1
|
Mallory E, Freeze G, Daisley BA, Allen-Vercoe E. Revisiting the role of pathogen diversity and microbial interactions in honeybee susceptibility and treatment of Melissococcus plutonius infection. Front Vet Sci 2024; 11:1495010. [PMID: 39748868 PMCID: PMC11694448 DOI: 10.3389/fvets.2024.1495010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025] Open
Abstract
European Foulbrood (EFB) is a severe bacterial disease affecting honeybees, primarily caused by the Gram-positive bacterium Melissococcus plutonius. Although the presence of M. plutonius is associated with EFB, it does not consistently predict the manifestation of symptoms, and the role of 'secondary invaders' in the disease's development remains a subject of ongoing debate. This review provides an updated synthesis of the microbial ecological factors that influence the expression of EFB symptoms, which have often been overlooked in previous research. In addition, this review examines the potential negative health consequences of prolonged antibiotic use in bee colonies for treating EFB, and proposes innovative and sustainable alternatives. These include the development of probiotics and targeted microbiota management techniques, aiming to enhance the overall resilience of bee populations to this debilitating disease.
Collapse
Affiliation(s)
| | | | | | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
2
|
TAKAMATSU D, UEGAKI R, OKAMOTO M, NAKAMURA K, HARADA M. Quantitative tyramine analysis method for Apis mellifera larvae infected with Melissococcus plutonius, the causative agent of European foulbrood. J Vet Med Sci 2024; 86:463-467. [PMID: 38508725 PMCID: PMC11144533 DOI: 10.1292/jvms.23-0510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
Tyramine, a trace monoamine produced from tyrosine by decarboxylation and found naturally in foods, plants, and animals, is a suspected virulence factor of Melissococcus plutonius that causes European foulbrood in honey bee brood. In the present study, we developed a method for quantitative analysis of tyramine in culture medium and honey bee larvae with a limit of quantitation of 3 ng/mL and a recovery rate of >97% using Liquid Chromatography-Mass Spectrometry/Mass Spectrometry and deuterium-labeled tyramine, demonstrating for the first time that a highly virulent M. plutonius strain actually produces tyramine in infected larvae. This method will be an indispensable tool to elucidate the role of tyramine in European foulbrood pathogenesis in combination with exposure bioassays using artificially reared bee larvae.
Collapse
Affiliation(s)
- Daisuke TAKAMATSU
- Division of Infectious Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki, Japan
- The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
- Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Ryuichi UEGAKI
- Department of Animal Disease Control and Prevention, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki,
Japan
| | - Mariko OKAMOTO
- Division of Infectious Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Keiko NAKAMURA
- Research and Business Promotion Division, Research Institute for Animal Science in Biochemistry and Toxicology, Kanagawa, Japan
| | - Mariko HARADA
- Research and Business Promotion Division, Research Institute for Animal Science in Biochemistry and Toxicology, Kanagawa, Japan
| |
Collapse
|
3
|
TAKAMATSU D. Atypical Melissococcus plutonius strains: their characteristics, virulence, epidemiology, and mysteries. J Vet Med Sci 2023; 85:880-894. [PMID: 37460304 PMCID: PMC10539817 DOI: 10.1292/jvms.23-0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/06/2023] [Indexed: 09/05/2023] Open
Abstract
Melissococcus plutonius is a Gram-positive lanceolate coccus that is the causative agent of European foulbrood, an important bacterial disease of honey bee brood. Although this bacterium was originally described in the early 20th century, a culture method for this bacterium was not established until more than 40 years after its discovery due to its fastidious characteristics, including the requirement for high potassium and anaerobic/microaerophilic conditions. These characteristics were considered to be common to the majority of M. plutonius strains isolated worldwide, and M. plutonius was also thought to be genetically homologous or clonal for years. However, non-fastidious variants of this species (designated as atypical M. plutonius) were very recently identified in Japan. Although the morphology of these unusual strains was similar to that of traditionally well-known M. plutonius strains, atypical strains were genetically very different from most of the M. plutonius strains previously isolated and were highly virulent to individual bee larva. These atypical variants were initially considered to be unique to Japan, but were subsequently found worldwide; however, the frequency of isolation varied from country to country. The background of the discovery of atypical M. plutonius in Japan and current knowledge on atypical strains, including their biochemical and culture characteristics, virulence, detection methods, and global distribution, are described in this review. Remaining mysteries related to atypical M. plutonius and directions for future research are also discussed.
Collapse
Affiliation(s)
- Daisuke TAKAMATSU
- Division of Infectious Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki, Japan
- The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
- Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
4
|
Molecular Detection and Differentiation of Arthropod, Fungal, Protozoan, Bacterial and Viral Pathogens of Honeybees. Vet Sci 2022; 9:vetsci9050221. [PMID: 35622749 PMCID: PMC9145064 DOI: 10.3390/vetsci9050221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
The honeybee Apis mellifera is highly appreciated worldwide because of its products, but also as it is a pollinator of crops and wild plants. The beehive is vulnerable to infections due to arthropods, fungi, protozoa, bacteria and/or viruses that manage to by-pass the individual and social immune mechanisms of bees. Due to the close proximity of bees in the beehive and their foraging habits, infections easily spread within and between beehives. Moreover, international trade of bees has caused the global spread of infections, several of which result in significant losses for apiculture. Only in a few cases can infections be diagnosed with the naked eye, by direct observation of the pathogen in the case of some arthropods, or by pathogen-associated distinctive traits. Development of molecular methods based on the amplification and analysis of one or more genes or genomic segments has brought significant progress to the study of bee pathogens, allowing for: (i) the precise and sensitive identification of the infectious agent; (ii) the analysis of co-infections; (iii) the description of novel species; (iv) associations between geno- and pheno-types and (v) population structure studies. Sequencing of bee pathogen genomes has allowed for the identification of new molecular targets and the development of specific genotypification strategies.
