1
|
Mills B, Zervas MN, Grant-Jacob JA. Imaging pollen using a Raspberry Pi and LED with deep learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177084. [PMID: 39433221 DOI: 10.1016/j.scitotenv.2024.177084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
The production of low-cost, small footprint imaging sensor would be invaluable for airborne global monitoring of pollen, which could allow for mitigation of hay fever symptoms. We demonstrate the use of a white light LED (light emitting diode) to illuminate pollen grains and capture their scattering pattern using a Raspberry Pi camera. The scattering patterns are transformed into 20× microscope magnification equivalent images using deep learning. We show the ability to produce images of pollen from plant species previously unseen by the neural network in training. Such a technique could be applied to imaging airborne particulates that contribute to air pollution, and could be used in the field of environmental science, health science and agriculture.
Collapse
Affiliation(s)
- Ben Mills
- Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK
| | - Michalis N Zervas
- Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK
| | - James A Grant-Jacob
- Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
2
|
Gorki JL, Suchan T, Talavera G. Protocol to sequence markers from pollen grains carried by long-range migratory butterflies using metabarcoding. STAR Protoc 2024; 5:103012. [PMID: 38907998 PMCID: PMC11245965 DOI: 10.1016/j.xpro.2024.103012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/15/2024] [Accepted: 03/26/2024] [Indexed: 06/24/2024] Open
Abstract
Molecular identification of pollen carried by insects informs about their history of visited plants. For migratory butterflies, it can be used to trace long-range movements enduring days of flight over thousands of kilometers. Here, we present a protocol to (1) isolate pollen grains from butterfly bodies and (2) prepare metabarcoding libraries for their identification using the internal transcribed spacer 2 fragment, a common barcode used to identify plants. This protocol would be applicable to other insect groups and metabarcoding markers. For complete details on the use and execution of this protocol, please refer to Suchan et al.1 and Gorki et al.2.
Collapse
Affiliation(s)
- Johanna Luise Gorki
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona, 08038 Catalonia, Spain
| | - Tomasz Suchan
- W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
| | - Gerard Talavera
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona, 08038 Catalonia, Spain.
| |
Collapse
|
3
|
Devriese A, Peeters G, Brys R, Jacquemyn H. The impact of extraction method and pollen concentration on community composition for pollen metabarcoding. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11601. [PMID: 39360193 PMCID: PMC11443440 DOI: 10.1002/aps3.11601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 10/04/2024]
Abstract
Premise Plants and pollinators closely interact with each other to form complex networks of species interactions. Metabarcoding of pollen collections has recently been proposed as an advantageous method for the construction of such networks, but the extent to which diversity and community analyses depend on the extraction method and pollen concentration used remains unclear. Methods In this study, we used a dilution series of two pollen mixtures (a mock community and pooled natural pollen loads from bumblebees) to assess the effect of mechanical homogenization and two DNA extraction kits (spin column DNA extraction kit and magnetic bead DNA extraction kit) on the detected pollen richness and community composition. Results All species were successfully detected using the three methods, even in the most dilute samples. However, the extraction method had a significant effect on the detected pollen richness and community composition, with simple mechanical homogenization introducing an extraction bias. Discussion Our findings suggest that all three methods are effective for detecting plant species in the pollen loads on insects, even in cases of very low pollen loads. However, our results also indicate that extraction methods can have a profound impact on the ability to correctly assess the community composition of the pollen loads on insects. The choice of extraction methodology should therefore be carefully considered to ensure reliable and unbiased results in pollen diversity and community analyses.
Collapse
Affiliation(s)
- Arne Devriese
- Department of Biology, Plant Conservation and Population Biology KU Leuven Leuven B-3001 Belgium
| | - Gerrit Peeters
- Department of Biology, Plant Conservation and Population Biology KU Leuven Leuven B-3001 Belgium
| | - Rein Brys
- Research Institute for Forest and Nature Gaverstraat 4 Geraardsbergen B-9500 Belgium
| | - Hans Jacquemyn
- Department of Biology, Plant Conservation and Population Biology KU Leuven Leuven B-3001 Belgium
| |
Collapse
|
4
|
Zhang P, Du B, Xu J, Wang J, Liu Z, Liu B, Meng F, Tong Z. Identification and Removal of Pollen Spectral Interference in the Classification of Hazardous Substances Based on Excitation Emission Matrix Fluorescence Spectroscopy. Molecules 2024; 29:3132. [PMID: 38999084 PMCID: PMC11243737 DOI: 10.3390/molecules29133132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Sensitively detecting hazardous and suspected bioaerosols is crucial for safeguarding public health. The potential impact of pollen on identifying bacterial species through fluorescence spectra should not be overlooked. Before the analysis, the spectrum underwent preprocessing steps, including normalization, multivariate scattering correction, and Savitzky-Golay smoothing. Additionally, the spectrum was transformed using difference, standard normal variable, and fast Fourier transform techniques. A random forest algorithm was employed for the classification and identification of 31 different types of samples. The fast Fourier transform improved the classification accuracy of the sample excitation-emission matrix fluorescence spectrum data by 9.2%, resulting in an accuracy of 89.24%. The harmful substances, including Staphylococcus aureus, ricin, beta-bungarotoxin, and Staphylococcal enterotoxin B, were clearly distinguished. The spectral data transformation and classification algorithm effectively eliminated the interference of pollen on other components. Furthermore, a classification and recognition model based on spectral feature transformation was established, demonstrating excellent application potential in detecting hazardous substances and protecting public health. This study provided a solid foundation for the application of rapid detection methods for harmful bioaerosols.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhaoyang Tong
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (P.Z.); (B.D.); (J.X.); (J.W.); (Z.L.); (B.L.); (F.M.)
| |
Collapse
|
5
|
Suchan T, Bataille CP, Reich MS, Toro-Delgado E, Vila R, Pierce NE, Talavera G. A trans-oceanic flight of over 4,200 km by painted lady butterflies. Nat Commun 2024; 15:5205. [PMID: 38918383 PMCID: PMC11199637 DOI: 10.1038/s41467-024-49079-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
The extent of aerial flows of insects circulating around the planet and their impact on ecosystems and biogeography remain enigmatic because of methodological challenges. Here we report a transatlantic crossing by Vanessa cardui butterflies spanning at least 4200 km, from West Africa to South America (French Guiana) and lasting between 5 and 8 days. Even more, we infer a likely natal origin for these individuals in Western Europe, and the journey Europe-Africa-South America could expand to 7000 km or more. This discovery was possible through an integrative approach, including coastal field surveys, wind trajectory modelling, genomics, pollen metabarcoding, ecological niche modelling, and multi-isotope geolocation of natal origins. The overall journey, which was energetically feasible only if assisted by winds, is among the longest documented for individual insects, and potentially the first verified transatlantic crossing. Our findings suggest that we may be underestimating transoceanic dispersal in insects and highlight the importance of aerial highways connecting continents by trade winds.
Collapse
Affiliation(s)
- Tomasz Suchan
- W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
| | - Clément P Bataille
- Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Megan S Reich
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Eric Toro-Delgado
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona, 08038, Catalonia, Spain
- Institut de Biologia Evolutiva (CSIC-Univ. Pompeu Fabra), Barcelona, 08003, Catalonia, Spain
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Univ. Pompeu Fabra), Barcelona, 08003, Catalonia, Spain
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Gerard Talavera
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona, 08038, Catalonia, Spain.
