1
|
Benítez-Villaseñor A, Jost M, Granados Mendoza C, Wanke S, Meza-Lázaro RN, Peñafiel Cevallos M, Freire E, Magallón S. Exploring Structural Plastome Evolution in Asterales: Insights from Off-Target Hybrid Enrichment Data on the Small Single-Copy Region. J Mol Evol 2024:10.1007/s00239-024-10224-6. [PMID: 39724205 DOI: 10.1007/s00239-024-10224-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
The massive increase in the amount of plastid genome data have allowed researchers to address a variety of evolutionary questions within a wide range of plant groups. While plastome structure is generally conserved, some angiosperm lineages exhibit structural changes. Such is the case of the megadiverse order Asterales, where rearrangements in plastome structure have been documented. This study investigates the possibility of recovering plastid loci from off-target reads obtained through hybrid enrichment techniques. Our sampling includes 63 species from the eleven currently recognized families in Asterales derived from previously published studies. We assembled and annotated complete and partial plastomes using custom pipelines and estimate phylogenomic relationships. We retrieved plastid information from 60 of the 63 sampled species including a complete plastome from Tithonia tubaeformis (Asteraceae), circular partial (with gaps) plastomes from seven species, and non-circular partial plastomes from other 52 species. We focused on the small single-copy region because it could be recovered for over 29 species. Within the small single-copy region, we assessed intron losses and presence of putative pseudogenes. Comparative genomics revealed a relocated fragment of ~ 6500 bp in two Campanulaceae lineages (i. e. subfamily Lobelioideae and Pseudonemacladus oppositifolium), involving the genes rbcL, atpB, atpE, trnM-CAU, and trnV-UAC. Obtained phylogenetic hypotheses were congruent across the applied methods and consistent with previously published results. Our study demonstrates the feasibility of recovering plastid information, both complete and partial, from off-target hybrid enrichment data and provides insights on the structural plastome changes that have occurred throughout the evolution of the order Asterales.
Collapse
Affiliation(s)
- Adriana Benítez-Villaseñor
- Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, A. P. 70-153, C.P.04510, Ciudad de Mexico, México.
| | - Matthias Jost
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3Er Circuito de Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
- Goethe-University Frankfurt, Institute of Ecology, Evolution & Diversity, 60438, Frankfurt, Germany
| | - Carolina Granados Mendoza
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3Er Circuito de Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
- Institut Für Botanik, Technische Universität Dresden, Zellescher Weg 20B, 01217, Dresden, Germany
| | - Stefan Wanke
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3Er Circuito de Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
- Goethe-University Frankfurt, Institute of Ecology, Evolution & Diversity, 60438, Frankfurt, Germany
- Institut Für Botanik, Technische Universität Dresden, Zellescher Weg 20B, 01217, Dresden, Germany
- Senckenberg Forschungsinstitut Und Naturmuseum, Botanik Und Molekulare Evolutionsforschung, 60325, Frankfurt, Germany
| | - Rubi N Meza-Lázaro
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3Er Circuito de Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Marcia Peñafiel Cevallos
- Herbario Nacional del Ecuador (QCNE), Instituto Nacional de Biodiversidad, Quito, 170135, Ecuador
| | - Efraín Freire
- Herbario Nacional del Ecuador (QCNE), Instituto Nacional de Biodiversidad, Quito, 170135, Ecuador
| | - Susana Magallón
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3Er Circuito de Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| |
Collapse
|
2
|
Meudt HM, Pearson S, Ning W, Prebble JM, Tate JA. Forget-me-not phylogenomics: Improving the resolution and taxonomy of a rapid island and mountain radiation in Aotearoa New Zealand (Myosotis; Boraginaceae). Mol Phylogenet Evol 2024:108250. [PMID: 39581357 DOI: 10.1016/j.ympev.2024.108250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/07/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
Island and mountain systems represent natural laboratories for studies of species radiations, but they often present several challenges for phylogenetic inference and species delimitation. The southern hemisphere forget-me-nots (Myosotis, Boraginaceae) comprise a geologically recent radiation centred in New Zealand, a mountainous archipelago, with about 50 species that are morphologically and ecologically divergent but lack genetic variation sufficient to resolve phylogenetic relationships and species boundaries using standard DNA Sanger sequencing markers, AFLPs, or microsatellites. Many of these Myosotis species are geographically restricted in alpine areas, uncommon or threatened, have polyploid and dysploid genomes, and are of high taxonomic and conservation priority. Here we present phylogenomic analyses using target-capture of Angiosperms353 baits, and genome skimming of whole plastomes and nrDNA, to improve resolution of the radiation, explore biogeographic and morphological patterns within it, and address specific taxonomic questions for each species. Our comprehensive sampling includes over 300 individuals representing nearly all species from Aotearoa New Zealand and Australia, which is ∼ 2-3 × more taxon sampling and ∼ 80-120 × more molecular data than previously published for Myosotis. Exploration of different data filtering, curation and analyses (coalescent vs. concatenation) improved the resolution of the Angiosperms353 tree, which despite short backbone branches with low support values, showed taxonomic and geographic patterns, including multiple switches between ebracteate and bracteate inflorescences and multiple expansions within New Zealand from Te Waipounamu South Island to Te Ika-a-Māui North Island, Rakiura Stewart Island, subantarctic islands, and Australia. Some of these patterns were also seen in the genome skimming datasets, and comparison of the three datasets was useful for improving our understanding of the taxonomy and resolution of this radiation. Although this phylogenomic study does not fully overcome all of the challenges regarding species delimitation of this rapid island and mountain species radiation, it nevertheless makes an important contribution to an integrative taxonomic revision of the southern hemisphere species of Myosotis.
Collapse
Affiliation(s)
- Heidi M Meudt
- Museum of New Zealand Te Papa Tongarewa, PO Box 467, Cable St, Wellington 6140, New Zealand.
| | - Sofie Pearson
- Museum of New Zealand Te Papa Tongarewa, PO Box 467, Cable St, Wellington 6140, New Zealand; School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| | - Weixuan Ning
- School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Jessica M Prebble
- Manaaki Whenua - Landcare Research, PO Box 69040, Lincoln 7640, New Zealand.
| | - Jennifer A Tate
- School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| |
Collapse
|
3
|
Duan Y, Wang Y, Ding W, Wang C, Meng L, Meng J, Chen N, Liu Y, Xing S. Comparative and phylogenetic analysis of the chloroplast genomes of four commonly used medicinal cultivars of Chrysanthemums morifolium. BMC PLANT BIOLOGY 2024; 24:992. [PMID: 39434004 PMCID: PMC11495106 DOI: 10.1186/s12870-024-05679-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
'Boju' and 'Huaiju' are cultivars of the Chrysanthemum (Chrysanthemum morifolium Ramat.) in the family Asteraceae, valued for their medicinal, tea, and ornamental properties, and valued by individuals. However, the yield and quality of medicinal chrysanthemums are limited by the characteristics of the germplasm resources, including the identification at the varieties and cultivation levels. Currently, research characterizing the chloroplast genomes of medicinal Chrysanthemum flowers is relatively limited. This study conducted chloroplast whole-genome sequencing on two cultivars of Chrysanthemum, 'Boju' and 'Huaiju', and compared them with the previously published chloroplast genomes of 'Hangbaiju' and 'Gongju'. The study analyzed the chloroplast genome structures of these four medicinal Chrysanthemums, identifying mutation hotspots and clarifying their phylogenetic relationships. The chloroplast genome sizes of four medicinal Chrysanthemum cultivation products ranged from 151,057 to 151,109 bp, with GC content ranging from 37.45% to 37.76%. A total of 134 genes were identified, including 89 protein-coding genes, 37 ribosomal RNA genes, and 8 transfer RNA genes. Comparative genomic analysis revealed 159 large repeat sequences, 276 simple sequence repeats, 1 gene, and 8 intergenic regions identified as highly variable regions. Nucleotide diversity (Pi) values were high (≥ 0.004) for the petN-psbM, trnR-UCU-trnT-GGU, trnT-GGU-psbD, ndhC-trnV-UCA, ycf1, ndhI-ndhG, trnL-UGA-rpl32, rpl32-ndhF, and ndhF-ycf1 fragments, aiding in variety identification. Phylogenetic analysis revealed consistent results between maximum likelihood and Bayesian inference trees, showing that the four medicinal Chrysanthemum cultivars, along with their wild counterparts and related species, evolved as a monophyletic group, forming a sister clade to Artemisia and Ajania. Among the six Chrysanthemum species, the wild Chrysanthemum diverged first (Posterior probability = 1, bootstrap = 1,000), followed by Ajania, while C. indicum and C. morifolium clustered together (Bootstrap = 100), indicating their closest genetic relationship. The chloroplast whole-genome data and characteristic information provided in this study can be used for variety identification, genetic conservation, and phylogenetic analysis within the family Asteraceae.
Collapse
Affiliation(s)
- Yingying Duan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yuqing Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Wanyue Ding
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Chun Wang
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Ling Meng
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Jie Meng
- Jiuzhou Fangyuan Pharmaceutical Co., Ltd., Anhui Modern Industry Research Institute of Traditional Chinese Medicine, Bozhou, 236821, China
| | - Na Chen
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, College of Pharmacy, Bozhou Vocational and Technical College, Bozhou, 236800, China
| | - Yaowu Liu
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, College of Pharmacy, Bozhou Vocational and Technical College, Bozhou, 236800, China.
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China.
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230038, China.
| |
Collapse
|
4
|
Kielich N, Mazur O, Musidlak O, Gracz-Bernaciak J, Nawrot R. Herbgenomics meets Papaveraceae: a promising -omics perspective on medicinal plant research. Brief Funct Genomics 2024; 23:579-594. [PMID: 37952099 DOI: 10.1093/bfgp/elad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023] Open
Abstract
Herbal medicines were widely used in ancient and modern societies as remedies for human ailments. Notably, the Papaveraceae family includes well-known species, such as Papaver somniferum and Chelidonium majus, which possess medicinal properties due to their latex content. Latex-bearing plants are a rich source of diverse bioactive compounds, with applications ranging from narcotics to analgesics and relaxants. With the advent of high-throughput technologies and advancements in sequencing tools, an opportunity exists to bridge the knowledge gap between the genetic information of herbs and the regulatory networks underlying their medicinal activities. This emerging discipline, known as herbgenomics, combines genomic information with other -omics studies to unravel the genetic foundations, including essential gene functions and secondary metabolite biosynthesis pathways. Furthermore, exploring the genomes of various medicinal plants enables the utilization of modern genetic manipulation techniques, such as Clustered Regularly-Interspaced Short Palindromic Repeats (CRISPR/Cas9) or RNA interference. This technological revolution has facilitated systematic studies of model herbs, targeted breeding of medicinal plants, the establishment of gene banks and the adoption of synthetic biology approaches. In this article, we provide a comprehensive overview of the recent advances in genomic, transcriptomic, proteomic and metabolomic research on species within the Papaveraceae family. Additionally, it briefly explores the potential applications and key opportunities offered by the -omics perspective in the pharmaceutical industry and the agrobiotechnology field.
Collapse
Affiliation(s)
- Natalia Kielich
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Oliwia Mazur
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Oskar Musidlak
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Joanna Gracz-Bernaciak
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Robert Nawrot
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
5
|
Tomasello S, Manzo E, Karbstein K. Comparative plastome assembly of the yellow ironweed ( Verbesina alternifolia) using Nanopore and Illumina reads. FRONTIERS IN PLANT SCIENCE 2024; 15:1429494. [PMID: 39328796 PMCID: PMC11424524 DOI: 10.3389/fpls.2024.1429494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/16/2024] [Indexed: 09/28/2024]
Abstract
Chloroplast genomes (plastomes) represent a very important source of valuable information for phylogenetic and biogeographic reconstructions. The use of short reads (as those produced from Illumina sequencing), along with de novo read assembly, has been considered the "gold standard" for plastome reconstruction. However, short reads often cannot reconstruct long repetitive regions in chloroplast genomes. Long Nanopore (ONT) reads can help bridging long repetitive regions but are by far more error-prone than those produced by Illumina sequencing. Verbesina is the largest genus of tribe Heliantheae (Asteraceae) and includes species of economic importance as ornamental or as invasive weeds. However, no complete chloroplast genomes have been published yet for the genus. We utilized Illumina and Nanopore sequencing data and different assembly strategies to reconstruct the plastome of Verbesina alternifolia and evaluated the usefulness of the Nanopore assemblies. The two plastome sequence assemblages, one obtained with the Nanopore sequencing and the other inferred with Illumina reads, were identical, except for missing bases in homonucleotide regions. The best-assembled plastome of V. alternifolia was 152,050 bp in length and contained 80, 29, and four unique protein-coding genes, tRNAs, and rRNAs, respectively. When used as reference for mapping Illumina reads, all plastomes performed similarly. In a phylogenetic analysis including 28 other plastomes from closely related taxa (from the Heliantheae alliance), the two Verbesina chloroplast genomes grouped together and were nested among the other members of the tribe Heliantheae s.str. Our study highlights the usefulness of the Nanopore technology for assembling rapidly and cost-effectively chloroplast genomes, especially in taxonomic groups with paucity of publicly available plastomes.
Collapse
Affiliation(s)
- Salvatore Tomasello
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Göttingen, Göttingen, Germany
| | - Eleonora Manzo
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Göttingen, Göttingen, Germany
| | - Kevin Karbstein
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
| |
Collapse
|
6
|
Sun S, Pan Z, Fu Y, Wang S, Fu P. Rampant intraspecific variation of plastid genomes in Gentiana section Chondrophyllae. Ecol Evol 2024; 14:e70239. [PMID: 39224159 PMCID: PMC11368500 DOI: 10.1002/ece3.70239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Exploring the level of intraspecific diversity in taxa experienced radiation is helpful to understanding speciation and biodiversity assembly. Gentiana section Chondrophyllae sensu lato encompasses more than 180 species and occupies more a half of species in the genus. In this study, we collected samples across the range of three species (Gentiana aristata, G. crassuloides and G. haynaldii) in section Chondrophyllae s.l., and recovered the intra-species variation by comparing with closely related taxon. Using 25 newly sequenced plastid genomes together with previously published data, we compared structural differences, quantified the variations in plastome size, and measured nucleotide diversity in various regions. Our results showed that the plastome size variation in the three Chondrophyllae species ranged from 285 to 628 bp, and the size variation in LSC, IR and SSC ranged from 236 to 898 bp, 52 to 393 bp and 135 to 356 bp, respectively. Nucleotide diversity of plastome or any of the four regions was much higher than the control species. The average nucleotide diversity in plastomes of the three species ranged from 0.0010 to 0.0023 in protein coding genes, and from 0.0023 to 0.0061 in intergenic regions. More repeat sequence variations were detected within the three Chondrophyllae species than the control species. Various plastid sequence matrixes resulted in different backbone topology in two target species, showed uncertainty in phylogenetic relationship based inference. In conclusion, our results recovered that species of G. section Chondrophyllae s.l. has high intraspecific plastome variation, and provided insights into the radiation in this speciose lineage.
