1
|
Ye YQ, Ye MQ, Zhang XY, Huang YZ, Zhou ZY, Feng YJ, Du ZJ. Description of the first marine-isolated member of the under-represented phylum Gemmatimonadota, and the environmental distribution and ecogenomics of Gaopeijiales ord. nov. mSystems 2024; 9:e0053524. [PMID: 39560406 DOI: 10.1128/msystems.00535-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/23/2024] [Indexed: 11/20/2024] Open
Abstract
The phylum Gemmatimonadota is widespread but rarely cultured and, in fact, there are only six described species isolated from soil, freshwater, and wastewater treatment. However, no isolates of Gemmatimonadota from marine environment have been described; thus, little is known about the physiology and metabolism of members of the marine lineages. In this study, four novel facultatively anaerobic bacterial strains belonging to Gemmatimonadota were isolated from marine sediments collected from Xiaoshi Island in Weihai, China, using an aerobic enrichment method. The integrated results of phylogenetic and phenotypic characteristics supported that these four strains represent one novel species in a novel genus, for which the name Gaopeijia maritima gen. nov., sp. nov. is proposed, as the first representative of novel taxa, Gaopeijiales ord. nov., Gaopeijiaceae fam. nov. in the class Longimicrobiia. Gaopeijiales was detected in 22,884 out of 95,549 amplicon data sets, mainly from soil. However, the highest mean relative abundances were in sponge (0.7%) and marine sediment (0.35%), showing salt-related character. Most of the Gaopeijiales subgroups potentially belong to the rare bacterial biosphere. The aerobic enrichment in this study could significantly increase the relative abundance of Gaopeijiales (from 0.37% to 2.6%). Furthermore, the metabolic capabilities inferred from high-quality representative Gaopeijiales genomes/MAGs suggest that this group primarily performs chemoorganoheterotrophic metabolism with facultatively anaerobic characteristics and possesses various secondary metabolite biosynthesis gene clusters (BGCs), mirroring those observed in the four novel strains.IMPORTANCEDespite rapid advances in molecular and sequencing technologies, obtaining pure cultures remains a crucial research goal in microbiology, as it is essential for a deeper understanding of microbial metabolism. Gemmatimonadota is a widespread but rarely cultured bacterial phylum. Currently, there are only six cultured strains of this interesting group, all isolated from non-marine environments. Little is known about the physiology and metabolism of members of the marine lineages. Here we isolated and characterized four novel marine strains, and proposed a new order Gaopeijiales within Gemmatimonadota. Furthermore, the global distribution, environmental preference, and metabolic potential of Gaopeijiales are analyzed using public data. Our work enriches the resources available for the under-represented phylum Gemmatimonadota and provides insights into the physiological and metabolic characteristics of the marine lineage (Gaopeijiales) through culturology and omics.
Collapse
Affiliation(s)
- Yu-Qi Ye
- Marine College, Shandong University, Weihai, Shandong, China
| | - Meng-Qi Ye
- Marine College, Shandong University, Weihai, Shandong, China
- Shandong University-Weihai Research Institute of Industrial Technology, Weihai, Shandong, China
| | - Xin-Yue Zhang
- SDU-ANU Joint Science College, Shandong University, Weihai, Shandong, China
| | - You-Zhi Huang
- Shine-Dalgarno Centre for RNA Innovation, Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Zi-Yang Zhou
- Marine College, Shandong University, Weihai, Shandong, China
| | - Yan-Jun Feng
- SDU-ANU Joint Science College, Shandong University, Weihai, Shandong, China
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai, Shandong, China
- Shandong University-Weihai Research Institute of Industrial Technology, Weihai, Shandong, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
2
|
Li J, Wang Q, Zhu B, Yang M. Plateau Pika Disturbance Changes Soil Bacterial Functions and Exoenzyme Abundance to Modulate the C Cycle Pathway in Alpine Grasslands. Int J Mol Sci 2024; 25:12775. [PMID: 39684491 DOI: 10.3390/ijms252312775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Plateau pika (Ochotona curzoniae) is crucial to soil organic carbon (SOC) storage in the Qinghai-Tibetan plateau (QTP), but its role in bacterial SOC metabolisms across different degraded alpine grasslands remains unclear. In this study, we investigated the soil physicochemical properties and the composition and function of the bacterial communities in control and pika-disturbed grasslands experiencing different degradation levels (undegraded, UDM; lightly, LDM; moderately, MDM and severely, SDM). The results demonstrate that (i) the primary bacterial phyla include Proteobacteria, Acidobacteriota, Actinobacteriota, Bacteroidota and Verrucomicrobiota. Soil physicochemical properties significantly impact the composition of the bacterial communities and determine the influence of pika disturbance. Pika disturbance increases bacterial OTUs by 7.5% in LDP (p > 0.05) and by 50.5% in MDP (p < 0.05), while decreases OTUs by 21.4% in SDP (p < 0.05). (ii) Pika disturbance downregulates the exoenzyme abundance associated with simple and complex organic matter decomposition by 9.5% and 13.9% in LDP, and 29.4% and 26.3% in MDP (p < 0.05), while upregulates these exoenzymes by 23.6% and 37.9% in SDP (p < 0.05). These changes correspond to the increase in TC and SOC in LDP and MDP but declines in SDP. (iii) Plateau pika disturbance can enhance SOC accumulation through upregulating the C cycle pathway of ethanol production in LDP and MDP. However, it upregulates the pathway of pyruvate to CO2 conversion in SDP, leading to negative influence on SOC storage.
Collapse
Affiliation(s)
- Jing Li
- School of Civil Engineering and Architecture, Southwest Science and Technology University, Mianyang 621010, China
- School of Environment and Resource, Southwest Science and Technology University, Mianyang 621010, China
| | - Qing Wang
- School of Environment and Resource, Southwest Science and Technology University, Mianyang 621010, China
| | - Baolong Zhu
- School of Civil Engineering and Architecture, Southwest Science and Technology University, Mianyang 621010, China
| | - Min Yang
- School of Civil Engineering and Architecture, Southwest Science and Technology University, Mianyang 621010, China
- School of Environment and Resource, Southwest Science and Technology University, Mianyang 621010, China
| |
Collapse
|
3
|
Du J, Wang Z, Hu L, Wang L, Fang J, Liu R. Comparative Genomics Reveal Distinct Environment Preference and Functional Adaptation Among Lineages of Gemmatimonadota. Microorganisms 2024; 12:2198. [PMID: 39597587 PMCID: PMC11596202 DOI: 10.3390/microorganisms12112198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Bacteria in the phylum Gemmatimonadota are globally distributed and abundant in microbial communities of various environments, playing an important role in driving biogeochemical cycling on Earth. Although high diversities in taxonomic composition and metabolic capabilities have been reported, little is known about the environmental preferences and associated functional features that facilitate adaptation among different Gemmatimonadota lineages. This study systematically analyzed the relationships between the environments, taxonomy, and functions of Gemmatimonadota lineages, by using a comparative genomics approach based on 1356 Gemmatimonadota genomes (213 high-quality and non-redundant genomes) available in a public database (NCBI). The taxonomic analysis showed that the 99.5% of the genomes belong to the class Gemmatimonadetes, and the rest of the genomes belong to the class Glassbacteria. Functional profiling revealed clear environmental preference among different lineages of Gemmatimonadota, and a marine group and two non-marine groups were identified and tested to be significantly different in functional composition. Further annotation and statistical comparison revealed a large number of functional genes (e.g., amiE, coxS, yfbK) that were significantly enriched in genomes from the marine group, supporting enhanced capabilities in energy acquisition, genetic information regulation (e.g., DNA repair), electrolyte homeostasis, and growth rate control. These genomic features are important for their survival in the marine environment, which is oligotrophic, variable, and with high salinity. The findings enhanced our understanding of the metabolic processes and environmental adaptation of Gemmatimonadota, and further advanced the understanding of the interactions of microorganisms and their habitats.
Collapse
Affiliation(s)
| | | | | | | | | | - Rulong Liu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (J.D.); (Z.W.); (L.H.); (L.W.); (J.F.)
| |
Collapse
|
4
|
Zhao X, Yang F, Yang F, Nie H, Hu S, Gui P, Guo Y, Zhang C. Seasonal mouse cadaver microbial study: rupture time and postmortem interval estimation model construction. PeerJ 2024; 12:e17932. [PMID: 39285921 PMCID: PMC11404455 DOI: 10.7717/peerj.17932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/25/2024] [Indexed: 09/19/2024] Open
Abstract
The estimation of postmortem interval (PMI) has long been a focal point in the field of forensic science. Following the death of an organism, microorganisms exhibit a clock-like proliferation pattern during the course of cadaver decomposition, forming the foundation for utilizing microbiology in PMI estimation. The establishment of PMI estimation models based on datasets from different seasons is of great practical significance. In this experiment, we conducted microbiota sequencing and analysis on gravesoil and mouse intestinal contents collected during both the winter and summer seasons and constructed a PMI estimation model using the Random Forest algorithm. The results showed that the MAE of the gut microbiota model in summer was 0.47 ± 0.26 d, R2 = 0.991, and the MAE of the gravesoil model in winter was 1.04 ± 0.22 d, R2 = 0.998. We propose that, in practical applications, it is advantageous to selectively build PMI estimation models based on seasonal variations. Additionally, through a combination of morphological observations, gravesoil microbiota sequencing results, and soil physicochemical data, we identified the time of cadaveric rupture for mouse cadavers, occurring at around days 24-27 in winter and days 6-9 in summer. This study not only confirms previous research findings but also introduces novel insights, contributing to the foundational knowledge necessary to advance the utilization of microbiota for PMI estimation.