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
6
|
Meier R, Hartop E, Pylatiuk C, Srivathsan A. Towards holistic insect monitoring: species discovery, description, identification and traits for all insects. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230120. [PMID: 38705187 PMCID: PMC11070263 DOI: 10.1098/rstb.2023.0120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/25/2024] [Indexed: 05/07/2024] Open
Abstract
Holistic insect monitoring needs scalable techniques to overcome taxon biases, determine species abundances, and gather functional traits for all species. This requires that we address taxonomic impediments and the paucity of data on abundance, biomass and functional traits. We here outline how these data deficiencies could be addressed at scale. The workflow starts with large-scale barcoding (megabarcoding) of all specimens from mass samples obtained at biomonitoring sites. The barcodes are then used to group the specimens into molecular operational taxonomic units that are subsequently tested/validated as species with a second data source (e.g. morphology). New species are described using barcodes, images and short diagnoses, and abundance data are collected for both new and described species. The specimen images used for species discovery then become the raw material for training artificial intelligence identification algorithms and collecting trait data such as body size, biomass and feeding modes. Additional trait data can be obtained from vouchers by using genomic tools developed by molecular ecologists. Applying this pipeline to a few samples per site will lead to greatly improved insect monitoring regardless of whether the species composition of a sample is determined with images, metabarcoding or megabarcoding. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.
Collapse
Affiliation(s)
- Rudolf Meier
- Center for Integrative Biodiversity Discovery, Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany
- Institute of Biology, Humboldt University, 10115 Berlin, Germany
| | - Emily Hartop
- Center for Integrative Biodiversity Discovery, Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, NO-7491, Norway
| | - Christian Pylatiuk
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Amrita Srivathsan
- Center for Integrative Biodiversity Discovery, Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany
| |
Collapse
|
7
|
Gorki JL, López-Mañas R, Sáez L, Menchetti M, Shapoval N, Andersen A, Benyamini D, Daniels S, García-Berro A, Reich MS, Scalercio S, Toro-Delgado E, Bataille CP, Domingo-Marimon C, Vila R, Suchan T, Talavera G. Pollen metabarcoding reveals the origin and multigenerational migratory pathway of an intercontinental-scale butterfly outbreak. Curr Biol 2024; 34:2684-2692.e6. [PMID: 38848713 DOI: 10.1016/j.cub.2024.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/18/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024]
Abstract
Migratory insects may move in large numbers, even surpassing migratory vertebrates in biomass. Long-distance migratory insects complete annual cycles through multiple generations, with each generation's reproductive success linked to the resources available at different breeding grounds. Climatic anomalies in these grounds are presumed to trigger rapid population outbreaks. Here, we infer the origin and track the multigenerational path of a remarkable outbreak of painted lady (Vanessa cardui) butterflies that took place at an intercontinental scale in Europe, the Middle East, and Africa from March 2019 to November 2019. Using metabarcoding, we identified pollen transported by 264 butterflies captured in 10 countries over 7 months and modeled the distribution of the 398 plants detected. The analysis showed that swarms collected in Eastern Europe in early spring originated in Arabia and the Middle East, coinciding with a positive anomaly in vegetation growth in the region from November 2018 to April 2019. From there, the swarms advanced to Northern Europe during late spring, followed by an early reversal toward southwestern Europe in summer. The pollen-based evidence matched spatiotemporal abundance peaks revealed by citizen science, which also suggested an echo effect of the outbreak in West Africa during September-November. Our results show that population outbreaks in a part of species' migratory ranges may disseminate demographic effects across multiple generations in a wide geographic area. This study represents an unprecedented effort to track a continuous multigenerational insect migration on an intercontinental scale.
Collapse
Affiliation(s)
- Johanna Luise Gorki
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona 08038 Catalonia, Spain
| | - Roger López-Mañas
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona 08038 Catalonia, Spain; Departament de Biologia Animal, Biologia Vegetal i Ecologia (BABVE), Universitat Autònoma de Barcelona, ES-08193 Bellaterra, Catalonia, Spain
| | - Llorenç Sáez
- Departament de Biologia Animal, Biologia Vegetal i Ecologia (BABVE), Universitat Autònoma de Barcelona, ES-08193 Bellaterra, Catalonia, Spain; Systematics and Evolution of Vascular Plants (UAB)-Associated Unit to CSIC (IBB), Bellaterra, Spain
| | - Mattia Menchetti
- Institut de Biologia Evolutiva (CSIC-Univ. Pompeu Fabra), 08003 Barcelona Catalonia, Spain
| | - Nazar Shapoval
- Department of Karyosystematics, Zoological Institute, Russian Academy of Sciences, Russia, 199034 Saint-Petersburg, Russia
| | - Anne Andersen
- Entomological Society of Denmark, Zoological Museum, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Dubi Benyamini
- The Israeli Lepidopterist Society, Beit Arye 7194700, Israel
| | | | - Aurora García-Berro
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona 08038 Catalonia, Spain
| | - Megan S Reich
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Stefano Scalercio
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di Ricerca Foreste e Legno, 87036 Rende, Italy
| | - Eric Toro-Delgado
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona 08038 Catalonia, Spain; Institut de Biologia Evolutiva (CSIC-Univ. Pompeu Fabra), 08003 Barcelona Catalonia, Spain
| | - Clément P Bataille
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Cristina Domingo-Marimon
- Center for Ecological Research and Forestry Applications (CREAF), Grumets Research Group, Cerdanyola del Vallès, 08193 Catalonia, Spain
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Univ. Pompeu Fabra), 08003 Barcelona Catalonia, Spain
| | - Tomasz Suchan
- W. Szafer Institute of Botany, Polish Academy of Sciences, 31-512 Kraków, Poland
| | - Gerard Talavera
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona 08038 Catalonia, Spain.
| |
Collapse
|
8
|
Tegart LJ, Schiro G, Dickinson JL, Green BJ, Barberán A, Marthick JR, Bissett A, Johnston FH, Jones PJ. Decrypting seasonal patterns of key pollen taxa in cool temperate Australia: A multi-barcode metabarcoding analysis. ENVIRONMENTAL RESEARCH 2024; 243:117808. [PMID: 38043901 DOI: 10.1016/j.envres.2023.117808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Pollen allergies pose a considerable global public health concern. Allergy risk can vary significantly within plant families, yet some key pollen allergens can only be identified to family level by current optical methods. Pollen information with greater taxonomic resolution is therefore required to best support allergy prevention and self-management. We used environmental DNA (eDNA) metabarcoding to deepen taxonomic insights into the seasonal composition of airborne pollen in cool temperate Australia, a region with high rates of allergic respiratory disease. In Hobart, Tasmania, we collected routine weekly air samples from December 2018 until October 2020 and sequenced the internal transcribed spacer 2 (ITS2) and chloroplastic tRNA-Leucine tRNA-Phenylalanine intergenic spacer (trnL-trnF) regions in order to address the following questions: a) What is the genus-level diversity of known and potential aeroallergens in Hobart, in particular, in the families Poaceae, Cupressaceae and Myrtaceae? b) How do the atmospheric concentrations of these taxa change over time, and c) Does trnL-trnF enhance resolution of biodiversity when used in addition to ITS2? Our results suggest that individuals in the region are exposed to temperate grasses including Poa and Bromus in the peak grass pollen season, however low levels of exposure to the subtropical grass Cynodon may occur in autumn and winter. Within Cupressaceae, both metabarcodes showed that exposure is predominantly to pollen from the introduced genera Cupressus and Juniperus. Only ITS2 detected the native genus, Callitris. Both metabarcodes detected Eucalyptus as the major Myrtaceae genus, with trnL-trnF exhibiting primer bias for this family. These findings help refine our understanding of allergy triggers in Tasmania and highlight the utility of multiple metabarcodes in aerobiome studies.
