1
|
Edema H, Ashraf MF, Samkumar A, Jaakola L, Karppinen K. Characterization of cellulases from softening fruit for enzymatic depolymerization of cellulose. Carbohydr Polym 2024; 343:122493. [PMID: 39174143 DOI: 10.1016/j.carbpol.2024.122493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/24/2024]
Abstract
Cellulose is a major renewable resource for a wide variety of sustainable industrial products. However, for its utilization, finding new efficient enzymes for plant cell wall depolymerization is crucial. In addition to microbial sources, cellulases also exist in plants, however, are less studied. Fleshy fruit ripening includes enzymatic cell wall hydrolysis, leading to tissue softening. Therefore, bilberry (Vaccinium myrtillus L.), which produces small fruits that undergo extensive and rapid softening, was selected to explore cellulases of plant origin. We identified 20 glycoside hydrolase family 9 (GH9) cellulases from a recently sequenced bilberry genome, including four of which showed fruit ripening-specific expression and could be associated with fruit softening based on phylogenetic, transcriptomic and gene expression analyses. These four cellulases were secreted enzymes: two B-types and two C-types with a carbohydrate binding module 49. For functional characterization, these four cellulases were expressed in Pichia pastoris. All recombinant enzymes demonstrated glucanase activity toward cellulose and hemicellulose substrates. Particularly, VmGH9C1 demonstrated high activity and ability to degrade cellulose, xyloglucan, and glucomannan. In addition, all the enzymes retained activity under wide pH (6-10) and temperature ranges (optimum 70 °C), revealing the potential applications of plant GH9 cellulases in the industrial bioprocessing of lignocellulose.
Collapse
Affiliation(s)
- Hilary Edema
- The Arctic Centre for Sustainable Energy, UiT The Arctic University of Norway, Tromsø 9037, Norway; Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9037, Norway.
| | - Muhammad Furqan Ashraf
- The Arctic Centre for Sustainable Energy, UiT The Arctic University of Norway, Tromsø 9037, Norway; Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9037, Norway.
| | - Amos Samkumar
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9037, Norway; Department of Plant Science, Norwegian University of Life Sciences, Ås 1430, Norway.
| | - Laura Jaakola
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9037, Norway; Division of Food Production and Society, Norwegian Institute of Bioeconomy Research (NIBIO), Ås 1431, Norway.
| | - Katja Karppinen
- The Arctic Centre for Sustainable Energy, UiT The Arctic University of Norway, Tromsø 9037, Norway; Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9037, Norway.
| |
Collapse
|
2
|
Albuja-Quintana M, Pozo G, Gordillo-Romero M, Armijos CE, Torres MDL. Genome report: First reference genome of Vaccinium floribundum Kunth, an emblematic Andean species. G3 (BETHESDA, MD.) 2024; 14:jkae136. [PMID: 38888171 PMCID: PMC11304950 DOI: 10.1093/g3journal/jkae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 04/30/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
Vaccinium floribundum Kunth, known as "mortiño," is an endemic shrub species of the Andean region adapted to harsh conditions in high-altitude ecosystems. It plays an important ecological role as a pioneer species in the aftermath of deforestation and human-induced fires within paramo ecosystems, emphasizing its conservation value. While previous studies have offered insights into the genetic diversity of mortiño, comprehensive genomic studies are still missing to fully understand the unique adaptations of this species and its population status, highlighting the importance of generating a reference genome for this plant. ONT and Illumina sequencing were used to establish a reference genome for this species. Three different de novo genome assemblies were generated and compared for quality, continuity and completeness. The Flye assembly was selected as the best and refined by filtering out short ONT reads, screening for contaminants and genome scaffolding. The final assembly has a genome size of 529 Mb, containing 1,317 contigs and 97% complete BUSCOs, indicating a high level of integrity of the genome. Additionally, the LTR Assembly Index of 12.93 further categorizes this assembly as a reference genome. The genome of V. floribundum reported in this study is the first reference genome generated for this species, providing a valuable tool for further studies. This high-quality genome, based on the quality and completeness parameters obtained, will not only help uncover the genetic mechanisms responsible for its unique traits and adaptations to high-altitude ecosystems but will also contribute to conservation strategies for a species endemic to the Andes.
Collapse
Affiliation(s)
- Martina Albuja-Quintana
- Colegio de Ciencias Biológicas y Ambientales, Laboratorio de Biotecnología Vegetal, Universidad San Francisco de Quito (USFQ), Campus Cumbayá, Quito 170901, Ecuador
| | - Gabriela Pozo
- Colegio de Ciencias Biológicas y Ambientales, Laboratorio de Biotecnología Vegetal, Universidad San Francisco de Quito (USFQ), Campus Cumbayá, Quito 170901, Ecuador
| | - Milton Gordillo-Romero
- Colegio de Ciencias Biológicas y Ambientales, Laboratorio de Biotecnología Vegetal, Universidad San Francisco de Quito (USFQ), Campus Cumbayá, Quito 170901, Ecuador
| | - Carolina E Armijos
- Colegio de Ciencias Biológicas y Ambientales, Laboratorio de Biotecnología Vegetal, Universidad San Francisco de Quito (USFQ), Campus Cumbayá, Quito 170901, Ecuador
| | - Maria de Lourdes Torres
- Colegio de Ciencias Biológicas y Ambientales, Laboratorio de Biotecnología Vegetal, Universidad San Francisco de Quito (USFQ), Campus Cumbayá, Quito 170901, Ecuador
| |
Collapse
|
3
|
Hirabayashi K, Debnath SC, Owens GL. Unveiling the evolutionary history of lingonberry (Vaccinium vitis-idaea L.) through genome sequencing and assembly of European and North American subspecies. G3 (BETHESDA, MD.) 2024; 14:jkad294. [PMID: 38142435 PMCID: PMC10917501 DOI: 10.1093/g3journal/jkad294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 10/23/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Lingonberry (Vaccinium vitis-idaea L.) produces tiny red berries that are tart and nutty in flavor. It grows widely in the circumpolar region, including Scandinavia, northern parts of Eurasia, Alaska, and Canada. Although cultivation is currently limited, the plant has a long history of cultural use among indigenous communities. Given its potential as a food source, genomic resources for lingonberry are significantly lacking. To advance genomic knowledge, the genomes for 2 subspecies of lingonberry (V. vitis-idaea ssp. minus and ssp. vitis-idaea var. 'Red Candy') were sequenced and de novo assembled into contig-level assemblies. The assemblies were scaffolded using the bilberry genome (Vaccinium myrtillus) to generate a chromosome-anchored reference genome consisting of 12 chromosomes each with a total length of 548.07 Mb [contig N50 = 1.17 Mb, BUSCO (C%) = 96.5%] for ssp. vitis-idaea and 518.70 Mb [contig N50 = 1.40 Mb, BUSCO (C%) = 96.9%] for ssp. minus. RNA-seq-based gene annotation identified 27,243 and 25,718 genes on the respective assembly, and transposable element detection methods found that 45.82 and 44.58% of the genome were repeats. Phylogenetic analysis confirmed that lingonberry was most closely related to bilberry and was more closely related to blueberries than cranberries. Estimates of past effective population size suggested a continuous decline over the past 1-3 MYA, possibly due to the impacts of repeated glacial cycles during the Pleistocene leading to frequent population fragmentation. The genomic resource created in this study can be used to identify industry-relevant genes (e.g. anthocyanin production), infer phylogeny, and call sequence-level variants (e.g. SNPs) in future research.