Collapse
|
5
|
OKAMOTO M, FURUYA H, SUGIMOTO I, KUSUMOTO M, TAKAMATSU D. A novel multiplex PCR assay to detect and distinguish between different types of Paenibacillus larvae and Melissococcus plutonius, and a survey of foulbrood pathogen contamination in Japanese honey. J Vet Med Sci 2022; 84:390-399. [PMID: 35082220 PMCID: PMC8983297 DOI: 10.1292/jvms.21-0629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/14/2022] [Indexed: 11/22/2022] Open
Abstract
Paenibacillus larvae and Melissococcus plutonius are the causative agents of American and European foulbroods of honey bees, respectively. Since their virulence and resistance to disinfectants differ depending on the genotypes/phenotypes of the strains, the discrimination of strain types is important for the effective control of these diseases. Methods to detect and differentiate pathogens in honey are useful for surveying the contamination status of beehives/apiaries. In the present study, we selected a sequence (GenBank accession no. FI763267) as the specific target for enterobacterial repetitive intergenic consensus (ERIC) II-type P. larvae strains for the first time and developed a novel multiplex PCR assay that precisely distinguishes between the major types of foulbrood pathogens (ERIC I and II P. larvae and typical and atypical M. plutonius) in one reaction. In addition, we found that commercially available kits designed for DNA extraction from Mycobacterium in feces efficiently extracted DNA from foulbrood pathogens in honey. Using the multiplex PCR assay and DNA extraction kits, all the targeted types of P. larvae and M. plutonius were detected in honey spiked with the pathogens at a concentration of 100 bacterial cells/strain/ml. Moreover, 94% of the Japanese honey samples examined in the present study were contaminated with one or more types of the foulbrood pathogens. These results indicate that the newly developed methods are useful for detecting foulbrood pathogens in honey. The epidemiological information obtained by these methods will contribute to the effective control of foulbroods in apiaries.
Collapse
Affiliation(s)
- Mariko OKAMOTO
- Division of Infectious Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki, Japan
| | | | - Ikuko SUGIMOTO
- Shizuoka Prefectural Chubu Livestock Hygienic Service Center, Shizuoka, Japan
| | - Masahiro KUSUMOTO
- Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Daisuke TAKAMATSU
- Division of Infectious Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki, Japan
- The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
6
|
Pérez-Ordóñez G, Romo-Chacón A, Rios-Velasco C, Sepúlveda DR, de Jesús Ornelas-Paz J, Acosta-Muñiz CH. Virulence variations between clonal complexes of Melisococcus plutonius and the possible causes. J Invertebr Pathol 2021; 186:107686. [PMID: 34780719 DOI: 10.1016/j.jip.2021.107686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/23/2021] [Accepted: 10/24/2021] [Indexed: 11/17/2022]
Abstract
Melissococcus plutonius is a pathogenic bacterium that affects honeybee brood triggering colony collapse in severe cases. The bacterium causes a European foulbrood (EFB) disease in the honeybee populations, impacting beekeeping and agricultural industries. The pathogenesis, epidemiology, and variants of M. plutonius have been studied, but the virulence factors involved in larval infection are still unknown. Recently, an in-silico study suggested putative genes that might play a role in the pathogenesis of EFB. However, studies are required to determine their function as virulence factors. In addition, the few studies of clonal complexes (CCs), virulence factors, and variation in the honeybee larvae mortality have interfered with the development of more efficient control methods. The research, development, and differences in virulence between genetic variants (CCs) of M. plutonius and potential virulence factors implicated in honeybee larval mortality are discussed in this review.
Collapse
Affiliation(s)
- Gerardo Pérez-Ordóñez
- Centro de Investigación en Alimentación y Desarrollo, A.C. Av. Rio Conchos s/n, parque industrial, Z.C. 31570 Cuauhtémoc, Chihuahua, Mexico.
| | - Alejandro Romo-Chacón
- Centro de Investigación en Alimentación y Desarrollo, A.C. Av. Rio Conchos s/n, parque industrial, Z.C. 31570 Cuauhtémoc, Chihuahua, Mexico.
| | - Claudio Rios-Velasco
- Centro de Investigación en Alimentación y Desarrollo, A.C. Av. Rio Conchos s/n, parque industrial, Z.C. 31570 Cuauhtémoc, Chihuahua, Mexico.
| | - David R Sepúlveda
- Centro de Investigación en Alimentación y Desarrollo, A.C. Av. Rio Conchos s/n, parque industrial, Z.C. 31570 Cuauhtémoc, Chihuahua, Mexico.
| | - José de Jesús Ornelas-Paz
- Centro de Investigación en Alimentación y Desarrollo, A.C. Av. Rio Conchos s/n, parque industrial, Z.C. 31570 Cuauhtémoc, Chihuahua, Mexico.
| | - Carlos H Acosta-Muñiz
- Centro de Investigación en Alimentación y Desarrollo, A.C. Av. Rio Conchos s/n, parque industrial, Z.C. 31570 Cuauhtémoc, Chihuahua, Mexico.
| |
Collapse
|
7
|
Milbrath MO, Fowler PD, Abban SK, Lopez D, Evans JD. Validation of Diagnostic Methods for European Foulbrood on Commercial Honey Bee Colonies in the United States. JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:6414648. [PMID: 34723329 PMCID: PMC8559156 DOI: 10.1093/jisesa/ieab075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Indexed: 06/13/2023]
Abstract
One of the most serious bacterial pathogens of Western honey bees (Apis mellifera Linnaeus [Hymenoptera: Apidae]) is Melissococcus plutonius, the cause of the disease European foulbrood. Because European foulbrood is highly variable, with diverse outcomes at both the individual and colony levels, it is difficult to diagnose through visual inspection alone. Common lab diagnostic techniques include microscopic examination and molecular detection through PCR. In 2009, a lateral flow device was developed and validated for field diagnosis of European foulbrood. At the time, M. plutonius was thought to be genetically homogenous, but we have subsequently learned that this bacterium exists as multiple strains, including some strains that are classified as 'atypical' for which the lateral flow device is potentially less effective. These devices are increasingly used in the United States, though they have never been validated using strains from North America. It is essential to validate this device in multiple locations as different strains of M. plutonius circulate in different geographical regions. In this study, we validate the field use of the lateral flow device compared to microscopic examination and qPCR on larval samples from 78 commercial honey bee colonies in the United States with visual signs of infection. In this study, microscopic diagnosis was more sensitive than the lateral flow device (sensitivity = 97.40% and 89.47%, respectively), and we found no false positive results with the lateral flow device. We find high concurrence between the three diagnostic techniques, and all three methods are highly sensitive for diagnosing European foulbrood.