Collapse
Affiliation(s)
- Lachlan J Tegart
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, 7000, Australia.
| | - Gabriele Schiro
- Department of Environmental Science, University of Arizona, Tucson, AZ, 85721, United States.
| | - Joanne L Dickinson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, 7000, Australia.
| | - Brett J Green
- Office of the Director, Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, United States.
| | - Albert Barberán
- Department of Environmental Science, University of Arizona, Tucson, AZ, 85721, United States.
| | - James R Marthick
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, 7000, Australia.
| | - Andrew Bissett
- Commonwealth Scientific and Industrial Research Organisation, Hobart, TAS, Australia.
| | - Fay H Johnston
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, 7000, Australia; Public Health Services, Department of Health, Hobart, TAS, 7000, Australia.
| | - Penelope J Jones
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, 7000, Australia.
| |
Collapse
|
9
|
Sappington TW, Spencer JL. Movement Ecology of Adult Western Corn Rootworm: Implications for Management. INSECTS 2023; 14:922. [PMID: 38132596 PMCID: PMC10744206 DOI: 10.3390/insects14120922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Movement of adult western corn rootworm, Diabrotica virgifera virgifera LeConte, is of fundamental importance to this species' population dynamics, ecology, evolution, and interactions with its environment, including cultivated cornfields. Realistic parameterization of dispersal components of models is needed to predict rates of range expansion, development, and spread of resistance to control measures and improve pest and resistance management strategies. However, a coherent understanding of western corn rootworm movement ecology has remained elusive because of conflicting evidence for both short- and long-distance lifetime dispersal, a type of dilemma observed in many species called Reid's paradox. Attempts to resolve this paradox using population genetic strategies to estimate rates of gene flow over space likewise imply greater dispersal distances than direct observations of short-range movement suggest, a dilemma called Slatkin's paradox. Based on the wide-array of available evidence, we present a conceptual model of adult western corn rootworm movement ecology under the premise it is a partially migratory species. We propose that rootworm populations consist of two behavioral phenotypes, resident and migrant. Both engage in local, appetitive flights, but only the migrant phenotype also makes non-appetitive migratory flights, resulting in observed patterns of bimodal dispersal distances and resolution of Reid's and Slatkin's paradoxes.
Collapse
Affiliation(s)
- Thomas W. Sappington
- Corn Insects and Crop Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Ames, IA 50011, USA
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Joseph L. Spencer
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820, USA
| |
Collapse
|
10
|
Encinas-Viso F, Bovill J, Albrecht DE, Florez-Fernandez J, Lessard B, Lumbers J, Rodriguez J, Schmidt-Lebuhn A, Zwick A, Milla L. Pollen DNA metabarcoding reveals cryptic diversity and high spatial turnover in alpine plant-pollinator networks. Mol Ecol 2023; 32:6377-6393. [PMID: 36065738 DOI: 10.1111/mec.16682] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022]
Abstract
Alpine plant-pollinator communities play an important role in the functioning of alpine ecosystems, which are highly threatened by climate change. However, we still have a poor understanding of how environmental factors and spatiotemporal variability shape these communities. Here, we investigate what drives structure and beta diversity in a plant-pollinator metacommunity from the Australian alpine region using two approaches: pollen DNA metabarcoding (MB) and observations. Individual pollinators often carry pollen from multiple plant species, and therefore we expected MB to reveal a more diverse and complex network structure. We used two gene regions (ITS2 and trnL) to identify plant species present in the pollen loads of 154 insect pollinator specimens from three alpine habitats and construct MB networks, and compared them to networks based on observations alone. We compared species and interaction turnover across space for both types of networks, and evaluated their differences for plant phylogenetic diversity and beta diversity. We found significant structural differences between the two types of networks; notably, MB networks were much less specialized but more diverse than observation networks, with MB detecting many cryptic plant species. Both approaches revealed that alpine pollination networks are very generalized, but we estimated a high spatial turnover of plant species (0.79) and interaction rewiring (0.6) as well as high plant phylogenetic diversity (0.68) driven by habitat differences based on the larger diversity of plant species and species interactions detected with MB. Overall, our findings show that habitat and microclimatic heterogeneity drives diversity and fine-scale spatial turnover of alpine plant-pollinator networks.
Collapse
Affiliation(s)
- Francisco Encinas-Viso
- Centre for Australian National Biodiversity Research, Australian Capital Territory, Canberra, Australia
| | - Jessica Bovill
- Centre for Australian National Biodiversity Research, Australian Capital Territory, Canberra, Australia
| | - David E Albrecht
- Centre for Australian National Biodiversity Research, Australian Capital Territory, Canberra, Australia
| | - Jaime Florez-Fernandez
- Australian National Insect Collection, Australian Capital Territory, Canberra, Australia
| | - Bryan Lessard
- Australian National Insect Collection, Australian Capital Territory, Canberra, Australia
| | - James Lumbers
- Australian National Insect Collection, Australian Capital Territory, Canberra, Australia
| | - Juanita Rodriguez
- Australian National Insect Collection, Australian Capital Territory, Canberra, Australia
| | - Alexander Schmidt-Lebuhn
- Centre for Australian National Biodiversity Research, Australian Capital Territory, Canberra, Australia
| | - Andreas Zwick
- Australian National Insect Collection, Australian Capital Territory, Canberra, Australia
| | - Liz Milla
- Centre for Australian National Biodiversity Research, Australian Capital Territory, Canberra, Australia
| |
Collapse
|
11
|
Jia H, Chen Y, Li X, Pan Y, Liu D, Liu Y, Wu K. Regional Pollination Activity by Moth Migration in Athetis lepigone. PLANTS (BASEL, SWITZERLAND) 2023; 12:3406. [PMID: 37836146 PMCID: PMC10574918 DOI: 10.3390/plants12193406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Nocturnal moths (Lepidoptera) are important pollinators of a wide range of plant species. Understanding the foraging preferences of these insects is essential for their scientific management. However, this information is lacking for most moth species. The present study was therefore conducted to delineate the host plant feeding and pollination ranges of an agriculturally important nocturnal moth species Athetis lepigone by identifying the pollen species adhering to their bodies during long-distance migration. Pollen grains were dislodged from 1871 A. lepigone migrants captured on Beihuang Island in the Bohai Strait between 2020 and 2021. This region is a key seasonal migration pathway for A. lepigone in northern China. Almost 20% of all moths sampled harbored pollens, providing direct evidences that this moth species may serve as pollinators. Moreover, at least 39 pollen taxa spanning 21 plant families and 31 genera were identified, with a preference for Asteraceae, Amaranthaceae, and Pinaceae. Additionally, the pollen adherence ratios and taxa varied with moth sex, inter-annual changes, and seasonal fluctuations. Most importantly, the pollen taxa were correlated with insect migration stages and indicated that A. lepigone bidirectionally migrates between central China (Shandong, Hebei, and Henan Provinces) and northeastern China (Liaoning Province). Overall, the findings of the present work provide valuable information on the pollination behavior, geographical origins, and pollination regions of A. lepigone moths and could facilitate the design and optimization of efficacious local and regional management strategies for this important insect.
Collapse
Affiliation(s)
- Huiru Jia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.J.); (Y.C.); (X.L.); (Y.P.); (D.L.); (Y.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
| | - Yuchao Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.J.); (Y.C.); (X.L.); (Y.P.); (D.L.); (Y.L.)
| | - Xiaokang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.J.); (Y.C.); (X.L.); (Y.P.); (D.L.); (Y.L.)
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yunfei Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.J.); (Y.C.); (X.L.); (Y.P.); (D.L.); (Y.L.)
| | - Dazhong Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.J.); (Y.C.); (X.L.); (Y.P.); (D.L.); (Y.L.)
| | - Yongqiang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.J.); (Y.C.); (X.L.); (Y.P.); (D.L.); (Y.L.)