Collapse
Affiliation(s)
- Shan‐Shan Sun
- School of Life ScienceLuoyang Normal UniversityLuoyangChina
| | - Zhi‐Yong Pan
- School of Life ScienceLuoyang Normal UniversityLuoyangChina
| | - Yu Fu
- School of Life ScienceLuoyang Normal UniversityLuoyangChina
| | - Shen‐Jue Wang
- School of Life ScienceLuoyang Normal UniversityLuoyangChina
| | - Peng‐Cheng Fu
- School of Life ScienceLuoyang Normal UniversityLuoyangChina
| |
Collapse
|
7
|
Zhan M, Xue L, Zhou JJ, Zhang Q, Qin XM, Liao XW, Wu L, Monro AK, Fu LF. Polyphyly of Boehmeria (Urticaceae) congruent with plastome structural variation. FRONTIERS IN PLANT SCIENCE 2024; 15:1297499. [PMID: 39139721 PMCID: PMC11319286 DOI: 10.3389/fpls.2024.1297499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 07/08/2024] [Indexed: 08/15/2024]
Abstract
Boehmeria is a taxonomically challenging group within the nettle family (Urticaceae). The polyphyly of the genus has been proposed by previous studies with respect to five genera (Debregeasia, Cypholophus, Sarcochlamys, Archiboehmeria, and Astrothalamus). Extensive homoplasy of morphological characters has made generic delimitation problematic. Previous studies in other plant groups suggest that plastome structural variations have the potential to provide characters useful in reconstructing evolutionary relationships. We aimed to test this across Boehmeria and its allied genera by mapping plastome structural variations onto a resolved strongly supported phylogeny. In doing so, we expanded the sampling of the plastome to include Cypholophus, Sarcochlamys, Archiboehmeria, and Astrothalamus for the first time. The results of our phylogenomic analyses provide strong support for Sarcochlamys as being more closely related to Leucosyke puya than to Boehmeria and for the clustering of Boehmeria s.l. into four subclades. The sizes of the plastomes in Boehmeria s.l. ranged from 142,627 bp to 170,958 bp. The plastomes recovered a typical quadripartite structure comprising 127~146 genes. We observe several obvious structural variations across the taxa such as gene loss and multiple gene duplication, inverted repeat (IR) contraction and wide expansions, and inversions. Moreover, we recover a trend for these variations that the early clades were relatively conserved in evolution, whereas the later diverging clades were variable. We propose that the structural variations documented may be linked to the adaptation of Boehmeria s.l. to a wide range of habitats, from moist broadleaf forests in Asia to xeric shrublands and deserts in Africa. This study confirms that variation in plastome gene loss/duplication, IR contraction/expansion, and inversions can provide evidence useful for the reconstruction of evolutionary relationships.
Collapse
Affiliation(s)
- Min Zhan
- College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Ling Xue
- College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Jian-Jun Zhou
- Hunan Monitoring Center of Forest Resources and Ecological Environment, Hunan Prospecting Designing and Research General Institute for Agriculture Forestry and Industry, Changsha, China
| | - Qiang Zhang
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Xin-Mei Qin
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Xiao-Wen Liao
- College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Lei Wu
- College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | | | - Long-Fei Fu
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| |
Collapse
|
8
|
Nguyen HD, Do HDK, Vu MT. Comparative genomics revealed new insights into the plastome evolution of Ludwigia (Onagraceae, Myrtales). Sci Prog 2024; 107:368504241272741. [PMID: 39150375 PMCID: PMC11329976 DOI: 10.1177/00368504241272741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The primrose-willow (Ludwigia L.), a well-defined genus of the Onagraceae family, comprises 87 species widely distributed worldwide. In this study, we sequenced and characterized the complete chloroplast (cp) genomes of three species in the genus, including Ludwigia adscendens, Ludwigia hyssopifolia, and Ludwigia prostrata. Three Ludwigia cp genomes ranged from 158,354 to 159,592 bp in size, and each contained 113 genes, including 79 unique protein-coding genes (PCGs), four rRNA genes, and 30 tRNA genes. A comparison of the Ludwigia cp genomes revealed that they were highly conserved in gene composition, gene orientation, and GC content. Moreover, we compared the structure of cp genomes and reconstructed phylogenetic relationships with related species in the Onagraceae family. Regarding contraction/expansion of inverted repeat (IR) region, two kinds of expansion IR region structures were found in Oenothera, Chamaenerion, and Epilobium genera, with primitive IR structures in Ludwigia and Circeae genera. The regions clpP, ycf2, and ycf1 genes possessed highly divergent nucleotides among all available cp genomes of the Onagraceae family. The phylogenetic reconstruction using 79 PCGs from 39 Onagraceae cp genomes inferred that Ludwigia (including L. adscendens, L. hyssopifolia, L. prostrata, and Ludwigia octovalvis) clade was monophyletic and well-supported by the bootstrap and posterior probability values. This study provides the reference cp genomes of three Ludwigia species, which can be used for species identification and phylogenetic reconstruction of Ludwigia and Onagraceae taxa.
Collapse
Affiliation(s)
- Hoang Danh Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Minh Thiet Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
9
|
Barrett CF, Pace MC, Corbett CW. Plastid genome evolution in leafless members of the orchid subfamily Orchidoideae, with a focus on Degranvillea dermaptera. AMERICAN JOURNAL OF BOTANY 2024; 111:e16370. [PMID: 38989916 DOI: 10.1002/ajb2.16370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 07/12/2024]
Abstract
PREMISE Leafless, heterotrophic plants are prime examples of organismal modification, the genomic consequences of which have received considerable interest. In particular, plastid genomes (plastomes) are being sequenced at a high rate, allowing continual refinement of conceptual models of reductive evolution in heterotrophs. However, numerous sampling gaps exist, hindering the ability to conduct comprehensive phylogenomic analyses in these plants. METHODS Using floral tissue from an herbarium specimen, we sequenced and analyzed the plastome of Degranvillea dermaptera, a rarely collected, leafless orchid species from South America about which little is known, including its phylogenetic affinities. RESULTS The plastome is the most reduced of those sequenced among the orchid subfamily Orchidoideae. In Degranvillea, it has lost the majority of genes found in leafy autotrophic species, is structurally rearranged, and has similar gene content to the most reduced plastomes among the orchids. We found strong evidence for the placement of Degranvillea within the subtribe Spiranthinae using models that explicitly account for heterotachy, or lineage-specific evolutionary rate variation over time. We further found evidence of relaxed selection on several genes and of correlations among substitution rates and several other "traits" of the plastome among leafless members of orchid subfamily Orchidoideae. CONCLUSIONS Our findings advance knowledge on the phylogenetic relationships and paths of plastid genome evolution among the orchids, which have experienced more independent transitions to heterotrophy than any other plant family. This study demonstrates the importance of herbarium collections in comparative genomics of poorly known species of conservation concern.
Collapse
Affiliation(s)
- Craig F Barrett
- Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, 26506, WV, USA
| | - Matthew C Pace
- New York Botanical Garden, 2900 Southern Boulevard, Bronx, 10458, NY, USA
| | - Cameron W Corbett
- Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, 26506, WV, USA
| |
Collapse
|
10
|
Ragupathy S, Thirugnanasambandam A, Vinayagam V, Newmaster SG. Nuclear Magnetic Resonance Fingerprints and Mini DNA Markers for the Authentication of Cinnamon Species Ingredients Used in Food and Natural Health Products. PLANTS (BASEL, SWITZERLAND) 2024; 13:841. [PMID: 38592863 PMCID: PMC10975438 DOI: 10.3390/plants13060841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Cinnamomum verum (syn C. zeylanicum) is considered 'true' cinnamon. However, it is reported that less expensive sources of cinnamon from C. cassia (syn C. aromaticum), C. loureiroi, and C. burmannii (toxic coumarin) may be used in the place of C. verum. We lack the quality assurance tools that are required to differentiate C. verum from other cinnamon species when verifying that the correct species is sourced from ingredient suppliers. The current research on cinnamon species authentication using DNA tools is limited to a few species and the use of high-quality DNA extracted from raw leaf materials. The cinnamon bark traded in the supply chain contains much less DNA and poorer-quality DNA than leaves. Our research advances DNA methods to authenticate cinnamon, as we utilized full-length chloroplast genomes via a genome skimming approach for C. burmannii and C. cassia to facilitate the design of optimal mini DNA markers. Furthermore, we developed and validated the use of NMR fingerprints for several commercial cinnamon species, including the quantification of 16 molecules. NMR fingerprints provided additional data that were useful for quality assessment in cinnamon extract powders and product consistency. Both the new mini DNA markers and NMR fingerprints were tested on commercial cinnamon products.
Collapse
Affiliation(s)
- Subramanyam Ragupathy
- Natural Health Products (NHP) Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (V.V.); (S.G.N.)
| | - Arunachalam Thirugnanasambandam
- Natural Health Products (NHP) Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (V.V.); (S.G.N.)
| | | | | |
Collapse
|
11
|
Jiang Y, Yang J, Folk RA, Zhao J, Liu J, He Z, Peng H, Yang S, Xiang C, Yu X. Species delimitation of tea plants (Camellia sect. Thea) based on super-barcodes. BMC PLANT BIOLOGY 2024; 24:181. [PMID: 38468197 PMCID: PMC10926627 DOI: 10.1186/s12870-024-04882-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND The era of high throughput sequencing offers new paths to identifying species boundaries that are complementary to traditional morphology-based delimitations. De novo species delimitation using traditional or DNA super-barcodes serve as efficient approaches to recognizing putative species (molecular operational taxonomic units, MOTUs). Tea plants (Camellia sect. Thea) form a group of morphologically similar species with significant economic value, providing the raw material for tea, which is the most popular nonalcoholic caffeine-containing beverage in the world. Taxonomic challenges have arisen from vague species boundaries in this group. RESULTS Based on the most comprehensive sampling of C. sect. Thea by far (165 individuals of 39 morphospecies), we applied three de novo species delimitation methods (ASAP, PTP, and mPTP) using plastome data to provide an independent evaluation of morphology-based species boundaries in tea plants. Comparing MOTU partitions with morphospecies, we particularly tested the congruence of MOTUs resulting from different methods. We recognized 28 consensus MOTUs within C. sect. Thea, while tentatively suggesting that 11 morphospecies be discarded. Ten of the 28 consensus MOTUs were uncovered as morphospecies complexes in need of further study integrating other evidence. Our results also showed a strong imbalance among the analyzed MOTUs in terms of the number of molecular diagnostic characters. CONCLUSION This study serves as a solid step forward for recognizing the underlying species boundaries of tea plants, providing a needed evidence-based framework for the utilization and conservation of this economically important plant group.
Collapse
Affiliation(s)
- Yinzi Jiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Junbo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Ryan A Folk
- Department of Biological Sciences, Mississippi State University, Starkville, 39762, MS, USA
| | - Jianli Zhao
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, Yunnan, China
| | - Jie Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Zhengshan He
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Hua Peng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Shixiong Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | - Chunlei Xiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | - Xiangqin Yu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| |
Collapse
|
12
|
Xu XM, Xu H, Yang Z, Wei Z, Gu JY, Liu DH, Liu QR, Zhu SX. Phylogeny, biogeography, and character evolution of Anaphalis (Gnaphalieae, Asteraceae). FRONTIERS IN PLANT SCIENCE 2024; 15:1336229. [PMID: 38384761 PMCID: PMC10879626 DOI: 10.3389/fpls.2024.1336229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/24/2024] [Indexed: 02/23/2024]
Abstract
The HAP clade, mainly including Helichrysum Mill, Anaphalis DC., and Pseudognaphalium Kirp., is a major component of tribe Gnaphalieae (Asteraceae). In this clade, Anaphalis represents the largest genus of Asian Gnaphalieae. The intergeneric relationships among Anaphalis and its related genera and the infrageneric taxonomy of this genus are complex and remain controversial. However, there are few studies that have focused on these issues. Herein, based on the current most comprehensive sampling of the HAP clade, especially Anaphalis, we conducted phylogenetic analyses using chloroplast (cp) genome and nuclear ribosomal DNA (nrDNA) to evaluate the relationships within HAP clade, test the monophyly of Anaphalis, and examine the infrageneric taxonomy of this genus. Meanwhile, the morphological characters were verified to determine the circumscription and infrageneric taxonomy system of Anaphalis. Additionally, the biogeographical history, diversification processes, and evolution of crucial morphological characters were estimated and inferred. Our phylogenetic analyses suggested that Anaphalis is polyphyletic because it nested with Helichrysum and Pseudognaphalium. Two and four main clades of Anaphalis were identified in cp genome and nrDNA trees, respectively. Compared with nrDNA trees, the cp genome trees were more effective for phylogenetic resolution. After comprehensively analyzing morphological and phylogenetic evidence, it was concluded that the achene surface ornamentation and leaf base showed less homoplasy and supported the two Anaphalis lineages that were inferred from cp genome. Our biogeographical analyses based on cp genome indicated that HAP clade underwent rapid diversification from late Miocene to Pliocene. The two Anaphalis lineages appeared to have originated in Africa, then spread to Western and Southern Asia, and subsequently moved into Southwestern China forming a diversity center. The dispersal patterns of the two Anaphalis lineages were different. One dispersed around the world, except in Africa and South America. The other one dispersed to Eastern and Southeastern Asia from the ancestral origin region.
