1
|
Cook LSJ, Briscoe AG, Fonseca VG, Boenigk J, Woodward G, Bass D. Microbial, holobiont, and Tree of Life eDNA/eRNA for enhanced ecological assessment. Trends Microbiol 2024:S0966-842X(24)00173-2. [PMID: 39164135 DOI: 10.1016/j.tim.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 08/22/2024]
Abstract
Microbial environmental DNA and RNA (collectively 'eNA') originate from a diverse and abundant array of microbes present in environmental samples. These eNA signals, largely representing whole organisms, serve as a powerful complement to signals derived from fragments or remnants of larger organisms. Integrating microbial data into the toolbox of ecosystem assessments and biotic indices therefore has the potential to transform how we use eNA data to understand biodiversity dynamics and ecosystem functions, and to inform the next generation of environmental monitoring. Incorporating holobiont and Tree of Life approaches into eNA analyses offers further holistic insight into the range of ecological interactions between microbes and other organisms, paving the way for advancing our understanding of, and ultimately manipulating ecosystem properties pertinent to environmental management, conservation, wildlife health, and food production.
Collapse
Affiliation(s)
- Lauren S J Cook
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset DT4 8UB, UK; Science, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Andrew G Briscoe
- Science, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; NatureMetrics, Surrey Research Park, Guildford GU2 7HJ, UK
| | - Vera G Fonseca
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset DT4 8UB, UK
| | - Jens Boenigk
- Department of Biodiversity, University of Duisburg-Essen, 45141 Essen, Universitätsstraße 5, Germany
| | - Guy Woodward
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
| | - David Bass
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset DT4 8UB, UK; Science, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
2
|
Scholz C, Jarquín-Díaz VH, Planillo A, Radchuk V, Scherer C, Schulze C, Ortmann S, Kramer-Schadt S, Heitlinger E. Host weight, seasonality and anthropogenic factors contribute to parasite community differences between urban and rural foxes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 936:173355. [PMID: 38796016 DOI: 10.1016/j.scitotenv.2024.173355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024]
Abstract
Pathogens often occur at different prevalence along environmental gradients. This is of particular importance for gradients of anthropogenic impact such as rural-urban transitions presenting a changing interface between humans and wildlife. The assembly of parasite communities is affected by both the external environmental conditions and individual host characteristics. Hosts with low body weight (smaller individuals or animals with poor body condition) might be more susceptible to infection. Furthermore, parasites' mode of transmission might affect their occurrence: rural environments with better availability of intermediate hosts might favour trophic transmission, while urban environments, typically with dense definitive host populations, might favour direct transmission. We here study helminth communities (141 intestinal samples) within the red fox (Vulpes vulpes), a synanthropic host, using DNA metabarcoding of multiple marker genes. We analysed the effect of urbanisation, seasonality and host-intrinsic (weight, sex) variables on helminth communities. Helminth species richness increased in foxes with lower body weight and in winter and spring. Season and urbanisation, however, had strong effects on the community composition, i.e., on the identity of the detected species. Surprisingly, transmission in two-host life cycles (trophic transmission) was more pronounced in urban Berlin than in rural Brandenburg. This disagrees with the prevailing hypothesis that trophically transmitted helminths are less prevalent in urban areas than in rural areas. Generally, co-infestations with multiple helminths and high infection intensity are associated with lighter (younger, smaller or low body condition) animals. Both host-intrinsic traits and environmental drivers together shape parasite community composition and turnover along urban-rural gradients.
Collapse
Affiliation(s)
- Carolin Scholz
- Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany
| | - Víctor Hugo Jarquín-Díaz
- Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany; Department of Molecular Parasitology, Institute for Biology, Humboldt University Berlin (HU), Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Aimara Planillo
- Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Viktoriia Radchuk
- Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany
| | - Cédric Scherer
- Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany
| | - Christoph Schulze
- Berlin-Brandenburg State Laboratory (LLBB), Frankfurt (Oder), Germany
| | - Sylvia Ortmann
- Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany
| | - Stephanie Kramer-Schadt
- Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany; Institute of Ecology, Technische Universität Berlin, Germany
| | - Emanuel Heitlinger
- Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany; Department of Molecular Parasitology, Institute for Biology, Humboldt University Berlin (HU), Berlin, Germany.