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.J.); (Y.C.); (X.L.); (Y.P.); (D.L.); (Y.L.)
| |
Collapse
|
12
|
Jia H, Wang T, Li X, Zhao S, Guo J, Liu D, Liu Y, Wu K. Pollen Molecular Identification from a Long-Distance Migratory Insect, Spodoptera exigua, as Evidenced for Its Regional Pollination in Eastern Asia. Int J Mol Sci 2023; 24:ijms24087588. [PMID: 37108751 PMCID: PMC10141172 DOI: 10.3390/ijms24087588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Understanding plant-insect interactions requires the uncovering of the host plant use of insect herbivores, but such information is scarce for most taxa, including nocturnal moth species, despite their vital role as herbivores and pollinators. In this study, we determined the plant species visited by an important moth species, Spodoptera exigua, by analyzing attached pollen on migratory individuals in Northeast China. Pollen grains were dislodged from 2334 S. exigua long-distance migrants captured between 2019 and 2021 on a small island in the center of the Bohai Strait, which serves as a seasonal migration pathway for this pest species, and 16.1% of the tested moths exhibited pollen contamination, primarily on the proboscis. Subsequently, 33 taxa from at least 23 plant families and 29 genera were identified using a combination of DNA barcoding and pollen morphology, primarily from the Angiosperm, Dicotyledoneae. Moreover, the sex, inter-annual, and seasonal differences in pollen adherence ratio and pollen taxa were revealed. Notably, compared to previously reported pollen types found on several other nocturnal moths, we found that almost all of the above 33 pollen taxa can be found in multiple nocturnal moth species, providing another important example of conspecific attraction. Additionally, we also discussed the indicative significance of the pollen present on the bodies of migratory individuals for determining their migratory route. Overall, by delineating the adult feeding and pollination behavior of S. exigua, we advanced our understanding of the interactions of the moths with their host plants, and its migration pattern, as well as facilitated the design of (area-wide) management strategies to preserve and optimize ecosystem services that they provide.
Collapse
Affiliation(s)
- Huiru Jia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
| | - Tengli Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaokang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Shengyuan Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianglong Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dazhong Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongqiang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
13
|
Talavera G, García-Berro A, Talla VNK, Ng’iru I, Bahleman F, Kébé K, Nzala KM, Plasencia D, Marafi MAJ, Kassie A, Goudégnon EOA, Kiki M, Benyamini D, Reich MS, López-Mañas R, Benetello F, Collins SC, Bataille CP, Pierce NE, Martins DJ, Suchan T, Menchetti M, Vila R. The Afrotropical breeding grounds of the Palearctic-African migratory painted lady butterflies ( Vanessa cardui). Proc Natl Acad Sci U S A 2023; 120:e2218280120. [PMID: 37036992 PMCID: PMC10120051 DOI: 10.1073/pnas.2218280120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/25/2023] [Indexed: 04/12/2023] Open
Abstract
Migratory insects are key players in ecosystem functioning and services, but their spatiotemporal distributions are typically poorly known. Ecological niche modeling (ENM) may be used to predict species seasonal distributions, but the resulting hypotheses should eventually be validated by field data. The painted lady butterfly (Vanessa cardui) performs multigenerational migrations between Europe and Africa and has become a model species for insect movement ecology. While the annual migration cycle of this species is well understood for Europe and northernmost Africa, it is still unknown where most individuals spend the winter. Through ENM, we previously predicted suitable breeding grounds in the subhumid regions near the tropics between November and February. In this work, we assess the suitability of these predictions through i) extensive field surveys and ii) two-year monitoring in six countries: a large-scale monitoring scheme to study butterfly migration in Africa. We document new breeding locations, year-round phenological information, and hostplant use. Field observations were nearly always predicted with high probability by the previous ENM, and monitoring demonstrated the influence of the precipitation seasonality regime on migratory phenology. Using the updated dataset, we built a refined ENM for the Palearctic-African range of V. cardui. We confirm the relevance of the Afrotropical region and document the missing natural history pieces of the longest migratory cycle described in butterflies.
Collapse
Affiliation(s)
- Gerard Talavera
- Institut Botànic de Barcelona, Consejo Superior de Investigaciones Científicas and Ajuntament de Barcelona, Barcelona, Catalonia08038, Spain
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| | - Aurora García-Berro
- Institut Botànic de Barcelona, Consejo Superior de Investigaciones Científicas and Ajuntament de Barcelona, Barcelona, Catalonia08038, Spain
| | - Valery N. K. Talla
- Laboratory of Applied Biology and Ecology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Ivy Ng’iru
- Mpala Research Centre, Nanyuki555-10400, Kenya
| | | | - Khadim Kébé
- Department of Chemical Engineering and Applied Biology, Polytechnic Higher School of Dakar, BP 5085Dakar, Senegal
| | | | - Dulce Plasencia
- Asociación Española para la Protección de las Mariposas y su Medio - Zerynthia, Sección Tenerife, E-26004Logroño, Spain
| | - Mohammad A. J. Marafi
- Department of Restoration of Terrestrial and Marine Ecosystems, Public Authority of Agriculture Affairs and Fish Resources, 13075Kuwait City, Kuwait
| | - Abeje Kassie
- Ethiopian Biodiversity Institute, 30726Addis Ababa, Ethiopia
| | - Eude O. A. Goudégnon
- Laboratoire d'Écologie Appliquée, Université d'Abomey-Calavi, BP 526Cotonou, Benin
| | - Martial Kiki
- Laboratoire d'Écologie Appliquée, Université d'Abomey-Calavi, BP 526Cotonou, Benin
| | - Dubi Benyamini
- The Israeli Lepidopterist Society, Beit Arye7194700, Israel
| | - Megan S. Reich
- Department of Biology, University of Ottawa, ONK1N 6N5Ottawa, Canada
| | - Roger López-Mañas
- Institut Botànic de Barcelona, Consejo Superior de Investigaciones Científicas and Ajuntament de Barcelona, Barcelona, Catalonia08038, Spain
| | - Fulvia Benetello
- Dipartimento di Biologia, Università degli Studi di Firenze, 50019Sesto Fiorentino, Italy
| | | | - Clément P. Bataille
- Department of Earth and Environmental Sciences, University of Ottawa, ONK1N 6N5Ottawa, Canada
| | - Naomi E. Pierce
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| | - Dino J. Martins
- Institut Botànic de Barcelona, Consejo Superior de Investigaciones Científicas and Ajuntament de Barcelona, Barcelona, Catalonia08038, Spain
- Mpala Research Centre, Nanyuki555-10400, Kenya
- Turkana Basin Institute, Stony Brook University, NY11794
| | - Tomasz Suchan
- W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków31-512, Poland
| | - Mattia Menchetti
- Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas and Universitat Pompeu Fabra), Barcelona, Catalonia08003, Spain
| | - Roger Vila
- Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas and Universitat Pompeu Fabra), Barcelona, Catalonia08003, Spain
| |
Collapse
|
14
|
Prudnikow L, Pannicke B, Wünschiers R. A primer on pollen assignment by nanopore-based DNA sequencing. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1112929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
The possibility to identify plants based on the taxonomic information coming from their pollen grains offers many applications within various biological disciplines. In the past and depending on the application or research in question, pollen origin was analyzed by microscopy, usually preceded by chemical treatment methods. This procedure for identification of pollen grains is both time-consuming and requires expert knowledge of morphological features. Additionally, these microscopically recognizable features usually have a low resolution at species-level. Since a few decades, DNA has been used for the identification of pollen taxa, as sequencing technologies evolved both in their handling and affordability. We discuss advantages and challenges of pollen DNA analyses compared to traditional methods. With readers with little experience in this field in mind, we present a hands-on primer for genetic pollen analysis by nanopore sequencing. As our lab mainly works with pollen collected within agroecological research projects, we focus on pollen collected by pollinating insects. We briefly consider sample collection, storage and processing in the laboratory as well as bioinformatic aspects. Currently, pollen metabarcoding is mostly conducted with next-generation sequencing methods that generate short sequence reads (<1 kb). Increasingly, however, pollen DNA analysis is carried out using the long-read generating (several kb), low-budget and mobile MinION nanopore sequencing platform by Oxford Nanopore Technologies. Therefore, we are focusing on aspects for palynology with the MinION DNA sequencing device.
