, India
| | - Akhilesh Modi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, India
| | - Ramesh Pandit
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, India
| | - Jyoti Sadhwani
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, India
| | - Chaitanya Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, India
| | - Amrutlal K Patel
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, India
| |
Collapse
|