| |
Collapse
|
3
|
Li Y, Devenish C, Tosa MI, Luo M, Bell DM, Lesmeister DB, Greenfield P, Pichler M, Levi T, Yu DW. Combining environmental DNA and remote sensing for efficient, fine-scale mapping of arthropod biodiversity. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230123. [PMID: 38705177 PMCID: PMC11070265 DOI: 10.1098/rstb.2023.0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/31/2024] [Indexed: 05/07/2024] Open
Abstract
Arthropods contribute importantly to ecosystem functioning but remain understudied. This undermines the validity of conservation decisions. Modern methods are now making arthropods easier to study, since arthropods can be mass-trapped, mass-identified, and semi-mass-quantified into 'many-row (observation), many-column (species)' datasets, with homogeneous error, high resolution, and copious environmental-covariate information. These 'novel community datasets' let us efficiently generate information on arthropod species distributions, conservation values, uncertainty, and the magnitude and direction of human impacts. We use a DNA-based method (barcode mapping) to produce an arthropod-community dataset from 121 Malaise-trap samples, and combine it with 29 remote-imagery layers using a deep neural net in a joint species distribution model. With this approach, we generate distribution maps for 76 arthropod species across a 225 km2 temperate-zone forested landscape. We combine the maps to visualize the fine-scale spatial distributions of species richness, community composition, and site irreplaceability. Old-growth forests show distinct community composition and higher species richness, and stream courses have the highest site-irreplaceability values. With this 'sideways biodiversity modelling' method, we demonstrate the feasibility of biodiversity mapping at sufficient spatial resolution to inform local management choices, while also being efficient enough to scale up to thousands of square kilometres. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.
Collapse
Affiliation(s)
- Yuanheng Li
- Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, State Key Laboratory of Genetic Resources and Evolution, Chinese Academy of Sciences, Kunming, Yunnan 650223, People’s Republic of China
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, People’s Republic of China
- Faculty of Biology, University of Duisburg-Essen, Essen 45141, Germany
| | - Christian Devenish
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR47TJ, UK
| | - Marie I. Tosa
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Mingjie Luo
- Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, State Key Laboratory of Genetic Resources and Evolution, Chinese Academy of Sciences, Kunming, Yunnan 650223, People’s Republic of China
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, People’s Republic of China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, People’s Republic of China
| | - David M. Bell
- Pacific Northwest Research Station, U.S. Department of Agriculture Forest Service, Corvallis, OR 97331, USA
| | - Damon B. Lesmeister
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, OR 97331, USA
- Pacific Northwest Research Station, U.S. Department of Agriculture Forest Service, Corvallis, OR 97331, USA
| | - Paul Greenfield
- CSIRO Energy, Lindfield, New South Wales, Australia
- School of Biological Sciences, Macquarie University, Sydney, Australia
| | | | - Taal Levi
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Douglas W. Yu
- Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, State Key Laboratory of Genetic Resources and Evolution, Chinese Academy of Sciences, Kunming, Yunnan 650223, People’s Republic of China
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, People’s Republic of China
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR47TJ, UK
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming Yunnan 650223, People’s Republic of China
| |
Collapse
|
4
|
Meier R, Hartop E, Pylatiuk C, Srivathsan A. Towards holistic insect monitoring: species discovery, description, identification and traits for all insects. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230120. [PMID: 38705187 PMCID: PMC11070263 DOI: 10.1098/rstb.2023.0120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/25/2024] [Indexed: 05/07/2024] Open
Abstract
Holistic insect monitoring needs scalable techniques to overcome taxon biases, determine species abundances, and gather functional traits for all species. This requires that we address taxonomic impediments and the paucity of data on abundance, biomass and functional traits. We here outline how these data deficiencies could be addressed at scale. The workflow starts with large-scale barcoding (megabarcoding) of all specimens from mass samples obtained at biomonitoring sites. The barcodes are then used to group the specimens into molecular operational taxonomic units that are subsequently tested/validated as species with a second data source (e.g. morphology). New species are described using barcodes, images and short diagnoses, and abundance data are collected for both new and described species. The specimen images used for species discovery then become the raw material for training artificial intelligence identification algorithms and collecting trait data such as body size, biomass and feeding modes. Additional trait data can be obtained from vouchers by using genomic tools developed by molecular ecologists. Applying this pipeline to a few samples per site will lead to greatly improved insect monitoring regardless of whether the species composition of a sample is determined with images, metabarcoding or megabarcoding. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.