Collapse
Affiliation(s)
- Xingchun Zhao
- Institute of Forensic Science, Ministry of Public Security, Beijing, China
- Key Laboratory of Forensic Genetics of Ministry of Public Security, Beijing, China
| | - Fengqin Yang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Fan Yang
- Institute of Forensic Science, Ministry of Public Security, Beijing, China
- Key Laboratory of Forensic Genetics of Ministry of Public Security, Beijing, China
| | - Hao Nie
- Institute of Forensic Science, Ministry of Public Security, Beijing, China
- Key Laboratory of Forensic Genetics of Ministry of Public Security, Beijing, China
| | - Sheng Hu
- Institute of Forensic Science, Ministry of Public Security, Beijing, China
- Key Laboratory of Forensic Genetics of Ministry of Public Security, Beijing, China
| | - Peng Gui
- College of Life Sciences,, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Changquan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Yan Y, Xu J, Huang W, Fan Y, Li Z, Tian M, Ma J, Lu X, Liang J. Metagenomic and Culturomics Analysis of Microbial Communities within Surface Sediments and the Prevalence of Antibiotic Resistance Genes in a Pristine River: The Zaqu River in the Lancang River Source Region, China. Microorganisms 2024; 12:911. [PMID: 38792738 PMCID: PMC11124135 DOI: 10.3390/microorganisms12050911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Microbial communities inhabiting sedimentary environments in river source regions serve as pivotal indicators of pristine river ecosystems. While the correlation between antibiotic resistome and pathogenicity with core gut bacteria in humans is well established, there exists a significant knowledge gap concerning the interaction of antibiotic resistance genes (ARGs) and human pathogenic bacteria (HPB) with specific microbes in river source basins, often referred to as "terrestrial gut". Understanding the microbial composition, including bacteria and resident genetic elements such as ARGs, HPB, Mobile Genetic Elements (MGEs), and Virulence Factors (VFs), within natural habitats against the backdrop of global change, is imperative. To address this gap, an enrichment-based culturomics complementary along with metagenomics was conducted in this study to characterize the microbial biobank and provide preliminary ecological insights into profiling the dissemination of ARGs in the Lancang River Source Basin. Based on our findings, in the main stream of the Lancang River Source Basin, 674 strains of bacteria, comprising 540 strains under anaerobic conditions and 124 under aerobic conditions, were successfully isolated. Among these, 98 species were identified as known species, while 4 were potential novel species. Of these 98 species, 30 were HPB relevant to human health. Additionally, bacA and bacitracin emerged as the most abundant ARGs and antibiotics in this river, respectively. Furthermore, the risk assessment of ARGs predominantly indicated the lowest risk rank (Rank Ⅳ) in terms of endangering human health. In summary, enrichment-based culturomics proved effective in isolating rare and unknown bacteria, particularly under anaerobic conditions. The emergence of ARGs showed limited correlation with MGEs, indicating minimal threats to human health within the main stream of the Lancang River Source Basin.
Collapse
Affiliation(s)
- Yi Yan
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Y.); (J.X.); (W.H.); (M.T.); (J.M.)
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Jialiang Xu
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Y.); (J.X.); (W.H.); (M.T.); (J.M.)
| | - Wenmin Huang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Y.); (J.X.); (W.H.); (M.T.); (J.M.)
| | - Yufeng Fan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (Y.F.); (Z.L.)
| | - Zhenpeng Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (Y.F.); (Z.L.)
| | - Mingkai Tian
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Y.); (J.X.); (W.H.); (M.T.); (J.M.)
| | - Jinsheng Ma
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Y.); (J.X.); (W.H.); (M.T.); (J.M.)
| | - Xin Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (Y.F.); (Z.L.)
| | - Jian Liang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| |
Collapse
|
6
|
Cubillos CF, Aguilar P, Moreira D, Bertolino P, Iniesto M, Dorador C, López-García P. Exploring the prokaryote-eukaryote interplay in microbial mats from an Andean athalassohaline wetland. Microbiol Spectr 2024; 12:e0007224. [PMID: 38456669 PMCID: PMC10986560 DOI: 10.1128/spectrum.00072-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/28/2024] [Indexed: 03/09/2024] Open
Abstract
Microbial community assembly results from the interaction between biotic and abiotic factors. However, environmental selection is thought to predominantly shape communities in extreme ecosystems. Salar de Huasco, situated in the high-altitude Andean Altiplano, represents a poly-extreme ecosystem displaying spatial gradients of physicochemical conditions. To disentangle the influence of abiotic and biotic factors, we studied prokaryotic and eukaryotic communities from microbial mats and underlying sediments across contrasting areas of this athalassohaline ecosystem. The prokaryotic communities were primarily composed of bacteria, notably including a significant proportion of photosynthetic organisms like Cyanobacteria and anoxygenic photosynthetic members of Alpha- and Gammaproteobacteria and Chloroflexi. Additionally, Bacteroidetes, Verrucomicrobia, and Deltaproteobacteria were abundantly represented. Among eukaryotes, photosynthetic organisms (Ochrophyta and Archaeplastida) were predominant, alongside relatively abundant ciliates, cercozoans, and flagellated fungi. Salinity emerged as a key driver for the assembly of prokaryotic communities. Collectively, abiotic factors influenced both prokaryotic and eukaryotic communities, particularly those of algae. However, prokaryotic communities strongly correlated with photosynthetic eukaryotes, suggesting a pivotal role of biotic interactions in shaping these communities. Co-occurrence networks suggested potential interactions between different organisms, such as diatoms with specific photosynthetic and heterotrophic bacteria or with protist predators, indicating influences beyond environmental selection. While some associations may be explained by environmental preferences, the robust biotic correlations, alongside insights from other ecosystems and experimental studies, suggest that symbiotic and trophic interactions significantly shape microbial mat and sediment microbial communities in this athalassohaline ecosystem.IMPORTANCEHow biotic and abiotic factors influence microbial community assembly is still poorly defined. Here, we explore their influence on prokaryotic and eukaryotic community assembly within microbial mats and sediments of an Andean high-altitude polyextreme wetland system. We show that, in addition to abiotic elements, mutual interactions exist between prokaryotic and eukaryotic communities. Notably, photosynthetic eukaryotes exhibit a strong correlation with prokaryotic communities, specifically diatoms with certain bacteria and other protists. Our findings underscore the significance of biotic interactions in community assembly and emphasize the necessity of considering the complete microbial community.
Collapse
Affiliation(s)
- Carolina F. Cubillos
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pablo Aguilar
- Laboratorio de Complejidad Microbiana, Instituto Antofagasta and Centro de Bioingeniería y Biotecnología (CeBiB), Universidad de Antofagasta, Antofagasta, Chile
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
- Millennium Nucleus of Austral Invasive Salmonids - INVASAL, Concepción, Chile
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Paola Bertolino
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Miguel Iniesto
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana, Instituto Antofagasta and Centro de Bioingeniería y Biotecnología (CeBiB), Universidad de Antofagasta, Antofagasta, Chile
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | | |
Collapse
|
7
|
Mucsi M, Borsodi AK, Megyes M, Szili-Kovács T. Response of the metabolic activity and taxonomic composition of bacterial communities to mosaically varying soil salinity and alkalinity. Sci Rep 2024; 14:7460. [PMID: 38553497 PMCID: PMC10980690 DOI: 10.1038/s41598-024-57430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
Soil salinity and sodicity is a worldwide problem that affects the composition and activity of bacterial communities and results from elevated salt and sodium contents. Depending on the degree of environmental pressure and the combined effect of other factors, haloalkalitolerant and haloalkaliphilic bacterial communities will be selected. These bacteria play a potential role in the maintenance and restoration of salt-affected soils; however, until recently, only a limited number of studies have simultaneously studied the bacterial diversity and activity of saline-sodic soils. Soil samples were collected to analyse and compare the taxonomic composition and metabolic activity of bacteria from four distinct natural plant communities at three soil depths corresponding to a salinity‒sodicity gradient. Bacterial diversity was detected using 16S rRNA gene Illumina MiSeq amplicon sequencing. Community-level physiological profiles (CLPPs) were analysed using the MicroResp™ method. The genus-level bacterial composition and CLPPs differed significantly in soils with different alkaline vegetation. The surface soil samples also significantly differed from the intermediate and deep soil samples. The results showed that the pH, salt content, and Na+ content of the soils were the main edaphic factors influencing both bacterial diversity and activity. With salinity and pH, the proportion of the phylum Gemmatimonadota increased, while the proportions of Actinobacteriota and Acidobacteriota decreased.
Collapse
Affiliation(s)
- Márton Mucsi
- Institute for Soil Sciences, HUN-REN Centre for Agricultural Research, Herman Ottó út 15, Budapest, 1022, Hungary
- Doctoral School of Environmental Sciences, ELTE Eötvös Loránd University, Pázmány P. sétány 1/AC, Budapest, 1117, Hungary
| | - Andrea K Borsodi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, Budapest, 1117, Hungary.
- Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina út 29, Budapest, 1113, Hungary.
| | - Melinda Megyes
- Doctoral School of Environmental Sciences, ELTE Eötvös Loránd University, Pázmány P. sétány 1/AC, Budapest, 1117, Hungary
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, Budapest, 1117, Hungary
| | - Tibor Szili-Kovács
- Institute for Soil Sciences, HUN-REN Centre for Agricultural Research, Herman Ottó út 15, Budapest, 1022, Hungary.
| |
Collapse
|
8
|
Wu H, Tong J, Jia F, Jiang X, Zhang H, Wang J, Luo Y, Pang J, Shi J. Nano hydroxyapatite pre-treatment effectively reduces Cd accumulation in rice (Oryza sativa L.) and its impact on paddy microbial communities. CHEMOSPHERE 2023; 338:139567. [PMID: 37480961 DOI: 10.1016/j.chemosphere.2023.139567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
Cadmium (Cd) contamination in paddy soil has become a worldwide concern and severely endangered human health. Nano hydroxyapatite (n-HAP) is a practical material to manage paddy Cd pollution, but its dosage should not be excessive. Based on previous studies, we validated the effect of n-HAP pre-treatment on rice Cd uptake in pot and field experiments. The results indicated that n-HAP pre-treatment effectively restricted Cd translocation in the soil-rice system. In pot experiment, when soil n-HAP concentration was 5000 mg/kg, the Cd content in the grains of n-HAP pre-treated rice was 0.171 mg/kg, decreased by 29.3% compared with normal rice (0.242 mg/kg). In field experiment, when soil n-HAP concentration was 20,000 mg/kg, the Cd content in the grains of n-HAP pre-treated rice was 0.156 mg/kg, decreased by 35.3% compared with normal rice (0.241 mg/kg). The primary mechanism was that n-HAP pre-treatment altered the formation and composition of iron plaque and therefore enhanced the Cd binding ability of iron plaque. The available N and P content and urease activity in paddy field were increased. We further investigated the impact of n-HAP on the diversity and structure of paddy microbial communities. The Chao1 and Shannon diversity indices showed no significant difference. The relative abundance of Actinobacteria and Proteobacteria was significantly decreased by n-HAP, indicating that Cd pollution might be alleviated. Desulfobacterota, Gemmatimonadota, and Geobacteraceae were significantly enriched by n-HAP. The declining relative abundance of Basidiomycota and the increasing relative abundance of other fungal taxa also suggested that n-HAP could alleviate Cd toxicity in soil.
Collapse
Affiliation(s)
- Hanxin Wu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Jianhao Tong
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Fei Jia
- Zhejiang Jiuhe Geological and Ecological Environment Planning and Design Company, Huzhou, 313002, China
| | - Xiaohan Jiang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Haonan Zhang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Jing Wang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Yating Luo
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Jingli Pang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Mujakić I, Cabello-Yeves PJ, Villena-Alemany C, Piwosz K, Rodriguez-Valera F, Picazo A, Camacho A, Koblížek M. Multi-environment ecogenomics analysis of the cosmopolitan phylum Gemmatimonadota. Microbiol Spectr 2023; 11:e0111223. [PMID: 37732776 PMCID: PMC10581226 DOI: 10.1128/spectrum.01112-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/02/2023] [Indexed: 09/22/2023] Open
Abstract
Gemmatimonadota is a diverse bacterial phylum commonly found in environments such as soils, rhizospheres, fresh waters, and sediments. So far, the phylum contains just six cultured species (five of them sequenced), which limits our understanding of their diversity and metabolism. Therefore, we analyzed over 400 metagenome-assembled genomes (MAGs) and 5 culture-derived genomes representing Gemmatimonadota from various aquatic environments, hydrothermal vents, sediments, soils, and host-associated (with marine sponges and coral) species. The principal coordinate analysis based on the presence/absence of genes in Gemmatimonadota genomes and phylogenomic analysis documented that marine and host-associated Gemmatimonadota were the most distant from freshwater and wastewater species. A smaller genome size and coding sequences (CDS) number reduction were observed in marine MAGs, pointing to an oligotrophic environmental adaptation. Several metabolic pathways are restricted to specific environments. For example, genes for anoxygenic phototrophy were found only in freshwater, wastewater, and soda lake sediment genomes. There were several genomes from soda lake sediments and wastewater containing type IC/ID ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). Various genomes from wastewater harbored bacterial type II RuBisCO, whereas RuBisCO-like protein was found in genomes from fresh waters, soil, host-associated, and marine sediments. Gemmatimonadota does not contain nitrogen fixation genes; however, the nosZ gene, involved in the reduction of N2O, was present in genomes from most environments, missing only in marine water and host-associated Gemmatimonadota. The presented data suggest that Gemmatimonadota evolved as an organotrophic species relying on aerobic respiration and then remodeled its genome inventory when adapting to particular environments. IMPORTANCE Gemmatimonadota is a rarely studied bacterial phylum consisting of a handful of cultured species. Recent culture-independent studies documented that these organisms are distributed in many environments, including soil, marine, fresh, and waste waters. However, due to the lack of cultured species, information about their metabolic potential and environmental role is scarce. Therefore, we collected Gemmatimonadota metagenome-assembled genomes (MAGs) from different habitats and performed a systematic analysis of their genomic characteristics and metabolic potential. Our results show how Gemmatimonadota have adapted their genomes to different environments.
Collapse
Affiliation(s)
- Izabela Mujakić
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Pedro J. Cabello-Yeves
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Paterna, Valencia, Spain
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Cristian Villena-Alemany
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Kasia Piwosz
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Gdynia, Poland
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Antonio Picazo
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Paterna, Valencia, Spain
| | - Antonio Camacho
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Paterna, Valencia, Spain
| | - Michal Koblížek
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| |
Collapse
|
10
|
The Influence of Calcium on the Growth, Morphology and Gene Regulation in Gemmatimonas phototrophica. Microorganisms 2022; 11:microorganisms11010027. [PMID: 36677319 PMCID: PMC9862903 DOI: 10.3390/microorganisms11010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The bacterium Gemmatimonas phototrophica AP64 isolated from a freshwater lake in the western Gobi Desert represents the first phototrophic member of the bacterial phylum Gemmatimonadota. This strain was originally cultured on agar plates because it did not grow in liquid medium. In contrast, the closely related species G. groenlandica TET16 grows both on solid and in liquid media. Here, we show that the growth of G. phototrophica in liquid medium can be induced by supplementing the medium with 20 mg CaCl2 L-1. When grown at a lower concentration of calcium (2 mg CaCl2 L-1) in the liquid medium, the growth was significantly delayed, cells were elongated and lacked flagella. The elevated requirement for calcium is relatively specific as it can be partially substituted by strontium, but not by magnesium. The transcriptome analysis documented that several groups of genes involved in flagella biosynthesis and transport of transition metals were co-activated after amendment of 20 mg CaCl2 L-1 to the medium. The presented results document that G. phototrophica requires a higher concentration of calcium for its metabolism and growth compared to other Gemmatimonas species.
Collapse
|
11
|
(Meta)Genomic Analysis Reveals Diverse Energy Conservation Strategies Employed by Globally Distributed Gemmatimonadota. mSystems 2022; 7:e0022822. [PMID: 35913193 PMCID: PMC9426454 DOI: 10.1128/msystems.00228-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Gemmatimonadota is a phylum-level lineage distributed widely but rarely reported. Only six representatives of Gemmatimonadota have so far been isolated and cultured in laboratory. The physiology, ecology, and evolutionary history of this phylum remain unknown. The 16S rRNA gene survey of our salt lake and deep-sea sediments, and Earth Microbiome Project (EMP) samples, reveals that Gemmatimonadota exist in diverse environments globally. In this study, we retrieved 17 metagenome-assembled genomes (MAGs) from salt lake sediments (12 MAGs) and deep-sea sediments (5 MAGs). Analysis of these MAGs and the nonredundant MAGs or genomes from public databases reveals Gemmatimonadota can degrade various complex organic substrates, and mainly employ heterotrophic pathways (e.g., glycolysis and tricarboxylic acid [TCA] cycle) for growth via aerobic respiration. And the processes of sufficient energy being stored in glucose through gluconeogenesis, followed by the synthesis of more complex compounds, are prevalent in Gemmatimonadota. A highly expandable pangenome for Gemmatimonadota has been observed, which presumably results from their adaptation to thriving in diverse environments. The enrichment of the Na+/H+ antiporter in the SG8-23 order represents their adaptation to salty habitats. Notably, we identified a novel lineage of the SG8-23 order, which is potentially anoxygenic phototrophic. This lineage is not closely related to the phototrophs in the order of Gemmatimonadales. The two orders differ distinctly in the gene organization and phylogenetic relationship of their photosynthesis gene clusters, indicating photosystems in Gemmatimonadota have evolved in two independent routes. IMPORTANCE The phylum Gemmatimonadota is widely distributed in various environments. However, their physiology, ecology and evolutionary history remain unknown, primary due to the limited cultured isolates and available genomes. We were intrigued to find out how widespread this phylum is, and how it can thrive under diverse conditions. Our results here expand the knowledge of the genetic and metabolic diversity of Gemmatimonadota, and shed light on the diverse energy conservation strategies (i.e., oxidative phosphorylation, substrate phosphorylation, and photosynthetic phosphorylation) responsible for their global distribution. Moreover, gene organization and phylogenetic analysis of photosynthesis gene clusters in Gemmatimonadota provide a valuable insight into the evolutionary history of photosynthesis.