Collapse
Affiliation(s)
- Meghan O’Grady Milbrath
- Department of Entomology, Michigan State University, 4090 N. College Road, Pollinator Performance Center, RM 100, Lansing, MI 48910, USA
| | - Peter Daniel Fowler
- Department of Comparative Medicine and Integrative Biology, Veterinary Medical Center, Michigan State University, 784 Wilson Road, Room G100, East Lansing, MI 48824, USA
| | - Samuel K Abban
- Bee Research Laboratory, USDA–Agricultural Research Service, B306 BARC-East Beltsville, MD 20705, USA
| | - Dawn Lopez
- Bee Research Laboratory, USDA–Agricultural Research Service, B306 BARC-East Beltsville, MD 20705, USA
| | - Jay D Evans
- Bee Research Laboratory, USDA–Agricultural Research Service, B306 BARC-East Beltsville, MD 20705, USA
| |
Collapse
|
8
|
Peritrophic matrix-degrading proteins are dispensable virulence factors in a virulent Melissococcus plutonius strain. Sci Rep 2021; 11:8798. [PMID: 33888837 PMCID: PMC8062581 DOI: 10.1038/s41598-021-88302-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/12/2021] [Indexed: 11/08/2022] Open
Abstract
European foulbrood (EFB) caused by Melissococcus plutonius is a major bacterial disease of honey bees. Strains of the causative agent exhibit genetic heterogeneity, and the degree of virulence varies among strains. In bee larvae orally infected with the highly virulent strains, ingested bacterial cells colonize the larval midgut and proliferate within the sac of the peritrophic matrix (PM), a barrier lining the midgut epithelium. However, the barrier is degraded during the course of infection, and M. plutonius cells eventually directly interact with the midgut epithelium. As M. plutonius possesses genes encoding putative PM-degrading proteins (enhancin, a chitin-binding domain-containing protein and endo-α-N-acetylgalactosaminidase), we constructed PM-degrading protein gene-knockout mutants from a highly virulent M. plutonius strain and investigated their role in the pathogenesis of EFB. In larvae infected with the triple-knockout mutant, which has no PM-degrading protein genes, M. plutonius that proliferated in the larval midguts was confined to the sac of the PM. However, the midgut epithelial cells degenerated over time, and the mutant killed approximately 70-80% of bee brood, suggesting that although the PM-degrading proteins are involved in the penetration of the PM by M. plutonius, they are not indispensable virulence factors in the highly virulent M. plutonius strain.
Collapse
|
9
|
Grossar D, Kilchenmann V, Forsgren E, Charrière JD, Gauthier L, Chapuisat M, Dietemann V. Putative determinants of virulence in Melissococcus plutonius, the bacterial agent causing European foulbrood in honey bees. Virulence 2021; 11:554-567. [PMID: 32456539 PMCID: PMC7567439 DOI: 10.1080/21505594.2020.1768338] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Melissococcus plutonius is a bacterial pathogen that causes epidemic outbreaks of European foulbrood (EFB) in honey bee populations. The pathogenicity of a bacterium depends on its virulence, and understanding the mechanisms influencing virulence may allow for improved disease control and containment. Using a standardized in vitro assay, we demonstrate that virulence varies greatly among sixteen M. plutonius isolates from five European countries. Additionally, we explore the causes of this variation. In this study, virulence was independent of the multilocus sequence type of the tested pathogen, and was not affected by experimental co-infection with Paenibacillus alvei, a bacterium often associated with EFB outbreaks. Virulence in vitro was correlated with the growth dynamics of M. plutonius isolates in artificial medium, and with the presence of a plasmid carrying a gene coding for the putative toxin melissotoxin A. Our results suggest that some M. plutonius strains showed an increased virulence due to the acquisition of a toxin-carrying mobile genetic element. We discuss whether strains with increased virulence play a role in recent EFB outbreaks.
Collapse
Affiliation(s)
- Daniela Grossar
- Department of Ecology and Evolution, Biophore, UNIL-Sorge, University of Lausanne , Lausanne, Switzerland.,Agroscope, Swiss Bee Research Centre , Bern, Switzerland
| | | | - Eva Forsgren
- Department of Ecology, Swedish University of Agricultural Sciences SLU , Uppsala, Sweden
| | | | | | - Michel Chapuisat
- Department of Ecology and Evolution, Biophore, UNIL-Sorge, University of Lausanne , Lausanne, Switzerland
| | - Vincent Dietemann
- Department of Ecology and Evolution, Biophore, UNIL-Sorge, University of Lausanne , Lausanne, Switzerland.,Agroscope, Swiss Bee Research Centre , Bern, Switzerland
| |
Collapse
|
10
|
Ribani A, Utzeri VJ, Taurisano V, Fontanesi L. Honey as a Source of Environmental DNA for the Detection and Monitoring of Honey Bee Pathogens and Parasites. Vet Sci 2020; 7:vetsci7030113. [PMID: 32824137 PMCID: PMC7558659 DOI: 10.3390/vetsci7030113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 02/08/2023] Open
Abstract
Environmental DNA (eDNA) has been proposed as a powerful tool to detect and monitor cryptic, elusive, or invasive organisms. We recently demonstrated that honey constitutes an easily accessible source of eDNA. In this study, we extracted DNA from 102 honey samples (74 from Italy and 28 from 17 other countries of all continents) and tested the presence of DNA of nine honey bee pathogens and parasites (Paenibacillus larvae, Melissococcus plutonius, Nosema apis, Nosema ceranae, Ascosphaera apis,Lotmaria passim, Acarapis woodi, Varroa destructor, and Tropilaelaps spp.) using qualitative PCR assays. All honey samples contained DNA from V. destructor, confirming the widespread diffusion of this mite. None of the samples gave positive amplifications for N. apis, A. woodi, and Tropilaelaps spp. M. plutonius was detected in 87% of the samples, whereas the other pathogens were detected in 43% to 57% of all samples. The frequency of Italian samples positive for P. larvae was significantly lower (49%) than in all other countries (79%). The co-occurrence of positive samples for L. passim and A. apis with N. ceranae was significant. This study demonstrated that honey eDNA can be useful to establish monitoring tools to evaluate the sanitary status of honey bee populations.
Collapse
Affiliation(s)
- Anisa Ribani
- Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy; (A.R.); (V.J.U.); (V.T.)
- GRIFFA s.r.l., Viale Giuseppe Fanin 48, 40127 Bologna, Italy
| | - Valerio Joe Utzeri
- Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy; (A.R.); (V.J.U.); (V.T.)
- GRIFFA s.r.l., Viale Giuseppe Fanin 48, 40127 Bologna, Italy
| | - Valeria Taurisano
- Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy; (A.R.); (V.J.U.); (V.T.)
| | - Luca Fontanesi
- Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy; (A.R.); (V.J.U.); (V.T.)