Collapse
Affiliation(s)
- Rudolf Meier
- Center for Integrative Biodiversity Discovery, Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany
- Institute of Biology, Humboldt University, 10115 Berlin, Germany
| | - Emily Hartop
- Center for Integrative Biodiversity Discovery, Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, NO-7491, Norway
| | - Christian Pylatiuk
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Amrita Srivathsan
- Center for Integrative Biodiversity Discovery, Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany
| |
Collapse
|
5
|
Iwaszkiewicz-Eggebrecht E, Zizka V, Lynggaard C. Three steps towards comparability and standardization among molecular methods for characterizing insect communities. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230118. [PMID: 38705189 PMCID: PMC11070264 DOI: 10.1098/rstb.2023.0118] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/10/2023] [Indexed: 05/07/2024] Open
Abstract
Molecular methods are currently some of the best-suited technologies for implementation in insect monitoring. However, the field is developing rapidly and lacks agreement on methodology or community standards. To apply DNA-based methods in large-scale monitoring, and to gain insight across commensurate data, we need easy-to-implement standards that improve data comparability. Here, we provide three recommendations for how to improve and harmonize efforts in biodiversity assessment and monitoring via metabarcoding: (i) we should adopt the use of synthetic spike-ins, which will act as positive controls and internal standards; (ii) we should consider using several markers through a multiplex polymerase chain reaction (PCR) approach; and (iii) we should commit to the publication and transparency of all protocol-associated metadata in a standardized fashion. For (i), we provide a ready-to-use recipe for synthetic cytochrome c oxidase spike-ins, which enable between-sample comparisons. For (ii), we propose two gene regions for the implementation of multiplex PCR approaches, thereby achieving a more comprehensive community description. For (iii), we offer guidelines for transparent and unified reporting of field, wet-laboratory and dry-laboratory procedures, as a key to making comparisons between studies. Together, we feel that these three advances will result in joint quality and calibration standards rather than the current laboratory-specific proof of concepts. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.
Collapse
Affiliation(s)
- Ela Iwaszkiewicz-Eggebrecht
- Bioinformatics and Genetics Department, Swedish Museum of Natural History, PO Box 50007, Stockholm, 104 05, Sweden
| | - Vera Zizka
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, 53113, Germany
| | - Christina Lynggaard
- Section for Molecular Ecology & Evolution, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| |
Collapse
|
6
|
Blackman R, Couton M, Keck F, Kirschner D, Carraro L, Cereghetti E, Perrelet K, Bossart R, Brantschen J, Zhang Y, Altermatt F. Environmental DNA: The next chapter. Mol Ecol 2024; 33:e17355. [PMID: 38624076 DOI: 10.1111/mec.17355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024]
Abstract
Molecular tools are an indispensable part of ecology and biodiversity sciences and implemented across all biomes. About a decade ago, the use and implementation of environmental DNA (eDNA) to detect biodiversity signals extracted from environmental samples opened new avenues of research. Initial eDNA research focused on understanding population dynamics of target species. Its scope thereafter broadened, uncovering previously unrecorded biodiversity via metabarcoding in both well-studied and understudied ecosystems across all taxonomic groups. The application of eDNA rapidly became an established part of biodiversity research, and a research field by its own. Here, we revisit key expectations made in a land-mark special issue on eDNA in Molecular Ecology in 2012 to frame the development in six key areas: (1) sample collection, (2) primer development, (3) biomonitoring, (4) quantification, (5) behaviour of DNA in the environment and (6) reference database development. We pinpoint the success of eDNA, yet also discuss shortfalls and expectations not met, highlighting areas of research priority and identify the unexpected developments. In parallel, our retrospective couples a screening of the peer-reviewed literature with a survey of eDNA users including academics, end-users and commercial providers, in which we address the priority areas to focus research efforts to advance the field of eDNA. With the rapid and ever-increasing pace of new technical advances, the future of eDNA looks bright, yet successful applications and best practices must become more interdisciplinary to reach its full potential. Our retrospect gives the tools and expectations towards concretely moving the field forward.