Collapse
|
12
|
Shang S, Hu S, Liu X, Zang Y, Chen J, Gao N, Li L, Wang J, Liu L, Xu J, Zhang Y, Wu T, Tang X. Effects of
Spartina alterniflora
invasion on the community structure and diversity of wetland soil bacteria in the Yellow River Delta. Ecol Evol 2022; 12:e8905. [PMID: 35571753 PMCID: PMC9077829 DOI: 10.1002/ece3.8905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 01/04/2023] Open
Affiliation(s)
- Shuai Shang
- College of Biological and Environmental Engineering Binzhou University Binzhou Shandong China
- College of Marine Life Sciences Ocean University of China Qingdao Shandong China
| | - Shunxin Hu
- Shandong Provincial Key laboratory of Marine Ecological Restoration Shandong Marine Resource and Environment Research Institute Yantai China
| | - Xiaoxue Liu
- College of Biological and Environmental Engineering Binzhou University Binzhou Shandong China
| | - Yu Zang
- College of Marine Life Sciences Ocean University of China Qingdao Shandong China
| | - Jun Chen
- College of Marine Life Sciences Ocean University of China Qingdao Shandong China
| | - Ning Gao
- National Marine Environment Monitoring Center Dalian China
| | - Liangyu Li
- College of Marine Life Sciences Ocean University of China Qingdao Shandong China
| | - Jun Wang
- College of Biological and Environmental Engineering Binzhou University Binzhou Shandong China
| | - Longxiang Liu
- College of Biological and Environmental Engineering Binzhou University Binzhou Shandong China
| | - Jikun Xu
- College of Biological and Environmental Engineering Binzhou University Binzhou Shandong China
| | - Yumiao Zhang
- College of Biological and Environmental Engineering Binzhou University Binzhou Shandong China
| | - Tao Wu
- College of Biological and Environmental Engineering Binzhou University Binzhou Shandong China
| | - Xuexi Tang
- College of Marine Life Sciences Ocean University of China Qingdao Shandong China
| |
Collapse
|
13
|
Kaluzhnaya OV, Itskovich VB. Features of Diversity of Polyketide Synthase Genes in the Community of Freshwater Sponge Baikalospongia fungiformis. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422030061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Mujakić I, Piwosz K, Koblížek M. Phylum Gemmatimonadota and Its Role in the Environment. Microorganisms 2022; 10:microorganisms10010151. [PMID: 35056600 PMCID: PMC8779627 DOI: 10.3390/microorganisms10010151] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Bacteria are an important part of every ecosystem that they inhabit on Earth. Environmental microbiologists usually focus on a few dominant bacterial groups, neglecting less abundant ones, which collectively make up most of the microbial diversity. One of such less-studied phyla is Gemmatimonadota. Currently, the phylum contains only six cultured species. However, data from culture-independent studies indicate that members of Gemmatimonadota are common in diverse habitats. They are abundant in soils, where they seem to be frequently associated with plants and the rhizosphere. Moreover, Gemmatimonadota were found in aquatic environments, such as freshwaters, wastewater treatment plants, biofilms, and sediments. An important discovery was the identification of purple bacterial reaction centers and anoxygenic photosynthesis in this phylum, genes for which were likely acquired via horizontal gene transfer. So far, the capacity for anoxygenic photosynthesis has been described for two cultured species: Gemmatimonas phototrophica and Gemmatimonas groenlandica. Moreover, analyses of metagenome-assembled genomes indicate that it is also common in uncultured lineages of Gemmatimonadota. This review summarizes the current knowledge about this understudied bacterial phylum with an emphasis on its environmental distribution.
Collapse
Affiliation(s)
- Izabela Mujakić
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradská 237, 379 81 Třeboň, Czech Republic; (I.M.); (K.P.)
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Kasia Piwosz
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradská 237, 379 81 Třeboň, Czech Republic; (I.M.); (K.P.)
- National Marine Fisheries Research Institute, Kołłątaja 1, 81-332 Gdynia, Poland
| | - Michal Koblížek
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradská 237, 379 81 Třeboň, Czech Republic; (I.M.); (K.P.)
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
- Correspondence:
| |
Collapse
|
15
|
Bourhane Z, Lanzén A, Cagnon C, Ben Said O, Mahmoudi E, Coulon F, Atai E, Borja A, Cravo-Laureau C, Duran R. Microbial diversity alteration reveals biomarkers of contamination in soil-river-lake continuum. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126789. [PMID: 34365235 DOI: 10.1016/j.jhazmat.2021.126789] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 05/21/2023]
Abstract
Microbial communities inhabiting soil-water-sediment continuum in coastal areas provide important ecosystem services. Their adaptation in response to environmental stressors, particularly mitigating the impact of pollutants discharged from human activities, has been considered for the development of microbial biomonitoring tools, but their use is still in the infancy. Here, chemical and molecular (16S rRNA gene metabarcoding) approaches were combined in order to determine the impact of pollutants on microbial assemblages inhabiting the aquatic network of a soil-water-sediment continuum around the Ichkeul Lake (Tunisia), an area highly impacted by human activities. Samples were collected within the soil-river-lake continuum at three stations in dry (summer) and wet (winter) seasons. The contaminant pressure index (PI), which integrates Polycyclic aromatic hydrocarbons (PAHs), alkanes, Organochlorine pesticides (OCPs) and metal contents, and the microbial pressure index microgAMBI, based on bacterial community structure, showed significant correlation with contamination level and differences between seasons. The comparison of prokaryotic communities further revealed specific assemblages for soil, river and lake sediments. Correlation analyses identified potential "specialist" genera for the different compartments, whose abundances were correlated with the pollutant type found. Additionally, PICRUSt analysis revealed the metabolic potential for pollutant transformation or degradation of the identified "specialist" species, providing information to estimate the recovery capacity of the ecosystem. Such findings offer the possibility to define a relevant set of microbial indicators for assessing the effects of human activities on aquatic ecosystems. Microbial indicators, including the detection of "specialist" and sensitive taxa, and their functional capacity, might be useful, in combination with integrative microbial indices, to constitute accurate biomonitoring tools for the management and restoration of complex coastal aquatic systems.
Collapse
Affiliation(s)
- Zeina Bourhane
- Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM CNRS 5254, Pau, France
| | - Anders Lanzén
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110 Pasaia, Gipuzkoa, Spain; IKERBASQUE, Basque Foundation for Science, E-48011 Bilbao, Spain
| | - Christine Cagnon
- Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM CNRS 5254, Pau, France
| | - Olfa Ben Said
- Laboratoire de Biosurveillance de l'Environnement, Faculté des Sciences de Bizerte, LBE, Tunisia
| | - Ezzeddine Mahmoudi
- Laboratoire de Biosurveillance de l'Environnement, Faculté des Sciences de Bizerte, LBE, Tunisia
| | - Frederic Coulon
- Cranfield University, School of Water, Energy and Environment, Cranfield MK430AL, UK
| | - Emmanuel Atai
- Cranfield University, School of Water, Energy and Environment, Cranfield MK430AL, UK
| | - Angel Borja
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110 Pasaia, Gipuzkoa, Spain; King Abdulaziz University, Faculty of Marine Sciences, Jeddah, Saudi Arabia
| | | | - Robert Duran
- Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM CNRS 5254, Pau, France.
| |
Collapse
|
16
|
Nupur, Kuzma M, Hájek J, Hrouzek P, Gardiner AT, Lukeš M, Moos M, Šimek P, Koblížek M. Structure elucidation of the novel carotenoid gemmatoxanthin from the photosynthetic complex of Gemmatimonas phototrophica AP64. Sci Rep 2021; 11:15964. [PMID: 34354109 PMCID: PMC8342508 DOI: 10.1038/s41598-021-95254-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/20/2021] [Indexed: 11/09/2022] Open
Abstract
Gemmatimonas phototrophica AP64 is the first phototrophic representative of the bacterial phylum Gemmatimonadetes. The cells contain photosynthetic complexes with bacteriochlorophyll a as the main light-harvesting pigment and an unknown carotenoid with a single broad absorption band at 490 nm in methanol. The carotenoid was extracted from isolated photosynthetic complexes, and purified by liquid chromatography. A combination of nuclear magnetic resonance (1H NMR, COSY, 1H-13C HSQC, 1H-13C HMBC, J-resolved, and ROESY), high-resolution mass spectroscopy, Fourier-transformed infra-red, and Raman spectroscopy was used to determine its chemical structure. The novel linear carotenoid, that we have named gemmatoxanthin, contains 11 conjugated double bonds and is further substituted by methoxy, carboxyl and aldehyde groups. Its IUPAC-IUBMB semi-systematic name is 1'-Methoxy-19'-oxo-3',4'-didehydro-7,8,1',2'-tetrahydro- Ψ, Ψ carotene-16-oic acid. To our best knowledge, the presence of the carboxyl, methoxy and aldehyde groups on a linear C40 carotenoid backbone is reported here for the first time.