Collapse
|
15
|
Verbeke S, Boeraeve M, Carpentier S, Jacquemyn H, Pozo MI. The impact of plant diversity and vegetation composition on bumblebee colony fitness. OIKOS 2023. [DOI: 10.1111/oik.09790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Affiliation(s)
- Sebastiaan Verbeke
- Ecology, Evolution and Biodiversity Conservation, KU Leuven Leuven Belgium
| | - Margaux Boeraeve
- Ecology, Evolution and Biodiversity Conservation, KU Leuven Leuven Belgium
| | - Sebastien Carpentier
- Division of Crop Biotechnics, Dept of Biosystems, KU Leuven Leuven Belgium
- SYBIOMA: Facility for Systems Biology Mass Spectrometry Leuven Belgium
| | - Hans Jacquemyn
- Ecology, Evolution and Biodiversity Conservation, KU Leuven Leuven Belgium
| | - María I. Pozo
- Ecology, Evolution and Biodiversity Conservation, KU Leuven Leuven Belgium
| |
Collapse
|
16
|
Reich MS, Kindra M, Dargent F, Hu L, Flockhart DTT, Norris DR, Kharouba H, Talavera G, Bataille CP. Metals and metal isotopes incorporation in insect wings: Implications for geolocation and pollution exposure. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1085903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Anthropogenic activities are exposing insects to elevated levels of toxic metals and are altering the bioavailability of essential metals. Metals and metal isotopes have also become promising tools for the geolocation of migratory insects. Understanding the pathways of metal incorporation in insect tissues is thus important for assessing the role of metals in insect physiology and ecology and for the development of metals and metal isotopes as geolocation tools. We conducted a diet-switching experiment on monarch butterflies [Danaus plexippus (L.)] with controlled larval and adult diets to evaluate the sources of 23 metals and metalloids, strontium isotopes, and lead isotopes to insect wing tissues over a period of 8 weeks. Concentrations of Ca, Co, Mo, and Sb differed between the sexes or with body mass. Ni and Zn bioaccumulated in the insect wing tissues over time, likely from the adult diet, while increases in Al, Cr, Cd, Cu, Fe, and Pb were, at least partially, from external sources (i.e., dust aerosols). Bioaccumulation of Pb in the monarch wings was confirmed by Pb isotopes to mainly be sourced from external anthropogenic sources, revealing the potential of Pb isotopes to become an indicator and tracer of metal pollution exposure along migratory paths. Concentrations of Ba, Cs, Mg, Na, Rb, Sr, Ti, Tl, and U appeared to be unaffected by intrinsic factors or additions of metals from adult dietary or external sources, and their potential for geolocation should be further explored. Strontium isotope ratios remained indicative of the larval diet, at least in males, supporting its potential as a geolocation tool. However, the difference in strontium isotope ratios between sexes, as well as the possibility of external contamination by wetting, requires further investigation. Our results demonstrate the complexity of metal incorporation processes in insects and the value of studying metals to develop new tools to quantify pollution exposure, metal toxicity, micronutrient uptake, and insect mobility.
Collapse
|
17
|
Batuecas I, Alomar O, Castañe C, Piñol J, Boyer S, Gallardo-Montoya L, Agustí N. Development of a multiprimer metabarcoding approach to understanding trophic interactions in agroecosystems. INSECT SCIENCE 2022; 29:1195-1210. [PMID: 34905297 DOI: 10.1111/1744-7917.12992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/04/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
To understand trophic interactions and the precise ecological role of each predatory species, it is important to know which arthropod and plant resources are used by generalist predators in agroecosystems. Molecular approaches, such as the use of high-throughput sequencing (HTS), play a key role in identifying these resources. This study develops a multiprimer metabarcoding approach for screening the most common trophic interactions of two predatory arthropods with contrasting morphologies, Rhagonycha fulva (Coleoptera: Cantharidae) and Anthocoris nemoralis (Hemiptera: Anthocoridae) collected from a peach crop. To reduce the time and cost of this metabarcoding approach, we first evaluated the effect of using two different predator-pools of different size (10 and 23 individuals of the same species). We also used our system to analyze the performance of one and two primer pairs in the same library. Our results show that the analysis of 23 individuals together with the use of two primer pairs in the same library optimize the HTS analysis. Using these best-performing conditions, we then analyzed the entire bodies of field-collected predators as well as the washing solutions used to clean the insect bodies. We were able to identify both gut content (i.e., diet) and external pollen load (i.e., on the insects' bodies). This study also demonstrates the importance of washing predatory insects' bodies prior to HTS analysis when the target species have a considerable size (>10 mm) and hairy structures. This metabarcoding approach has significant potential for the study of trophic links in agriculture, revealing expected and unexpected trophic relationships.
Collapse
Affiliation(s)
- Ivan Batuecas
- IRTA, Sustainable Plant Protection, Cabrils, Barcelona, Spain
| | - Oscar Alomar
- IRTA, Sustainable Plant Protection, Cabrils, Barcelona, Spain
| | | | - Josep Piñol
- Universitat Autònoma Barcelona, Cerdanyola del Vallès, Spain
- CREAF, Cerdanyola del Vallès, Spain
| | - Stéphane Boyer
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), Tours University, Tours, France
| | | | - Nuria Agustí
- IRTA, Sustainable Plant Protection, Cabrils, Barcelona, Spain
| |
Collapse
|
18
|
Toro-Delgado E, Hernández-Roldán J, Dincă V, Vicente JC, Shaw MR, Quicke DL, Vodă R, Albrecht M, Fernández-Triana J, Vidiella B, Valverde S, Dapporto L, Hebert PDN, Talavera G, Vila R. Butterfly–parasitoid–hostplant interactions in Western Palaearctic Hesperiidae: a DNA barcoding reference library. Zool J Linn Soc 2022. [DOI: 10.1093/zoolinnean/zlac052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
The study of ecological interactions between plants, phytophagous insects and their natural enemies is an essential but challenging component for understanding ecosystem dynamics. Molecular methods such as DNA barcoding can help elucidate these interactions. In this study, we employed DNA barcoding to establish hostplant and parasitoid interactions with hesperiid butterflies, using a complete reference library for Hesperiidae of continental Europe and north-western Africa (53 species, 100% of those recorded) based on 2934 sequences from 38 countries. A total of 233 hostplant and parasitoid interactions are presented, some recovered by DNA barcoding larval remains or parasitoid cocoons. Combining DNA barcode results with other lines of evidence allowed 94% species-level identification for Hesperiidae, but success was lower for parasitoids, in part due to unresolved taxonomy. Potential cases of cryptic diversity, both in Hesperiidae and Microgastrinae, are discussed. We briefly analyse the resulting interaction networks. Future DNA barcoding initiatives in this region should focus attention on north-western Africa and on parasitoids, because in these cases barcode reference libraries and taxonomy are less well developed.
Collapse
Affiliation(s)
| | - Juan Hernández-Roldán
- Institut de Biologia Evolutiva (CSIC-UPF) , 03008 Barcelona , Spain
- Departamento de Biología (Zoología), Facultad de Ciencias, Universidad Autónoma de Madrid , c/ Darwin, 2, ES - 28049 Madrid , Spain
| | - Vlad Dincă
- Ecology and Genetics Research Unit, PO Box 3000, University of Oulu , 90014 Oulu , Finland
- Research Institute of the University of Bucharest (ICUB), University of Bucharest , Bucharest , Romania
| | | | - Mark R Shaw
- National Museums of Scotland , Edinburgh , UK
| | - Donald Lj Quicke
- Department of Biology, Faculty of Life Sciences, Chulalongkorn University , Bangkok , Thailand
| | | | | | | | - Blai Vidiella
- Centre de Recerca Matemàtica , Edifici C , Campus de Bellaterra, Barcelona , Spain
| | - Sergi Valverde
- Institut de Biologia Evolutiva (CSIC-UPF) , 03008 Barcelona , Spain
- European Centre for Living Technology , Venice , Italy
| | - Leonardo Dapporto
- Dipartimento di Biologia, University of Florence , 50019 Sesto Fiorentino , Italy
| | - Paul D N Hebert
- Centre for Biodiversity Genomics, University of Guelph , Guelph, ON N1G 2W1 , Canada
| | - Gerard Talavera
- Institut Botànic de Barcelona (IBB), CSIC-Ajuntament de Barcelona , Passeig del Migdia s/n, 08038 Barcelona , Spain
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-UPF) , 03008 Barcelona , Spain
| |
Collapse
|
19
|
Guo J, Liu Y, Jia H, Chang H, Wu K. Visiting Plants of Mamestra brassicae (Lepidoptera: Noctuidae) Inferred From Identification of Adhering Pollen Grains. ENVIRONMENTAL ENTOMOLOGY 2022; 51:505-512. [PMID: 35024800 DOI: 10.1093/ee/nvab145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Indexed: 06/14/2023]
Abstract
Numerous lepidopteran adults frequently pick up plant pollen when feeding. Identifying plant species visited by Mamestra brassicae moths could further strengthen our knowledge of their migratory trajectory and the interactions of M. brassicae moths with these plant species. Here, with morphological analysis and DNA metabarcoding of pollen carried by the moths, we determined these plant species visited by M. brassicae during 2015-2018. Pollen grains removed from M. brassicae moths were identified from 25 species (18 were identified to genus), representing at least 19 families, including Pinaceae, Oleaceae, Rosaceae, and Asteraceae, but mainly belonging to Angiospermae, Dicotyledoneae. There were noticeable interannual differences (maximum value: 35.31% in 2018) and seasonal differences (maximum value: 33.28% in April-(including May)-June) in the frequency of M. brassicae moths with adhering pollen, but no noticeable difference based on sex. Meanwhile, we also found pollen from some species such as Citrus sinensis (Rutales: Rutaceae) and Melia azedarach (Rutales: Meliaceae) that grow in southern China, indicating that M. brassicae moths might migrate northward in spring. Our results demonstrate that the M. brassicae moth visits a variety of plant species during migration, and these findings promote our understanding of the interaction between moths and these plant species.