Collapse
Affiliation(s)
- Kaede Hirabayashi
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 2Y2, Canada
| | - Samir C Debnath
- Agriculture and Agri-Food Canada, St.John's Research and Development Centre, 204 Brookfield Road, St. John’s, Newfoundland and Labrador L A1E 0B2, Canada
| | - Gregory L Owens
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
4
|
Pei Y, Leng L, Sun W, Liu B, Feng X, Li X, Chen S. Whole-genome sequencing in medicinal plants: current progress and prospect. SCIENCE CHINA. LIFE SCIENCES 2024; 67:258-273. [PMID: 37837531 DOI: 10.1007/s11427-022-2375-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/23/2023] [Indexed: 10/16/2023]
Abstract
Advancements in genomics have dramatically accelerated the research on medicinal plants, and the development of herbgenomics has promoted the "Project of 1K Medicinal Plant Genome" to decipher their genetic code. However, it is difficult to obtain their high-quality whole genomes because of the prevalence of polyploidy and/or high genomic heterozygosity. Whole genomes of 123 medicinal plants were published until September 2022. These published genome sequences were investigated in this review, covering their classification, research teams, ploidy, medicinal functions, and sequencing strategies. More than 1,000 institutes or universities around the world and 50 countries are conducting research on medicinal plant genomes. Diploid species account for a majority of sequenced medicinal plants. The whole genomes of plants in the Poaceae family are the most studied. Almost 40% of the published papers studied species with tonifying, replenishing, and heat-cleaning medicinal effects. Medicinal plants are still in the process of domestication as compared with crops, thereby resulting in unclear genetic backgrounds and the lack of pure lines, thus making their genomes more difficult to complete. In addition, there is still no clear routine framework for a medicinal plant to obtain a high-quality whole genome. Herein, a clear and complete strategy has been originally proposed for creating a high-quality whole genome of medicinal plants. Moreover, whole genome-based biological studies of medicinal plants, including breeding and biosynthesis, were reviewed. We also advocate that a research platform of model medicinal plants should be established to promote the genomics research of medicinal plants.
Collapse
Affiliation(s)
- Yifei Pei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Liang Leng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Baocai Liu
- Institute of Agricultural Bioresource, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Xue Feng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiwen Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
5
|
Yocca AE, Platts A, Alger E, Teresi S, Mengist MF, Benevenuto J, Ferrão LFV, Jacobs M, Babinski M, Magallanes-Lundback M, Bayer P, Golicz A, Humann JL, Main D, Espley RV, Chagné D, Albert NW, Montanari S, Vorsa N, Polashock J, Díaz-Garcia L, Zalapa J, Bassil NV, Munoz PR, Iorizzo M, Edger PP. Blueberry and cranberry pangenomes as a resource for future genetic studies and breeding efforts. HORTICULTURE RESEARCH 2023; 10:uhad202. [PMID: 38023484 PMCID: PMC10673653 DOI: 10.1093/hr/uhad202] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/01/2023] [Indexed: 12/01/2023]
Abstract
Domestication of cranberry and blueberry began in the United States in the early 1800s and 1900s, respectively, and in part owing to their flavors and health-promoting benefits are now cultivated and consumed worldwide. The industry continues to face a wide variety of production challenges (e.g. disease pressures), as well as a demand for higher-yielding cultivars with improved fruit quality characteristics. Unfortunately, molecular tools to help guide breeding efforts for these species have been relatively limited compared with those for other high-value crops. Here, we describe the construction and analysis of the first pangenome for both blueberry and cranberry. Our analysis of these pangenomes revealed both crops exhibit great genetic diversity, including the presence-absence variation of 48.4% genes in highbush blueberry and 47.0% genes in cranberry. Auxiliary genes, those not shared by all cultivars, are significantly enriched with molecular functions associated with disease resistance and the biosynthesis of specialized metabolites, including compounds previously associated with improving fruit quality traits. The discovery of thousands of genes, not present in the previous reference genomes for blueberry and cranberry, will serve as the basis of future research and as potential targets for future breeding efforts. The pangenome, as a multiple-sequence alignment, as well as individual annotated genomes, are publicly available for analysis on the Genome Database for Vaccinium-a curated and integrated web-based relational database. Lastly, the core-gene predictions from the pangenomes will serve useful to develop a community genotyping platform to guide future molecular breeding efforts across the family.