Collapse
Affiliation(s)
- Nupur
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 379 81, Třeboň, Czech Republic
| | - Marek Kuzma
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, Czech Republic
| | - Jan Hájek
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 379 81, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, Czech Republic
| | - Pavel Hrouzek
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 379 81, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, Czech Republic
| | - Alastair T Gardiner
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 379 81, Třeboň, Czech Republic
| | - Martin Lukeš
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 379 81, Třeboň, Czech Republic
| | - Martin Moos
- Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 370 05, České Budějovice, Czech Republic
| | - Petr Šimek
- Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 370 05, České Budějovice, Czech Republic
| | - Michal Koblížek
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 379 81, Třeboň, Czech Republic.
| |
Collapse
|
17
|
Gonzalez-Pimentel JL, Martin-Pozas T, Jurado V, Miller AZ, Caldeira AT, Fernandez-Lorenzo O, Sanchez-Moral S, Saiz-Jimenez C. Prokaryotic communities from a lava tube cave in La Palma Island (Spain) are involved in the biogeochemical cycle of major elements. PeerJ 2021; 9:e11386. [PMID: 34026356 PMCID: PMC8121065 DOI: 10.7717/peerj.11386] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/10/2021] [Indexed: 11/21/2022] Open
Abstract
Lava caves differ from karstic caves in their genesis and mineral composition. Subsurface microbiology of lava tube caves in Canary Islands, a volcanic archipelago in the Atlantic Ocean, is largely unknown. We have focused the investigation in a representative lava tube cave, Fuente de la Canaria Cave, in La Palma Island, Spain, which presents different types of speleothems and colored microbial mats. Four samples collected in this cave were studied using DNA next-generation sequencing and field emission scanning electron microscopy for bacterial identification, functional profiling, and morphological characterization. The data showed an almost exclusive dominance of Bacteria over Archaea. The distribution in phyla revealed a majority abundance of Proteobacteria (37-89%), followed by Actinobacteria, Acidobacteria and Candidatus Rokubacteria. These four phyla comprised a total relative abundance of 72-96%. The main ecological functions in the microbial communities were chemoheterotrophy, methanotrophy, sulfur and nitrogen metabolisms, and CO2 fixation; although other ecological functions were outlined. Genome annotations of the especially representative taxon Ga0077536 (about 71% of abundance in moonmilk) predicted the presence of genes involved in CO2 fixation, formaldehyde consumption, sulfur and nitrogen metabolisms, and microbially-induced carbonate precipitation. The detection of several putative lineages associated with C, N, S, Fe and Mn indicates that Fuente de la Canaria Cave basalts are colonized by metabolically diverse prokaryotic communities involved in the biogeochemical cycling of major elements.
Collapse
Affiliation(s)
| | | | - Valme Jurado
- Environmental Microbiology, Instituto de Recursos Naturales y Agrobiologia, CSIC, Sevilla, Spain
| | | | | | | | | | - Cesareo Saiz-Jimenez
- Environmental Microbiology, Instituto de Recursos Naturales y Agrobiologia, CSIC, Sevilla, Spain
| |
Collapse
|
18
|
Guan Y, Jiang N, Wu Y, Yang Z, Bello A, Yang W. Disentangling the role of salinity-sodicity in shaping soil microbiome along a natural saline-sodic gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142738. [PMID: 33097264 DOI: 10.1016/j.scitotenv.2020.142738] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 05/16/2023]
Abstract
Increasing salinity and sodicity have been recognized as threats to soil fertility and crop yield worldwide. In recent years, salt-affected soils have received great attentions due to the shortage of arable land. This study therefore aims to characterize soil bacterial community, assembly process and co-occurrence network along natural saline-sodic gradients across Songnen Plain, Northeast China. As revealed by Miseq sequencing, 8482 bacterial OTUs were annotated at 97% identity across 120 soil samples. Our results indicated that soil salinity-sodicity not only significantly decreased bacterial richness and but also impacted bacterial community composition. The dominant bacterial phyla included Proteobacteria (28.89%), Actinobacteria (19.96%) and Gemmatimonadetes (16.71%). By applying threshold indicator species analysis (TITAN), OTUs from Gemmatimonadetes were found to be the taxa with the most prevalent and strongest preference for high salinity-sodicity. Null model analysis revealed that the majority (76.4%) of βNTI values were below -2 or above 2, indicating deterministic process was dominant across all samples. Notably, deterministic process contributed to a greater extent in higher saline-sodic soils. The bacterial co-occurrence network was more complex in slightly saline-sodic soils than in moderately and extremely saline-sodic soils, reflected by more nodes, more hubs and stronger connections, which was mainly driven by soil pH. These results provide strong evidence that salinity-sodicity was a key determinant in shaping soil bacterial community, assembly process and co-occurrence network pattern.
Collapse
Affiliation(s)
- Yupeng Guan
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Nana Jiang
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Yanxiang Wu
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Zhongzan Yang
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Ayodeji Bello
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Wei Yang
- College of Resources and Environment, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
19
|
Sperlea T, Kreuder N, Beisser D, Hattab G, Boenigk J, Heider D. Quantification of the covariation of lake microbiomes and environmental variables using a machine learning-based framework. Mol Ecol 2021; 30:2131-2144. [PMID: 33682183 DOI: 10.1111/mec.15872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022]
Abstract
It is known that microorganisms are essential for the functioning of ecosystems, but the extent to which microorganisms respond to different environmental variables in their natural habitats is not clear. In the current study, we present a methodological framework to quantify the covariation of the microbial community of a habitat and environmental variables of this habitat. It is built on theoretical considerations of systems ecology, makes use of state-of-the-art machine learning techniques and can be used to identify bioindicators. We apply the framework to a data set containing operational taxonomic units (OTUs) as well as more than twenty physicochemical and geographic variables measured in a large-scale survey of European lakes. While a large part of variation (up to 61%) in many environmental variables can be explained by microbial community composition, some variables do not show significant covariation with the microbial lake community. Moreover, we have identified OTUs that act as "multitask" bioindicators, i.e., that are indicative for multiple environmental variables, and thus could be candidates for lake water monitoring schemes. Our results represent, for the first time, a quantification of the covariation of the lake microbiome and a wide array of environmental variables for lake ecosystems. Building on the results and methodology presented here, it will be possible to identify microbial taxa and processes that are essential for functioning and stability of lake ecosystems.
Collapse
Affiliation(s)
- Theodor Sperlea
- Faculty of Mathematics and Computer Science, University of Marburg, Marburg (Lahn), Germany
| | - Nico Kreuder
- Department of Biodiversity, Center for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Daniela Beisser
- Department of Biodiversity, Center for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Georges Hattab
- Faculty of Mathematics and Computer Science, University of Marburg, Marburg (Lahn), Germany
| | - Jens Boenigk
- Department of Biodiversity, Center for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Dominik Heider
- Faculty of Mathematics and Computer Science, University of Marburg, Marburg (Lahn), Germany
| |
Collapse
|
20
|
Mujakić I, Andrei AŞ, Shabarova T, Fecskeová LK, Salcher MM, Piwosz K, Ghai R, Koblížek M. Common Presence of Phototrophic Gemmatimonadota in Temperate Freshwater Lakes. mSystems 2021; 6:e01241-20. [PMID: 33727400 PMCID: PMC8547001 DOI: 10.1128/msystems.01241-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/21/2021] [Indexed: 12/11/2022] Open
Abstract
Members of the bacterial phylum Gemmatimonadota are ubiquitous in most natural environments and represent one of the top 10 most abundant bacterial phyla in soil. Sequences affiliated with Gemmatimonadota were also reported from diverse aquatic habitats; however, it remains unknown whether they are native organisms or represent bacteria passively transported from sediment or soil. To address this question, we analyzed metagenomes constructed from five freshwater lakes in central Europe. Based on the 16S rRNA gene frequency, Gemmatimonadota represented from 0.02 to 0.6% of all bacteria in the epilimnion and between 0.1 and 1% in the hypolimnion. These proportions were independently confirmed using catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). Some cells in the epilimnion were attached to diatoms (Fragilaria sp.) or cyanobacteria (Microcystis sp.), which suggests a close association with phytoplankton. In addition, we reconstructed 45 metagenome-assembled genomes (MAGs) related to Gemmatimonadota They represent several novel lineages, which persist in the studied lakes during the seasons. Three lineages contained photosynthesis gene clusters. One of these lineages was related to Gemmatimonas phototrophica and represented the majority of Gemmatimonadota retrieved from the lakes' epilimnion. The other two lineages came from hypolimnion and probably represented novel photoheterotrophic genera. None of these phototrophic MAGs contained genes for carbon fixation. Since most of the identified MAGs were present during the whole year and cells associated with phytoplankton were observed, we conclude that they represent truly limnic Gemmatimonadota distinct from the previously described species isolated from soils or sediments.IMPORTANCE Photoheterotrophic bacterial phyla such as Gemmatimonadota are key components of many natural environments. Its first photoheterotrophic cultured member, Gemmatimonas phototrophica, was isolated in 2014 from a shallow lake in the Gobi Desert. It contains a unique type of photosynthetic complex encoded by a set of genes which were likely received via horizontal transfer from Proteobacteria We were intrigued to discover how widespread this group is in the natural environment. In the presented study, we analyzed 45 metagenome-assembled genomes (MAGs) that were obtained from five freshwater lakes in Switzerland and Czechia. Interestingly, it was found that phototrophic Gemmatimonadota are relatively common in euphotic zones of the studied lakes, whereas heterotrophic Gemmatimonadota prevail in deeper waters. Moreover, our analysis of the MAGs documented that these freshwater species contain almost the same set of photosynthesis genes identified before in Gemmatimonas phototrophica originating from the Gobi Desert.