Collapse
Affiliation(s)
- Rosetta Blackman
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Marjorie Couton
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - François Keck
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Dominik Kirschner
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, Ecosystems and Landscape Evolution, ETH Zürich, Zürich, Switzerland
- Department of Landscape Dynamics & Ecology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Luca Carraro
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Eva Cereghetti
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Kilian Perrelet
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
- Department of Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Department of Urban Water Management, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Raphael Bossart
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Jeanine Brantschen
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Yan Zhang
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Florian Altermatt
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| |
Collapse
|
7
|
Kaspari M, Weiser MD, Siler CD, Marshall KE, Smith SN, Stroh KM, de Beurs KM. Capacity and establishment rules govern the number of nonnative species in communities of ground-dwelling invertebrates. Ecol Evol 2024; 14:e10856. [PMID: 38487748 PMCID: PMC10937486 DOI: 10.1002/ece3.10856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/05/2024] [Accepted: 01/14/2024] [Indexed: 03/17/2024] Open
Abstract
Nonnative species are a key agent of global change. However, nonnative invertebrates remain understudied at the community scales where they are most likely to drive local extirpations. We use the North American NEON pitfall trapping network to document the number of nonnative species from 51 invertebrate communities, testing four classes of drivers. We sequenced samples using the eDNA from the sample's storage ethanol. We used AICc informed regression to evaluate how native species richness, productivity, habitat, temperature, and human population density and vehicular traffic account for continent-wide variation in the number of nonnative species in a local community. The percentage of nonnatives varied 3-fold among habitat types and over 10-fold (0%-14%) overall. We found evidence for two types of constraints on nonnative diversity. Consistent with Capacity rules (i.e., how the number of niches and individuals reflect the number of species an ecosystem can support) nonnatives increased with existing native species richness and ecosystem productivity. Consistent with Establishment Rules (i.e., how the dispersal rate of nonnative propagules and the number of open sites limits nonnative species richness) nonnatives increased with automobile traffic-a measure of human-generated propagule pressure-and were twice as common in pastures than native grasslands. After accounting for drivers associated with a community's ability to support native species (native species richness and productivity), nonnatives are more common in communities that are regularly seasonally disturbed (pastures and, potentially deciduous forests) and those experiencing more vehicular traffic. These baseline values across the US North America will allow NEON's monitoring mission to document how anthropogenic change-from disturbance to propagule transport, from temperature to trends in local extinction-further shape biotic homogenization.
Collapse
Affiliation(s)
- Michael Kaspari
- Geographical Ecology Group, Department of BiologyUniversity of OklahomaNormanOklahomaUSA
- Conservation Ecology CenterSmithsonian's National Zoo and Conservation Biology InstituteFront RoyalVirginiaUSA
| | - Michael D. Weiser
- Geographical Ecology Group, Department of BiologyUniversity of OklahomaNormanOklahomaUSA
| | - Cameron D. Siler
- Geographical Ecology Group, Department of BiologyUniversity of OklahomaNormanOklahomaUSA
- Sam Noble Oklahoma Museum of Natural HistoryUniversity of OklahomaNormanOklahomaUSA
| | - Katie E. Marshall
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Sierra N. Smith
- Geographical Ecology Group, Department of BiologyUniversity of OklahomaNormanOklahomaUSA
- Sam Noble Oklahoma Museum of Natural HistoryUniversity of OklahomaNormanOklahomaUSA
| | - Katherine M. Stroh
- Sam Noble Oklahoma Museum of Natural HistoryUniversity of OklahomaNormanOklahomaUSA
| | - Kirsten M. de Beurs
- Laboratory of Geo‐Information Science and Remote SensingWageningen University and ResearchWageningenThe Netherlands
| |
Collapse
|
8
|
Hartig F, Abrego N, Bush A, Chase JM, Guillera-Arroita G, Leibold MA, Ovaskainen O, Pellissier L, Pichler M, Poggiato G, Pollock L, Si-Moussi S, Thuiller W, Viana DS, Warton DI, Zurell D, Yu DW. Novel community data in ecology-properties and prospects. Trends Ecol Evol 2024; 39:280-293. [PMID: 37949795 DOI: 10.1016/j.tree.2023.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 11/12/2023]
Abstract
New technologies for monitoring biodiversity such as environmental (e)DNA, passive acoustic monitoring, and optical sensors promise to generate automated spatiotemporal community observations at unprecedented scales and resolutions. Here, we introduce 'novel community data' as an umbrella term for these data. We review the emerging field around novel community data, focusing on new ecological questions that could be addressed; the analytical tools available or needed to make best use of these data; and the potential implications of these developments for policy and conservation. We conclude that novel community data offer many opportunities to advance our understanding of fundamental ecological processes, including community assembly, biotic interactions, micro- and macroevolution, and overall ecosystem functioning.