Collapse
Affiliation(s)
- Alan E Yocca
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, United States
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, United States
| | - Adrian Platts
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, United States
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, United States
| | - Elizabeth Alger
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, United States
| | - Scott Teresi
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, United States
- Genetics and Genome Sciences, Michigan State University, East Lansing, MI, 48824, United States
| | - Molla F Mengist
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC United States
| | - Juliana Benevenuto
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, United States
| | - Luis Felipe V Ferrão
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, United States
| | - MacKenzie Jacobs
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, United States
| | - Michal Babinski
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, United States
| | | | - Philipp Bayer
- University of Western Australia, Perth 6009Australia
| | | | - Jodi L Humann
- Department of Horticulture, Washington State University, Pullman, WA, 99163, United States
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA, 99163, United States
| | - Richard V Espley
- The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Limited (PFR), Palmerston, New Zealand
| | - Nick W Albert
- The New Zealand Institute for Plant and Food Research Limited (PFR), Palmerston, New Zealand
| | - Sara Montanari
- The New Zealand Institute for Plant and Food Research Limited (PFR), Motueka, New Zealand
| | - Nicholi Vorsa
- SEBS, Plant Biology, Rutgers University, New Brunswick NJ 01019United States
| | - James Polashock
- SEBS, Plant Biology, Rutgers University, New Brunswick NJ 01019United States
| | - Luis Díaz-Garcia
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, United States
| | - Juan Zalapa
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, United States
| | - Nahla V Bassil
- National Clonal Germplasm Repository, USDA-ARS, Corvallis, OR 97333, United States
| | - Patricio R Munoz
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, United States
| | - Massimo Iorizzo
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NCUnited States
- Department of Horticulture, North Carolina State University, Kannapolis, NCUnited States
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, United States
- Genetics and Genome Sciences, Michigan State University, East Lansing, MI, 48824, United States
- MSU AgBioResearch, Michigan State University, East Lansing, MI, 48824, United States
| |
Collapse
|
6
|
Zeng T, He Z, He J, Lv W, Huang S, Li J, Zhu L, Wan S, Zhou W, Yang Z, Zhang Y, Luo C, He J, Wang C, Wang L. The telomere-to-telomere gap-free reference genome of wild blueberry ( Vaccinium duclouxii) provides its high soluble sugar and anthocyanin accumulation. HORTICULTURE RESEARCH 2023; 10:uhad209. [PMID: 38023474 PMCID: PMC10681038 DOI: 10.1093/hr/uhad209] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Vaccinium duclouxii, endemic to southwestern China, is a berry-producing shrub or small tree belonging to the Ericaceae family, with high nutritive, medicinal, and ornamental value, abundant germplasm resources, and good edible properties. In addition, V. duclouxii exhibits strong tolerance to adverse environmental conditions, making it a promising candidate for research and offering wide-ranging possibilities for utilization. However, the lack of V. duclouxii genome sequence has hampered its development and utilization. Here, a high-quality telomere-to-telomere genome sequence of V. duclouxii was de novo assembled and annotated. All of 12 chromosomes were assembled into gap-free single contigs, providing the highest integrity and quality assembly reported so far for blueberry. The V. duclouxii genome is 573.67 Mb, which encodes 41 953 protein-coding genes. Combining transcriptomics and metabolomics analyses, we have uncovered the molecular mechanisms involved in sugar and acid accumulation and anthocyanin biosynthesis in V. duclouxii. This provides essential molecular information for further research on the quality of V. duclouxii. Moreover, the high-quality telomere-to-telomere assembly of the V. duclouxii genome will provide insights into the genomic evolution of Vaccinium and support advancements in blueberry genetics and molecular breeding.
Collapse
Affiliation(s)
- Tuo Zeng
- School of Life Sciences, Guizhou Normal University, Guiyang 550000, China
| | - Zhijiao He
- Institute of Alpine Economic Plant, Yunnan Academy of Agricultural Sciences, Lijiang 674199, Yunnan, China
| | - Jiefang He
- School of Life Sciences, Guizhou Normal University, Guiyang 550000, China
| | - Wei Lv
- School of Life Sciences, Guizhou Normal University, Guiyang 550000, China
| | - Shixiang Huang
- School of Life Sciences, Guizhou Normal University, Guiyang 550000, China
| | - Jiawen Li
- School of Advanced Agricultural Sciences, Peking University, 100871 Beijing, China
| | - Liyong Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuang Wan
- Wuhan Benagen Technology Co., Ltd, Wuhan 430070, China
| | - Wanfei Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhengsong Yang
- Institute of Alpine Economic Plant, Yunnan Academy of Agricultural Sciences, Lijiang 674199, Yunnan, China
| | - Yatao Zhang
- School of Life Sciences, Guizhou Normal University, Guiyang 550000, China
| | - Chong Luo
- School of Life Sciences, Guizhou Normal University, Guiyang 550000, China
| | - Jiawei He
- Institute of Alpine Economic Plant, Yunnan Academy of Agricultural Sciences, Lijiang 674199, Yunnan, China
| | - Caiyun Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangsheng Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Felipez W, Villavicencio J, Nizolli VO, Pegoraro C, da Maia L, Costa de Oliveira A. Genome-Wide Identification of Bilberry WRKY Transcription Factors: Go Wild and Duplicate. PLANTS (BASEL, SWITZERLAND) 2023; 12:3176. [PMID: 37765340 PMCID: PMC10535657 DOI: 10.3390/plants12183176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/11/2023] [Accepted: 07/20/2023] [Indexed: 09/29/2023]
Abstract
WRKY transcription factor genes compose an important family of transcriptional regulators that are present in several plant species. According to previous studies, these genes can also perform important roles in bilberry (Vaccinium myrtillus L.) metabolism, making it essential to deepen our understanding of fruit ripening regulation and anthocyanin biosynthesis. In this context, the detailed characterization of these proteins will provide a comprehensive view of the functional features of VmWRKY genes in different plant organs and in response to different intensities of light. In this study, the investigation of the complete genome of the bilberry identified 76 VmWRKY genes that were evaluated and distributed in all twelve chromosomes. The proteins encoded by these genes were classified into four groups (I, II, III, and IV) based on their conserved domains and zinc finger domain types. Fifteen pairs of VmWRKY genes in segmental duplication and four pairs in tandem duplication were detected. A cis element analysis showed that all promoters of the VmWRKY genes contain at least one potential cis stress-response element. Differential expression analysis of RNA-seq data revealed that VmWRKY genes from bilberry show preferential or specific expression in samples. These findings provide an overview of the functional characterization of these proteins in bilberry.
Collapse
Affiliation(s)
- Winder Felipez
- Instituto de Agroecología y Seguridad Alimentaria, Facultad de Ciências Agrárias, Universidad San Francisco Xavier de Chuquisaca—USFX, Casilla, Correo Central, Sucre 1046, Bolivia;
- Plant Genomics and Breeding Center, Departamento de Fitotecnia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas—UFPel, Pelotas CEP 96010-900, RS, Brazil; (J.V.); (V.O.N.); (L.d.M.)
| | - Jennifer Villavicencio
- Plant Genomics and Breeding Center, Departamento de Fitotecnia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas—UFPel, Pelotas CEP 96010-900, RS, Brazil; (J.V.); (V.O.N.); (L.d.M.)