- Correspondence: ; Tel.: +39-051-2096535
| |
Collapse
|
11
|
European Foulbrood in stingless bees (Apidae: Meliponini) in Brazil: Old disease, renewed threat. J Invertebr Pathol 2020; 172:107357. [DOI: 10.1016/j.jip.2020.107357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 01/13/2023]
|
12
|
Wood SC, Chalifour JC, Kozii IV, Medici de Mattos I, Klein CD, Zabrodski MW, Moshynskyy I, Guarna MM, Wolf Veiga P, Epp T, Simko E. In Vitro Effects of Pesticides on European Foulbrood in Honeybee Larvae. INSECTS 2020; 11:insects11040252. [PMID: 32316434 PMCID: PMC7240397 DOI: 10.3390/insects11040252] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/03/2022]
Abstract
Neonicotinoid and fungicide exposure has been linked to immunosuppression and increased susceptibility to disease in honeybees (Apis mellifera). European foulbrood, caused by the bacterium Melissococcus plutonius, is a disease of honeybee larvae which causes economic hardship for commercial beekeepers, in particular those whose colonies pollinate blueberries. We report for the first time in Canada, an atypical variant of M. plutonius isolated from a blueberry-pollinating colony. With this isolate, we used an in vitro larval infection system to study the effects of pesticide exposure on the development of European foulbrood disease. Pesticide doses tested were excessive (thiamethoxam and pyrimethanil) or maximal field-relevant (propiconazole and boscalid). We found that chronic exposure to the combination of thiamethoxam and propiconazole significantly decreased the survival of larvae infected with M. plutonius, while larvae chronically exposed to thiamethoxam and/or boscalid or pyrimethanil did not experience significant increases in mortality from M. plutonius infection in vitro. Based on these results, individual, calculated field-realistic residues of thiamethoxam and/or boscalid or pyrimethanil are unlikely to increase mortality from European foulbrood disease in honeybee worker brood, while the effects of field-relevant exposure to thiamethoxam and propiconazole on larval mortality from European foulbrood warrant further study.
Collapse
Affiliation(s)
- Sarah C. Wood
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada; (J.C.C.); (I.V.K.); (I.M.d.M.); (C.D.K.); (M.W.Z.); (I.M.); (E.S.)
- Correspondence:
| | - Jocelyne C. Chalifour
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada; (J.C.C.); (I.V.K.); (I.M.d.M.); (C.D.K.); (M.W.Z.); (I.M.); (E.S.)
| | - Ivanna V. Kozii
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada; (J.C.C.); (I.V.K.); (I.M.d.M.); (C.D.K.); (M.W.Z.); (I.M.); (E.S.)
| | - Igor Medici de Mattos
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada; (J.C.C.); (I.V.K.); (I.M.d.M.); (C.D.K.); (M.W.Z.); (I.M.); (E.S.)
| | - Colby D. Klein
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada; (J.C.C.); (I.V.K.); (I.M.d.M.); (C.D.K.); (M.W.Z.); (I.M.); (E.S.)
| | - Michael W. Zabrodski
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada; (J.C.C.); (I.V.K.); (I.M.d.M.); (C.D.K.); (M.W.Z.); (I.M.); (E.S.)
| | - Igor Moshynskyy
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada; (J.C.C.); (I.V.K.); (I.M.d.M.); (C.D.K.); (M.W.Z.); (I.M.); (E.S.)
| | - M. Marta Guarna
- Beaverlodge Research Farm, Agriculture and Agri-Food Canada, 1 Research Road, Beaverlodge, AB T0H 0C0, Canada;
| | - Patricia Wolf Veiga
- National Bee Diagnostic Centre, Grand Prairie Regional College, 1 Research Road, Beaverlodge, AB T0H 0C0, Canada;
| | - Tasha Epp
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada;
| | - Elemir Simko
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada; (J.C.C.); (I.V.K.); (I.M.d.M.); (C.D.K.); (M.W.Z.); (I.M.); (E.S.)
| |
Collapse
|
13
|
Nakamura K, Okumura K, Harada M, Okamoto M, Okura M, Takamatsu D. Different impacts of pMP19 on the virulence of Melissococcus plutonius strains with different genetic backgrounds. Environ Microbiol 2020; 22:2756-2770. [PMID: 32219986 DOI: 10.1111/1462-2920.14999] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/12/2020] [Accepted: 03/22/2020] [Indexed: 01/06/2023]
Abstract
Virulence factors responsible for bacterial pathogenicity are often encoded by plasmids. In Melissococcus plutonius, the causative agent of European foulbrood of honey bees, a putative virulence plasmid (pMP19) possessing mtxA, which encodes a putative insecticidal toxin, was found by comparative genome analyses. However, as the role of pMP19 in the pathogenesis of European foulbrood remains to be elucidated, we generated pMP19 cured-M. plutonius from representative strains of the three genetically distinct groups (CC3, CC12 and CC13) and compared their virulence against Apis mellifera larvae using our in vitro infection model. Under the conditions tested, the loss of pMP19 abrogated the pathogenicity in CC3 strains, and > 94% of pMP19-cured CC3 strain-infected larvae became adult bees, suggesting that pMP19 is a virulence determinant of CC3 strains. However, introduction of mtxA on its own did not increase the virulence of pMP19-cured strains. In contrast to CC3 strains, the representative CC12 strain remained virulent even in the absence of pMP19, whereas the representative CC13 strain was avirulent even in the presence of the plasmid. Thus, pMP19 plays a role in the virulence of M. plutonius; however, its impact on the virulence varies among strains with different genetic backgrounds.
Collapse
Affiliation(s)
- Keiko Nakamura
- Research and Business Promotion Division, Research Institute for Animal Science in Biochemistry and Toxicology, Sagamihara, Kanagawa, 252-0132, Japan
| | - Kayo Okumura
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Mariko Harada
- Research and Business Promotion Division, Research Institute for Animal Science in Biochemistry and Toxicology, Sagamihara, Kanagawa, 252-0132, Japan
| | - Mariko Okamoto
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-0856, Japan
| | - Masatoshi Okura
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-0856, Japan
| | - Daisuke Takamatsu
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-0856, Japan.,The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Gifu, 501-1193, Japan
| |
Collapse
|
14
|
Ohashi I, Kato K, Okamoto M, Kobayashi S, Takamatsu D. Microbicidal effects of slightly acidic hypochlorous acid water and weakly acidified chlorous acid water on foulbrood pathogens. J Vet Med Sci 2020; 82:261-271. [PMID: 31902832 PMCID: PMC7118478 DOI: 10.1292/jvms.19-0531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Paenibacillus larvae and Melissococcus plutonius are
bacterial pathogens of honey bee brood. As decontamination of beekeeping equipment,
including combs, is essential to control these pathogens, we evaluated the disinfecting
effects of slightly acidic hypochlorous acid water (SAHAW) and weakly acidified chlorous
acid water (WACAW) on the pathogens. Both disinfectants exhibited strong disinfecting
effects in suspension tests under no organic matter conditions and reduced both pathogens
by >5 log10 CFU/ml. Although the microbicidal activity of
SAHAW with an available chlorine concentration (ACC) of 10–30 ppm was decreased by organic
matter, it reduced viable P. larvae spores in combs more efficiently than
H2O when the comb was not as dirty. However, its efficacy on combs decreased
at 4°C and when overused or highly contaminated combs were tested. WACAW with an ACC of
≥600 ppm had a higher disinfecting capacity than SAHAW, and efficiently removed P.
larvae spores from combs even under organic matter-rich and low-temperature
conditions. However, even by WACAW, the amount of viable spores in combs was not markedly
reduced depending on contamination levels and P. larvae genotypes. These
results suggest the usefulness of both disinfectants for decontaminating beekeeping
equipment depending on the situations expected.