Collapse
Affiliation(s)
- Florian Hartig
- Theoretical Ecology, University of Regensburg, Regensburg, Germany.
| | - Nerea Abrego
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35 (Survontie 9C), FI-40014 Jyväskylä, Finland
| | - Alex Bush
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | | | | | - Otso Ovaskainen
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35 (Survontie 9C), FI-40014 Jyväskylä, Finland; Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, Helsinki 00014, Finland
| | - Loïc Pellissier
- Ecosystems and Landscape Evolution, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, 8092 Zurich, Switzerland; Unit of Land Change Science, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), 8903 Birmensdorf, Switzerland
| | | | - Giovanni Poggiato
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F38000, Grenoble, France
| | - Laura Pollock
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Sara Si-Moussi
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F38000, Grenoble, France
| | - Wilfried Thuiller
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F38000, Grenoble, France
| | | | | | | | - Douglas W Yu
- Kunming Institute of Zoology; Yunnan, China; University of East Anglia, Norfolk, UK
| |
Collapse
|
9
|
Soldan R, Fusi M, Cardinale M, Homma F, Santos LG, Wenzl P, Bach-Pages M, Bitocchi E, Chacon Sanchez MI, Daffonchio D, Preston GM. Consistent effects of independent domestication events on the plant microbiota. Curr Biol 2024; 34:557-567.e4. [PMID: 38232731 DOI: 10.1016/j.cub.2023.12.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/01/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024]
Abstract
The effect of plant domestication on plant-microbe interactions remains difficult to prove. In this study, we provide evidence of a domestication effect on the composition and abundance of the plant microbiota. We focused on the genus Phaseolus, which underwent four independent domestication events within two species (P. vulgaris and P. lunatus), providing multiple replicates of a process spanning thousands of years. We targeted Phaseolus seeds to identify a link between domesticated traits and bacterial community composition as Phaseolus seeds have been subject to large and consistent phenotypic changes during these independent domestication events. The seed bacterial communities of representative plant accessions from subpopulations descended from each domestication event were analyzed under controlled and field conditions. The results showed that independent domestication events led to similar seed bacterial community signatures in independently domesticated plant populations, which could be partially explained by selection for common domesticated plant phenotypes. Our results therefore provide evidence of a consistent effect of plant domestication on seed microbial community composition and abundance and offer avenues for applying knowledge of the impact of plant domestication on the plant microbiota to improve microbial applications in agriculture.
Collapse
Affiliation(s)
| | - Marco Fusi
- Center for Conservation and Restoration Science, Edinburgh Napier University, Edinburgh, UK
| | - Massimiliano Cardinale
- University of Salento, Department of Biological and Environmental Sciences and Technologies, Lecce, Italy
| | - Felix Homma
- University of Oxford, Department of Biology, Oxford, UK
| | - Luis Guillermo Santos
- The Alliance Biodiversity International and the International Center for Tropical Agriculture (CIAT), Palmira, Colombia
| | - Peter Wenzl
- The Alliance Biodiversity International and the International Center for Tropical Agriculture (CIAT), Palmira, Colombia
| | | | - Elena Bitocchi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Maria Isabel Chacon Sanchez
- Departamento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Daniele Daffonchio
- Red Sea Research Center (RSRC), 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Gail M Preston
- University of Oxford, Department of Biology, Oxford, UK.