- Carrera de Ingeniería Agroforestal, Facultad de Ciencias Ambientales, Universidad Cientifica del Sur—UCSUR, Antigua Panamericana Sur km 19 Villa el Salvador, Lima CP 150142, Peru
| | - Valeria Oliveira Nizolli
- Plant Genomics and Breeding Center, Departamento de Fitotecnia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas—UFPel, Pelotas CEP 96010-900, RS, Brazil; (J.V.); (V.O.N.); (L.d.M.)
| | - Camila Pegoraro
- Plant Genomics and Breeding Center, Departamento de Fitotecnia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas—UFPel, Pelotas CEP 96010-900, RS, Brazil; (J.V.); (V.O.N.); (L.d.M.)
| | - Luciano da Maia
- Plant Genomics and Breeding Center, Departamento de Fitotecnia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas—UFPel, Pelotas CEP 96010-900, RS, Brazil; (J.V.); (V.O.N.); (L.d.M.)
| | - Antonio Costa de Oliveira
- Plant Genomics and Breeding Center, Departamento de Fitotecnia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas—UFPel, Pelotas CEP 96010-900, RS, Brazil; (J.V.); (V.O.N.); (L.d.M.)
| |
Collapse
|
8
|
Yocca AE, Platts A, Alger E, Teresi S, Mengist MF, Benevenuto J, Ferrão LFV, Jacobs M, Babinski M, Magallanes-Lundback M, Bayer P, Golicz A, Humann JL, Main D, Espley RV, Chagné D, Albert NW, Montanari S, Vorsa N, Polashock J, Díaz-Garcia L, Zalapa J, Bassil NV, Munoz PR, Iorizzo M, Edger PP. Blueberry and cranberry pangenomes as a resource for future genetic studies and breeding efforts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551392. [PMID: 37577683 PMCID: PMC10418200 DOI: 10.1101/2023.07.31.551392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Domestication of cranberry and blueberry began in the United States in the early 1800s and 1900s, respectively, and in part owing to their flavors and health-promoting benefits are now cultivated and consumed worldwide. The industry continues to face a wide variety of production challenges (e.g. disease pressures) as well as a demand for higher-yielding cultivars with improved fruit quality characteristics. Unfortunately, molecular tools to help guide breeding efforts for these species have been relatively limited compared with those for other high-value crops. Here, we describe the construction and analysis of the first pangenome for both blueberry and cranberry. Our analysis of these pangenomes revealed both crops exhibit great genetic diversity, including the presence-absence variation of 48.4% genes in highbush blueberry and 47.0% genes in cranberry. Auxiliary genes, those not shared by all cultivars, are significantly enriched with molecular functions associated with disease resistance and the biosynthesis of specialized metabolites, including compounds previously associated with improving fruit quality traits. The discovery of thousands of genes, not present in the previous reference genomes for blueberry and cranberry, will serve as the basis of future research and as potential targets for future breeding efforts. The pangenome, as a multiple-sequence alignment, as well as individual annotated genomes, are publicly available for analysis on the Genome Database for Vaccinium - a curated and integrated web-based relational database. Lastly, the core-gene predictions from the pangenomes will serve useful to develop a community genotyping platform to guide future molecular breeding efforts across the family.
Collapse
Affiliation(s)
- Alan E. Yocca
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Adrian Platts
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Elizabeth Alger
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Scott Teresi
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Genetics and Genome Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Molla F. Mengist
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC USA
| | - Juliana Benevenuto
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Luis Felipe V. Ferrão
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - MacKenzie Jacobs
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Michal Babinski
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | | | - Philipp Bayer
- University of Western Australia, Perth 6009 Australia
| | | | - Jodi L Humann
- Department of Horticulture, Washington State University, Pullman, WA, 99163, USA
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA, 99163, USA
| | - Richard V. Espley
- The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Limited (PFR), Palmerston, New Zealand
| | - Nick W. Albert
- The New Zealand Institute for Plant and Food Research Limited (PFR), Palmerston, New Zealand
| | - Sara Montanari
- The New Zealand Institute for Plant and Food Research Limited (PFR), Motueka, New Zealand
| | - Nicholi Vorsa
- SEBS, Plant Biology, Rutgers University, New Brunswick NJ 01019 USA
| | - James Polashock
- SEBS, Plant Biology, Rutgers University, New Brunswick NJ 01019 USA
| | - Luis Díaz-Garcia
- USDA-ARS, VCRU, Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Juan Zalapa
- USDA-ARS, VCRU, Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nahla V. Bassil
- USDA-ARS, National Clonal Germplasm Repository, Corvallis, OR 97333, USA
| | - Patricio R. Munoz
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Massimo Iorizzo
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC USA
- Department of Horticulture, North Carolina State University, Kannapolis, NC USA
| | - Patrick P. Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Genetics and Genome Sciences, Michigan State University, East Lansing, MI, 48824, USA
- MSU AgBioResearch, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
9
|
Nguyen HM, Putterill J, Dare AP, Plunkett BJ, Cooney J, Peng Y, Souleyre EJF, Albert NW, Espley RV, Günther CS. Two genes, ANS and UFGT2, from Vaccinium spp. are key steps for modulating anthocyanin production. FRONTIERS IN PLANT SCIENCE 2023; 14:1082246. [PMID: 36818839 PMCID: PMC9933871 DOI: 10.3389/fpls.2023.1082246] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Anthocyanins are a major group of red to blue spectrum plant pigments with many consumer health benefits. Anthocyanins are derived from the flavonoid pathway and diversified by glycosylation and methylation, involving the concerted action of specific enzymes. Blueberry and bilberry (Vaccinium spp.) are regarded as 'superfruits' owing to their high content of flavonoids, especially anthocyanins. While ripening-related anthocyanin production in bilberry (V. myrtillus) and blueberry (V. corymbosum) is regulated by the transcriptional activator MYBA1, the role of specific structural genes in determining the concentration and composition of anthocyanins has not been functionally elucidated. We isolated three candidate genes, CHALCONE SYNTHASE (VmCHS1), ANTHOCYANIDIN SYNTHASE (VmANS) and UDP-GLUCOSE : FLAVONOID-3-O-GLYCOSYLTRANSFERASE (VcUFGT2), from Vaccinium, which were predominantly expressed in pigmented fruit skin tissue and showed high homology between bilberry and blueberry. Agrobacterium-mediated transient expression of Nicotiana benthamiana showed that overexpression of VcMYBA1 in combination with VmANS significantly increased anthocyanin concentration (3-fold). Overexpression of VmCHS1 showed no effect above that induced by VcMYBA1, while VcUFGT2 modulated anthocyanin composition to produce delphinidin-3-galactosylrhamnoside, not naturally produced in tobacco. In strawberry (Fragaria × ananassa), combined transient overexpression of VcUFGT2 with a FLAVONOID 3´,5´-HYDROXYLASE from kiwifruit (Actinidia melanandra) modulated the anthocyanin profile to include galactosides and arabinosides of delphinidin and cyanidin, major anthocyanins in blueberry and bilberry. These findings provide insight into the role of the final steps of biosynthesis in modulating anthocyanin production in Vaccinium and may contribute to the targeted breeding of new cultivars with improved nutritional properties.