Collapse
Affiliation(s)
- Ikuyo Ohashi
- Yamagata Prefectural Central Livestock Hygiene Service Center, Yamagata, Yamagata 990-2161, Japan
| | - Kiyoko Kato
- Tochigi Prefectural Central Livestock Health and Hygiene Center, Utsunomiya, Tochigi 321-0905, Japan
| | - Mariko Okamoto
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Sota Kobayashi
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Daisuke Takamatsu
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan.,The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Gifu 501-1193, Japan
| |
Collapse
|
15
|
de León-Door AP, Romo-Chacón A, Rios-Velasco C, Zamudio-Flores PB, Ornelas-Paz JDJ, Acosta-Muñiz CH. Prevalence, typing and phylogenetic analysis of Melissococcus plutonius strains from bee colonies of the State of Chihuahua, Mexico. J Invertebr Pathol 2018; 159:71-77. [PMID: 30312627 DOI: 10.1016/j.jip.2018.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 10/28/2022]
Abstract
European foulbrood (EFB) caused by Melissococcus plutonius is an important bee brood disease but, in Mexico, information about this bacterium is limited. We evaluated the prevalence of typical and atypical strains in beehives of seven apicultural regions of the state of Chihuahua, Mexico. We performed MLST and phylogenetic analysis to characterize the isolates. Prevalence was highest 59%, in the region of Chihuahua, and lowest, 14%, in the regions of Cuauhtémoc and Nuevo Casas Grandes. Typical and atypical strains were identified in hives from all regions; however, in the regions of Parral, Cuauhtémoc and Aldama, the atypical strains were only detected in combination with typical strains. We obtained 81 isolates of M. plutonius and identified seven sequence types, of which three were new types. Additionally, we observed a relation between sequence type and the region where the strain was isolated. Phylogenetic analysis and multilocus sequence typing using goeBURST analysis showed that 97.5% of the isolates correspond to the Clonal Complex (CC) 12 and 2.5% to the CC3. Our work is the first molecular characterization of M. plutonius in Mexico and contributes to global information about the epidemiology of this pathogen.
Collapse
Affiliation(s)
- Adrián Ponce de León-Door
- Centro de Investigación en Alimentación y Desarrollo, A.C. Av. Rio Conchos s/n, parque industrial, Z.C. 31570, Cuauhtémoc, Chihuahua, Mexico
| | - Alejandro Romo-Chacón
- Centro de Investigación en Alimentación y Desarrollo, A.C. Av. Rio Conchos s/n, parque industrial, Z.C. 31570, Cuauhtémoc, Chihuahua, Mexico
| | - Claudio Rios-Velasco
- Centro de Investigación en Alimentación y Desarrollo, A.C. Av. Rio Conchos s/n, parque industrial, Z.C. 31570, Cuauhtémoc, Chihuahua, Mexico
| | - Paul Baruk Zamudio-Flores
- Centro de Investigación en Alimentación y Desarrollo, A.C. Av. Rio Conchos s/n, parque industrial, Z.C. 31570, Cuauhtémoc, Chihuahua, Mexico
| | - José de Jesús Ornelas-Paz
- Centro de Investigación en Alimentación y Desarrollo, A.C. Av. Rio Conchos s/n, parque industrial, Z.C. 31570, Cuauhtémoc, Chihuahua, Mexico
| | - Carlos H Acosta-Muñiz
- Centro de Investigación en Alimentación y Desarrollo, A.C. Av. Rio Conchos s/n, parque industrial, Z.C. 31570, Cuauhtémoc, Chihuahua, Mexico.
| |
Collapse
|
16
|
Takamatsu D, Yoshida E, Watando E, Ueno Y, Kusumoto M, Okura M, Osaki M, Katsuda K. A frameshift mutation in the rRNA large subunit methyltransferase gene rlmA II determines the susceptibility of a honey bee pathogen Melissococcus plutonius to mirosamicin. Environ Microbiol 2018; 20:4431-4443. [PMID: 30043554 DOI: 10.1111/1462-2920.14365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/04/2018] [Accepted: 07/19/2018] [Indexed: 11/29/2022]
Abstract
American foulbrood (AFB) and European foulbrood (EFB) caused by Paenibacillus larvae and Melissococcus plutonius, respectively, are major bacterial infections of honey bees. Although macrolides (mirosamicin [MRM] and tylosin) have been used to prevent AFB in Japan, macrolide-resistant P. larvae have yet to be found. In this study, we revealed that both MRM-resistant and -susceptible strains exist in Japanese M. plutonius and that a methyltransferase gene (rlmA II ) was disrupted exclusively in MRM-susceptible strains due to a single-nucleotide insertion. The M. plutonius RlmAII modified G748 of 23S rRNA, and the deletion of rlmA II resulted in increased susceptibility to MRM and the loss of modification at G748, suggesting that methylation at G748 by RlmAII confers MRM resistance in M. plutonius. The single-nucleotide mutation in MRM-susceptible strains was easily repaired by spontaneous deletion of the inserted nucleotide; however, intact rlmA II was only found in Japanese M. plutonius and not in a Paraguayan strain tested or any of the whole-genome-sequenced European strains. MRM has been used in apiculture only in Japan. Although M. plutonius is not the target of this drug, the use of MRM as a prophylactic drug for AFB may have influenced the antibiotic susceptibility of the causative agent of EFB.