Collapse
Affiliation(s)
- Xue-Min Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - He Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Zheng Yang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhen Wei
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jun-Yu Gu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Resource Research Institute, Henan Provincial Third Institute of Resources and Environment Investigation, Zhengzhou, China
| | - Dan-Hui Liu
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumchi, China
| | - Quan-Ru Liu
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Shi-Xin Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Zhang TT, Yan CL, Qiao JX, Yang AS, Liu ML, Kou YX, Li ZH. Demographic dynamics and molecular evolution of the rare and endangered subsect. Gerardianae of Pinus: insights from chloroplast genomes and mitochondrial DNA markers. PLANTA 2024; 259:45. [PMID: 38281265 DOI: 10.1007/s00425-023-04316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024]
Abstract
MAIN CONCLUSION The divergence of subsect. Gerardianae was likely triggered by the uplift of the Qinghai-Tibetan Plateau and adjacent mountains. Pinus bungeana might have probably experienced expansion since Last Interglacial period. Historical geological and climatic oscillations have profoundly affected patterns of nucleotide variability, evolutionary history, and species divergence in numerous plants of the Northern Hemisphere. However, how long-lived conifers responded to geological and climatic fluctuations in East Asia remain poorly understood. Here, based on paternally inherited chloroplast genomes and maternally inherited mitochondrial DNA markers, we investigated the population demographic history and molecular evolution of subsect. Gerardianae (only including three species, Pinus bungeana, P. gerardiana, and P. squamata) of Pinus. A low level of nucleotide diversity was found in P. bungeana (π was 0.00016 in chloroplast DNA sequences, and 0.00304 in mitochondrial DNAs). The haplotype-based phylogenetic topology and unimodal distributions of demographic analysis suggested that P. bungeana probably originated in the southern Qinling Mountains and experienced rapid population expansion since Last Interglacial period. Phylogenetic analysis revealed that P. gerardiana and P. squamata had closer genetic relationship. The species divergence of subsect. Gerardianae occurred about 27.18 million years ago (Mya) during the middle to late Oligocene, which was significantly associated with the uplift of the Qinghai-Tibetan Plateau and adjacent mountains from the Eocene to the mid-Pliocene. The molecular evolutionary analysis showed that two chloroplast genes (psaI and ycf1) were under positive selection, the genetic lineages of P. bungeana exhibited higher transition and nonsynonymous mutations, which were involved with the strongly environmental adaptation. These findings shed light on the population evolutionary history of white pine species and provide striking insights for comprehension of their species divergence and molecular evolution.
Collapse
Affiliation(s)
- Ting-Ting Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Chun-Li Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jin-Xia Qiao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Ao-Shuang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Mi-Li Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yi-Xuan Kou
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
14
|
Fu QL, Mo ZQ, Xiang XG, Milne RI, Jacquemyn H, Burgess KS, Sun YN, Yan H, Qiu L, Yang BY, Tan SL. Plastome phylogenomics and morphological traits analyses provide new insights into the phylogenetic position, species delimitation and speciation of Triplostegia (Caprifoliaceae). BMC PLANT BIOLOGY 2023; 23:645. [PMID: 38097946 PMCID: PMC10722739 DOI: 10.1186/s12870-023-04663-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND The genus Triplostegia contains two recognized species, T. glandulifera and T. grandiflora, but its phylogenetic position and species delimitation remain controversial. In this study, we assembled plastid genomes and nuclear ribosomal DNA (nrDNA) cistrons sampled from 22 wild Triplostegia individuals, each from a separate population, and examined these with 11 recently published Triplostegia plastomes. Morphological traits were measured from herbarium specimens and wild material, and ecological niche models were constructed. RESULTS Triplostegia is a monophyletic genus within the subfamily Dipsacoideae comprising three monophyletic species, T. glandulifera, T. grandiflora, and an unrecognized species Triplostegia sp. A, which occupies much higher altitude than the other two. The new species had previously been misidentified as T. glandulifera, but differs in taproot, leaf, and other characters. Triplotegia is an old genus, with stem age 39.96 Ma, and within it T. glandulifera diverged 7.94 Ma. Triplostegia grandiflora and sp. A diverged 1.05 Ma, perhaps in response to Quaternary climate fluctuations. Niche overlap between Triplostegia species was positively correlated with their phylogenetic relatedness. CONCLUSIONS Our results provide new insights into the species delimitation of Triplostegia, and indicate that a taxonomic revision of Triplostegia is needed. We also identified that either rpoB-trnC or ycf1 could serve as a DNA barcode for Triplostegia.
Collapse
Affiliation(s)
- Qing-Li Fu
- Jiangxi Province Key Laboratory of Plant Resources, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Zhi-Qiong Mo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Xiao-Guo Xiang
- Jiangxi Province Key Laboratory of Plant Resources, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Institute of Life Science, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Richard I Milne
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JH, UK
| | - Hans Jacquemyn
- KU Leuven, Department of Biology, Plant Conservation and Population Biology, B-3001, Leuven, Belgium
| | - Kevin S Burgess
- College of Letters and Sciences, Columbus State University, University System of Georgia, Columbus, GA, 31907-5645, USA
| | - Ya-Nan Sun
- Jiangxi Province Key Laboratory of Plant Resources, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Hua Yan
- Jiangxi Province Key Laboratory of Plant Resources, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Institute of Life Science, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Li Qiu
- Jiangxi Province Key Laboratory of Plant Resources, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Bo-Yun Yang
- Jiangxi Province Key Laboratory of Plant Resources, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Shao-Lin Tan
- Jiangxi Province Key Laboratory of Plant Resources, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China.
| |
Collapse
|
15
|
Hu K, Chen M, Li P, Sun X, Lu R. Intraspecific phylogeny and genomic resources development for an important medical plant Dioscorea nipponica, based on low-coverage whole genome sequencing data. FRONTIERS IN PLANT SCIENCE 2023; 14:1320473. [PMID: 38148859 PMCID: PMC10749966 DOI: 10.3389/fpls.2023.1320473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
Dioscorea nipponica Makino, a perennial twining herb with medicinal importance, has a disjunctive distribution in the Sino-Japanese Floristic Region. It has a long history in traditional Chinese medicine, with demonstrated efficacy against various health conditions. However, the limited genomic data and knowledge of genetic variation have hindered its comprehensive exploration, utilization and conservation. In this study, we undertook low-coverage whole genome sequencing of diverse D. nipponica accessions to develop both plastome (including whole plastome sequences, plastome-derived SSRs and plastome-divergent hotspots) and nuclear genomic resources (including polymorphic nuclear SSRs and single-copy nuclear genes), as well as elucidate the intraspecific phylogeny of this species. Our research revealed 639 plastome-derived SSRs and highlighted six key mutational hotspots (namely CDS ycf1, IGS trnL-rpl32, IGS trnE-trnT, IGS rps16-trnQ, Intron 1 of clpP, and Intron trnG) within these accessions. Besides, three IGS regions (i.e., ndhD-cssA, trnL-rpl32, trnD-trnY), and the intron rps16 were identified as potential markers for distinguishing D. nipponica from its closely related species. In parallel, we successfully developed 988 high-quality candidate polymorphic nuclear SSRs and identified 17 single-copy nuclear genes for D. nipponica, all of which empower us to conduct in-depth investigations into phylogenetics and population genetics of this species. Although our phylogenetic analyses, based on plastome sequences and single-copy nuclear genes revealed cytonuclear discordance within D. nipponica, both findings challenged the current subspecies classification. In summary, this study developed a wealth of genomic resources for D. nipponica and enhanced our understanding of the intraspecific phylogeny of this species, offering valuable insights that can be instrumental in the conservation and strategic utilization of this economically significant plant.
Collapse
Affiliation(s)
- Ke Hu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Min Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Pan Li
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoqin Sun
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
- Jiangsu Provincial Science and Technology Resources Coordination Platform (Agricultural Germplasm Resources) Germplasm Resources Nursery of Medicinal Plants, Nanjing, China
| | - Ruisen Lu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| |
Collapse
|
16
|
Yu J, Han Y, Xu H, Han S, Li X, Niu Y, Chen S, Zhang F. Structural divergence and phylogenetic relationships of Ajania (Asteraceae) from plastomes and ETS. BMC Genomics 2023; 24:602. [PMID: 37817095 PMCID: PMC10566131 DOI: 10.1186/s12864-023-09716-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/04/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Ajania Poljakov, an Asteraceae family member, grows mostly in Asia's arid and semi-desert areas and is a significant commercial and decorative plant. Nevertheless, the genus' classification has been disputed, and the evolutionary connections within the genus have not been thoroughly defined. Hence, we sequenced and analyzed Ajania's plastid genomes and combined them with ETS data to assess their phylogenetic relationships. RESULTS We obtained a total of six new Ajania plastid genomes and nine ETS sequences. The whole plastome lengths of the six species sampled ranged from 151,002 bp to 151,115 bp, showing conserved structures. Combined with publicly available data from GenBank, we constructed six datasets to reconstruct the phylogenetic relationships, detecting nucleoplasmic clashes. Our results reveal the affinities of Artemisia, Chrysanthemum and Stilpnolepis to Ajania and validate the early taxonomy reclassification. Some of the plastid genes with low phylogenetic information and gene trees with topological differences may have contributed to the ambiguous phylogenetic results of Ajania. There is extensive evolutionary rate heterogeneity in plastid genes. The psbH and ycf2 genes, which are involved in photosynthesis and ATP transport, are under selective pressure. Plastomes from Ajania species diverged, and structural aspects of plastomes may indicate some of the real evolutionary connections. We suggest the ycf1 gene as a viable plastid DNA barcode because it has significant nucleotide diversity and better reflects evolutionary connections. CONCLUSION Our findings validate the early Ajania taxonomy reclassification and show evolutionary rate heterogeneity, genetic variety, and phylogenetic heterogeneity of plastid genes. This research might provide new insights into the taxonomy and evolution of Ajania, as well as provide useful information for germplasm innovation and genetic enhancement in horticultural species.
Collapse
Affiliation(s)
- Jingya Yu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yun Han
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Hao Xu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Shuang Han
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xiaoping Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yu Niu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Shilong Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, 810008, China
| | - Faqi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, 810008, China.
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining, 810008, China.
| |
Collapse
|
17
|
Bandaranayake PCG, Naranpanawa N, Chandrasekara CHWMRB, Samarakoon H, Lokuge S, Jayasundara S, Bandaranayake AU, Pushpakumara DKNG, Wijesundara DSA. Chloroplast genome, nuclear ITS regions, mitogenome regions, and Skmer analysis resolved the genetic relationship among Cinnamomum species in Sri Lanka. PLoS One 2023; 18:e0291763. [PMID: 37729154 PMCID: PMC10511092 DOI: 10.1371/journal.pone.0291763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023] Open
Abstract
Cinnamomum species have gained worldwide attention because of their economic benefits. Among them, C. verum (synonymous with C. zeylanicum Blume), commonly known as Ceylon Cinnamon or True Cinnamon is mainly produced in Sri Lanka. In addition, Sri Lanka is home to seven endemic wild cinnamon species, C. capparu-coronde, C. citriodorum, C. dubium, C. litseifolium, C. ovalifolium, C. rivulorum and C. sinharajaense. Proper identification and genetic characterization are fundamental for the conservation and commercialization of these species. While some species can be identified based on distinct morphological or chemical traits, others cannot be identified easily morphologically or chemically. The DNA barcoding using rbcL, matK, and trnH-psbA regions could not also resolve the identification of Cinnamomum species in Sri Lanka. Therefore, we generated Illumina Hiseq data of about 20x coverage for each identified species and a C. verum sample (India) and assembled the chloroplast genome, nuclear ITS regions, and several mitochondrial genes, and conducted Skmer analysis. Chloroplast genomes of all eight species were assembled using a seed-based method.According to the Bayesian phylogenomic tree constructed with the complete chloroplast genomes, the C. verum (Sri Lanka) is sister to previously sequenced C. verum (NC_035236.1, KY635878.1), C. dubium and C. rivulorum. The C. verum sample from India is sister to C. litseifolium and C. ovalifolium. According to the ITS regions studied, C. verum (Sri Lanka) is sister to C. verum (NC_035236.1), C. dubium and C. rivulorum. Cinnamomum verum (India) shares an identical ITS region with C. ovalifolium, C. litseifolium, C. citriodorum, and C. capparu-coronde. According to the Skmer analysis C. verum (Sri Lanka) is sister to C. dubium and C. rivulorum, whereas C. verum (India) is sister to C. ovalifolium, and C. litseifolium. The chloroplast gene ycf1 was identified as a chloroplast barcode for the identification of Cinnamomum species. We identified an 18 bp indel region in the ycf1 gene, that could differentiate C. verum (India) and C. verum (Sri Lanka) samples tested.