Collapse
Affiliation(s)
- Han M. Nguyen
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand
- University of Auckland, School of Biological Sciences, Auckland, New Zealand
| | - Joanna Putterill
- University of Auckland, School of Biological Sciences, Auckland, New Zealand
| | - Andrew P. Dare
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand
| | - Blue J. Plunkett
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand
| | - Janine Cooney
- The New Zealand Institute for Plant and Food Research Ltd, Hamilton, New Zealand
| | - Yongyan Peng
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand
| | | | - Nick W. Albert
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Richard V. Espley
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand
| | - Catrin S. Günther
- The New Zealand Institute for Plant and Food Research Ltd, Hamilton, New Zealand
| |
Collapse
|
10
|
Mengist MF, Bostan H, De Paola D, Teresi SJ, Platts AE, Cremona G, Qi X, Mackey T, Bassil NV, Ashrafi H, Giongo L, Jibran R, Chagné D, Bianco L, Lila MA, Rowland LJ, Iovene M, Edger PP, Iorizzo M. Autopolyploid inheritance and a heterozygous reciprocal translocation shape chromosome genetic behavior in tetraploid blueberry (Vaccinium corymbosum). THE NEW PHYTOLOGIST 2023; 237:1024-1039. [PMID: 35962608 PMCID: PMC10087351 DOI: 10.1111/nph.18428] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/01/2022] [Indexed: 06/02/2023]
Abstract
Understanding chromosome recombination behavior in polyploidy species is key to advancing genetic discoveries. In blueberry, a tetraploid species, the line of evidences about its genetic behavior still remain poorly understood, owing to the inter-specific, and inter-ploidy admixture of its genome and lack of in depth genome-wide inheritance and comparative structural studies. Here we describe a new high-quality, phased, chromosome-scale genome of a diploid blueberry, clone W85. The genome was integrated with cytogenetics and high-density, genetic maps representing six tetraploid blueberry cultivars, harboring different levels of wild genome admixture, to uncover recombination behavior and structural genome divergence across tetraploid and wild diploid species. Analysis of chromosome inheritance and pairing demonstrated that tetraploid blueberry behaves as an autotetraploid with tetrasomic inheritance. Comparative analysis demonstrated the presence of a reciprocal, heterozygous, translocation spanning one homolog of chr-6 and one of chr-10 in the cultivar Draper. The translocation affects pairing and recombination of chromosomes 6 and 10. Besides the translocation detected in Draper, no other structural genomic divergences were detected across tetraploid cultivars and highly inter-crossable wild diploid species. These findings and resources will facilitate new genetic and comparative genomic studies in Vaccinium and the development of genomic assisted selection strategy for this crop.
Collapse
Affiliation(s)
- Molla F. Mengist
- Plants for Human Health InstituteNorth Carolina State UniversityKannapolisNC28081USA
| | - Hamed Bostan
- Plants for Human Health InstituteNorth Carolina State UniversityKannapolisNC28081USA
| | - Domenico De Paola
- Institute of Biosciences and BioresourcesNational Research Council of ItalyBari70126Italy
| | - Scott J. Teresi
- Department of HorticultureMichigan State UniversityEast LansingMI48824USA
| | - Adrian E. Platts
- Department of HorticultureMichigan State UniversityEast LansingMI48824USA
| | - Gaetana Cremona
- Institute of Biosciences and BioresourcesNational Research Council of ItalyPorticiNA80055Italy
| | - Xinpeng Qi
- Genetic Improvement for Fruits and Vegetables LaboratoryBeltsville Agricultural Research Center‐West, US Department of Agriculture, Agricultural Research ServiceBeltsvilleMD20705USA
| | - Ted Mackey
- Horticultural Crops Research UnitUS Department of Agriculture, Agricultural Research ServiceCorvallisOR97330USA
| | - Nahla V. Bassil
- National Clonal Germplasm RepositoryUS Department of Agriculture, Agricultural Research ServiceCorvallisOR97333USA
| | - Hamid Ashrafi
- Department of Horticultural ScienceNorth Carolina State UniversityRaleighNC27695USA
| | - Lara Giongo
- Foundation of Edmund MachSan Michele all'AdigeTN38098Italy
| | - Rubina Jibran
- Plant & Food ResearchFitzherbertPalmerston North4474New Zealand
| | - David Chagné
- Plant & Food ResearchFitzherbertPalmerston North4474New Zealand
| | - Luca Bianco
- Foundation of Edmund MachSan Michele all'AdigeTN38098Italy
| | - Mary A. Lila
- Plants for Human Health InstituteNorth Carolina State UniversityKannapolisNC28081USA
| | - Lisa J. Rowland
- Genetic Improvement for Fruits and Vegetables LaboratoryBeltsville Agricultural Research Center‐West, US Department of Agriculture, Agricultural Research ServiceBeltsvilleMD20705USA
| | - Marina Iovene
- Institute of Biosciences and BioresourcesNational Research Council of ItalyPorticiNA80055Italy
| | - Patrick P. Edger
- Department of HorticultureMichigan State UniversityEast LansingMI48824USA
| | - Massimo Iorizzo
- Plants for Human Health InstituteNorth Carolina State UniversityKannapolisNC28081USA
- Department of Horticultural ScienceNorth Carolina State UniversityRaleighNC27695USA
| |
Collapse
|
11
|
Montanari S, Thomson S, Cordiner S, Günther CS, Miller P, Deng CH, McGhie T, Knäbel M, Foster T, Turner J, Chagné D, Espley R. High-density linkage map construction in an autotetraploid blueberry population and detection of quantitative trait loci for anthocyanin content. FRONTIERS IN PLANT SCIENCE 2022; 13:965397. [PMID: 36247546 PMCID: PMC9555082 DOI: 10.3389/fpls.2022.965397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
Highbush blueberry (Vaccinium corymbosum, 2n = 4x = 48) is the most cultivated type of blueberry, both in New Zealand and overseas. Its perceived nutritional value is conferred by phytonutrients, particularly anthocyanins. Identifying the genetic mechanisms that control the biosynthesis of these metabolites would enable faster development of cultivars with improved fruit qualities. Here, we used recently released tools for genetic mapping in autotetraploids to build a high-density linkage map in highbush blueberry and to detect quantitative trait loci (QTLs) for fruit anthocyanin content. Genotyping was performed by target sequencing, with ∼18,000 single nucleotide polymorphism (SNP) markers being mapped into 12 phased linkage groups (LGs). Fruits were harvested when ripe for two seasons and analyzed with high-performance liquid chromatography-mass spectrometry (HPLC-MS): 25 different anthocyanin compounds were identified and quantified. Two major QTLs that were stable across years were discovered, one on LG2 and one on LG4, and the underlying candidate genes were identified. Interestingly, the presence of anthocyanins containing acylated sugars appeared to be under strong genetic control. Information gained in this study will enable the design of molecular markers for marker-assisted selection and will help build a better understanding of the genetic control of anthocyanin biosynthesis in this crop.