| |
Collapse
|
10
|
Sire L, Schmidt Yáñez P, Bézier A, Courtial B, Mbedi S, Sparmann S, Larrieu L, Rougerie R, Bouget C, Monaghan MT, Herniou EA, Lopez-Vaamonde C. Persisting roadblocks in arthropod monitoring using non-destructive metabarcoding from collection media of passive traps. PeerJ 2023; 11:e16022. [PMID: 37842065 PMCID: PMC10573316 DOI: 10.7717/peerj.16022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/11/2023] [Indexed: 10/17/2023] Open
Abstract
Background Broad-scale monitoring of arthropods is often carried out with passive traps (e.g., Malaise traps) that can collect thousands of specimens per sample. The identification of individual specimens requires time and taxonomic expertise, limiting the geographical and temporal scale of research and monitoring studies. DNA metabarcoding of bulk-sample homogenates has been found to be faster, efficient and reliable, but the destruction of samples prevents a posteriori validation of species occurrences and relative abundances. Non-destructive metabarcoding of DNA extracted from collection medium has been applied in a limited number of studies, but further tests of efficiency are required with different trap types and collection media to assess the consistency of the method. Methods We quantified the detection rate of arthropod species when applying non-destructive DNA metabarcoding with a short (127-bp) fragment of mitochondrial COI on two combinations of passive traps and collection media: (1) water with monopropylene glycol (H2O-MPG) used in window-flight traps (WFT, 53 in total); (2) ethanol with monopropylene glycol (EtOH-MPG) used in Malaise traps (MT, 27 in total). We then compared our results with those obtained for the same samples using morphological identification (for WFTs) or destructive metabarcoding of bulk homogenate (for MTs). This comparison was applied as part of a larger study of arthropod species richness in silver fir (Abies alba Mill., 1759) stands across a range of climate-induced tree dieback levels and forest management strategies. Results Of the 53 H2O-MPG samples from WFTs, 16 produced no metabarcoding results, while the remaining 37 samples yielded 77 arthropod MOTUs in total, of which none matched any of the 343 beetle species morphologically identified from the same traps. Metabarcoding of 26 EtOH-MPG samples from MTs detected more arthropod MOTUs (233) than destructive metabarcoding of homogenate (146 MOTUs, 8 orders), of which 71 were shared MOTUs, though MOTU richness per trap was similar between treatments. While we acknowledge the failure of metabarcoding from WFT-derived collection medium (H2O-MPG), the treatment of EtOH-based Malaise trapping medium remains promising. We conclude however that DNA metabarcoding from collection medium still requires further methodological developments and cannot replace homogenate metabarcoding as an approach for arthropod monitoring. It can be used nonetheless as a complementary treatment when enhancing the detection of soft-bodied arthropods like spiders and Diptera.
Collapse
Affiliation(s)
- Lucas Sire
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), UMR7261 CNRS - Université de Tours, Tours, France
- Institut de Systématique, Évolution, Biodiversité (ISYEB), UMR7205 Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Paul Schmidt Yáñez
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Annie Bézier
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), UMR7261 CNRS - Université de Tours, Tours, France
| | | | - Susan Mbedi
- Museum für Naturkunde –Leibniz Insitute for Evolution and Biodiversity Science, Berlin, Germany
- Berlin Center for Genomics in Biodiversity Research, Berlin, Germany
| | - Sarah Sparmann
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Berlin Center for Genomics in Biodiversity Research, Berlin, Germany
| | - Laurent Larrieu
- Université de Toulouse, INRAE, UMR DYNAFOR, Castanet-Tolosan, France
- CRPF Occitanie, Tarbes, France
| | - Rodolphe Rougerie
- Institut de Systématique, Évolution, Biodiversité (ISYEB), UMR7205 Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Christophe Bouget
- INRAE ’Forest Ecosystems’ Research Unit Domaine des Barres, Nogent-sur-Vernisson, France
| | - Michael T. Monaghan
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Berlin Center for Genomics in Biodiversity Research, Berlin, Germany
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Elisabeth A. Herniou
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), UMR7261 CNRS - Université de Tours, Tours, France
| | - Carlos Lopez-Vaamonde
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), UMR7261 CNRS - Université de Tours, Tours, France
- INRAE, UR0633 Zoologie forestière, Orléans, France
| |
Collapse
|
11
|
Rolland J, Henao-Diaz LF, Doebeli M, Germain R, Harmon LJ, Knowles LL, Liow LH, Mank JE, Machac A, Otto SP, Pennell M, Salamin N, Silvestro D, Sugawara M, Uyeda J, Wagner CE, Schluter D. Conceptual and empirical bridges between micro- and macroevolution. Nat Ecol Evol 2023; 7:1181-1193. [PMID: 37429904 DOI: 10.1038/s41559-023-02116-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/13/2023] [Indexed: 07/12/2023]
Abstract
Explaining broad molecular, phenotypic and species biodiversity patterns necessitates a unifying framework spanning multiple evolutionary scales. Here we argue that although substantial effort has been made to reconcile microevolution and macroevolution, much work remains to identify the links between biological processes at play. We highlight four major questions of evolutionary biology whose solutions require conceptual bridges between micro and macroevolution. We review potential avenues for future research to establish how mechanisms at one scale (drift, mutation, migration, selection) translate to processes at the other scale (speciation, extinction, biogeographic dispersal) and vice versa. We propose ways in which current comparative methods to infer molecular evolution, phenotypic evolution and species diversification could be improved to specifically address these questions. We conclude that researchers are in a better position than ever before to build a synthesis to understand how microevolutionary dynamics unfold over millions of years.