Collapse
Affiliation(s)
| | - Nathasha Naranpanawa
- Faculty of Agriculture, Agricultural Biotechnology Centre, University of Peradeniya, Peradeniya, Sri Lanka
- Postgraduate Institute of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | | | - Hiruna Samarakoon
- Faculty of Agriculture, Agricultural Biotechnology Centre, University of Peradeniya, Peradeniya, Sri Lanka
| | - S. Lokuge
- Faculty of Agriculture, Agricultural Biotechnology Centre, University of Peradeniya, Peradeniya, Sri Lanka
| | - S. Jayasundara
- Faculty of Agriculture, Agricultural Biotechnology Centre, University of Peradeniya, Peradeniya, Sri Lanka
| | - Asitha U. Bandaranayake
- Faculty of Engineering, Department of Computer Engineering, University of Peradeniya, Peradeniya, Sri Lanka
| | - D. K. N. G. Pushpakumara
- Faculty of Agriculture, Department of Crop Science, University of Peradeniya, Peradeniya, Sri Lanka
| | | |
Collapse
|
18
|
Xu XM, Wei Z, Sun JZ, Zhao QF, Lu Y, Wang ZL, Zhu SX. Phylogeny of Leontopodium (Asteraceae) in China-with a reference to plastid genome and nuclear ribosomal DNA. FRONTIERS IN PLANT SCIENCE 2023; 14:1163065. [PMID: 37583593 PMCID: PMC10425225 DOI: 10.3389/fpls.2023.1163065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023]
Abstract
The infrageneric taxonomy system, species delimitation, and interspecies systematic relationships of Leontopodium remain controversial and complex. However, only a few studies have focused on the molecular phylogeny of this genus. In this study, the characteristics of 43 chloroplast genomes of Leontopodium and its closely related genera were analyzed. Phylogenetic relationships were inferred based on chloroplast genomes and nuclear ribosomal DNA (nrDNA). Finally, together with the morphological characteristics, the relationships within Leontopodium were identified and discussed. The results showed that the chloroplast genomes of Filago, Gamochaeta, and Leontopodium were well-conserved in terms of gene number, gene order, and GC content. The most remarkable differences among the three genera were the length of the complete chloroplast genome, large single-copy region, small single-copy region, and inverted repeat region. In addition, the chloroplast genome structure of Leontopodium exhibited high consistency and was obviously different from that of Filago and Gamochaeta in some regions, such as matk, trnK (UUU)-rps16, petN-psbM, and trnE (UUC)-rpoB. All the phylogenetic trees indicated that Leontopodium was monophyletic. Except for the subgeneric level, our molecular phylogenetic results were inconsistent with the previous taxonomic system, which was based on morphological characteristics. Nevertheless, we found that the characteristics of the leaf base, stem types, and carpopodium base were phylogenetically correlated and may have potential value in the taxonomic study of Leontopodium. In the phylogenetic trees inferred using complete chloroplast genomes, the subgen. Leontopodium was divided into two clades (Clades 1 and 2), with most species in Clade 1 having herbaceous stems, amplexicaul, or sheathed leaves, and constricted carpopodium; most species in Clade 2 had woody stems, not amplexicaul and sheathed leaves, and not constricted carpopodium.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shi-Xin Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Pezzini FF, Ferrari G, Forrest LL, Hart ML, Nishii K, Kidner CA. Target capture and genome skimming for plant diversity studies. APPLICATIONS IN PLANT SCIENCES 2023; 11:e11537. [PMID: 37601316 PMCID: PMC10439825 DOI: 10.1002/aps3.11537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/16/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023]
Abstract
Recent technological advances in long-read high-throughput sequencing and assembly methods have facilitated the generation of annotated chromosome-scale whole-genome sequence data for evolutionary studies; however, generating such data can still be difficult for many plant species. For example, obtaining high-molecular-weight DNA is typically impossible for samples in historical herbarium collections, which often have degraded DNA. The need to fast-freeze newly collected living samples to conserve high-quality DNA can be complicated when plants are only found in remote areas. Therefore, short-read reduced-genome representations, such as target capture and genome skimming, remain important for evolutionary studies. Here, we review the pros and cons of each technique for non-model plant taxa. We provide guidance related to logistics, budget, the genomic resources previously available for the target clade, and the nature of the study. Furthermore, we assess the available bioinformatic analyses, detailing best practices and pitfalls, and suggest pathways to combine newly generated data with legacy data. Finally, we explore the possible downstream analyses allowed by the type of data generated using each technique. We provide a practical guide to help researchers make the best-informed choice regarding reduced genome representation for evolutionary studies of non-model plants in cases where whole-genome sequencing remains impractical.
Collapse
Affiliation(s)
| | - Giada Ferrari
- Royal Botanic Garden EdinburghEdinburghUnited Kingdom
| | | | | | - Kanae Nishii
- Royal Botanic Garden EdinburghEdinburghUnited Kingdom
| | - Catherine A. Kidner
- Royal Botanic Garden EdinburghEdinburghUnited Kingdom
- School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
20
|
Xu XM, Liu DH, Zhu SX, Wang ZL, Wei Z, Liu QR. Phylogeny of Trigonotis in China-with a special reference to its nutlet morphology and plastid genome. PLANT DIVERSITY 2023; 45:409-421. [PMID: 37601540 PMCID: PMC10435912 DOI: 10.1016/j.pld.2023.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 08/22/2023]
Abstract
The genus Trigonotis comprises nearly 60 species mainly distributed in East and Southeast Asia. China has the largest number of Trigonotis species in the world, with a total of 44 species, of which 38 are endemic. Nutlet morphology is useful for the taxonomic delimitation of Trigonotis. However, there are still controversial circumscriptions of nutlet shape in some species. In previous studies, interspecies phylogenetic relationships were inferred using few DNA markers and very few taxa, which possibly led to erroneous or incomplete conclusions. In this study, the nutlet morphology of 39 Trigonotis taxa and the characteristics of 34 complete chloroplast genomes (29 taxa) were investigated and analyzed. Then, the phylogenetic relationships were discussed within this genus based on complete chloroplast genomes. To the best of our knowledge, this study is the first comprehensive analysis of nutlet morphology and complete chloroplast genome of Trigonotis. Based on nutlet morphology, Trigonotis can be divided into two groups: Group 1, hemispherical or oblique tetrahedron with carpopodiums, and Group 2, inverted tetrahedron without carpopodiums. The chloroplast genome of Trigonotis exhibited a typical quadripartite structure, including 84-86 protein-coding, 37 transfer RNA, and 8 ribosomal RNA genes, with a total length of 147,247-148,986 bp. Genes in the junctions were well conserved in Trigonotis, similar to those in other Boraginaceae s.str. species. Furthermore, Trigonotis chloroplast genomes showed relatively high diversity, with more conserved genic regions than intergenic regions; in addition, we detected 14 hot spots (Pi > 0.005) in non-coding regions. Phylogenetic analyses based on chloroplast genome data identified highly resolved relationships between Trigonotis species. Specifically, Trigonotis was divided into two clades with strong support: one clade included species with hemispherical or oblique tetrahedron nutlets with carpopodiums and bracts, whereas the other clade included species with inverted tetrahedron nutlets without carpopodiums or bracts. Our results may inform future taxonomic, phylogenetic, and evolutionary studies on Boraginaceae.
Collapse
Affiliation(s)
- Xue-Min Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Dan-Hui Liu
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Shi-Xin Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhen-Long Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhen Wei
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Quan-Ru Liu
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
21
|
Hu K, Sun XQ, Chen M, Lu RS. Low-coverage whole genome sequencing of eleven species/subspecies in Dioscorea sect. Stenophora (Dioscoreaceae): comparative plastome analyses, molecular markers development and phylogenetic inference. FRONTIERS IN PLANT SCIENCE 2023; 14:1196176. [PMID: 37346115 PMCID: PMC10281252 DOI: 10.3389/fpls.2023.1196176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/26/2023] [Indexed: 06/23/2023]
Abstract
Dioscorea sect. Stenophora (Dioscoreaceae) comprises about 30 species that are distributed in the temperate and subtropical regions of the Northern Hemisphere. Despite being evolutionarily "primitive" and medically valuable, genomic resources and molecular studies of this section are still scarce. Here, we conducted low-coverage whole genome sequencing of 11 Stenophora species/subspecies to retrieve their plastome information (whole plastome characteristics, plastome-divergent hotspots, plastome-derived SSRs, etc.) and polymorphic nuclear SSRs, as well as performed comparative plastome and phylogenetic analyses within this section. The plastomes of Stenophora species/subspecies ranged from 153,691 bp (D. zingiberensis) to 154,149 bp (D. biformifolia) in length, and they all contained the same 114 unique genes. All these plastomes were highly conserved in gene structure, gene order and GC content, although variations at the IR/SC borders contributed to the whole length differences among them. The number of plastome-derived SSRs among Stenophora species/subspecies varied from 74 (D. futschauensis) to 93 (D. zingiberensis), with A/T found to be the most frequent one. Seven highly variable regions and 12 polymorphic nuclear SSRs were identified in this section, thereby providing important information for further taxonomical, phylogenetic and population genetic studies. Phylogenomic analyses based on whole plastome sequences and 80 common protein coding genes strongly supported D. biformifolia and D. banzhuana constituted the successive sister species to the remaining sampled species, which could be furtherly divided into three clades. Overall, this study provided a new perspective for plastome evolution of Stenophora, and proved the role of plastome phylogenomic in improving the phylogenetic resolution in this section. These results also provided an important reference for the protection and utilization of this economically important section.
Collapse
Affiliation(s)
- Ke Hu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
- Jiangsu Provincial Science and Technology Resources Coordination Platform (Agricultural Germplasm Resources) Germplasm Resources Nursery of Medicinal Plants, Nanjing, China
| | - Xiao-Qin Sun
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
- Jiangsu Provincial Science and Technology Resources Coordination Platform (Agricultural Germplasm Resources) Germplasm Resources Nursery of Medicinal Plants, Nanjing, China
| | - Min Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
- Jiangsu Provincial Science and Technology Resources Coordination Platform (Agricultural Germplasm Resources) Germplasm Resources Nursery of Medicinal Plants, Nanjing, China
| | - Rui-Sen Lu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
- Jiangsu Provincial Science and Technology Resources Coordination Platform (Agricultural Germplasm Resources) Germplasm Resources Nursery of Medicinal Plants, Nanjing, China
| |
Collapse
|
22
|
Faulk C. Genome skimming with nanopore sequencing precisely determines global and transposon DNA methylation in vertebrates. Genome Res 2023; 33:948-956. [PMID: 37442577 PMCID: PMC10519409 DOI: 10.1101/gr.277743.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023]
Abstract
Genome skimming is defined as low-pass sequencing below 0.05× coverage and is typically used for mitochondrial genome recovery and species identification. Long-read nanopore sequencers enable simultaneous reading of both DNA sequence and methylation and can multiplex samples for low-cost genome skimming. Here I present nanopore sequencing as a highly precise platform for global DNA methylation and transposon assessment. At coverage of just 0.001×, or 30 Mb of reads, accuracy is sub-1%. Biological and technical replicates validate high precision. Skimming 40 vertebrate species reveals conserved patterns of global methylation consistent with whole-genome bisulfite sequencing and an average mapping rate >97%. Genome size directly correlates to global DNA methylation, explaining 39% of its variance. Accurate SINE and LINE transposon methylation in both the mouse and primates can be obtained with just 0.0001× coverage, or 3 Mb of reads. Sample multiplexing, field portability, and the low price of this instrument combine to make genome skimming for DNA methylation an accessible method for epigenetic assessment from ecology to epidemiology and for low-resource groups.
Collapse
Affiliation(s)
- Christopher Faulk
- Department of Animal Science, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
23
|
Raiyemo DA, Tranel PJ. Comparative analysis of dioecious Amaranthus plastomes and phylogenomic implications within Amaranthaceae s.s. BMC Ecol Evol 2023; 23:15. [PMID: 37149567 PMCID: PMC10164334 DOI: 10.1186/s12862-023-02121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/28/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND The genus Amaranthus L. consists of 70-80 species distributed across temperate and tropical regions of the world. Nine species are dioecious and native to North America; two of which are agronomically important weeds of row crops. The genus has been described as taxonomically challenging and relationships among species including the dioecious ones are poorly understood. In this study, we investigated the phylogenetic relationships among the dioecious amaranths and sought to gain insights into plastid tree incongruence. A total of 19 Amaranthus species' complete plastomes were analyzed. Among these, seven dioecious Amaranthus plastomes were newly sequenced and assembled, an additional two were assembled from previously published short reads sequences and 10 other plastomes were obtained from a public repository (GenBank). RESULTS Comparative analysis of the dioecious Amaranthus species' plastomes revealed sizes ranged from 150,011 to 150,735 bp and consisted of 112 unique genes (78 protein-coding genes, 30 transfer RNAs and 4 ribosomal RNAs). Maximum likelihood trees, Bayesian inference trees and splits graphs support the monophyly of subgenera Acnida (7 dioecious species) and Amaranthus; however, the relationship of A. australis and A. cannabinus to the other dioecious species in Acnida could not be established, as it appears a chloroplast capture occurred from the lineage leading to the Acnida + Amaranthus clades. Our results also revealed intraplastome conflict at some tree branches that were in some cases alleviated with the use of whole chloroplast genome alignment, indicating non-coding regions contribute valuable phylogenetic signals toward shallow relationship resolution. Furthermore, we report a very low evolutionary distance between A. palmeri and A. watsonii, indicating that these two species are more genetically related than previously reported. CONCLUSIONS Our study provides valuable plastome resources as well as a framework for further evolutionary analyses of the entire Amaranthus genus as more species are sequenced.
Collapse
Affiliation(s)
- Damilola A Raiyemo
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Patrick J Tranel
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
24
|
Garrett N, Viruel J, Klimpert N, Soto Gomez M, Lam VKY, Merckx VSFT, Graham SW. Plastid phylogenomics and molecular evolution of Thismiaceae (Dioscoreales). AMERICAN JOURNAL OF BOTANY 2023; 110:e16141. [PMID: 36779918 DOI: 10.1002/ajb2.16141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 05/11/2023]
Abstract
PREMISE Species in Thismiaceae can no longer photosynthesize and instead obtain carbon from soil fungi. Here we infer Thismiaceae phylogeny using plastid genome data and characterize the molecular evolution of this genome. METHODS We assembled five Thismiaceae plastid genomes from genome skimming data, adding to previously published data for phylogenomic inference. We investigated plastid-genome structural changes, considering locally colinear blocks (LCBs). We also characterized possible shifts in selection pressure in retained genes by considering changes in the ratio of nonsynonymous to synonymous changes (ω). RESULTS Thismiaceae experienced two major pulses of gene loss around the early diversification of the family, with subsequent scattered gene losses across descendent lineages. In addition to massive size reduction, Thismiaceae plastid genomes experienced occasional inversions, and there were likely two independent losses of the plastid inverted repeat (IR) region. Retained plastid genes remain under generally strong purifying selection (ω << 1), with significant and sporadic weakening or strengthening in several instances. The bifunctional trnE-UUC gene of Thismia huangii may retain a secondary role in heme biosynthesis, despite a probable loss of functionality in protein translation. Several cis-spliced group IIA introns have been retained, despite the loss of the plastid intron maturase, matK. CONCLUSIONS We infer that most gene losses in Thismiaceae occurred early and rapidly, following the initial loss of photosynthesis in its stem lineage. As a species-rich, fully mycoheterotrophic lineage, Thismiaceae provide a model system for uncovering the unique and divergent ways in which plastid genomes evolve in heterotrophic plants.