Collapse
Affiliation(s)
- Sara Montanari
- The New Zealand Institute for Plant and Food Research Limited, Motueka, New Zealand
| | - Susan Thomson
- The New Zealand Institute for Plant and Food Research Limited, Lincoln, New Zealand
| | - Sarah Cordiner
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Catrin S. Günther
- The New Zealand Institute for Plant and Food Research Limited, Ruakura, New Zealand
| | - Poppy Miller
- The New Zealand Institute for Plant and Food Research Limited, Te Puke, New Zealand
| | - Cecilia H. Deng
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Tony McGhie
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Mareike Knäbel
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Toshi Foster
- The New Zealand Institute for Plant and Food Research Limited, Motueka, New Zealand
| | - Janice Turner
- The New Zealand Institute for Plant and Food Research Limited, Motueka, New Zealand
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Richard Espley
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| |
Collapse
|
12
|
Grimplet J. Genomic and Bioinformatic Resources for Perennial Fruit Species. Curr Genomics 2022; 23:217-233. [PMID: 36777875 PMCID: PMC9875543 DOI: 10.2174/1389202923666220428102632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/12/2022] [Accepted: 03/12/2022] [Indexed: 11/22/2022] Open
Abstract
In the post-genomic era, data management and development of bioinformatic tools are critical for the adequate exploitation of genomics data. In this review, we address the actual situation for the subset of crops represented by the perennial fruit species. The agronomical singularity of these species compared to plant and crop model species provides significant challenges on the implementation of good practices generally not addressed in other species. Studies are usually performed over several years in non-controlled environments, usage of rootstock is common, and breeders heavily rely on vegetative propagation. A reference genome is now available for all the major species as well as many members of the economically important genera for breeding purposes. Development of pangenome for these species is beginning to gain momentum which will require a substantial effort in term of bioinformatic tool development. The available tools for genome annotation and functional analysis will also be presented.
Collapse
Affiliation(s)
- Jérôme Grimplet
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Unidad de Hortofruticultura, Gobierno de Aragón, Avda. Montañana, Zaragoza, Spain
- Instituto Agroalimentario de Aragón–IA2 (CITA-Universidad de Zaragoza), Calle Miguel Servet, Zaragoza, Spain
| |
Collapse
|
13
|
Liggins L, Arranz V, Braid HE, Carmelet-Rescan D, Elleouet J, Egorova E, Gemmell MR, Hills SFK, Holland LP, Koot EM, Lischka A, Maxwell KH, McCartney LJ, Nguyen HTT, Noble C, Olmedo Rojas P, Parvizi E, Pearman WS, Sweatman JAN, Kaihoro TR, Walton K, Aguirre JD, Stewart LC. The future of molecular ecology in Aotearoa New Zealand: an early career perspective. J R Soc N Z 2022. [DOI: 10.1080/03036758.2022.2097709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Libby Liggins
- School of Natural Sciences, Massey University, Auckland, New Zealand
| | - Vanessa Arranz
- School of Natural Sciences, Massey University, Auckland, New Zealand
| | - Heather E. Braid
- AUT Lab for Cephalopod Ecology and Systematics, School of Science, Auckland University of Technology, Auckland, New Zealand
| | | | | | - Ekaterina Egorova
- Massey Geoinformatics Collaboratory, School of Mathematical and Computational Sciences, Auckland, New Zealand
| | - Michael R. Gemmell
- Plant Health and Environment Lab, Ministry for Primary Industries, Auckland, New Zealand
| | - Simon F. K. Hills
- Ngāti Porou
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | | | - Emily M. Koot
- The New Zealand Institute for Plant and Food Research Ltd, Palmerston North, New Zealand
| | - Alexandra Lischka
- AUT Lab for Cephalopod Ecology and Systematics, School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Kimberley H. Maxwell
- Ngāti Porou
- Te Whakatōhea, Te Whānau-a-Apanui, Ngāitai, Ngāti Tūwharetoa
- Te Kōtahi Research Institute, Faculty of Māori and Indigenous Studies, University of Waikato, Hamilton, New Zealand
| | | | - Hang T. T. Nguyen
- Faculty of Fisheries, University of Agriculture and Forestry, Hue University, Vietnam
| | - Cory Noble
- School of Natural Sciences, Massey University, Auckland, New Zealand
| | | | - Elahe Parvizi
- School of Science, University of Waikato, Hamilton, New Zealand
| | | | | | | | - Kerry Walton
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - J. David Aguirre
- School of Natural Sciences, Massey University, Auckland, New Zealand
| | | |
Collapse
|
14
|
Cui F, Ye X, Li X, Yang Y, Hu Z, Overmyer K, Brosché M, Yu H, Salojärvi J. Chromosome-level genome assembly of the diploid blueberry Vaccinium darrowii provides insights into its subtropical adaptation and cuticle synthesis. PLANT COMMUNICATIONS 2022; 3:100307. [PMID: 35605198 PMCID: PMC9284290 DOI: 10.1016/j.xplc.2022.100307] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 05/25/2023]
Abstract
Vaccinium darrowii is a subtropical wild blueberry species that has been used to breed economically important southern highbush cultivars. The adaptive traits of V. darrowii to subtropical climates can provide valuable information for breeding blueberry and perhaps other plants, especially against the background of global warming. Here, we assembled the V. darrowii genome into 12 pseudochromosomes using Oxford Nanopore long reads complemented with Hi-C scaffolding technologies, and we predicted 41 815 genes using RNA-sequencing evidence. Syntenic analysis across three Vaccinium species revealed a highly conserved genome structure, with the highest collinearity between V. darrowii and Vaccinium corymbosum. This conserved genome structure may explain the high fertility observed during crossbreeding of V. darrowii with other blueberry cultivars. Analysis of gene expansion and tandem duplication indicated possible roles for defense- and flowering-associated genes in the adaptation of V. darrowii to the subtropics. Putative SOC1 genes in V. darrowii were identified based on phylogeny and expression analysis. Blueberries are covered in a thick cuticle layer and contain anthocyanins, which confer their powdery blue color. Using RNA sequencing, we delineated the cuticle biosynthesis pathways of Vaccinium species in V. darrowii. This result can serve as a reference for breeding berries whose colors are appealing to customers. The V. darrowii reference genome, together with the unique traits of this species, including its diploid genome, short vegetative phase, and high compatibility in hybridization with other blueberries, make V. darrowii a potential research model for blueberry species.