Collapse
Affiliation(s)
- Izabela Mujakić
- Laboratory of Anoxygenic Phototrophs, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Adrian-Ştefan Andrei
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Tanja Shabarova
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Lívia Kolesár Fecskeová
- Laboratory of Anoxygenic Phototrophs, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
| | - Michaela M Salcher
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Kasia Piwosz
- Laboratory of Anoxygenic Phototrophs, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Michal Koblížek
- Laboratory of Anoxygenic Phototrophs, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| |
Collapse
|
21
|
Zeng Y, Nupur, Wu N, Madsen AM, Chen X, Gardiner AT, Koblížek M. Gemmatimonas groenlandica sp. nov. Is an Aerobic Anoxygenic Phototroph in the Phylum Gemmatimonadetes. Front Microbiol 2021; 11:606612. [PMID: 33519753 PMCID: PMC7844134 DOI: 10.3389/fmicb.2020.606612] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/08/2020] [Indexed: 12/18/2022] Open
Abstract
The bacterial phylum Gemmatimonadetes contains members capable of performing bacteriochlorophyll-based phototrophy (chlorophototrophy). However, only one strain of chlorophototrophic Gemmatimonadetes bacteria (CGB) has been isolated to date, hampering our further understanding of their photoheterotrophic lifestyle and the evolution of phototrophy in CGB. By combining a culturomics strategy with a rapid screening technique for chlorophototrophs, we report the isolation of a new member of CGB, Gemmatimonas (G.) groenlandica sp. nov., from the surface water of a stream in the Zackenberg Valley in High Arctic Greenland. Distinct from the microaerophilic G. phototrophica strain AP64T, G. groenlandica strain TET16T is a strictly aerobic anoxygenic phototroph, lacking many oxygen-independent enzymes while possessing an expanded arsenal for coping with oxidative stresses. Its pigment composition and infra-red absorption properties are also different from G. phototrophica, indicating that it possesses a different photosystem apparatus. The complete genome sequence of G. groenlandica reveals unique and conserved features in the photosynthesis gene clusters of CGB. We further analyzed metagenome-assembled genomes of CGB obtained from soil and glacier metagenomes from Northeast Greenland, revealing a wide distribution pattern of CGB beyond the stream water investigated.
Collapse
Affiliation(s)
- Yonghui Zeng
- Department of Environmental Science, Aarhus University, Roskilde, Denmark.,Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Nupur
- Centre Algatech, Institute of Microbiology CAS, Třeboň, Czechia
| | - Naicheng Wu
- Department of Geography and Spatial Information Techniques, Center for Land and Marine Spatial Utilization and Governance Research, Ningbo University, Ningbo, China
| | - Anne Mette Madsen
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Xihan Chen
- Department of Engineering, Aarhus University, Aarhus, Denmark
| | | | - Michal Koblížek
- Centre Algatech, Institute of Microbiology CAS, Třeboň, Czechia
| |
Collapse
|
22
|
Liu S, Meng J, Lan Y, Cheng X, E Y, Liu Z, Chen W. Effect of corn straw biochar on corn straw composting by affecting effective bacterial community. Prep Biochem Biotechnol 2020; 51:792-802. [PMID: 33356900 DOI: 10.1080/10826068.2020.1858428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This study investigated the effect of corn straw biochar on the decomposition, nutrient transformation, and bacterial community characteristics in the corn straw decomposition process. A 90-day microcosm incubation experiment was performed to assess the effects of corn straw biochar (500 °C, 1 h) on the corn straw decomposition process and the resulting product. Four biochar amendment rates (0%, 5, 10, and 15%, as mass fractions of biochar) and three different addition times (1st day, 30th day, and 60th day) were set in total. The results showed that corn straw biochar significantly increased the pH of the corn straw decomposition process by 0.71-0.73 and increased the electrical conductivity value by 0.64-1.07 μS/cm over that of the controls. In addition, biochar was shown to increase the temperature rise rate and temperature peak of the straw maturation system, and advance the process of straw maturation by 10 days. Thus, treatment with corn straw biochar could accelerate the corn straw decomposition process and change the conditions for microorganisms involved in the process. Furthermore, biochar additions significantly decreased the organic matter content by 9.67% under B3 and T1 treatment, and enhanced the N, P2O5, and K2O contents of the straw decomposition product by 0.36, 0.19, and 0.88% under B3 and T1 treatment. Biochar additions could increase the abundance of several effective bacteria closely related to the N, P2O5, and K2O contents of the straw maturation product. The growth of these bacteria was likely to be affected by the increase in pH with biochar addition, which enabled the improvement of the nutrient mineralization process.
Collapse
Affiliation(s)
- Sainan Liu
- Agricultural College, Shenyang Agricultural University, Shenyang, China.,Liaoning Biochar Engineering and Technology Research Center, Shenyang, China
| | - Jun Meng
- Agricultural College, Shenyang Agricultural University, Shenyang, China.,Liaoning Biochar Engineering and Technology Research Center, Shenyang, China
| | - Yu Lan
- Agricultural College, Shenyang Agricultural University, Shenyang, China.,Liaoning Biochar Engineering and Technology Research Center, Shenyang, China
| | - Xiaoyi Cheng
- Agricultural College, Shenyang Agricultural University, Shenyang, China
| | - Yang E
- Agricultural College, Shenyang Agricultural University, Shenyang, China.,Liaoning Biochar Engineering and Technology Research Center, Shenyang, China
| | - Zunqi Liu
- Agricultural College, Shenyang Agricultural University, Shenyang, China.,Liaoning Biochar Engineering and Technology Research Center, Shenyang, China
| | - Wenfu Chen
- Agricultural College, Shenyang Agricultural University, Shenyang, China.,Liaoning Biochar Engineering and Technology Research Center, Shenyang, China
| |
Collapse
|
23
|
Chen R, Wong HL, Kindler GS, MacLeod FI, Benaud N, Ferrari BC, Burns BP. Discovery of an Abundance of Biosynthetic Gene Clusters in Shark Bay Microbial Mats. Front Microbiol 2020; 11:1950. [PMID: 32973707 PMCID: PMC7472256 DOI: 10.3389/fmicb.2020.01950] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/24/2020] [Indexed: 01/27/2023] Open
Abstract
Microbial mats are geobiological multilayered ecosystems that have significant evolutionary value in understanding the evolution of early life on Earth. Shark Bay, Australia has some of the best examples of modern microbial mats thriving under harsh conditions of high temperatures, salinity, desiccation, and ultraviolet (UV) radiation. Microorganisms living in extreme ecosystems are thought to potentially encode for secondary metabolites as a survival strategy. Many secondary metabolites are natural products encoded by a grouping of genes known as biosynthetic gene clusters (BGCs). Natural products have diverse chemical structures and functions which provide competitive advantages for microorganisms and can also have biotechnology applications. In the present study, the diversity of BGC were described in detail for the first time from Shark Bay microbial mats. A total of 1477 BGCs were detected in metagenomic data over a 20 mm mat depth horizon, with the surface layer possessing over 200 BGCs and containing the highest relative abundance of BGCs of all mat layers. Terpene and bacteriocin BGCs were highly represented and their natural products are proposed to have important roles in ecosystem function in these mat systems. Interestingly, potentially novel BGCs were detected from Heimdallarchaeota and Lokiarchaeota, two evolutionarily significant archaeal phyla not previously known to possess BGCs. This study provides new insights into how secondary metabolites from BGCs may enable diverse microbial mat communities to adapt to extreme environments.
Collapse
Affiliation(s)
- Ray Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Hon Lun Wong
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Gareth S Kindler
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Fraser Iain MacLeod
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Nicole Benaud
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Belinda C Ferrari
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Brendan P Burns
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
24
|
Shifts in the Bacterial Population and Ecosystem Functions in Response to Vegetation in the Yellow River Delta Wetlands. mSystems 2020; 5:5/3/e00412-20. [PMID: 32518198 PMCID: PMC7289592 DOI: 10.1128/msystems.00412-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vegetation represents probably the most crucial step for the ecosystem functions of wetlands, but it is unclear how microbial populations and functions shift along with vegetation. In this study, we found that the richness and diversity of soil bacteria increased with vegetation levels and that the community composition was distinctly shifted from bare to vegetative places. The bare land displayed an extremely high abundance of Cyanobacteria as a monospecies genus, while a Gemmatimonadetes genus was predominant as multiple species in all the vegetative wetlands, suggesting their important ecosystem functions and potential mechanisms. Expression of the genes related to photosynthesis was enriched exclusively in bare land. Genes involved in biological organic carbon metabolism and the cycling of main elements (C, N, S, and P) were highly expressed in vegetative wetlands and were mostly included in the metagenome-assembled genome (MAG) of Gemmatimonadetes Some compounds identified from soil metabolomic results also corresponded to pathways involving these key active genes. Cyanobacteria is thus responsible for the carbon sink in early infertile wetlands, and Gemmatimonadetes plays a crucial role in ecosystem functions in vegetative wetlands. Our results highlight that the soil microbial populations execute ecosystem functions for wetlands and that vegetation is the determinant for the population and functional shifts in the coastal estuarine wetland of the Yellow River Delta.IMPORTANCE Vegetation probably represents the most crucial step for the ecosystem functions of wetlands, but it is unclear how microbial populations and functions shift in pace with the colonization and succession of vegetation. In this study, we found that a Cyanobacteria monospecies genus and a Gemmatimonadetes multispecies genus are fastidiously predominant in the bare and vegetative wetlands of the Yellow River Delta, respectively. Consistently, photosynthesis genes were enriched exclusively in bare land, while genes involved in biological organic carbon metabolism and the cycling of main elements were highly expressed in vegetative wetlands, were mostly included in the MAG of Gemmatimonadetes, and were consistent with soil metabolomic results. Our results provide insight into the adaptive succession of predominant bacterial species and their ecosystem functions in response to the presence of vegetation.