Collapse
Affiliation(s)
- Jianglong Guo
- Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, IPM Center of Hebei Province, Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongqiang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huiru Jia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hong Chang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
20
|
Grant-Jacob JA, Praeger M, Eason R, Mills B. Generating images of hydrated pollen grains using deep learning. IOP SCINOTES 2022. [DOI: 10.1088/2633-1357/ac6780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract
Pollen grains dehydrate during their development and following their departure from the host stigma. Since the size and shape of a pollen grain can be dependent on environmental conditions, being able to predict both of these factors for hydrated pollen grains from their dehydrated state could be beneficial in the fields of climate science, agriculture, and palynology. Here, we use deep learning to transform images of dehydrated Ranunculus pollen grains into images of hydrated Ranunculus pollen grains. We also then use a deep learning neural network that was trained on experimental images of different genera of pollen grains to identify the hydrated pollen grains from the generated transformed images, to test the accuracy of the image generation neural network. This pilot work demonstrates the first steps needed towards creating a general deep learning-based rehydration model that could be useful in understanding and predicting pollen morphology.
Collapse
|
21
|
Jia H, Liu Y, Li X, Li H, Pan Y, Hu C, Zhou X, Wyckhuys KAG, Wu K. Windborne migration amplifies insect-mediated pollination services. eLife 2022; 11:76230. [PMID: 35416148 PMCID: PMC9042232 DOI: 10.7554/elife.76230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Worldwide, hoverflies (Syrphidae: Diptera) provide crucial ecosystem services such as pollination and biological pest control. Although many hoverfly species exhibit migratory behavior, the spatiotemporal facets of these movement dynamics, and their ecosystem services implications are poorly understood. In this study, we use long-term (16-year) trapping records, trajectory analysis, and intrinsic (i.e., isotope, genetic, pollen) markers to describe migration patterns of the hoverfly Episyrphus balteatus in northern China. Our work reveals how E. balteatus migrate northward during spring–summer and exhibits return (long-range) migration during autumn. The extensive genetic mixing and high genetic diversity of E. balteatus populations underscore its adaptive capacity to environmental disturbances, for example, climate change. Pollen markers and molecular gut analysis further illuminate how E. balteatus visits min. 1012 flowering plant species (39 orders) over space and time. By thus delineating E. balteatus transregional movements and pollination networks, we advance our understanding of its migration ecology and facilitate the design of targeted strategies to conserve and enhance its ecosystem services.
Collapse
Affiliation(s)
- Huiru Jia
- Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongqiang Liu
- Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xaiokang Li
- Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui Li
- Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunfei Pan
- Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Xainyong Zhou
- Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Kongming Wu
- Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
22
|
Abstract
The identification of floral visitation by pollinators provides an opportunity to improve our understanding of the fine-scale ecological interactions between plants and pollinators, contributing to biodiversity conservation and promoting ecosystem health. In this review, we outline the various methods which can be used to identify floral visitation, including plant-focused and insect-focused methods. We reviewed the literature covering the ways in which DNA metabarcoding has been used to answer ecological questions relating to plant use by pollinators and discuss the findings of this research. We present detailed methodological considerations for each step of the metabarcoding workflow, from sampling through to amplification, and finally bioinformatic analysis. Detailed guidance is provided to researchers for utilisation of these techniques, emphasising the importance of standardisation of methods and improving the reliability of results. Future opportunities and directions of using molecular methods to analyse plant–pollinator interactions are then discussed.
Collapse
|
23
|
|
24
|
Lohse K, Wright C, Talavera G, García-Berro A. The genome sequence of the painted lady, Vanessa cardui Linnaeus 1758. Wellcome Open Res 2021; 6:324. [PMID: 37008186 PMCID: PMC10061037 DOI: 10.12688/wellcomeopenres.17358.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 11/20/2022] Open
Abstract
We present a genome assembly from an individual female Vanessa cardui (the painted lady; Arthropoda; Insecta; Lepidoptera; Nymphalidae). The genome sequence is 425 megabases in span. The majority of the assembly is scaffolded into 32 chromosomal pseudomolecules, with the W and Z sex chromosome assembled. Gene annotation of this assembly on Ensembl has identified 12,821 protein coding genes.
Collapse
Affiliation(s)
- Konrad Lohse
- Institute of Evolutionary Biology, University of Edinburgh, Edingburgh, UK
| | | | - Gerard Talavera
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Barcelona, Spain
| | - Aurora García-Berro
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Barcelona, Spain
| | - Darwin Tree of Life Barcoding collective
- Institute of Evolutionary Biology, University of Edinburgh, Edingburgh, UK
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Barcelona, Spain
| | - Wellcome Sanger Institute Tree of Life programme
- Institute of Evolutionary Biology, University of Edinburgh, Edingburgh, UK
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Barcelona, Spain
| | | | - Tree of Life Core Informatics collective
- Institute of Evolutionary Biology, University of Edinburgh, Edingburgh, UK
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Barcelona, Spain
| | | |
Collapse
|
25
|
Bumble Bee Foraged Pollen Analyses in Spring Time in Southern Estonia Shows Abundant Food Sources. INSECTS 2021; 12:insects12100922. [PMID: 34680691 PMCID: PMC8538635 DOI: 10.3390/insects12100922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Pollinators make a strong contribution to ecosystem stability. However, nowadays, they also need protection and sustainable habitat to live and develop. Not all regions can provide suitable habitats due to agricultural intensification, urbanization, climate changes and corresponding impacts. Our study was conducted in the late spring in south Estonia where arable lands were surrounded by forest patches and rural areas. For better performance, we used both light microscopy and DNA metabarcoding methods for pollen identification. We found that bumble bees foraged on the diverse food sources showing preferences for several main plant families. Additionally, in our case, land-use types did not show important effects on bumble bee food choices and foraging decisions. Various landscape features can provide diverse food sources at the early development stages and support nest longevity. Here, we can say that a better understanding of pollinators’ food preferences can help in the application of more suitable measures for their conservation. Abstract Agricultural landscapes usually provide higher quantities of single-source food, which are noticeably lacking in diversity and might thus have low nutrient value for bumble bee colony development. Here, in this study, we analysed the pollen foraging preferences over a large territory of a heterogeneous agricultural landscape: southern Estonia. We aimed to assess the botanical diversity of bumble bee food plants in the spring time there. We looked for preferences for some food plants or signs of food shortage that could be associated with any particular landscape features. For this purpose, we took Bombus terrestris commercial hives to the landscape, performed microscopy analyses and improved the results with the innovative DNA metabarcoding technique to determine the botanical origin of bumble bee-collected pollen. We found high variability of forage plants with no strong relationship with any particular landscape features. Based on the low number of plant species in single flights, we deduce that the availability of main forage plants is sufficient indicating rich forage availabilities. Despite specific limitations, we saw strong correlations between microscopy and DNA metabarcoding data usable for quantification analyses. As a conclusion, we saw that the spring-time vegetation in southern Estonia can support bumble bee colony development regardless of the detailed landscape structure. The absence of clearly dominating food preference by the tested generalist bumble bee species B. terrestris makes us suggest that other bumble bee species, at least food generalists, should also find plenty of forage in their early development phase.