Collapse
Affiliation(s)
- Natalie Garrett
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Juan Viruel
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK
| | - Nathaniel Klimpert
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | | | - Vivienne K Y Lam
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Vincent S F T Merckx
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, 1098, XH, Amsterdam, The Netherlands
| | - Sean W Graham
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
25
|
Hu Y, Sun Y, Zhu QH, Fan L, Li J. Poaceae Chloroplast Genome Sequencing: Great Leap Forward in Recent Ten Years. Curr Genomics 2023; 23:369-384. [PMID: 37920556 PMCID: PMC10173419 DOI: 10.2174/1389202924666221201140603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/02/2022] [Accepted: 10/19/2022] [Indexed: 12/11/2022] Open
Abstract
The first complete chloroplast genome of rice (Oryza sativa) was published in 1989, ushering in a new era of studies of chloroplast genomics in Poaceae. Progresses in Next-Generation Sequencing (NGS) and Third-Generation Sequencing (TGS) technologiesand in the development of genome assembly software, have significantly advanced chloroplast genomics research. Poaceae is one of the most targeted families in chloroplast genome research because of its agricultural, ecological, and economic importance. Over the last 30 years, 2,050 complete chloroplast genome sequences from 40 tribes and 282 genera have been generated, most (97%) of them in the recent ten years. The wealth of data provides the groundwork for studies on species evolution, phylogeny, genetic transformation, and other aspects of Poaceae chloroplast genomes. As a result, we have gained a deeper understanding of the properties of Poaceae chloroplast genomes. Here, we summarize the achievements of the studies of the Poaceae chloroplast genomes and envision the challenges for moving the area ahead.
Collapse
Affiliation(s)
- Yiyu Hu
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Yanqing Sun
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Qian-Hao Zhu
- CSIRO, Agriculture and Food, Canberra, ACT 2601, Australia
| | - Longjiang Fan
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Jianhua Li
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
26
|
Guo C, Luo Y, Gao LM, Yi TS, Li HT, Yang JB, Li DZ. Phylogenomics and the flowering plant tree of life. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:299-323. [PMID: 36416284 DOI: 10.1111/jipb.13415] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
The advances accelerated by next-generation sequencing and long-read sequencing technologies continue to provide an impetus for plant phylogenetic study. In the past decade, a large number of phylogenetic studies adopting hundreds to thousands of genes across a wealth of clades have emerged and ushered plant phylogenetics and evolution into a new era. In the meantime, a roadmap for researchers when making decisions across different approaches for their phylogenomic research design is imminent. This review focuses on the utility of genomic data (from organelle genomes, to both reduced representation sequencing and whole-genome sequencing) in phylogenetic and evolutionary investigations, describes the baseline methodology of experimental and analytical procedures, and summarizes recent progress in flowering plant phylogenomics at the ordinal, familial, tribal, and lower levels. We also discuss the challenges, such as the adverse impact on orthology inference and phylogenetic reconstruction raised from systematic errors, and underlying biological factors, such as whole-genome duplication, hybridization/introgression, and incomplete lineage sorting, together suggesting that a bifurcating tree may not be the best model for the tree of life. Finally, we discuss promising avenues for future plant phylogenomic studies.
Collapse
Affiliation(s)
- Cen Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Yang Luo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- Lijiang Forest Diversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, China
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Hong-Tao Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- Lijiang Forest Diversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
27
|
Li J, Cullis C. Comparative analysis of 84 chloroplast genomes of Tylosema esculentum reveals two distinct cytotypes. FRONTIERS IN PLANT SCIENCE 2023; 13:1025408. [PMID: 36798803 PMCID: PMC9927231 DOI: 10.3389/fpls.2022.1025408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Tylosema esculentum (marama bean) is an important orphan legume from southern Africa that has long been considered to have the potential to be domesticated as a crop. The chloroplast genomes of 84 marama samples collected from various geographical locations in Namibia and Pretoria were compared in this study. The cp genomes were analyzed for diversity, including SNPs, indels, structural alterations, and heteroplasmy. The marama cp genomes ranged in length from 161,537 bp to 161,580 bp and contained the same sets of genes, including 84 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. The genes rpoC2 and rpoB, and the intergenic spacers trnT-trnL and ndhG-ndhI were found to be more diverse than other regions of the marama plastome. 15 haplotypes were found to be divided into two groups, differing at 122 loci and at a 230 bp inversion. One type appears to have greater variability within the major genome present, and variations amongst individuals with this type of chloroplast genome seems to be distributed within specific geographic regions but with very limited sampling for some regions. However, deep sequencing has identified that within most of the individuals, both types of chloroplast genomes are present, albeit one is generally at a very low frequency. The inheritance of this complex of chloroplast genomes appears to be fairly constant, providing a conundrum of how the two genomes co-exist and are propagated through generations. The possible consequences for adaptation to the harsh environment in which T. esculentum survives are considered. The results pave the way for marama variety identification, as well as for understanding the origin and evolution of the bean.
Collapse
|
28
|
Faulk C. Genome Skimming with Nanopore Sequencing Precisely Determines Global and Transposon DNA Methylation in Vertebrates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525540. [PMID: 36747817 PMCID: PMC9900854 DOI: 10.1101/2023.01.25.525540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Genome skimming is defined as low-pass sequencing below 0.05X coverage and is typically used for mitochondrial genome recovery and species identification. Long read nanopore sequencers enable simultaneous reading of both DNA sequence and methylation and can multiplex samples for low-cost genome skimming. Here I present nanopore sequencing as a highly precise platform for global DNA methylation and transposon assessment. At coverage of just 0.001X, or 30 Mb of reads, accuracy is sub-1%. Biological and technical replicates validate high precision. Skimming 40 vertebrate species reveals conserved patterns of global methylation consistent with whole genome bisulfite sequencing and an average mapping rate above 97%. Genome size directly correlates to global DNA methylation, explaining 44% of its variance. Accurate SINE and LINE transposon methylation in both mouse and primates can be obtained with just 0.0001X coverage, or 3 Mb of reads. Sample multiplexing, field portability, and the low price of this instrument combine to make genome skimming for DNA methylation an accessible method for epigenetic assessment from ecology to epidemiology, and by low resource groups.
Collapse
Affiliation(s)
- Christopher Faulk
- Department of Animal Science, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota
| |
Collapse
|
29
|
Tan F, Banerjee AK, Deng J, Feng H, Feng Y, Shu Y, Wang J. Characterization of the complete chloroplast genome of Firmiana hainanensis (Malvaceae), an endemic and vulnerable tree species of China. Mitochondrial DNA B Resour 2023; 8:57-60. [PMID: 36620311 PMCID: PMC9817124 DOI: 10.1080/23802359.2022.2160669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Firmiana hainanensis Kosterm. is a commercially valuable endemic tree species in China and has long been considered a globally vulnerable species. We assembled and characterized the complete chloroplast genome of this species by using Illumina pair-end sequencing data. The total chloroplast genome size was 161,559 bp, including two inverted repeats (IRs) of 25,612 bp, separated by a large single copy (LSC) and a small single copy (SSC) regions of 90,057 and 20,277 bp, respectively. A total of 130 genes were identified, including 85 protein-coding genes, 37 tRNA, and eight rRNA genes. Phylogenetic analysis showed that F. hainanensis was the most basal species in the genus Firmiana. The chloroplast genome of this species will provide a theoretical basis to understand the taxa's evolution further and is expected to contribute to its conservation efforts.
Collapse
Affiliation(s)
- Fengxiao Tan
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, PR China,CONTACT Fengxiao Tan
| | | | - Jie Deng
- School of Aeronautics and Astronautics, Sun Yat-sen University, Shenzhen, PR China
| | - Hui Feng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Yuanjiao Feng
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, PR China
| | - Yinghua Shu
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, PR China
| | - Jianwu Wang
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, PR China,Jianwu Wang College of Natural Resources and Environment, South China Agricultural University, 480 Wushan Road, Guangzhou510642, PR China
| |
Collapse
|
30
|
Samji A, Eashwarlal K, Shanmugavel S, Kumar S, Warrier RR. Chloroplast genome skimming of a potential agroforestry species Melia dubia. Cav and its comparative phylogenetic analysis with major Meliaceae members. 3 Biotech 2023; 13:30. [PMID: 36597460 PMCID: PMC9805483 DOI: 10.1007/s13205-022-03447-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 12/20/2022] [Indexed: 01/02/2023] Open
Abstract
Melia dubia Cav. is a fast-growing plywood species gaining popularity due to high economic returns. This study aimed to assemble and annotate the chloroplast (cp) genome of M. dubia and compare it with previously published cp genomes within the Meliaceae family. The chloroplast genome was constructed by the de novo and reference-based assembly of paired-end reads generated by long-read sequencing of genomic DNA. The cp genome, sized 171,956 bp, comprised a typical angiosperm quadripartite structure. The large single-copy (LSC) region of 76,055 bp and a small single-copy (SSC) region of 18,693 bp cover 55% of the genome. The pair of inverted repeats (IRA and IRB) were 38,604 bp each (covering 45% of the genome). We identified unique genes (112), including protein-coding genes (79), tRNA (29) and 4 rRNA genes. Phylogenetic analysis using complete cp genomes of 11 species from Meliaceae revealed that M. dubia and M. azedarach shared a sister clade. Comparative analysis using cp genome of M. dubia, M. azedarach and Azadirachta indica revealed a high sequence similarity (> 70%). Five intergenic regions were highly conserved among the three cp genomes. The gene trnG-UCC at LSC region was found to be more divergent in M. dubia and M. azedarach, while it shows complete conservation within M. dubia and A. indica. This is the first report of the chloroplast genome in M. dubia. The available levels of taxonomic expertise and clarity in species delineation within the Melia genus are low. The information generated provides scope for identifying new barcodes which increases the discriminatory power of the species within the genus beyond morphological identification. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03447-1.
Collapse
Affiliation(s)
- Aghila Samji
- Division of Plant Biotechnology and Cytogenetics, Institute of Forest Genetics and Tree Breeding, PB No. 1061, Forest Campus, Coimbatore, 641 002 India
| | - Komal Eashwarlal
- Division of Plant Biotechnology and Cytogenetics, Institute of Forest Genetics and Tree Breeding, PB No. 1061, Forest Campus, Coimbatore, 641 002 India
| | - Senthil Shanmugavel
- Division of Plant Biotechnology and Cytogenetics, Institute of Forest Genetics and Tree Breeding, PB No. 1061, Forest Campus, Coimbatore, 641 002 India
| | - Santhosh Kumar
- Division of Plant Biotechnology and Cytogenetics, Institute of Forest Genetics and Tree Breeding, PB No. 1061, Forest Campus, Coimbatore, 641 002 India
| | - Rekha Ravindranath Warrier
- Division of Plant Biotechnology and Cytogenetics, Institute of Forest Genetics and Tree Breeding, PB No. 1061, Forest Campus, Coimbatore, 641 002 India
| |
Collapse
|
31
|
Lan Z, Shi Y, Yin Q, Gao R, Liu C, Wang W, Tian X, Liu J, Nong Y, Xiang L, Wu L. Comparative and phylogenetic analysis of complete chloroplast genomes from five Artemisia species. FRONTIERS IN PLANT SCIENCE 2022; 13:1049209. [PMID: 36479523 PMCID: PMC9720176 DOI: 10.3389/fpls.2022.1049209] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
Artemisia Linn. is a large genus within the family Asteraceae that includes several important medicinal plants. Because of their similar morphology and chemical composition, traditional identification methods often fail to distinguish them. Therefore, developing an effective identification method for Artemisia species is an urgent requirement. In this study, we analyzed 15 chloroplast (cp) genomes, including 12 newly sequenced genomes, from 5 Artemisia species. The cp genomes from the five Artemisia species had a typical quadripartite structure and were highly conserved across species. They had varying lengths of 151,132-151,178 bp, and their gene content and codon preferences were similar. Mutation hotspot analysis identified four highly variable regions, which can potentially be used as molecular markers to identify Artemisia species. Phylogenetic analysis showed that the five Artemisia species investigated in this study were sister branches to each other, and individuals of each species formed a monophyletic clade. This study shows that the cp genome can provide distinguishing features to help identify closely related Artemisia species and has the potential to serve as a universal super barcode for plant identification.
Collapse
Affiliation(s)
- Zhaohui Lan
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yuhua Shi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qinggang Yin
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ranran Gao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunlian Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Wenting Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xufang Tian
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Jiawei Liu
- Department of product development, Hubei Aiaitie Health Technology Co., LTD, Huanggang, China
| | - Yiying Nong
- Department of product development, Hubei Aiaitie Health Technology Co., LTD, Huanggang, China
| | - Li Xiang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lan Wu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
32
|
Park YS, Kang JS, Park JY, Shim H, Yang HO, Kang JH, Yang TJ. Analysis of the complete plastomes and nuclear ribosomal DNAs from Euonymus hamiltonianus and its relatives sheds light on their diversity and evolution. PLoS One 2022; 17:e0275590. [PMID: 36197898 PMCID: PMC9534445 DOI: 10.1371/journal.pone.0275590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
Euonymus hamiltonianus and its relatives (Celastraceae family) are used for ornamental and medicinal purposes. However, species identification in Euonymus is difficult due to their morphological diversity. Using plastid genome (plastome) data, we attempt to reveal phylogenetic relationship among Euonymus species and develop useful markers for molecular identification. We assembled the plastome and nuclear ribosomal DNA (nrDNA) sequences from five Euonymus lines collected from South Korea: three Euonymus hamiltonianus accessions, E. europaeus, and E. japonicus. We conducted an in-depth comparative analysis using ten plastomes, including other publicly available plastome data for this genus. The genome structures, gene contents, and gene orders were similar in all Euonymus plastomes in this study. Analysis of nucleotide diversity revealed six divergence hotspots in their plastomes. We identified 339 single nucleotide polymorphisms and 293 insertion or deletions among the four E. hamiltonianus plastomes, pointing to abundant diversity even within the same species. Among 77 commonly shared genes, 9 and 33 were identified as conserved genes in the genus Euonymus and E. hamiltonianus, respectively. Phylogenetic analysis based on plastome and nrDNA sequences revealed the overall consensus and relationships between plastomes and nrDNAs. Finally, we developed six barcoding markers and successfully applied them to 31 E. hamiltonianus lines collected from South Korea. Our findings provide the molecular basis for the classification and molecular taxonomic criteria for the genus Euonymus (at least in Korea), which should aid in more objective classification within this genus. Moreover, the newly developed markers will be useful for understanding the species delimitation of E. hamiltonianus and closely related species.