Collapse
|
25
|
Sperlea T, Muth L, Martin R, Weigel C, Waldminghaus T, Heider D. gammaBOriS: Identification and Taxonomic Classification of Origins of Replication in Gammaproteobacteria using Motif-based Machine Learning. Sci Rep 2020; 10:6727. [PMID: 32317695 PMCID: PMC7174414 DOI: 10.1038/s41598-020-63424-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/31/2020] [Indexed: 01/23/2023] Open
Abstract
The biology of bacterial cells is, in general, based on information encoded on circular chromosomes. Regulation of chromosome replication is an essential process that mostly takes place at the origin of replication (oriC), a locus unique per chromosome. Identification of high numbers of oriC is a prerequisite for systematic studies that could lead to insights into oriC functioning as well as the identification of novel drug targets for antibiotic development. Current methods for identifying oriC sequences rely on chromosome-wide nucleotide disparities and are therefore limited to fully sequenced genomes, leaving a large number of genomic fragments unstudied. Here, we present gammaBOriS (Gammaproteobacterial oriC Searcher), which identifies oriC sequences on gammaproteobacterial chromosomal fragments. It does so by employing motif-based machine learning methods. Using gammaBOriS, we created BOriS DB, which currently contains 25,827 gammaproteobacterial oriC sequences from 1,217 species, thus making it the largest available database for oriC sequences to date. Furthermore, we present gammaBOriTax, a machine-learning based approach for taxonomic classification of oriC sequences, which was trained on the sequences in BOriS DB. Finally, we extracted the motifs relevant for identification and classification decisions of the models. Our results suggest that machine learning sequence classification approaches can offer great support in functional motif identification.
Collapse
Affiliation(s)
- Theodor Sperlea
- Faculty of Mathematics and Computer Science, University of Marburg, Hans-Meerwein-Str. 6, D-35032, Marburg, Lahn, Germany
| | - Lea Muth
- Faculty of Mathematics and Computer Science, University of Marburg, Hans-Meerwein-Str. 6, D-35032, Marburg, Lahn, Germany
| | - Roman Martin
- Faculty of Mathematics and Computer Science, University of Marburg, Hans-Meerwein-Str. 6, D-35032, Marburg, Lahn, Germany
| | - Christoph Weigel
- Institute of Biotechnology, Faculty III, Technische Universität Berlin (TUB), Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Torsten Waldminghaus
- Chromosome Biology Group, LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, D-35043, Marburg, Lahn, Germany
| | - Dominik Heider
- Faculty of Mathematics and Computer Science, University of Marburg, Hans-Meerwein-Str. 6, D-35032, Marburg, Lahn, Germany.
| |
Collapse
|
26
|
Molecular Ecological Network Complexity Drives Stand Resilience of Soil Bacteria to Mining Disturbances among Typical Damaged Ecosystems in China. Microorganisms 2020; 8:microorganisms8030433. [PMID: 32204532 PMCID: PMC7143963 DOI: 10.3390/microorganisms8030433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/05/2020] [Accepted: 03/18/2020] [Indexed: 12/29/2022] Open
Abstract
Understanding the interactions of soil microbial species and how they responded to disturbances are essential to ecological restoration and resilience in the semihumid and semiarid damaged mining areas. Information on this, however, remains unobvious and deficiently comprehended. In this study, based on the high throughput sequence and molecular ecology network analysis, we have investigated the bacterial distribution in disturbed mining areas across three provinces in China, and constructed molecular ecological networks to reveal the interactions of soil bacterial communities in diverse locations. Bacterial community diversity and composition were classified measurably between semihumid and semiarid damaged mining sites. Additionally, we distinguished key microbial populations across these mining areas, which belonged to Proteobacteria, Acidobacteria, Actinobacteria, and Chloroflexi. Moreover, the network modules were significantly associated with some environmental factors (e.g., annual average temperature, electrical conductivity value, and available phosphorus value). The study showed that network interactions were completely different across the different mining areas. The keystone species in different mining areas suggested that selected microbial communities, through natural successional processes, were able to resist the corresponding environment. Moreover, the results of trait-based module significances showed that several environmental factors were significantly correlated with some keystone species, such as OTU_8126 (Acidobacteria), OTU_8175 (Burkholderiales), and OTU_129 (Chloroflexi). Our study also implied that the complex network of microbial interaction might drive the stand resilience of soil bacteria in the semihumid and semiarid disturbed mining areas.
Collapse
|
27
|
Chee-Sanford J, Tian D, Sanford R. Consumption of N 2O and other N-cycle intermediates by Gemmatimonas aurantiaca strain T-27. MICROBIOLOGY-SGM 2020; 165:1345-1354. [PMID: 31580255 DOI: 10.1099/mic.0.000847] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bacteria affiliated with the phylum Gemmatimonadetes are found in high abundance in many terrestrial and aquatic environments, yet little is known about their metabolic capabilities. Difficulty in their cultivation has prompted interest in identifying better growth conditions for metabolic studies, especially related to their ability to reduce N2O, a potent greenhouse gas. T-27 Gemmatimonas aurantiaca is one of few cultivated strains of Gemmatimonadetes available for physiological studies. Our objective was to test this organism's ability to use nitrite, nitrate, and N2O, and mineral forms of assimilable NH4 + at concentrations not typically used in tests for compound utilization. Cultures incubated under anaerobic conditions with nitrate, nitrite or N2O failed to grow or show depletion of these substrates. Nitrate and nitrite (1 mM) were not used even when cells were grown aerobically with the O2 allowed to deplete first. N2O reduction only commenced in the presence of O2 and continued to be depleted when refed to the culture under anaerobic, microaerobic and aerobic atmospheres. Carbon mineralization was coupled to the electron-accepting processes, with higher reducing equivalents needed for N2O utilization under aerobic atmospheres. N2O was reduced to N2 in the presence of 20% O2, however the rate of this reaction is reduced in the presence of high O2 concentration. This study demonstrated that G. aurantiaca T-27 possesses unique characteristics for assimilative and dissimilative N processes with new implications for cultivation strategies to better assess the metabolic abilities of Gemmatimonadetes.
Collapse
Affiliation(s)
| | - David Tian
- Department of Molecular and Cell Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Robert Sanford
- Department of Geology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
28
|
Structural and functional differentiation of bacterial communities in post-coal mining reclamation soils of South Africa: bioindicators of soil ecosystem restoration. Sci Rep 2020; 10:1759. [PMID: 32019965 PMCID: PMC7000389 DOI: 10.1038/s41598-020-58576-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/13/2020] [Indexed: 11/22/2022] Open
Abstract
Soil microbial communities are suitable soil ecosystem health indicators due to their sensitivity to management practices and role in soil ecosystem processes. Presently, information on structural and functional differentiation of bacterial communities in post-coal mining reclamation soils of South Africa is sparse. Here, bacterial communities in three post-coal mining reclamation soils were investigated using community-level physiological profiling (CLPP), enzyme activities, and next-generation sequencing of 16S rRNA gene. Inferences were drawn in reference to adjacent unmined soils. CLPP-based species diversity and proportionality did not differ significantly (P > 0.05) whereas activities of β-glucosidase, urease and phosphatases were significantly (P < 0.05) influenced by site and soil history (reclaimed vs unmined). Bacterial communities were influenced (PERMANOVA, P < 0.05) by soil history and site differences, with several phylotypes differentially abundant between soils. Contrastingly, predicted functional capabilities of bacterial communities were not different (PERMANOVA, P > 0.05), suggesting redundancy in bacterial community functions between reclamation and unmined soils. Silt content, bulk density, pH, electrical conductivity, Na and Ca significantly influenced soil bacterial communities. Overall, results indicate that bacterial community structure reflects underlying differences between soil ecosystems, and suggest the restoration of bacterial diversity and functions over chronological age in reclamation soils.
Collapse
|
29
|
Distribution of Phototrophic Purple Nonsulfur Bacteria in Massive Blooms in Coastal and Wastewater Ditch Environments. Microorganisms 2020; 8:microorganisms8020150. [PMID: 31979033 PMCID: PMC7074854 DOI: 10.3390/microorganisms8020150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/06/2020] [Accepted: 01/20/2020] [Indexed: 12/31/2022] Open
Abstract
The biodiversity of phototrophic purple nonsulfur bacteria (PNSB) in comparison with purple sulfur bacteria (PSB) in colored blooms and microbial mats that developed in coastal mudflats and pools and wastewater ditches was investigated. For this, a combination of photopigment and quinone profiling, pufM gene-targeted quantitative PCR, and pufM gene clone library analysis was used in addition to conventional microscopic and cultivation methods. Red and pink blooms in the coastal environments contained PSB as the major populations, and smaller but significant densities of PNSB, with members of Rhodovulum predominating. On the other hand, red-pink blooms and mats in the wastewater ditches exclusively yielded PNSB, with Rhodobacter, Rhodopseudomonas, and/or Pararhodospirillum as the major constituents. The important environmental factors affecting PNSB populations were organic matter and sulfide concentrations and oxidation‒reduction potential (ORP). Namely, light-exposed, sulfide-deficient water bodies with high-strength organic matter and in a limited range of ORP provide favorable conditions for the massive growth of PNSB over co-existing PSB. We also report high-quality genome sequences of Rhodovulum sp. strain MB263, previously isolated from a pink mudflat, and Rhodovulum sulfidophilum DSM 1374T, which would enhance our understanding of how PNSB respond to various environmental factors in the natural ecosystem.