Collapse
|
26
|
Harnessing the Power of Metabarcoding in the Ecological Interpretation of Plant-Pollinator DNA Data: Strategies and Consequences of Filtering Approaches. DIVERSITY 2021. [DOI: 10.3390/d13090437] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Although DNA metabarcoding of pollen mixtures has been increasingly used in the field of pollination biology, methodological and interpretation issues arise due to its high sensitivity. Filtering or maintaining false positives, contaminants, and rare taxa or molecular features could lead to different ecological results. Here, we reviewed how this choice has been addressed in 43 studies featuring pollen DNA metabarcoding, which highlighted a very high heterogeneity of filtering methods. We assessed how these strategies shaped pollen assemblage composition, species richness, and interaction networks. To do so, we compared four processing methods: unfiltering, filtering with a proportional 1% of sample reads, a fixed threshold of 100 reads, and the ROC approach (Receiver Operator Characteristic). The results indicated that filtering impacted species composition and reduced species richness, with ROC emerging as a conservative approach. Moreover, in contrast to unfiltered networks, filtering decreased network Connectance and Entropy, and it increased Modularity and Connectivity, indicating that using cut-off thresholds better describes interactions. Overall, unfiltering might compromise reliable ecological interpretations, unless a study targets rare species. We discuss the suitability of each filtering type, plead for justifying filtering strategies on biological or methodological bases and for developing shared approaches to make future studies more comparable.
Collapse
|
27
|
Environmental drivers of annual population fluctuations in a trans-Saharan insect migrant. Proc Natl Acad Sci U S A 2021; 118:2102762118. [PMID: 34155114 PMCID: PMC8256005 DOI: 10.1073/pnas.2102762118] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The painted lady butterfly is an annual migrant to northern regions, but the size of the immigration varies by more than 100-fold in successive years. Unlike the monarch, the painted lady breeds year round, and it has long been suspected that plant-growing conditions in winter-breeding locations drive this high annual variability. However, the regions where caterpillars develop over winter remained unclear. Here, we show for the European summer population that winter plant greenness in the savanna of sub-Saharan Africa is the key driver of the size of the spring immigration. Our results show that painted ladies regularly cross the Sahara Desert and elucidate the climatic drivers of the annual population dynamics. Many latitudinal insect migrants including agricultural pests, disease vectors, and beneficial species show huge fluctuations in the year-to-year abundance of spring immigrants reaching temperate zones. It is widely believed that this variation is driven by climatic conditions in the winter-breeding regions, but evidence is lacking. We identified the environmental drivers of the annual population dynamics of a cosmopolitan migrant butterfly (the painted lady Vanessa cardui) using a combination of long-term monitoring and climate and atmospheric data within the western part of its Afro-Palearctic migratory range. Our population models show that a combination of high winter NDVI (normalized difference vegetation index) in the Savanna/Sahel of sub-Saharan Africa, high spring NDVI in the Maghreb of North Africa, and frequent favorably directed tailwinds during migration periods are the three most important drivers of the size of the immigration to western Europe, while our atmospheric trajectory simulations demonstrate regular opportunities for wind-borne trans-Saharan movements. The effects of sub-Saharan vegetative productivity and wind conditions confirm that painted lady populations on either side of the Sahara are linked by regular mass migrations, making this the longest annual insect migration circuit so far known. Our results provide a quantification of the environmental drivers of large annual population fluctuations of an insect migrant and hold much promise for predicting invasions of migrant insect pests, disease vectors, and beneficial species.
Collapse
|
28
|
Stefanescu C, Ubach A, Wiklund C. Timing of mating, reproductive status and resource availability in relation to migration in the painted lady butterfly. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2020.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Gous A, Eardley CD, Johnson SD, Swanevelder DZH, Willows-Munro S. Floral hosts of leaf-cutter bees (Megachilidae) in a biodiversity hotspot revealed by pollen DNA metabarcoding of historic specimens. PLoS One 2021; 16:e0244973. [PMID: 33476342 PMCID: PMC7819603 DOI: 10.1371/journal.pone.0244973] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/21/2020] [Indexed: 11/18/2022] Open
Abstract
South Africa is a megadiverse country with three globally recognised biodiversity hotspots within its borders. Bees in particular show high diversity and endemism in the western part of the country. Not much is currently known about the floral host preferences of indigenous bees in South Africa, with data only available from observational studies. Pollen metabarcoding provides provenance information by utilising DNA analyses instead of floral visitation and traditional microscopic identification to identify pollinator food plants, which can be time consuming and imprecise. In this study, we sampled pollen from leaf-cutter bees (Megachilidae) specimens maintained in a historic insect collection (National Collection of Insects, South Africa) that were originally collected from two florally important areas in South Africa (Succulent Karoo and Savanna) and used metabarcoding to determine pollen provenance. We also sampled pollen from leafcutter bee species with wider distributions, that extend across many different biomes, to determine if these 'generalist' species show relaxed floral host specificity in some biomes. Metabarcoding involved sequencing of the nuclear internal transcribed spacer 2 (ITS2) region. Amplicons were compared to a sequence reference database to assign taxonomic classifications to family level. Sequence reads were also clustered to OTUs based on 97% sequence similarity to estimate numbers of plant species visited. We found no significant difference in the mean number of plant taxa visited in the Succulent Karoo and Savanna regions, but the widespread group visited significantly more floral hosts. Bees from the widespread group were also characterised by a significantly different composition in pollen assemblage. The time since specimens were collected did not have an effect on the mean number of taxa visited by any of the bee species studied. This study highlights national history collections as valuable sources of temporal and spatial biodiversity data.
Collapse
Affiliation(s)
- Annemarie Gous
- Biotechnology Platform, Agricultural Research Council, Pretoria, South Africa
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Connal D. Eardley
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Steven D. Johnson
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | | | - Sandi Willows-Munro
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
30
|
Renault D. A Review of the Phenotypic Traits Associated with Insect Dispersal Polymorphism, and Experimental Designs for Sorting out Resident and Disperser Phenotypes. INSECTS 2020; 11:insects11040214. [PMID: 32235446 PMCID: PMC7240479 DOI: 10.3390/insects11040214] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/13/2020] [Accepted: 03/27/2020] [Indexed: 01/06/2023]
Abstract
Dispersal represents a key life-history trait with several implications for the fitness of organisms, population dynamics and resilience, local adaptation, meta-population dynamics, range shifting, and biological invasions. Plastic and evolutionary changes of dispersal traits have been intensively studied over the past decades in entomology, in particular in wing-dimorphic insects for which literature reviews are available. Importantly, dispersal polymorphism also exists in wing-monomorphic and wingless insects, and except for butterflies, fewer syntheses are available. In this perspective, by integrating the very latest research in the fast moving field of insect dispersal ecology, this review article provides an overview of our current knowledge of dispersal polymorphism in insects. In a first part, some of the most often used experimental methodologies for the separation of dispersers and residents in wing-monomorphic and wingless insects are presented. Then, the existing knowledge on the morphological and life-history trait differences between resident and disperser phenotypes is synthetized. In a last part, the effects of range expansion on dispersal traits and performance is examined, in particular for insects from range edges and invasion fronts. Finally, some research perspectives are proposed in the last part of the review.