Collapse
Affiliation(s)
- Young Sang Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, College of Agriculture & Life Sciences, Seoul National University, Seoul, Korea
| | - Jong-Soo Kang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, College of Agriculture & Life Sciences, Seoul National University, Seoul, Korea
| | - Jee Young Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, College of Agriculture & Life Sciences, Seoul National University, Seoul, Korea
| | - Hyeonah Shim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, College of Agriculture & Life Sciences, Seoul National University, Seoul, Korea
| | - Hyun Ok Yang
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul, Korea
| | | | - Tae-Jin Yang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, College of Agriculture & Life Sciences, Seoul National University, Seoul, Korea
- * E-mail:
| |
Collapse
|
33
|
Turudić A, Liber Z, Grdiša M, Jakše J, Varga F, Šatović Z. Chloroplast Genome Annotation Tools: Prolegomena to the Identification of Inverted Repeats. Int J Mol Sci 2022; 23:10804. [PMID: 36142721 PMCID: PMC9503105 DOI: 10.3390/ijms231810804] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/01/2022] [Accepted: 09/13/2022] [Indexed: 12/31/2022] Open
Abstract
The development of next-generation sequencing technology and the increasing amount of sequencing data have brought the bioinformatic tools used in genome assembly into focus. The final step of the process is genome annotation, which works on assembled genome sequences to identify the location of genome features. In the case of organelle genomes, specialized annotation tools are used to identify organelle genes and structural features. Numerous annotation tools target chloroplast sequences. Most chloroplast DNA genomes have a quadripartite structure caused by two copies of a large inverted repeat. We investigated the strategies of six annotation tools (Chloë, Chloroplot, GeSeq, ORG.Annotate, PGA, Plann) for identifying inverted repeats and analyzed their success using publicly available complete chloroplast sequences of taxa belonging to the asterid and rosid clades. The annotation tools use two different approaches to identify inverted repeats, using existing general search tools or implementing stand-alone solutions. The chloroplast sequences studied show that there are different types of imperfections in the assembled data and that each tool performs better on some sequences than the others.
Collapse
Affiliation(s)
- Ante Turudić
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska cesta 25, 10000 Zagreb, Croatia
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Zlatko Liber
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia
- Faculty of Science, University of Zagreb, Marulićev trg 9a, 10000 Zagreb, Croatia
| | - Martina Grdiša
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska cesta 25, 10000 Zagreb, Croatia
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Jernej Jakše
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Filip Varga
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska cesta 25, 10000 Zagreb, Croatia
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Zlatko Šatović
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska cesta 25, 10000 Zagreb, Croatia
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| |
Collapse
|
34
|
Fu P, Chen S, Sun S, Favre A. Strong plastid degradation is consistent within section Chondrophyllae, the most speciose lineage of Gentiana. Ecol Evol 2022; 12:e9205. [PMID: 35991284 PMCID: PMC9379351 DOI: 10.1002/ece3.9205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/11/2022] Open
Abstract
Recovering phylogenetic relationships in lineages experiencing intense diversification has always been a persistent challenge in evolutionary studies, including in Gentiana section Chondrophyllae sensu lato (s.l.). Indeed, this subcosmopolitan taxon encompasses more than 180 mostly annual species distributed around the world. We sequenced and assembled 22 new plastomes representing 21 species in section Chondrophyllae s.l. In addition to previously released plastome data, our study includes all main lineages within the section. We reconstructed their phylogenetic relationships based on protein-coding genes and recombinant DNA (rDNA) cistron sequences, and then investigated plastome structural evolution as well as divergence time. Despite an admittedly humble species cover overall, we recovered a well-supported phylogenetic tree based on plastome data, and found significant discordance between phylogenetic relationships and taxonomic treatments. Our results show that G. capitata and G. leucomelaena diverged early within the section, which is then further divided into two clades. The divergence time estimation showed that section Chondrophyllae s.l. evolved in the second half of the Oligocene. We found that section Chondrophyllae s.l. had the smallest average plastome size (128 KB) in tribe Gentianeae (Gentianaceae), with frequent gene and sequence losses such as the ndh complex and its flanking regions. In addition, we detected both expansion and contraction of the inverted repeat (IR) regions. Our study suggests that plastome degradation parallels the diversification of this group, and illustrates the strong discordance between phylogenetic relationships and taxonomic treatments, which now need to be carefully revised.
Collapse
Affiliation(s)
- Peng‐Cheng Fu
- School of Life Science, Luoyang Normal UniversityLuoyangP. R. China
| | - Shi‐Long Chen
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau Biology, Chinese Academy of SciencesXiningP. R. China
| | - Shan‐Shan Sun
- School of Life Science, Luoyang Normal UniversityLuoyangP. R. China
| | - Adrien Favre
- Senckenberg Research Institute and Natural History MuseumFrankfurt am MainGermany
- Regional Nature Park of the Trient ValleySalvanSwitzerland
| |
Collapse
|
35
|
Giorgashvili E, Reichel K, Caswara C, Kerimov V, Borsch T, Gruenstaeudl M. Software Choice and Sequencing Coverage Can Impact Plastid Genome Assembly-A Case Study in the Narrow Endemic Calligonum bakuense. FRONTIERS IN PLANT SCIENCE 2022; 13:779830. [PMID: 35874012 PMCID: PMC9296850 DOI: 10.3389/fpls.2022.779830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Most plastid genome sequences are assembled from short-read whole-genome sequencing data, yet the impact that sequencing coverage and the choice of assembly software can have on the accuracy of the resulting assemblies is poorly understood. In this study, we test the impact of both factors on plastid genome assembly in the threatened and rare endemic shrub Calligonum bakuense. We aim to characterize the differences across plastid genome assemblies generated by different assembly software tools and levels of sequencing coverage and to determine if these differences are large enough to affect the phylogenetic position inferred for C. bakuense compared to congeners. Four assembly software tools (FastPlast, GetOrganelle, IOGA, and NOVOPlasty) and seven levels of sequencing coverage across the plastid genome (original sequencing depth, 2,000x, 1,000x, 500x, 250x, 100x, and 50x) are compared in our analyses. The resulting assemblies are evaluated with regard to reproducibility, contig number, gene complement, inverted repeat length, and computation time; the impact of sequence differences on phylogenetic reconstruction is assessed. Our results show that software choice can have a considerable impact on the accuracy and reproducibility of plastid genome assembly and that GetOrganelle produces the most consistent assemblies for C. bakuense. Moreover, we demonstrate that a sequencing coverage between 500x and 100x can reduce both the sequence variability across assembly contigs and computation time. When comparing the most reliable plastid genome assemblies of C. bakuense, a sequence difference in only three nucleotide positions is detected, which is less than the difference potentially introduced through software choice.
Collapse
Affiliation(s)
- Eka Giorgashvili
- Systematische Botanik und Pflanzengeographie, Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Katja Reichel
- Systematische Botanik und Pflanzengeographie, Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Calvinna Caswara
- Systematische Botanik und Pflanzengeographie, Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Vuqar Kerimov
- Institute of Botany, Azerbaijan National Academy of Sciences (ANAS), Baku, Azerbaijan
| | - Thomas Borsch
- Systematische Botanik und Pflanzengeographie, Institut für Biologie, Freie Universität Berlin, Berlin, Germany
- Botanischer Garten und Botanisches Museum Berlin, Freie Universität Berlin, Berlin, Germany
| | - Michael Gruenstaeudl
- Systematische Botanik und Pflanzengeographie, Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
36
|
Sheikh-Assadi M, Naderi R, Kafi M, Fatahi R, Salami SA, Shariati V. Complete chloroplast genome of Lilium ledebourii (Baker) Boiss and its comparative analysis: lights into selective pressure and adaptive evolution. Sci Rep 2022; 12:9375. [PMID: 35672390 PMCID: PMC9174193 DOI: 10.1038/s41598-022-13449-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/24/2022] [Indexed: 01/02/2023] Open
Abstract
Lilium ledebourii (Baker) Boiss is a rare species, which exhibits valuable traits. However, before its genetic diversity and evolutionary were uncovered, its wild resources were jeopardized. Moreover, some ambiguities in phylogenetic relationships of this genus remain unresolved. Therefore, obtaining the whole chloroplast sequences of L. ledebourii and its comparative analysis along with other Lilium species is crucial and pivotal to understanding the evolution of this genus as well as the genetic populations. A multi-scale genome-level analysis, especially selection pressure, was conducted. Detailed third‑generation sequencing and analysis revealed a whole chloroplast genome of 151,884 bp, with an ordinary quadripartite and protected structure comprising 37.0% GC. Overall, 113 different genes were recognized in the chloroplast genome, consisting of 30 distinct tRNA genes, four distinct ribosomal RNAs genes, and 79 unique protein-encoding genes. Here, 3234 SSRs and 2053 complex repeats were identified, and a comprehensive analysis was performed for IR expansion and contraction, and codon usage bias. Moreover, genome-wide sliding window analysis revealed the variability of rpl32-trnL-ccsA, petD-rpoA, ycf1, psbI-trnS-trnG, rps15-ycf1, trnR, trnT-trnL, and trnP-psaJ-rpl33 were higher among the 48 Lilium cp genomes, displaying higher variability of nucleotide in SC regions. Following 1128 pairwise comparisons, ndhB, psbJ, psbZ, and ycf2 exhibit zero synonymous substitution, revealing divergence or genetic restriction. Furthermore, out of 78 protein-coding genes, we found that accD and rpl36 under positive selection: however, at the entire-chloroplast protein scale, the Lilium species have gone through a purifying selection. Also, a new phylogenetic tree for Lilium was rebuilt, and we believe that the Lilium classification is clearer than before. The genetic resources provided here will aid future studies in species identification, population genetics, and Lilium conservation.
Collapse
Affiliation(s)
- Morteza Sheikh-Assadi
- Department of Horticultural Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj, Iran.
| | - Roohangiz Naderi
- Department of Horticultural Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj, Iran.
| | - Mohsen Kafi
- Department of Horticultural Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj, Iran
| | - Reza Fatahi
- Department of Horticultural Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj, Iran
| | - Seyed Alireza Salami
- Department of Horticultural Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj, Iran
| | - Vahid Shariati
- NIGEB Genome Center, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
37
|
Li F, Liu Y, Wang J, Xin P, Zhang J, Zhao K, Zhang M, Yun H, Ma W. Comparative Analysis of Chloroplast Genome Structure and Phylogenetic Relationships Among Six Taxa Within the Genus Catalpa (Bignoniaceae). Front Genet 2022; 13:845619. [PMID: 35368674 PMCID: PMC8966708 DOI: 10.3389/fgene.2022.845619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Species within the Genus Catalpa are mostly semievergreen or deciduous trees with opposite or whorled leaves. C. bungei, C. fargesii f. duclouxii and C. fargesii are sources of traditional precious wood in China, known as the “kings of wood”. Due to a lack of phenotypic and molecular studies and insufficient sequence information, intraspecific morphological differences, common DNA barcodes and partial sequence fragments cannot clearly reveal the phylogenetic or intraspecific relationships within Catalpa. Therefore, we sequenced the complete chloroplast genomes of six taxa of the genus Catalpa and analyzed their basic structure and evolutionary relationships. The chloroplast genome of Catalpa shows a typical tetrad structure with a total length ranging from 157,765 bp (C. fargesii) to 158,355 bp (C. ovata). The length of the large single-copy (LSC) region ranges from 84,599 bp (C. fargesii) to 85,004 bp (C. ovata), that of the small single-copy (SSC) region ranges from 12,662 bp (C. fargesii) to 12,675 bp (C. ovata), and that of the inverted repeat (IR) regions ranges from 30,252 bp (C. fargesii) to 30,338 bp (C. ovata). The GC content of the six chloroplast genomes were 38.1%. In total, 113 unique genes were detected, and there were 19 genes in IR regions. The 113 genes included 79 protein-coding genes, 30 tRNA genes and four rRNA genes. Five hypervariable regions (trnH-psbA, rps2-rpoC2, rpl22, ycf15-trnl-CAA and rps15) were identified by analyzing chloroplast nucleotide polymorphisms, which might be serve as potential DNA barcodes for the species. Comparative analysis showed that single nucleotide polymorphisms (SNPs) and simple sequence repeats (SSRs) were highly diverse in the six species. Codon usage patterns were highly similar among the taxa included in the present study. In addition to the stop codons, all codons showed a preference for ending in A or T. Phylogenetic analysis of the entire chloroplast genome showed that all taxa within the genus Catalpa formed a monophyletic group, clearly reflecting the relationships within the genus. This study provides information on the chloroplast genome sequence, structural variation, codon bias and phylogeny of Catalpa, which will facilitate future research efforts.
Collapse
Affiliation(s)
- Feng Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, National Innovation Alliance of Catalpa Bungei, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
| | - Ying Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, National Innovation Alliance of Catalpa Bungei, Beijing, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, National Innovation Alliance of Catalpa Bungei, Beijing, China
| | - Peiyao Xin
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
| | | | - Kun Zhao
- Luoyang Academy of Agriculture and Forestry Sciences, Luoyang, China
| | | | - Huiling Yun
- Research Institute of Forestry of Xiaolongshan, Tianshui, China
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, National Innovation Alliance of Catalpa Bungei, Beijing, China
- *Correspondence: Wenjun Ma,
| |
Collapse
|
38
|
Pellicer J, Balant M, Fernández P, Rodríguez González R, Hidalgo O. Morphological and Genome-Wide Evidence of Homoploid Hybridisation in Urospermum (Asteraceae). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11020182. [PMID: 35050070 PMCID: PMC8779322 DOI: 10.3390/plants11020182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 05/11/2023]
Abstract
The genus Urospermum is distributed in the Mediterranean region and Macaronesia, and has been introduced to other extra-Mediterranean regions. Although the two species constituting the genus, U. dalechampii and U. picroides, are frequently found together, hybrids have so far only been reported once, from Morocco. However, we found certain individuals in Catalonia, whose intermediate morphology suggested a potential hybrid origin. In this study, we applied morphological and molecular methods to investigate the origin of those individuals. Intermediate features at phenotype, karyological, cytogenetic, and genomic levels were identified in morphologically intermediate individuals, supporting their homoploid hybrid origin. Chloroplast sequence data suggest that U. dalechampii is the maternal progenitor of the hybrid. Together with the intermediate traits displayed, the lack of fertile seeds suggests that hybrids are probably F1. Future monitoring studies will be, nonetheless, needed to evaluate the extent of hybridisation and its potential impact on the biology of the genus.