Collapse
Affiliation(s)
- Daisuke Takamatsu
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-0856, Japan.,The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Gifu, 501-1193, Japan
| | - Emi Yoshida
- Iwate Prefectural Chuo Livestock Hygiene Service Center, Takizawa, Iwate, 020-0605, Japan
| | - Eri Watando
- Aichi Prefectural Chuo Livestock Hygiene Service Center, Okazaki, Aichi, 444-0805, Japan
| | - Yuichi Ueno
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-0856, Japan
| | - Masahiro Kusumoto
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-0856, Japan
| | - Masatoshi Okura
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-0856, Japan
| | - Makoto Osaki
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-0856, Japan
| | - Ken Katsuda
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-0856, Japan
| |
Collapse
|
17
|
Comparative Genomics and Description of Putative Virulence Factors of Melissococcus plutonius, the Causative Agent of European Foulbrood Disease in Honey Bees. Genes (Basel) 2018; 9:genes9080419. [PMID: 30127293 PMCID: PMC6116112 DOI: 10.3390/genes9080419] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/13/2018] [Indexed: 11/17/2022] Open
Abstract
In Europe, approximately 84% of cultivated crop species depend on insect pollinators, mainly bees. Apis mellifera (the Western honey bee) is the most important commercial pollinator worldwide. The Gram-positive bacterium Melissococcus plutonius is the causative agent of European foulbrood (EFB), a global honey bee brood disease. In order to detect putative virulence factors, we sequenced and analyzed the genomes of 14 M. plutonius strains, including two reference isolates. The isolates do not show a high diversity in genome size or number of predicted protein-encoding genes, ranging from 2.021 to 2.101 Mbp and 1589 to 1686, respectively. Comparative genomics detected genes that might play a role in EFB pathogenesis and ultimately in the death of the honey bee larvae. These include bacteriocins, bacteria cell surface- and host cell adhesion-associated proteins, an enterococcal polysaccharide antigen, an epsilon toxin, proteolytic enzymes, and capsule-associated proteins. In vivo expression of three putative virulence factors (endo-alpha-N-acetylgalactosaminidase, enhancin and epsilon toxin) was verified using naturally infected larvae. With our strain collection, we show for the first time that genomic differences exist between non-virulent and virulent typical strains, as well as a highly virulent atypical strain, that may contribute to the virulence of M. plutonius. Finally, we also detected a high number of conserved pseudogenes (75 to 156) per genome, which indicates genomic reduction during evolutionary host adaptation.
Collapse
|
18
|
Lewkowski O, Erler S. Virulence of Melissococcus plutonius and secondary invaders associated with European foulbrood disease of the honey bee. Microbiologyopen 2018; 8:e00649. [PMID: 29799173 PMCID: PMC6436434 DOI: 10.1002/mbo3.649] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/16/2018] [Accepted: 04/09/2018] [Indexed: 11/29/2022] Open
Abstract
European foulbrood is a globally distributed brood disease affecting honey bees. It may lead to lethal infections of larvae and, in severe cases, even to colony collapse. Lately, a profound genetic and phenotypic diversity was documented for the causative agent Melissococcus plutonius. However, experimental work on the impact of diverse M. plutonius strains on hosts with different genetic background is completely lacking and the role of secondary invaders is poorly understood. Here, we address these issues and elucidate the impact and interaction of both host and pathogen on one another. Moreover, we try to unravel the role of secondary bacterial invasions in foulbrood‐diseased larvae. We employed in vitro infections with honey bee larvae from queens with different genetic background and three different M. plutonius strains. Larvae infection experiments showed host‐dependent survival dynamics although M. plutonius strain 49.3 consistently had the highest virulence. This pattern was also reflected in significantly reduced weights of 49.3 strain‐infected larvae compared to the other treatments. No difference was found in groups additionally inoculated with a secondary invader (Enterococcus faecalis or Paenibacillus alvei) neither in terms of larval survival nor weight. These results suggest that host background contributes markedly to the course of the disease but virulence is mainly dependent on pathogen genotype. Secondary invaders following a M. plutonius infection do not increase disease lethality and therefore may just be a colonization of weakened and immunodeficient, or dead larvae.
Collapse
Affiliation(s)
- Oleg Lewkowski
- Institute of Biology, Molecular Ecology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Silvio Erler
- Institute of Biology, Molecular Ecology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
19
|
Fünfhaus A, Ebeling J, Genersch E. Bacterial pathogens of bees. CURRENT OPINION IN INSECT SCIENCE 2018; 26:89-96. [PMID: 29764667 DOI: 10.1016/j.cois.2018.02.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/09/2018] [Accepted: 02/02/2018] [Indexed: 05/09/2023]
Abstract
Pollination is an indispensable ecosystem service provided by many insects, especially by wild and managed bee species. Hence, reports on large scale honey bee colony losses and on population declines of many wild bees were alarming and resulted in increased awareness of the importance of bee health and increased interest in bee pathogens. To serve this interest, this review will give a comprehensive overview on bacterial bee pathogens by covering not only the famous pathogens (Paenibacillus larvae, Melissococcus plutonius), but also the orphan pathogens which have largely been neglected by the scientific community so far (spiroplasmas) and the pathogens which were only recently discovered as being pathogenic to bees (Serratia marcescens, Lysinibacillus sphaericus).
Collapse
Affiliation(s)
- Anne Fünfhaus
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Friedrich-Engels-Str. 32, 16540 Hohen Neuendorf, Germany
| | - Julia Ebeling
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Friedrich-Engels-Str. 32, 16540 Hohen Neuendorf, Germany
| | - Elke Genersch
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Friedrich-Engels-Str. 32, 16540 Hohen Neuendorf, Germany; Freie Universität Berlin, Fachbereich Veterinärmedizin, Institut für Mikrobiologie und Tierseuchen, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany.
| |
Collapse
|
20
|
Forsgren E, Locke B, Sircoulomb F, Schäfer MO. Bacterial Diseases in Honeybees. CURRENT CLINICAL MICROBIOLOGY REPORTS 2018. [DOI: 10.1007/s40588-018-0083-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
21
|
Takamatsu D, Osawa A, Nakamura K, Yoshiyama M, Okura M. High-level resistance of Melissococcus plutonius clonal complex 3 strains to antimicrobial activity of royal jelly. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:562-570. [PMID: 28892305 DOI: 10.1111/1758-2229.12590] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/28/2017] [Accepted: 08/31/2017] [Indexed: 06/07/2023]
Abstract
Melissococcus plutonius is the causative agent of European foulbrood of honey bee larvae. Among its three genetically distinct groups (CC3, CC12 and CC13), CC3 strains have been suggested to be more virulent at the colony level. Honey bee larvae are fed royal or worker jellies by adult bees, and these jellies exhibit antimicrobial activity. Since M. plutonius orally infects larvae via brood food, we herein investigated the resistance of M. plutonius to the antimicrobial activity of royal jelly (RJ). The results obtained revealed that M. plutonius strains were more resistant to RJ and its component, 10-hydroxy-2-decenoic acid, than the other species tested. Moreover, among the M. plutonius strains examined, CC3 strains exhibited the strongest resistance to antimicrobial activity; they temporarily proliferated and survived for a long period in 50% RJ-containing broth. However, resistance was not observed when freshly cultured bacteria were used, it was only detected after a preculture on agar media for five or more days, suggesting that, under certain conditions, CC3 strains change their physiological state to that which is advantageous for survival in brood food. This high-level RJ resistance of CC3 strains may contribute to their virulence in the field.