Collapse
Affiliation(s)
- Fuqiang Cui
- College of Forestry and Biotechnology, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, China.
| | - Xiaoxue Ye
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Xiaoxiao Li
- College of Forestry and Biotechnology, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Yifan Yang
- College of Forestry and Biotechnology, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Zhubing Hu
- State Key Laboratory of Cotton Biology, Department of Biology, Institute of Plant Stress Biology, Henan University, Kaifeng, China
| | - Kirk Overmyer
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and the Viikki Plant Science Centre, University of Helsinki, PO Box 65 (Viikinkaari 1), 00014 Helsinki, Finland
| | - Mikael Brosché
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and the Viikki Plant Science Centre, University of Helsinki, PO Box 65 (Viikinkaari 1), 00014 Helsinki, Finland
| | - Hong Yu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jarkko Salojärvi
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and the Viikki Plant Science Centre, University of Helsinki, PO Box 65 (Viikinkaari 1), 00014 Helsinki, Finland.
| |
Collapse
|
15
|
Lafferty DJ, Espley RV, Deng CH, Dare AP, Günther CS, Jaakola L, Karppinen K, Boase MR, Wang L, Luo H, Allan AC, Albert NW. The Coordinated Action of MYB Activators and Repressors Controls Proanthocyanidin and Anthocyanin Biosynthesis in Vaccinium. FRONTIERS IN PLANT SCIENCE 2022; 13:910155. [PMID: 35812927 PMCID: PMC9263919 DOI: 10.3389/fpls.2022.910155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Vaccinium berries are regarded as "superfoods" owing to their high concentrations of anthocyanins, flavonoid metabolites that provide pigmentation and positively affect human health. Anthocyanin localization differs between the fruit of cultivated highbush blueberry (V. corymbosum) and wild bilberry (V. myrtillus), with the latter having deep red flesh coloration. Analysis of comparative transcriptomics across a developmental series of blueberry and bilberry fruit skin and flesh identified candidate anthocyanin regulators responsible for this distinction. This included multiple activator and repressor transcription factors (TFs) that correlated strongly with anthocyanin production and had minimal expression in blueberry (non-pigmented) flesh. R2R3 MYB TFs appeared key to the presence and absence of anthocyanin-based pigmentation; MYBA1 and MYBPA1.1 co-activated the pathway while MYBC2.1 repressed it. Transient overexpression of MYBA1 in Nicotiana benthamiana strongly induced anthocyanins, but this was substantially reduced when co-infiltrated with MYBC2.1. Co-infiltration of MYBC2.1 with MYBA1 also reduced activation of DFR and UFGT, key anthocyanin biosynthesis genes, in promoter activation studies. We demonstrated that these TFs operate within a regulatory hierarchy where MYBA1 activated the promoters of MYBC2.1 and bHLH2. Stable overexpression of VcMYBA1 in blueberry elevated anthocyanin content in transgenic plants, indicating that MYBA1 is sufficient to upregulate the TF module and activate the pathway. Our findings identify TF activators and repressors that are hierarchically regulated by SG6 MYBA1, and fine-tune anthocyanin production in Vaccinium. The lack of this TF module in blueberry flesh results in an absence of anthocyanins.
Collapse
Affiliation(s)
- Declan J. Lafferty
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Richard V. Espley
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Cecilia H. Deng
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Andrew P. Dare
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Catrin S. Günther
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Laura Jaakola
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian Institute of Bioeconomy Research (NIBIO), Tromsø, Norway
| | - Katja Karppinen
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Murray R. Boase
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Lei Wang
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Henry Luo
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Andrew C. Allan
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Nick W. Albert
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| |
Collapse
|
16
|
Edger PP, Iorizzo M, Bassil NV, Benevenuto J, Ferrão LFV, Giongo L, Hummer K, Lawas LMF, Leisner CP, Li C, Munoz PR, Ashrafi H, Atucha A, Babiker EM, Canales E, Chagné D, DeVetter L, Ehlenfeldt M, Espley RV, Gallardo K, Günther CS, Hardigan M, Hulse-Kemp AM, Jacobs M, Lila MA, Luby C, Main D, Mengist MF, Owens GL, Perkins-Veazie P, Polashock J, Pottorff M, Rowland LJ, Sims CA, Song GQ, Spencer J, Vorsa N, Yocca AE, Zalapa J. There and back again; historical perspective and future directions for Vaccinium breeding and research studies. HORTICULTURE RESEARCH 2022; 9:uhac083. [PMID: 35611183 PMCID: PMC9123236 DOI: 10.1093/hr/uhac083] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/22/2022] [Indexed: 06/02/2023]
Abstract
The genus Vaccinium L. (Ericaceae) contains a wide diversity of culturally and economically important berry crop species. Consumer demand and scientific research in blueberry (Vaccinium spp.) and cranberry (Vaccinium macrocarpon) have increased worldwide over the crops' relatively short domestication history (~100 years). Other species, including bilberry (Vaccinium myrtillus), lingonberry (Vaccinium vitis-idaea), and ohelo berry (Vaccinium reticulatum) are largely still harvested from the wild but with crop improvement efforts underway. Here, we present a review article on these Vaccinium berry crops on topics that span taxonomy to genetics and genomics to breeding. We highlight the accomplishments made thus far for each of these crops, along their journey from the wild, and propose research areas and questions that will require investments by the community over the coming decades to guide future crop improvement efforts. New tools and resources are needed to underpin the development of superior cultivars that are not only more resilient to various environmental stresses and higher yielding, but also produce fruit that continue to meet a variety of consumer preferences, including fruit quality and health related traits.