Collapse
Affiliation(s)
- Jaume Pellicer
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s.n., Parc de Montjuïc, 08038 Barcelona, Spain; (M.B.); (P.F.); (R.R.G.)
- Royal Botanic Gardens, Kew, Kew Green, Richmond TW9 3AE, UK
- Correspondence: (J.P.); (O.H.); Tel.: +34-932890611 (J.P. & O.H.)
| | - Manica Balant
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s.n., Parc de Montjuïc, 08038 Barcelona, Spain; (M.B.); (P.F.); (R.R.G.)
| | - Pol Fernández
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s.n., Parc de Montjuïc, 08038 Barcelona, Spain; (M.B.); (P.F.); (R.R.G.)
| | - Roi Rodríguez González
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s.n., Parc de Montjuïc, 08038 Barcelona, Spain; (M.B.); (P.F.); (R.R.G.)
| | - Oriane Hidalgo
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s.n., Parc de Montjuïc, 08038 Barcelona, Spain; (M.B.); (P.F.); (R.R.G.)
- Royal Botanic Gardens, Kew, Kew Green, Richmond TW9 3AE, UK
- Correspondence: (J.P.); (O.H.); Tel.: +34-932890611 (J.P. & O.H.)
| |
Collapse
|
39
|
Schelkunov MI, Nuraliev MS, Logacheva MD. Genomic comparison of non-photosynthetic plants from the family Balanophoraceae with their photosynthetic relatives. PeerJ 2021; 9:e12106. [PMID: 34540375 PMCID: PMC8415285 DOI: 10.7717/peerj.12106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 08/11/2021] [Indexed: 12/02/2022] Open
Abstract
The plant family Balanophoraceae consists entirely of species that have lost the ability to photosynthesize. Instead, they obtain nutrients by parasitizing other plants. Recent studies have revealed that plastid genomes of Balanophoraceae exhibit a number of interesting features, one of the most prominent of those being a highly elevated AT content of nearly 90%. Additionally, the nucleotide substitution rate in the plastid genomes of Balanophoraceae is an order of magnitude greater than that of their photosynthetic relatives without signs of relaxed selection. Currently, there are no definitive explanations for these features. Given these unusual features, we hypothesised that the nuclear genomes of Balanophoraceae may also provide valuable information in regard to understanding the evolution of non-photosynthetic plants. To gain insight into these genomes, in the present study we analysed the transcriptomes of two Balanophoraceae species (Rhopalocnemis phalloides and Balanophora fungosa) and compared them to the transcriptomes of their close photosynthetic relatives (Daenikera sp., Dendropemon caribaeus, and Malania oleifera). Our analysis revealed that the AT content of the nuclear genes of Balanophoraceae did not markedly differ from that of the photosynthetic relatives. The nucleotide substitution rate in the genes of Balanophoraceae is, for an unknown reason, several-fold larger than in the genes of photosynthetic Santalales; however, the negative selection in Balanophoraceae is likely stronger. We observed an extensive loss of photosynthesis-related genes in the Balanophoraceae family members. Additionally, we did not observe transcripts of several genes whose products function in plastid genome repair. This implies their loss or very low expression, which may explain the increased nucleotide substitution rate and AT content of the plastid genomes.
Collapse
Affiliation(s)
- Mikhail I Schelkunov
- Skolkovo Institute of Science and Technology, Moscow, Russia.,Institute for Information Transmission Problems, Moscow, Russia
| | - Maxim S Nuraliev
- Faculty of Biology, Moscow State University, Moscow, Russia.,Joint Russian-Vietnamese Tropical Scientific and Technological Center, Hanoi, Vietnam
| | | |
Collapse
|
40
|
Xie H, Zhao Q, Shi M, Kong W, Mu W, Li B, Zhao J, Zhao C, Jia J, Liu J, Shi L. Biological Ingredient Analysis of Traditional Herbal Patent Medicine Fuke Desheng Wan Using the Shotgun Metabarcoding Approach. Front Pharmacol 2021; 12:607197. [PMID: 34483893 PMCID: PMC8416078 DOI: 10.3389/fphar.2021.607197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 08/06/2021] [Indexed: 12/15/2022] Open
Abstract
With the widespread use of traditional medicine around the world, the safety and efficacy of traditional herbal patent medicine have become an increasing concern to the public. However, it is difficult to supervise the authenticity of herbal materials in mixed herbal products according to the current quality standards, especially for traditional herbal patent medicine, with a distinct variance in the dosage of herbal materials. This study utilized the shotgun metabarcoding approach to analyze the biological ingredients of Fuke Desheng Wan (FKDSW), which is an effective traditional herbal product for the treatment of dysmenorrhea. Six herbal materials were collected, and a lab-made mock FKDSW sample was produced to establish a method for the authentication assessment of biological ingredients in traditional herbal patent medicine based on shotgun metabarcoding. Furthermore, four commercial FKDSW samples were collected to verify the practicality of the shotgun metabarcoding approach. Then, a total of 52.16 Gb raw data for 174 million paired-end reads was generated using the Illumina NovaSeq sequencing platform. Meanwhile, 228, 23, and 14 operational taxonomic units (OTUs) were obtained for the ITS2, matK, and rbcL regions, respectively, after bioinformatic analysis. Moreover, no differences were evident between the assembly sequences obtained via shotgun metabarcoding and their corresponding reference sequences of the same species obtained via Sanger sequencing, except for part of the ITS2 and matK assembly sequences of Paeonia lactiflora Pall., Saussurea costus (Falc.) Lipsch. and Bupleurum chinense DC. with 1–6 different bases. The identification results showed that all six prescribed ingredients were successfully detected and that the non-authentic ingredient of Bupleuri Radix (Chaihu, Bupleurum chinense DC. or Bupleurum scorzonerifolium Willd.) was found in all the commercial samples, namely Bupleurum falcatum L. Here, 25 weed species representing 16 genera of ten families were detected. Moreover, 26 fungal genera belonging to 17 families were found in both lab-made and commercial FKDSW samples. This study demonstrated that the shotgun metabarcoding approach could overcome the biased PCR amplification and authenticate the biological ingredients of traditional herbal patent medicine with a distinct variance in the dosage of the herbal materials. Therefore, this provides an appropriate evaluation method for improving the safety and efficacy of traditional herbal patent medicine.
Collapse
Affiliation(s)
- Hongbo Xie
- Hebei Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical University, Chengde, China
| | - Qing Zhao
- Hebei Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical University, Chengde, China.,Department of Pharmacy, Baoding First Central Hospital, Baoding, China
| | - Mengmeng Shi
- Hebei Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical University, Chengde, China
| | - Weijun Kong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Weishan Mu
- Hebei Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical University, Chengde, China
| | - Baoli Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jingyi Zhao
- Hebei Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical University, Chengde, China
| | - Chunying Zhao
- Hebei Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical University, Chengde, China
| | - Jing Jia
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinxin Liu
- Hebei Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical University, Chengde, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Linchun Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
41
|
Mehl T, Gruenstaeudl M. airpg: automatically accessing the inverted repeats of archived plastid genomes. BMC Bioinformatics 2021; 22:413. [PMID: 34418956 PMCID: PMC8379869 DOI: 10.1186/s12859-021-04309-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 07/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In most flowering plants, the plastid genome exhibits a quadripartite genome structure, comprising a large and a small single copy as well as two inverted repeat regions. Thousands of plastid genomes have been sequenced and submitted to public sequence repositories in recent years. The quality of sequence annotations in many of these submissions is known to be problematic, especially regarding annotations that specify the length and location of the inverted repeats: such annotations are either missing or portray the length or location of the repeats incorrectly. However, many biological investigations employ publicly available plastid genomes at face value and implicitly assume the correctness of their sequence annotations. RESULTS We introduce airpg, a Python package that automatically assesses the frequency of incomplete or incorrect annotations of the inverted repeats among publicly available plastid genomes. Specifically, the tool automatically retrieves plastid genomes from NCBI Nucleotide under variable search parameters, surveys them for length and location specifications of inverted repeats, and confirms any inverted repeat annotations through self-comparisons of the genome sequences. The package also includes functionality for automatic identification and removal of duplicate genome records and accounts for taxa that genuinely lack inverted repeats. A survey of the presence of inverted repeat annotations among all plastid genomes of flowering plants submitted to NCBI Nucleotide until the end of 2020 using airpg, followed by a statistical analysis of potential associations with record metadata, highlights that release year and publication status of the genome records have a significant effect on the frequency of complete and equal-length inverted repeat annotations. CONCLUSION The number of plastid genomes on NCBI Nucleotide has increased dramatically in recent years, and many more genomes will likely be submitted over the next decade. airpg enables researchers to automatically access and evaluate the inverted repeats of these plastid genomes as well as their sequence annotations and, thus, contributes to increasing the reliability of publicly available plastid genomes. The software is freely available via the Python package index at http://pypi.python.org/pypi/airpg .
Collapse
Affiliation(s)
- Tilman Mehl
- Institut für Bioinformatik, Freie Universität Berlin, 14195 Berlin, Germany
| | | |
Collapse
|
42
|
Senthilkumar S, Ulaganathan K, Ghosh Dasgupta M. Reference-based assembly of chloroplast genome from leaf transcriptome data of Pterocarpus santalinus. 3 Biotech 2021; 11:393. [PMID: 34458062 DOI: 10.1007/s13205-021-02943-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/25/2021] [Indexed: 12/25/2022] Open
Abstract
Chloroplast genome sequencing is an essential tool to understand genome evolution and phylogenetic relationship. The available methods for constructing chloroplast genome include chloroplast enrichment followed by long overlapping PCR or extraction and assembly of chloroplast-specific reads from whole-genome datasets. In the present study, we propose an alternate strategy of extraction and assembly of chloroplast-specific reads from leaf transcriptome data of Pterocarpus santalinus using bowtie2 aligner program. The assembled genome was compared with the published chloroplast genome of P. santalinus for genome size, number of predicted genes, microsatellite repeat motifs, and nucleotide repeats. A near-complete chloroplast genome was assembled from the transcriptome reads. The proposed method requires less computational time and know-how, limited virtual memory, and is cost-effective when compared to whole-genome sequencing. Assembly of Cp genome from transcriptome data will enhance the resolution of phylogenetic studies through comparative plastome analysis, facilitate accurate species/genotype discrimination and accelerate the development of transplastomic plants with enhanced biotic and abiotic tolerance. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02943-0.
Collapse
Affiliation(s)
- Shanmugavel Senthilkumar
- Division of Plant Biotechnology and Cytogenetics, Institute of Forest Genetics and Tree Breeding, Forest Campus, R.S. Puram, Coimbatore, 641002 Tamil Nadu India
| | - Kandasamy Ulaganathan
- Centre for Plant Molecular Biology, Osmania University, Hyderabad, 500007 Andhra Pradesh India
| | - Modhumita Ghosh Dasgupta
- Division of Plant Biotechnology and Cytogenetics, Institute of Forest Genetics and Tree Breeding, Forest Campus, R.S. Puram, Coimbatore, 641002 Tamil Nadu India
| |
Collapse
|
43
|
Fu YB. Characterizing chloroplast genomes and inferring maternal divergence of the Triticum-Aegilops complex. Sci Rep 2021; 11:15363. [PMID: 34321524 PMCID: PMC8319314 DOI: 10.1038/s41598-021-94649-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/13/2021] [Indexed: 11/09/2022] Open
Abstract
The Triticum (wheat)-Aegilops (goatgrass) complex has been extensively studied, but the evolutionary history of polyploid wheats has not been fully elucidated. The chloroplast (cp) with maternal inheritance and homoplasy can simplify the sequence-based evolutionary inferences, but informative inferences would require a complete and accurate cp genome sequence. In this study, 16 cp genomes representing five Aegilops and 11 Triticum species and subspecies were sequenced, assembled and annotated, yielding five novel circular cp genome sequences. Analyzing the assembled cp genomes revealed no marked differences in genome structure and gene arrangement across the assayed species. A polymorphism analysis of 72 published cp genome sequences representing 10 Aegilops and 15 Triticum species and subspecies detected 1183 SNPs and 1881 SSRs. More than 80% SNPs detected resided on the downstream and upstream gene regions and only 2.78% or less SNPs were predicted to be deleterious. The largest nucleotide diversity was observed in the short single-copy genomic region. Relatively weak selection pressure on cp coding genes was detected. Different phylogenetic analyses confirmed that the maternal divergence of the Triticum-Aegilops complex had three deep lineages each representing a diploid species with nuclear A, B, or D genome. Dating the maternal divergence yielded age estimates of divergence that matched well with those reported previously. The divergence between emmer and bread wheats occurred at 8200-11,200 years ago. These findings are useful for further genomic studies, provide insight into cp genome evolvability and allow for better understanding of the maternal divergence of the Triticum-Aegilops complex.
Collapse
Affiliation(s)
- Yong-Bi Fu
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada.
| |
Collapse
|
44
|
Turudić A, Liber Z, Grdiša M, Jakše J, Varga F, Šatović Z. Towards the Well-Tempered Chloroplast DNA Sequences. PLANTS 2021; 10:plants10071360. [PMID: 34371563 PMCID: PMC8309291 DOI: 10.3390/plants10071360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 11/16/2022]
Abstract
With the development of next-generation sequencing technology and bioinformatics tools, the process of assembling DNA sequences has become cheaper and easier, especially in the case of much shorter organelle genomes. The number of available DNA sequences of complete chloroplast genomes in public genetic databases is constantly increasing and the data are widely used in plant phylogenetic and biotechnological research. In this work, we investigated possible inconsistencies in the stored form of publicly available chloroplast genome sequence data. The impact of these inconsistencies on the results of the phylogenetic analysis was investigated and the bioinformatic solution to identify and correct inconsistencies was implemented. The whole procedure was demonstrated using five plant families (Apiaceae, Asteraceae, Campanulaceae, Lamiaceae and Rosaceae) as examples.
Collapse
Affiliation(s)
- Ante Turudić
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska cesta 25, 10000 Zagreb, Croatia; (M.G.); (F.V.); (Z.Š.)
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia;
- Correspondence: ; Tel.: +385-91-3141592
| | - Zlatko Liber
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia;
- Faculty of Science, University of Zagreb, Marulićev trg 9a, 10000 Zagreb, Croatia
| | - Martina Grdiša
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska cesta 25, 10000 Zagreb, Croatia; (M.G.); (F.V.); (Z.Š.)