Collapse
Affiliation(s)
- Daisuke Takamatsu
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
- The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Gifu 501-1193, Japan
| | - Aya Osawa
- Matsumoto Livestock Hygiene Service Center, Matsumoto, Nagano 390-0851, Japan
| | - Keiko Nakamura
- Research and Business Promotion Division, Research Institute for Animal Science in Biochemistry and Toxicology, Sagamihara, Kanagawa 252-0132, Japan
| | - Mikio Yoshiyama
- Division of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0901, Japan
| | - Masatoshi Okura
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| |
Collapse
|
22
|
Erban T, Ledvinka O, Kamler M, Hortova B, Nesvorna M, Tyl J, Titera D, Markovic M, Hubert J. Bacterial community associated with worker honeybees ( Apis mellifera) affected by European foulbrood. PeerJ 2017; 5:e3816. [PMID: 28966892 PMCID: PMC5619233 DOI: 10.7717/peerj.3816] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 08/26/2017] [Indexed: 01/17/2023] Open
Abstract
Background Melissococcus plutonius is an entomopathogenic bacterium that causes European foulbrood (EFB), a honeybee (Apis mellifera L.) disease that necessitates quarantine in some countries. In Czechia, positive evidence of EFB was absent for almost 40 years, until an outbreak in the Krkonose Mountains National Park in 2015. This occurrence of EFB gave us the opportunity to study the epizootiology of EFB by focusing on the microbiome of honeybee workers, which act as vectors of honeybee diseases within and between colonies. Methods The study included worker bees collected from brood combs of colonies (i) with no signs of EFB (EFB0), (ii) without clinical symptoms but located at an apiary showing clinical signs of EFB (EFB1), and (iii) with clinical symptoms of EFB (EFB2). In total, 49 samples from 27 honeybee colonies were included in the dataset evaluated in this study. Each biological sample consisted of 10 surface-sterilized worker bees processed for DNA extraction. All subjects were analyzed using conventional PCR and by metabarcoding analysis based on the 16S rRNA gene V1–V3 region, as performed through Illumina MiSeq amplicon sequencing. Results The bees from EFB2 colonies with clinical symptoms exhibited a 75-fold-higher incidence of M. plutonius than those from EFB1 asymptomatic colonies. Melissococcus plutonius was identified in all EFB1 colonies as well as in some of the control colonies. The proportions of Fructobacillus fructosus, Lactobacillus kunkeei, Gilliamella apicola, Frischella perrara, and Bifidobacterium coryneforme were higher in EFB2 than in EFB1, whereas Lactobacillus mellis was significantly higher in EFB2 than in EFB0. Snodgrassella alvi and L. melliventris, L. helsingborgensis and, L. kullabergensis exhibited higher proportion in EFB1 than in EFB2 and EFB0. The occurrence of Bartonella apis and Commensalibacter intestini were higher in EFB0 than in EFB2 and EFB1. Enterococcus faecalis incidence was highest in EFB2. Conclusions High-throughput Illumina sequencing permitted a semi-quantitative analysis of the presence of M. plutonius within the honeybee worker microbiome. The results of this study indicate that worker bees from EFB-diseased colonies are capable of transmitting M. plutonius due to the greatly increased incidence of the pathogen. The presence of M. plutonius sequences in control colonies supports the hypothesis that this pathogen exists in an enzootic state. The bacterial groups synergic to both the colonies with clinical signs of EFB and the EFB-asymptomatic colonies could be candidates for probiotics. This study confirms that E. faecalis is a secondary invader to M. plutonius; however, other putative secondary invaders were not identified in this study.
Collapse
Affiliation(s)
| | - Ondrej Ledvinka
- Crop Research Institute, Prague, Czechia.,Czech Hydrometeorological Institute, Prague, Czechia
| | - Martin Kamler
- Bee Research Institute at Dol, Libcice nad Vltavou, Czechia
| | | | | | - Jan Tyl
- Bee Research Institute at Dol, Libcice nad Vltavou, Czechia
| | - Dalibor Titera
- Bee Research Institute at Dol, Libcice nad Vltavou, Czechia.,Department of Zoology and Fisheries/Faculty of Agrobiology Food and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| | | | - Jan Hubert
- Crop Research Institute, Prague, Czechia
| |
Collapse
|
23
|
Virulence Differences among Melissococcus plutonius Strains with Different Genetic Backgrounds in Apis mellifera Larvae under an Improved Experimental Condition. Sci Rep 2016; 6:33329. [PMID: 27625313 PMCID: PMC5022037 DOI: 10.1038/srep33329] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/24/2016] [Indexed: 11/18/2022] Open
Abstract
European foulbrood (EFB) caused by Melissococcus plutonius is an important bacterial disease of honeybee larvae. M. plutonius strains can be grouped into three genetically distinct groups (CC3, CC12 and CC13). Because EFB could not be reproduced in artificially reared honeybee larvae by fastidious strains of CC3 and CC13 previously, we investigated a method to improve experimental conditions using a CC3 strain and found that infection with a potassium-rich diet enhanced proliferation of the fastidious strain in larvae at the early stage of infection, leading to the appearance of clear clinical symptoms. Further comparison of M. plutonius virulence under the conditions revealed that the representative strain of CC12 was extremely virulent and killed all tested bees before pupation, whereas the CC3 strain was less virulent than the CC12 strain, and a part of the infected larvae pupated. In contrast, the tested CC13 strain was avirulent, and as with the non-infected control group, most of the infected brood became adult bees, suggesting differences in the insect-level virulence among M. plutonius strains with different genetic backgrounds. These strains and the improved experimental infection method to evaluate their virulence will be useful tools for further elucidation of the pathogenic mechanisms of EFB.
Collapse
|
24
|
Takamatsu D, Sato M, Yoshiyama M. Infection of Melissococcus plutonius clonal complex 12 strain in European honeybee larvae is essentially confined to the digestive tract. J Vet Med Sci 2015; 78:29-34. [PMID: 26256232 PMCID: PMC4751113 DOI: 10.1292/jvms.15-0405] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Melissococcus plutonius is an important pathogen that causes
European foulbrood (EFB) in honeybee larvae. Recently, we discovered a group of M.
plutonius strains that are phenotypically and genetically distinct from other
strains. These strains belong to clonal complex (CC) 12, as determined by multilocus
sequence typing analysis, and show atypical cultural and biochemical characteristics
in vitro compared with strains of other CCs tested. Although EFB is
considered to be a purely intestinal infection according to early studies, it is unknown
whether the recently found CC12 strains cause EFB by the same pathomechanism. In this
study, to obtain a better understanding of EFB, we infected European honeybee
(Apis mellifera) larvae per os with a
well-characterized CC12 strain, DAT561, and analyzed the larvae histopathologically.