Collapse
Affiliation(s)
- Jonathan Rolland
- CNRS, UMR5174, Laboratoire Evolution et Diversité Biologique, Université Toulouse 3 Paul Sabatier, Toulouse, France.
| | - L Francisco Henao-Diaz
- Department of Zoology, and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Michael Doebeli
- Department of Zoology, and Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rachel Germain
- Department of Zoology, and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Luke J Harmon
- Dept. of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - L Lacey Knowles
- Department of Ecology and Evolutionary Biology, Museum of Zoology, University of Michigan, Ann Arbor, MI, USA
| | | | - Judith E Mank
- Department of Zoology, and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Antonin Machac
- Department of Zoology, and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Prague, Czech Republic
| | - Sarah P Otto
- Department of Zoology, and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matt Pennell
- Departments of Quantitative and Computational Biology and Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Nicolas Salamin
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Daniele Silvestro
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden
| | - Mauro Sugawara
- Department of Zoology, and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Mário Schenberg Institute, São Paulo, Brazil
| | - Josef Uyeda
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Catherine E Wagner
- Department of Botany, and Program in Ecology and Evolution, University of Wyoming, Laramie, WY, USA
| | - Dolph Schluter
- Department of Zoology, and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
12
|
Iwaszkiewicz-Eggebrecht E, Łukasik P, Buczek M, Deng J, Hartop EA, Havnås H, Prus-Frankowska M, Ugarph CR, Viteri P, Andersson AF, Roslin T, Tack AJM, Ronquist F, Miraldo A. FAVIS: Fast and versatile protocol for non-destructive metabarcoding of bulk insect samples. PLoS One 2023; 18:e0286272. [PMID: 37467453 DOI: 10.1371/journal.pone.0286272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/11/2023] [Indexed: 07/21/2023] Open
Abstract
Insects are diverse and sustain essential ecosystem functions, yet remain understudied. Recent reports about declines in insect abundance and diversity have highlighted a pressing need for comprehensive large-scale monitoring. Metabarcoding (high-throughput bulk sequencing of marker gene amplicons) offers a cost-effective and relatively fast method for characterizing insect community samples. However, the methodology applied varies greatly among studies, thus complicating the design of large-scale and repeatable monitoring schemes. Here we describe a non-destructive metabarcoding protocol that is optimized for high-throughput processing of Malaise trap samples and other bulk insect samples. The protocol details the process from obtaining bulk samples up to submitting libraries for sequencing. It is divided into four sections: 1) Laboratory workspace preparation; 2) Sample processing-decanting ethanol, measuring the wet-weight biomass and the concentration of the preservative ethanol, performing non-destructive lysis and preserving the insect material for future work; 3) DNA extraction and purification; and 4) Library preparation and sequencing. The protocol relies on readily available reagents and materials. For steps that require expensive infrastructure, such as the DNA purification robots, we suggest alternative low-cost solutions. The use of this protocol yields a comprehensive assessment of the number of species present in a given sample, their relative read abundances and the overall insect biomass. To date, we have successfully applied the protocol to more than 7000 Malaise trap samples obtained from Sweden and Madagascar. We demonstrate the data yield from the protocol using a small subset of these samples.