Collapse
Affiliation(s)
- David Renault
- Université de Rennes 1, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution) UMR 6553, F-35000 Rennes, France; ; Tel.: +33-(0)2-2323-6627
- Institut Universitaire de France, 1 Rue Descartes, 75231 Paris CEDEX 05, France
| |
Collapse
|
31
|
Janik P, Ronikier M, Ronikier A. New protocol for successful isolation and amplification of DNA from exiguous fractions of specimens: a tool to overcome the basic obstacle in molecular analyses of myxomycetes. PeerJ 2020; 8:e8406. [PMID: 32002333 PMCID: PMC6984339 DOI: 10.7717/peerj.8406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/16/2019] [Indexed: 11/23/2022] Open
Abstract
Herbarium collections provide an essential basis for a wide array of biological research and, with development of DNA-based methods, they have become an invaluable material for genetic analyses. Yet, the use of such material is hindered by technical limitations related to DNA degradation and to quantity of biological material. The latter is inherent for some biological groups, as best exemplified by myxomycetes which form minute sporophores. It is estimated that ca. two-thirds of myxomycete taxa are represented by extremely scanty material. As DNA isolation methods applied so far in myxomycete studies require destructive sampling of many sporophores, a large part of described diversity of the group remains unavailable for phylogenetic studies or barcoding. Here, we tested several procedures of DNA isolation and amplification to seek for an efficient and possibly non-destructive method of sampling. Tests were based on herbarium specimens of 19 species representing different taxonomic orders. We assayed several variants of isolation based on silica gel membrane columns, and a newly designed procedure using highly reduced amount of biological material (small portion of spores), based on fine disruption of spores and direct PCR. While the most frequently used column-based method led to PCR success in 89.5% of samples when a large amount of material was used, its performance dropped to 52% when based on single sporophores. Single sporophores provided amplicons in 89.5% of samples when using a kit dedicated to low-amount DNA samples. Our new procedure appeared the most effective (94.7%) while it used only a small fraction of spores, being nearly non-destructive; it was also the most cost-effective. We thus demonstrate that combination of adequate handling of spore micro-disruption coupled with application of direct PCR can be an efficient way to circumvent technical limitations for genetic studies in myxomycetes and thus can substantially improve taxon sampling for phylogeny and barcoding. Additionally, this approach gives a unique possibility to apply both molecular and morphological assays to the same structure (sporophore), which then can be further stored as documentation.
Collapse
Affiliation(s)
- Paulina Janik
- W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
| | - Michał Ronikier
- W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
| | - Anna Ronikier
- W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
32
|
Narum S, Kelley J, Sibbett B. Editorial 2020. Mol Ecol Resour 2020; 20:1-7. [DOI: 10.1111/1755-0998.13125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 11/29/2022]
|
33
|
Menz MHM, Reynolds DR, Gao B, Hu G, Chapman JW, Wotton KR. Mechanisms and Consequences of Partial Migration in Insects. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00403] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Menchetti M, Guéguen M, Talavera G. Spatio-temporal ecological niche modelling of multigenerational insect migrations. Proc Biol Sci 2019; 286:20191583. [PMID: 31480976 DOI: 10.1098/rspb.2019.1583] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Modelling ecological niches of migratory animals requires incorporating a temporal dimension, in addition to space. Here, we introduce an approach to model multigenerational migratory insects using time-partitioned environmental variables (by months and years) and time- and behaviour-partitioned records (breeding records to model reproductive habitat). We apply this methodology to modelling the Palearctic-African migratory cycle of the Painted Lady butterfly (Vanessa cardui), based on data encompassing 36 years (646 breeding sites from 30 countries). Each breeding record is linked to a particular time (month and year), and the associated values of the bioclimatic variables are used for an ensemble modelling strategy, to finally obtain monthly projections. The results show obligated movements, mostly latitudinal, for the species' successive generations across the overall range, and only scattered locations show high probabilities of reproduction year-round. The southernmost reproductive areas estimated for the Palearctic-African migratory pool reach equatorial latitudes from December to February. We thus propose a potential distribution for the winter 'missing generations' that would expand the V. cardui migration cycle to encompass about 15 000 km in latitude, from northernmost Europe to equatorial Africa. In summer, Europe represents the major temporary resource for V. cardui, while January and February show the lowest overall suitability values, and they are potentially the most vulnerable period for the species to suffer yearly bottlenecks. In summary, we demonstrate the potential of the proposed niche modelling strategy to investigate migratory movements of insects.
Collapse
Affiliation(s)
- Mattia Menchetti
- Institut de Biologia Evolutiva (CSIC-UPF), Passeig Marítim de la Barceloneta 37, 08003 Barcelona, Catalonia, Spain
| | - Maya Guéguen
- Laboratoire d'Écologie Alpine, Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble 38000, France
| | - Gerard Talavera
- Institut de Biologia Evolutiva (CSIC-UPF), Passeig Marítim de la Barceloneta 37, 08003 Barcelona, Catalonia, Spain.,Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
35
|
Tkach N, Röser M, Suchan T, Cieślak E, Schönswetter P, Ronikier M. Contrasting evolutionary origins of two mountain endemics: Saxifraga wahlenbergii (Western Carpathians) and S. styriaca (Eastern Alps). BMC Evol Biol 2019; 19:18. [PMID: 30634910 PMCID: PMC6329101 DOI: 10.1186/s12862-019-1355-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/02/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Carpathians and the Alps are the largest mountain ranges of the European Alpine System and important centres of endemism. Among the distinctive endemic species of this area is Saxifraga wahlenbergii, a Western Carpathians member of the speciose genus Saxifraga. It was frequently considered a taxonomically isolated Tertiary palaeopolyploid and palaeoendemic, for which the closest relatives could not yet be traced. A recently described narrow endemic of the Eastern Alps, S. styriaca, was hypothesized to be closely related to S. wahlenbergii based on shared presence of peculiar glandular hairs. To elucidate the origin and phylogenetic relationships of both species we studied nuclear and plastid DNA markers based on multiple accessions and analysed the data in a wide taxonomic context. We applied Sanger sequencing, followed by targeted next-generation sequencing (NGS) for a refined analysis of nrITS variants to detect signatures of ancient hybridization. The ITS data were used to estimate divergence times of different lineages using a relaxed molecular clock. RESULTS We demonstrate divergent evolutionary histories for the two mountain endemics. For S. wahlenbergii we revealed a complicated hybrid origin. Its maternal parent belongs to a Western Eurasian lineage of high mountain taxa grouped in subsect. Androsaceae and is most likely the widespread S. androsacea. The putative second parent was most likely S. adscendens, which belongs to the distantly related subsect. Tridactylites. While Sanger sequencing of nrITS only showed S. adscendens-related variants in S. wahlenbergii, our NGS screening revealed presence of sequences from both lineages with clear predominance of the paternal over the maternal lineage. CONCLUSIONS Saxifraga styriaca was unambiguously assigned to subsect. Androsaceae and is not the sister taxon of S. wahlenbergii. Accordingly, the similarity of the glandular hairs observed in both taxa rests on parallelism and both species do not constitute an example of a close evolutionary link between the floras of the Western Carpathians and Eastern Alps. With the origin of its paternal, S. adscendens-like ITS DNA estimated to ca. 4.7 Ma, S. wahlenbergii is not a relict of the mid-Tertiary climate optimum. Its hybrid origin is much younger and most likely took place in the Pleistocene.
Collapse
Affiliation(s)
- Natalia Tkach
- Institute of Biology, Martin Luther University Halle-Wittenberg, Neuwerk 21, 06108 Halle, Germany
| | - Martin Röser
- Institute of Biology, Martin Luther University Halle-Wittenberg, Neuwerk 21, 06108 Halle, Germany
| | - Tomasz Suchan
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512, Krakow, Poland
| | - Elżbieta Cieślak
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512, Krakow, Poland
| | - Peter Schönswetter
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Michał Ronikier
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512, Krakow, Poland
| |
Collapse
|