Ingested DAT561 was mainly localized in the midgut lumen surrounded by the peritrophic
matrix (PM) in the larvae. In badly affected larvae, the PM and midgut epithelial cells
degenerated, and some bacterial cells were detected outside of the midgut. However, they
did not proliferate in the deep tissues actively. By immunohistochemical analysis, the PM
was stained with anti-M. plutonius serum in most of the DAT561-infected
larvae. In some larvae, luminal surfaces of the PM were more strongly stained than the
inside. These results suggest that infection of CC12 strain in honeybee larvae is
essentially confined to the intestine. Moreover, our results imply the presence of
M. plutonius-derived substances diffusing into the larval tissues in
the course of infection.
Collapse
Affiliation(s)
- Daisuke Takamatsu
- Bacterial and Parasitic Diseases Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | | | | |
Collapse
|
25
|
Budge GE, Shirley MDF, Jones B, Quill E, Tomkies V, Feil EJ, Brown MA, Haynes EG. Molecular epidemiology and population structure of the honey bee brood pathogen Melissococcus plutonius. THE ISME JOURNAL 2014; 8:1588-97. [PMID: 24599072 PMCID: PMC4817608 DOI: 10.1038/ismej.2014.20] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/17/2014] [Accepted: 01/18/2014] [Indexed: 12/17/2022]
Abstract
Melissococcus plutonius is the causative agent of European foulbrood (EFB), which is a serious brood disease of the European honey bee (Apis mellifera). EFB remains a threat because of a poor understanding of disease epidemiology. We used a recently published multi-locus sequence typing method to characterise 206 M. plutonius isolates recovered from outbreaks in England and Wales over the course of 2 years. We detected 15 different sequence types (STs), which were resolved by eBURST and phylogenetic analysis into three clonal complexes (CCs) 3, 12 and 13. Single and double locus variants within CC3 were the most abundant and widespread genotypes, accounting for 85% of the cases. In contrast, CCs 12 and 13 were rarer and predominantly found in geographical regions of high sampling intensity, consistent with a more recent introduction and localised spread. K-function analysis and interpoint distance tests revealed significant geographical clustering in five common STs, but pointed to different dispersal patterns between STs. We noted that CCs appeared to vary in pathogenicity and that infection caused by the more pathogenic variants is more likely to lead to honey bee colony destruction, as opposed to treatment. The importance of these findings for improving our understanding of disease aetiology and control are discussed.
Collapse
Affiliation(s)
| | - Mark D F Shirley
- School of Biology, Newcastle University, Ridley Building, Newcastle Upon Tyne, UK
| | | | | | | | - Edward J Feil
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | | | - Edward G Haynes
- Food and Environment Research Agency, York, UK
- Department of Biology, University of York, York, UK
| |
Collapse
|
26
|
Takamatsu D, Morinishi K, Arai R, Sakamoto A, Okura M, Osaki M. Typing of Melissococcus plutonius isolated from European and Japanese honeybees suggests spread of sequence types across borders and between different Apis species. Vet Microbiol 2014; 171:221-6. [PMID: 24768448 DOI: 10.1016/j.vetmic.2014.03.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/20/2014] [Accepted: 03/24/2014] [Indexed: 11/19/2022]
Abstract
Melissococcus plutonius is an important pathogen of honeybee larvae and causes European foulbrood (EFB) not only in European honeybees (Apis mellifera) but also in other native honeybees. We recently confirmed the first EFB case in Japanese native honeybees (Apis cerana japonica) and isolated M. plutonius from this case. In this study, to obtain a better understanding of the ecology of M. plutonius and the epidemiology of EFB, we analyzed M. plutonius isolates that originated from European and Japanese honeybees in Japan using an existing multilocus sequence typing scheme. These analyzed Japanese isolates were resolved into six sequence types (STs), three of which were novel STs. Among these six STs, ST3 and ST12 were the two most common and found in isolates from both European and Japanese honeybees (or their environment). Moreover, these two STs were identified not only in Japan but also in other countries, suggesting the spread of some STs across borders and different honeybee species.
Collapse
Affiliation(s)
- Daisuke Takamatsu
- Bacterial and Parasitic Diseases Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan; The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Gifu 501-1193, Japan.
| | - Keiko Morinishi
- Kagawa Prefecture Eastern Regional Livestock Hygiene Service Center, Miki, Kagawa 761-0701, Japan
| | - Rie Arai
- The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Gifu 501-1193, Japan; Saitama Prefectural Chuo Livestock Hygiene Service Center, Saitama, Saitama 331-0821, Japan
| | - Aya Sakamoto
- Matsumoto Livestock Hygiene Service Center, Matsumoto, Nagano 390-0851, Japan
| | - Masatoshi Okura
- Bacterial and Parasitic Diseases Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Makoto Osaki
- Bacterial and Parasitic Diseases Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| |
Collapse
|
27
|
Arai R, Miyoshi-Akiyama T, Okumura K, Morinaga Y, Wu M, Sugimura Y, Yoshiyama M, Okura M, Kirikae T, Takamatsu D. Development of duplex PCR assay for detection and differentiation of typical and atypical Melissococcus plutonius strains. J Vet Med Sci 2013; 76:491-8. [PMID: 24334815 PMCID: PMC4064131 DOI: 10.1292/jvms.13-0386] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Melissococcus
plutonius is the causative agent of an important honeybee disease, European
foulbrood (EFB). In addition to M. plutonius strains with typical
characteristics (typical M. plutonius), we recently reported the presence
of atypical M. plutonius, which are phenotypically and genetically
distinguished from typical M. plutonius. Because typical and atypical
M. plutonius may have different pathogenic mechanisms, differentiation
of these two types is very important for diagnosis and more effective control of EFB. In
this study, therefore, a duplex PCR assay was developed to detect and differentiate
typical and atypical M. plutonius rapidly and easily. On the basis of the
results of comparative genomic analyses, we selected Na+/H+
antiporter gene and Fur family transcriptional regulator gene as targets for detection of
typical and atypical strains, respectively, by PCR. Under optimized conditions, the duplex
PCR system using the designed primers successfully detected and differentiated all typical
and atypical M. plutonius strain/isolates tested, while no product was
generated from any other bacterial strains/isolates used in this study, including those
isolated from healthy honeybee larval guts. Detection limits of the PCR were 50 copies of
chromosome/reaction for both types, and it could detect typical and atypical M.
plutonius directly from diseased honeybee larvae. Moreover, the duplex PCR
diagnosed mixed infections with both M. plutonius types more precisely
than standard culture methods. These results indicate that the duplex PCR assay developed
in this study is extremely useful for precise diagnosis and epidemiological study of
EFB.
Collapse
Affiliation(s)
- Rie Arai
- Saitama Prefectural Chuo Livestock Hygiene Service Center, 107-1 Besshocho, Kita-ku, Saitama, Saitama 331-0821, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|