Collapse
Affiliation(s)
- Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- MSU AgBioResearch, Michigan State University, East Lansing, MI, 48824, USA
| | - Massimo Iorizzo
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC USA
- Department of Horticultural Science, North Carolina State University, Raleigh, NC USA
| | - Nahla V Bassil
- USDA-ARS, National Clonal Germplasm Repository, Corvallis, OR 97333, USA
| | - Juliana Benevenuto
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Luis Felipe V Ferrão
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Lara Giongo
- Fondazione Edmund Mach - Research and Innovation CentreItaly
| | - Kim Hummer
- USDA-ARS, National Clonal Germplasm Repository, Corvallis, OR 97333, USA
| | - Lovely Mae F Lawas
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Courtney P Leisner
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Changying Li
- Phenomics and Plant Robotics Center, College of Engineering, University of Georgia, Athens, USA
| | - Patricio R Munoz
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Hamid Ashrafi
- Department of Horticultural Science, North Carolina State University, Raleigh, NC USA
| | - Amaya Atucha
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ebrahiem M Babiker
- USDA-ARS Southern Horticultural Laboratory, Poplarville, MS 39470-0287, USA
| | - Elizabeth Canales
- Department of Agricultural Economics, Mississippi State University, Mississippi State, MS 39762, USA
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Limited (PFR), Palmerston North, New Zealand
| | - Lisa DeVetter
- Department of Horticulture, Washington State University Northwestern Washington Research and Extension Center, Mount Vernon, WA, 98221, USA
| | - Mark Ehlenfeldt
- SEBS, Plant Biology, Rutgers University, New Brunswick NJ 01019 USA
| | - Richard V Espley
- The New Zealand Institute for Plant and Food Research Limited (PFR), Palmerston North, New Zealand
| | - Karina Gallardo
- School of Economic Sciences, Washington State University, Puyallup, WA 98371, USA
| | - Catrin S Günther
- The New Zealand Institute for Plant and Food Research Limited (PFR), Palmerston North, New Zealand
| | - Michael Hardigan
- USDA-ARS, Horticulture Crops Research Unit, Corvallis, OR 97333, USA
| | - Amanda M Hulse-Kemp
- USDA-ARS, Genomics and Bioinformatics Research Unit, Raleigh, NC 27695, USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - MacKenzie Jacobs
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48823, USA
| | - Mary Ann Lila
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC USA
| | - Claire Luby
- USDA-ARS, Horticulture Crops Research Unit, Corvallis, OR 97333, USA
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA, 99163, USA
| | - Molla F Mengist
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC USA
- Department of Horticultural Science, North Carolina State University, Raleigh, NC USA
| | | | | | - James Polashock
- SEBS, Plant Biology, Rutgers University, New Brunswick NJ 01019 USA
| | - Marti Pottorff
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC USA
| | - Lisa J Rowland
- USDA-ARS, Genetic Improvement of Fruits and Vegetables Laboratory, Beltsville, MD 20705, USA
| | - Charles A Sims
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - Guo-qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Jessica Spencer
- Department of Horticultural Science, North Carolina State University, Raleigh, NC USA
| | - Nicholi Vorsa
- SEBS, Plant Biology, Rutgers University, New Brunswick NJ 01019 USA
| | - Alan E Yocca
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Juan Zalapa
- USDA-ARS, VCRU, Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
17
|
Samkumar A, Jones D, Karppinen K, Dare AP, Sipari N, Espley RV, Martinussen I, Jaakola L. Red and blue light treatments of ripening bilberry fruits reveal differences in signalling through abscisic acid-regulated anthocyanin biosynthesis. PLANT, CELL & ENVIRONMENT 2021; 44:3227-3245. [PMID: 34337774 DOI: 10.1111/pce.14158] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 05/28/2023]
Abstract
The biosynthesis of anthocyanins has been shown to be influenced by light quality. However, the molecular mechanisms underlying the light-mediated regulation of fruit anthocyanin biosynthesis are not well understood. In this study, we analysed the effects of supplemental red and blue light on the anthocyanin biosynthesis in non-climacteric bilberry (Vaccinium myrtillus L.). After 6 days of continuous irradiation during ripening, both red and blue light elevated concentration of anthocyanins, up to 12- and 4-folds, respectively, compared to the control. Transcriptomic analysis of ripening berries showed that both light treatments up-regulated all the major anthocyanin structural genes, the key regulatory MYB transcription factors and abscisic acid (ABA) biosynthetic genes. However, higher induction of specific genes of anthocyanin and delphinidin biosynthesis alongside ABA signal perception and metabolism were found in red light. The difference in red and blue light signalling was found in 9-cis-epoxycarotenoid dioxygenase (NCED), ABA receptor pyrabactin resistance-like (PYL) and catabolic ABA-8'hydroxylase gene expression. Red light also up-regulated expression of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) domain transporters, which may indicate involvement of these proteins in vesicular trafficking of anthocyanins during fruit ripening. Our results suggest differential signal transduction and transport mechanisms between red and blue light in ABA-regulated anthocyanin and delphinidin biosynthesis during bilberry fruit ripening.
Collapse
Affiliation(s)
- Amos Samkumar
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Dan Jones
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| | - Katja Karppinen
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Andrew P Dare
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| | - Nina Sipari
- Viikki Metabolomics Unit, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Richard V Espley
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| | | | - Laura Jaakola
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian Institute of Bioeconomy Research, Ås, Norway
| |
Collapse
|
18
|
Tang Q, Chi FM, Liu HD, Zhang HJ, Song Y. Single-Molecule Real-Time and Illumina Sequencing to Analyze Transcriptional Regulation of Flavonoid Synthesis in Blueberry. FRONTIERS IN PLANT SCIENCE 2021; 12:754325. [PMID: 34659323 PMCID: PMC8514788 DOI: 10.3389/fpls.2021.754325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/08/2021] [Indexed: 05/24/2023]
Abstract
Blueberries (Vaccinium corymbosum) contain large amounts of flavonoids, which play important roles in the plant's ability to resist stress and can also have beneficial effects on human health when the fruits are eaten. However, the molecular mechanisms that regulate flavonoid synthesis in blueberries are still unclear. In this study, we combined two different transcriptome sequencing platforms, single-molecule real-time (SMRT) and Illumina sequencing, to elucidate the flavonoid synthetic pathways in blueberries. We analyzed transcript quantity, length, and the number of annotated genes. We mined genes associated with flavonoid synthesis (such as anthocyanins, flavonols, and proanthocyanidins) and employed fluorescence quantitative PCR to analyze the expression of these genes and their correlation with flavonoid synthesis. We discovered one R2R3 MYB transcription factor from the sequencing library, VcMYB1, that can positively regulate anthocyanin synthesis in blueberries. VcMYB1 is mainly expressed in colored (mature) fruits. Experiments showed that overexpression and transient expression of VcMYB1 promoted anthocyanin synthesis in Arabidopsis, tobacco (Nicotiana benthamiana) plants and green blueberry fruits. Yeast one-hybrid (Y1H) assay, electrophoretic mobility shift assay, and transient expression experiments showed that VcMYB1 binds to the MYB binding site on the promoter of the structural gene for anthocyanin synthesis, VcMYB1 to positively regulate the transcription of VcDFR, thereby promoting anthocyanin synthesis. We also performed an in-depth investigation of transcriptional regulation of anthocyanin synthesis. This study provides background information and data for studying the synthetic pathways of flavonoids and other secondary metabolites in blueberries.
Collapse
|