Collapse
Affiliation(s)
| | - Piotr Łukasik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Mateusz Buczek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Junchen Deng
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Emily A Hartop
- Station Linné, Färjestaden, Sweden
- Center for Integrative Biodiversity Discovery, Museum für Naturkunde-Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | | | - Monika Prus-Frankowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | | | - Paulina Viteri
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Anders F Andersson
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Tomas Roslin
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ayco J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Fredrik Ronquist
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Andreia Miraldo
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| |
Collapse
|
13
|
Takahashi M, Saccò M, Kestel JH, Nester G, Campbell MA, van der Heyde M, Heydenrych MJ, Juszkiewicz DJ, Nevill P, Dawkins KL, Bessey C, Fernandes K, Miller H, Power M, Mousavi-Derazmahalleh M, Newton JP, White NE, Richards ZT, Allentoft ME. Aquatic environmental DNA: A review of the macro-organismal biomonitoring revolution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162322. [PMID: 36801404 DOI: 10.1016/j.scitotenv.2023.162322] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Environmental DNA (eDNA) is the fastest growing biomonitoring tool fuelled by two key features: time efficiency and sensitivity. Technological advancements allow rapid biodiversity detection at both species and community levels with increasing accuracy. Concurrently, there has been a global demand to standardise eDNA methods, but this is only possible with an in-depth overview of the technological advancements and a discussion of the pros and cons of available methods. We therefore conducted a systematic literature review of 407 peer-reviewed papers on aquatic eDNA published between 2012 and 2021. We observed a gradual increase in the annual number of publications from four (2012) to 28 (2018), followed by a rapid growth to 124 publications in 2021. This was mirrored by a tremendous diversification of methods in all aspects of the eDNA workflow. For example, in 2012 only freezing was applied to preserve filter samples, whereas we recorded 12 different preservation methods in the 2021 literature. Despite an ongoing standardisation debate in the eDNA community, the field is seemingly moving fast in the opposite direction and we discuss the reasons and implications. Moreover, by compiling the largest PCR-primer database to date, we provide information on 522 and 141 published species-specific and metabarcoding primers targeting a wide range of aquatic organisms. This works as a user-friendly 'distillation' of primer information that was hitherto scattered across hundreds of papers, but the list also reflects which taxa are commonly studied with eDNA technology in aquatic environments such as fish and amphibians, and reveals that groups such as corals, plankton and algae are under-studied. Efforts to improve sampling and extraction methods, primer specificity and reference databases are crucial to capture these ecologically important taxa in future eDNA biomonitoring surveys. In a rapidly diversifying field, this review synthetises aquatic eDNA procedures and can guide eDNA users towards best practice.
Collapse
Affiliation(s)
- Miwa Takahashi
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia; Commonwealth Scientific and Industrial Research Organization, Indian Oceans Marine Research Centre, Environomics Future Science Platform, Crawley, Western Australia, Australia.
| | - Mattia Saccò
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia.
| | - Joshua H Kestel
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Georgia Nester
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Matthew A Campbell
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Mieke van der Heyde
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Matthew J Heydenrych
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia; Jarman Laboratory, Indian Ocean Marine Research Centre, School of Biological Sciences, University of Western Australia, Australia
| | - David J Juszkiewicz
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Paul Nevill
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Kathryn L Dawkins
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Cindy Bessey
- Commonwealth Scientific and Industrial Research Organization, Indian Oceans Marine Research Centre, Oceans and Atmosphere, Crawley, Western Australia, Australia
| | - Kristen Fernandes
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Haylea Miller
- Commonwealth Scientific and Industrial Research Organization, Indian Oceans Marine Research Centre, Environomics Future Science Platform, Crawley, Western Australia, Australia
| | - Matthew Power
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Mahsa Mousavi-Derazmahalleh
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Joshua P Newton
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Nicole E White
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Zoe T Richards
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Morten E Allentoft
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia; Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
14
|
Chua PYS, Bourlat SJ, Ferguson C, Korlevic P, Zhao L, Ekrem T, Meier R, Lawniczak MKN. Future of DNA-based insect monitoring. Trends Genet 2023:S0168-9525(23)00038-0. [PMID: 36907721 DOI: 10.1016/j.tig.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 03/12/2023]
Abstract
Insects are crucial for ecosystem health but climate change and pesticide use are driving massive insect decline. To mitigate this loss, we need new and effective monitoring techniques. Over the past decade there has been a shift to DNA-based techniques. We describe key emerging techniques for sample collection. We suggest that the selection of tools should be broadened, and that DNA-based insect monitoring data need to be integrated more rapidly into policymaking. We argue that there are four key areas for advancement, including the generation of more complete DNA barcode databases to interpret molecular data, standardisation of molecular methods, scaling up of monitoring efforts, and integrating molecular tools with other technologies that allow continuous, passive monitoring based on images and/or laser imaging, detection, and ranging (LIDAR).
Collapse
Affiliation(s)
- Physilia Y S Chua
- Tree of Life, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Sarah J Bourlat
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Adenauerallee 127, 53113 Bonn, Germany
| | - Cameron Ferguson
- Tree of Life, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Petra Korlevic
- Tree of Life, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Leia Zhao
- Tree of Life, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Torbjørn Ekrem
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Rudolf Meier
- Museum für Naturkunde, Center for Integrative Biodiversity Discovery, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| | - Mara K N Lawniczak
- Tree of Life, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|