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia;
| | - Jernej Jakše
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia;
| | - Filip Varga
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska cesta 25, 10000 Zagreb, Croatia; (M.G.); (F.V.); (Z.Š.)
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia;
| | - Zlatko Šatović
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska cesta 25, 10000 Zagreb, Croatia; (M.G.); (F.V.); (Z.Š.)
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia;
| |
Collapse
|
45
|
Chang H, Zhang L, Xie H, Liu J, Xi Z, Xu X. The Conservation of Chloroplast Genome Structure and Improved Resolution of Infrafamilial Relationships of Crassulaceae. FRONTIERS IN PLANT SCIENCE 2021; 12:631884. [PMID: 34276716 PMCID: PMC8281817 DOI: 10.3389/fpls.2021.631884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 06/10/2021] [Indexed: 06/04/2023]
Abstract
Crassulaceae are the largest family in the angiosperm order Saxifragales. Species of this family are characterized by succulent leaves and a unique photosynthetic pathway known as Crassulacean acid metabolism (CAM). Although the inter- and intrageneric relationships have been extensively studied over the last few decades, the infrafamilial relationships of Crassulaceae remain partially obscured. Here, we report nine newly sequenced chloroplast genomes, which comprise several key lineages of Crassulaceae. Our comparative analyses and positive selection analyses of Crassulaceae species indicate that the overall gene organization and function of the chloroplast genome are highly conserved across the family. No positively selected gene was statistically supported in Crassulaceae lineage using likelihood ratio test (LRT) based on branch-site models. Among the three subfamilies of Crassulaceae, our phylogenetic analyses of chloroplast protein-coding genes support Crassuloideae as sister to Kalanchoideae plus Sempervivoideae. Furthermore, within Sempervivoideae, our analyses unambiguously resolved five clades that are successively sister lineages, i.e., Telephium clade, Sempervivum clade, Aeonium clade, Leucosedum clade, and Acre clade. Overall, this study enhances our understanding of the infrafamilial relationships and the conservation of chloroplast genomes within Crassulaceae.
Collapse
Affiliation(s)
- Hong Chang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lei Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Huanhuan Xie
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- State Key Laboratory of Grassland Agro-Ecosystems, College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhenxiang Xi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaoting Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
46
|
Mascarello M, Amalfi M, Asselman P, Smets E, Hardy OJ, Beeckman H, Janssens SB. Genome skimming reveals novel plastid markers for the molecular identification of illegally logged African timber species. PLoS One 2021; 16:e0251655. [PMID: 34115787 PMCID: PMC8195358 DOI: 10.1371/journal.pone.0251655] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/30/2021] [Indexed: 11/30/2022] Open
Abstract
Tropical forests represent vast carbon stocks and continue to be key carbon sinks and buffer climate changes. The international policy constructed several mechanisms aiming at conservation and sustainable use of these forests. Illegal logging is an important threat of forests, especially in the tropics. Several laws and regulations have been set up to combat illegal timber trade. Despite significant enforcement efforts of these regulations, illegal logging continues to be a serious problem and impacts for the functioning of the forest ecosystem and global biodiversity in the tropics. Microscopic analysis of wood samples and the use of conventional plant DNA barcodes often do not allow to distinguish closely-related species. The use of novel molecular technologies could make an important contribution for the identification of tree species. In this study, we used high-throughput sequencing technologies and bioinformatics tools to obtain the complete de-novo chloroplast genome of 62 commercial African timber species using the genome skimming method. Then, we performed a comparative genomic analysis that revealed new candidate genetic regions for the discrimination of closely-related species. We concluded that genome skimming is a promising method for the development of plant genetic markers to combat illegal logging activities supporting CITES, FLEGT and the EU Timber Regulation.
Collapse
Affiliation(s)
- Maurizio Mascarello
- Meise Botanic Garden, Meise, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Mario Amalfi
- Meise Botanic Garden, Meise, Belgium
- Fédération Wallonie–Bruxelles, Service général de l’Enseignement universitaire et de la Recherche scientifique, Brussels, Belgium
| | - Pieter Asselman
- Mycology & Systematic and Evolutionary Botany, Department of Biology, Ghent University, Ghent, Belgium
| | - Erik Smets
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Olivier J. Hardy
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Belgium
| | - Hans Beeckman
- Wood Biology, Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium
| | - Steven B. Janssens
- Meise Botanic Garden, Meise, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
47
|
Wu P, Xu C, Chen H, Yang J, Zhang X, Zhou S. NOVOWrap: An automated solution for plastid genome assembly and structure standardization. Mol Ecol Resour 2021; 21:2177-2186. [PMID: 33934526 DOI: 10.1111/1755-0998.13410] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/28/2022]
Abstract
Plastid genomes play an important role in genomics and evolutionary biology. Next-generation sequencing has revolutionized plastid genomic data acquisition to the point that genome assembly has become a bottleneck for widespread utilization of plastid genome data. To solve this problem, we developed an open-source, cross-platform tool known as, NOVOWrap, which includes both command-line and graphical interfaces for automatically assembling plastid genomes on personal computers. With minimal inputs, settings, and user intervention, NOVOWrap can automatically assemble plastid genomes, validate results and standardize the structure using affordable computer resources. The performance of this software has been successfully benchmarked against the plastid genomes of 11 species belonging to lycopods, gymnosperms, and angiosperms. By liberating researchers from laborious and cumbersome computer manipulations and create reliable and standardized genomic data, NOVOWrap is expected to accelerate plastid genome assembly, ease the process of data exchange, and contribute to downstream analysis.
Collapse
Affiliation(s)
- Ping Wu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Hao Chen
- Shaanxi University of Science and Technology, Xi'an, China
| | - Jie Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xianchun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shiliang Zhou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
48
|
Fu P, Sun S, Twyford AD, Li B, Zhou R, Chen S, Gao Q, Favre A. Lineage-specific plastid degradation in subtribe Gentianinae (Gentianaceae). Ecol Evol 2021; 11:3286-3299. [PMID: 33841784 PMCID: PMC8019047 DOI: 10.1002/ece3.7281] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 01/03/2023] Open
Abstract
The structure and sequence of plastid genomes is highly conserved across most land plants, except for a minority of lineages that show gene loss and genome degradation. Understanding the early stages of plastome degradation may provide crucial insights into the repeatability and predictability of genomic evolutionary trends. We investigated these trends in subtribe Gentianinae of the Gentianaceae, which encompasses ca. 450 species distributed around the world, particularly in alpine and subalpine environments. We sequenced, assembled, and annotated the plastomes of 41 species, representing all six genera in subtribe Gentianinae and all main sections of the species-rich genus Gentiana L. We reconstructed the phylogeny, estimated divergence times, investigated the phylogenetic distribution of putative gene losses, and related these to substitution rate shifts and species' habitats. We obtained a strongly supported topology consistent with earlier studies, with all six genera in Gentianinae recovered as monophyletic and all main sections of Gentiana having full support. While closely related species have very similar plastomes in terms of size and structure, independent gene losses, particularly of the ndh complex, have occurred in multiple clades across the phylogeny. Gene loss was usually associated with a shift in the boundaries of the small single-copy and inverted repeat regions. Substitution rates were variable between clades, with evidence for both elevated and decelerated rate shifts. Independent lineage-specific loss of ndh genes occurred at a wide range of times, from Eocene to Pliocene. Our study illustrates that diverse degradation patterns shape the evolution of the plastid in this species-rich plant group.
Collapse
Affiliation(s)
- Peng‐Cheng Fu
- School of Life ScienceLuoyang Normal UniversityLuoyangChina
| | - Shan‐Shan Sun
- School of Life ScienceLuoyang Normal UniversityLuoyangChina
| | - Alex D. Twyford
- Ashworth LaboratoriesInstitute of Evolutionary BiologyThe University of EdinburghEdinburghUK
- Royal Botanic Garden EdinburghEdinburghUK
| | - Bei‐Bei Li
- School of Life ScienceLuoyang Normal UniversityLuoyangChina
| | - Rui‐Qi Zhou
- School of Life ScienceLuoyang Normal UniversityLuoyangChina
| | - Shi‐Long Chen
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
- Qinghai Provincial Key Laboratory of Crop Molecular BreedingXiningChina
| | - Qing‐Bo Gao
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
- Qinghai Provincial Key Laboratory of Crop Molecular BreedingXiningChina
| | - Adrien Favre
- Senckenberg Research Institute and Natural History MuseumFrankfurt am MainGermany
| |
Collapse
|
49
|
Li L, Hu Y, He M, Zhang B, Wu W, Cai P, Huo D, Hong Y. Comparative chloroplast genomes: insights into the evolution of the chloroplast genome of Camellia sinensis and the phylogeny of Camellia. BMC Genomics 2021; 22:138. [PMID: 33637038 PMCID: PMC7912895 DOI: 10.1186/s12864-021-07427-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 02/05/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Chloroplast genome resources can provide useful information for the evolution of plant species. Tea plant (Camellia sinensis) is among the most economically valuable member of Camellia. Here, we determined the chloroplast genome of the first natural triploid Chinary type tea ('Wuyi narcissus' cultivar of Camellia sinensis var. sinensis, CWN) and conducted the genome comparison with the diploid Chinary type tea (Camellia sinensis var. sinensis, CSS) and two types of diploid Assamica type teas (Camellia sinensis var. assamica: Chinese Assamica type tea, CSA and Indian Assamica type tea, CIA). Further, the evolutionary mechanism of the chloroplast genome of Camellia sinensis and the relationships of Camellia species based on chloroplast genome were discussed. RESULTS Comparative analysis showed the evolutionary dynamics of chloroplast genome of Camellia sinensis were the repeats and insertion-deletions (indels), and distribution of the repeats, indels and substitutions were significantly correlated. Chinese tea and Indian tea had significant differences in the structural characteristic and the codon usage of the chloroplast genome. Analysis of sequence characterized amplified region (SCAR) using sequences of the intergenic spacers (trnE/trnT) showed none of 292 different Camellia sinensis cultivars had similar sequence characteristic to triploid CWN, but the other four Camellia species did. Estimations of the divergence time showed that CIA diverged from the common ancestor of two Assamica type teas about 6.2 Mya (CI: 4.4-8.1 Mya). CSS and CSA diverged to each other about 0.8 Mya (CI: 0.4-1.5 Mya). Moreover, phylogenetic clustering was not exactly consistent with the current taxonomy of Camellia. CONCLUSIONS The repeat-induced and indel-induced mutations were two important dynamics contributed to the diversification of the chloroplast genome in Camellia sinensis, which were not mutually exclusive. Chinese tea and Indian tea might have undergone different selection pressures. Chloroplast transfer occurred during the polyploid evolution in Camellia sinensis. In addition, our results supported the three different domestication origins of Chinary type tea, Chinese Assamica type tea and Indian Assamica type tea. And, the current classification of some Camellia species might need to be further discussed.
Collapse
Affiliation(s)
- Li Li
- College of Tea and Food Science, Wuyi University, 358# Baihua Road, Wuyishan, 354300, China.
| | - Yunfei Hu
- College of Tea and Food Science, Wuyi University, 358# Baihua Road, Wuyishan, 354300, China
| | - Min He
- College of Tea and Food Science, Wuyi University, 358# Baihua Road, Wuyishan, 354300, China
| | - Bo Zhang
- College of Tea and Food Science, Wuyi University, 358# Baihua Road, Wuyishan, 354300, China
| | - Wei Wu
- College of Mathematics and Computer Science, Wuyi University, 358# Baihua Road, Wuyishan, 354300, China
| | - Pumo Cai
- College of Tea and Food Science, Wuyi University, 358# Baihua Road, Wuyishan, 354300, China
| | - Da Huo
- College of Tea and Food Science, Wuyi University, 358# Baihua Road, Wuyishan, 354300, China
| | - Yongcong Hong
- College of Tea and Food Science, Wuyi University, 358# Baihua Road, Wuyishan, 354300, China.
| |
Collapse
|
50
|
Wang J, Mu W, Yang T, Song Y, Hou YG, Wang Y, Gao Z, Liu X, Liu H, Zhao H. Targeted enrichment of novel chloroplast-based probes reveals a large-scale phylogeny of 412 bamboos. BMC PLANT BIOLOGY 2021; 21:76. [PMID: 33546593 PMCID: PMC7863319 DOI: 10.1186/s12870-020-02779-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND The subfamily Bambusoideae belongs to the grass family Poaceae and has significant roles in culture, economy, and ecology. However, the phylogenetic relationships based on large-scale chloroplast genomes (CpGenomes) were elusive. Moreover, most of the chloroplast DNA sequencing methods cannot meet the requirements of large-scale CpGenome sequencing, which greatly limits and impedes the in-depth research of plant genetics and evolution. RESULTS To develop a set of bamboo probes, we used 99 high-quality CpGenomes with 6 bamboo CpGenomes as representative species for the probe design, and assembled 15 M unique sequences as the final pan-chloroplast genome. A total of 180,519 probes for chloroplast DNA fragments were designed and synthesized by a novel hybridization-based targeted enrichment approach. Another 468 CpGenomes were selected as test data to verify the quality of the newly synthesized probes and the efficiency of the probes for chloroplast capture. We then successfully applied the probes to synthesize, enrich, and assemble 358 non-redundant CpGenomes of woody bamboo in China. Evaluation analysis showed the probes may be applicable to chloroplasts in Magnoliales, Pinales, Poales et al. Moreover, we reconstructed a phylogenetic tree of 412 bamboos (358 in-house and 54 published), supporting a non-monophyletic lineage of the genus Phyllostachys. Additionally, we shared our data by uploading a dataset of bamboo CpGenome into CNGB ( https://db.cngb.org/search/project/CNP0000502/ ) to enrich resources and promote the development of bamboo phylogenetics. CONCLUSIONS The development of the CpGenome enrichment pipeline and its performance on bamboos recommended an inexpensive, high-throughput, time-saving and efficient CpGenome sequencing strategy, which can be applied to facilitate the phylogenetics analysis of most green plants.
Collapse
Affiliation(s)
- Jiongliang Wang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China
| | - Weixue Mu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Ting Yang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yue Song
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yin Guang Hou
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China
| | - Yu Wang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China
| | - Zhimin Gao
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China
| | - Xin Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Hansheng Zhao
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, China.
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China.
| |
Collapse
|