Collapse
|
30
|
Diel changes and diversity of pufM expression in freshwater communities of anoxygenic phototrophic bacteria. Sci Rep 2019; 9:18766. [PMID: 31822744 PMCID: PMC6904477 DOI: 10.1038/s41598-019-55210-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/25/2019] [Indexed: 01/21/2023] Open
Abstract
The anoxygenic phototrophic bacteria (APB) are an active component of aquatic microbial communities. While DNA-based studies have delivered a detailed picture of APB diversity, they cannot provide any information on the activity of individual species. Therefore, we focused on the expression of a photosynthetic gene by APB communities in two freshwater lakes (Cep lake and the Římov Reservoir) in the Czech Republic. First, we analyzed expression levels of pufM during the diel cycle using RT-qPCR. The transcription underwent a strong diel cycle and was inhibited during the day in both lakes. Then, we compared DNA- (total) and RNA-based (active) community composition by sequencing pufM amplicon libraries. We observed large differences in expression activity among different APB phylogroups. While the total APB community in the Římov Reservoir was dominated by Betaproteobacteria, Alphaproteobacteria prevailed in the active library. A different situation was encountered in the oligotrophic lake Cep where Betaproteobacteria (order Burkholderiales) dominated both the DNA and RNA libraries. Interestingly, in Cep lake we found smaller amounts of highly active uncultured phototrophic Chloroflexi, as well as phototrophic Gemmatimonadetes. Despite the large diversity of APB communities, light repression of pufM expression seems to be a common feature of all aerobic APB present in the studied lakes.
Collapse
|
31
|
Aalismail NA, Ngugi DK, Díaz-Rúa R, Alam I, Cusack M, Duarte CM. Functional metagenomic analysis of dust-associated microbiomes above the Red Sea. Sci Rep 2019; 9:13741. [PMID: 31551441 PMCID: PMC6760216 DOI: 10.1038/s41598-019-50194-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/06/2019] [Indexed: 02/08/2023] Open
Abstract
Atmospheric transport is a major vector for the long-range transport of microbial communities, maintaining connectivity among them and delivering functionally important microbes, such as pathogens. Though the taxonomic diversity of aeolian microorganisms is well characterized, the genomic functional traits underpinning their survival during atmospheric transport are poorly characterized. Here we use functional metagenomics of dust samples collected on the Global Dust Belt to initiate a Gene Catalogue of Aeolian Microbiome (GCAM) and explore microbial genetic traits enabling a successful aeolian lifestyle in Aeolian microbial communities. The GCAM reported here, derived from ten aeolian microbial metagenomes, includes a total of 2,370,956 non-redundant coding DNA sequences, corresponding to a yield of ~31 × 106 predicted genes per Tera base-pair of DNA sequenced for the aeolian samples sequenced. Two-thirds of the cataloged genes were assigned to bacteria, followed by eukaryotes (5.4%), archaea (1.1%), and viruses (0.69%). Genes encoding proteins involved in repairing UV-induced DNA damage and aerosolization of cells were ubiquitous across samples, and appear as fundamental requirements for the aeolian lifestyle, while genes coding for other important functions supporting the aeolian lifestyle (chemotaxis, aerotaxis, germination, thermal resistance, sporulation, and biofilm formation) varied among the communities sampled.
Collapse
Affiliation(s)
- Nojood A Aalismail
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.
| | - David K Ngugi
- Department of Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Culture, Inhoffenstrasse 7B, B38124, Braunschweig, Germany
| | - Rubén Díaz-Rúa
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Intikhab Alam
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Michael Cusack
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Carlos M Duarte
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| |
Collapse
|
32
|
Zorz JK, Sharp C, Kleiner M, Gordon PMK, Pon RT, Dong X, Strous M. A shared core microbiome in soda lakes separated by large distances. Nat Commun 2019; 10:4230. [PMID: 31530813 PMCID: PMC6748926 DOI: 10.1038/s41467-019-12195-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/16/2019] [Indexed: 11/25/2022] Open
Abstract
In alkaline soda lakes, concentrated dissolved carbonates establish productive phototrophic microbial mats. Here we show how microbial phototrophs and autotrophs contribute to this exceptional productivity. Amplicon and shotgun DNA sequencing data of microbial mats from four Canadian soda lakes indicate the presence of > 2,000 species of Bacteria and Eukaryotes. We recover metagenome-assembled-genomes for a core microbiome of < 100 abundant bacteria, present in all four lakes. Most of these are related to microbes previously detected in sediments of Asian alkaline lakes, showing that common selection principles drive community assembly from a globally distributed reservoir of alkaliphile biodiversity. Detection of > 7,000 proteins show how phototrophic populations allocate resources to specific processes and occupy complementary niches. Carbon fixation proceeds by the Calvin-Benson-Bassham cycle, in Cyanobacteria, Gammaproteobacteria, and, surprisingly, Gemmatimonadetes. Our study provides insight into soda lake ecology, as well as a template to guide efforts to engineer biotechnology for carbon dioxide conversion.
Collapse
Affiliation(s)
- Jackie K Zorz
- Department of Geoscience, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | - Christine Sharp
- Department of Geoscience, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Paul M K Gordon
- Centre for Health Genomics and Informatics, University of Calgary, Calgary, AB, T2N 2T9, Canada
| | - Richard T Pon
- Centre for Health Genomics and Informatics, University of Calgary, Calgary, AB, T2N 2T9, Canada
| | - Xiaoli Dong
- Department of Geoscience, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
33
|
Zhou D, Feng H, Schuelke T, De Santiago A, Zhang Q, Zhang J, Luo C, Wei L. Rhizosphere Microbiomes from Root Knot Nematode Non-infested Plants Suppress Nematode Infection. MICROBIAL ECOLOGY 2019; 78:470-481. [PMID: 30666369 PMCID: PMC6657434 DOI: 10.1007/s00248-019-01319-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 01/03/2019] [Indexed: 06/01/2023]
Abstract
Root knot nematodes (RKN, Meloidogyne spp.) are serious pathogens of numerous crops worldwide. Understanding the roles plant rhizosphere soil microbiome play during RKN infection is very important. The current study aims at investigating the impacts of soil microbiome on the activity of RKN. In this study, the 16S rRNA genes of the bacterial communities from nematode-infested and non-infested rhizosphere soils from four different plants were sequenced on the Illumina Hi-Seq platform. The soil microbiome effects on RKN infection were tested in a greenhouse assay. The non-infested soils had more microbial diversity than the infested soils from all plant rhizospheres, and both soil types had exclusive microbial communities. The inoculation of the microbiomes from eggplant and cucumber non-infested soils to tomato plants significantly alleviated the RKN infection, while the microbiome from infested soil showed increased the RKN infection. Furthermore, bacteria Pseudomonas sp. and Bacillus sp. were screened out from non-infested eggplant soil and exhibited biocontrol activity to RKN on tomato. Our findings suggest that microbes may regulate RKN infection in plants and are involved in biocontrol of RKN.
Collapse
Affiliation(s)
- Dongmei Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210040, China
| | - Hui Feng
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210040, China
| | - Taruna Schuelke
- Department of Nematology, University of California, Riverside, CA, 92521, USA
| | | | - Qimeng Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210040, China
| | - Jinfeng Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210040, China
| | - Chuping Luo
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Lihui Wei
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210040, China.
| |
Collapse
|
34
|
Ward LM, Cardona T, Holland-Moritz H. Evolutionary Implications of Anoxygenic Phototrophy in the Bacterial Phylum Candidatus Eremiobacterota (WPS-2). Front Microbiol 2019; 10:1658. [PMID: 31396180 PMCID: PMC6664022 DOI: 10.3389/fmicb.2019.01658] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/04/2019] [Indexed: 12/15/2022] Open
Abstract
Genome-resolved environmental metagenomic sequencing has uncovered substantial previously unrecognized microbial diversity relevant for understanding the ecology and evolution of the biosphere, providing a more nuanced view of the distribution and ecological significance of traits including phototrophy across diverse niches. Recently, the capacity for bacteriochlorophyll-based anoxygenic photosynthesis has been proposed in the uncultured bacterial WPS-2 phylum (recently proposed as Candidatus Eremiobacterota) that are in close association with boreal moss. Here, we use phylogenomic analysis to investigate the diversity and evolution of phototrophic WPS-2. We demonstrate that phototrophic WPS-2 show significant genetic and metabolic divergence from other phototrophic and non-phototrophic lineages. The genomes of these organisms encode a new family of anoxygenic Type II photochemical reaction centers and other phototrophy-related proteins that are both phylogenetically and structurally distinct from those found in previously described phototrophs. We propose the name Candidatus Baltobacterales for the order-level aerobic WPS-2 clade which contains phototrophic lineages, from the Greek for "bog" or "swamp," in reference to the typical habitat of phototrophic members of this clade.
Collapse
Affiliation(s)
- Lewis M. Ward
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, United States
| | - Tanai Cardona
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Hannah Holland-Moritz
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, United States
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
35
|
Colin Y, Goberna M, Verdú M, Navarro-Cano JA. Successional trajectories of soil bacterial communities in mine tailings: The role of plant functional traits. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 241:284-292. [PMID: 31009816 DOI: 10.1016/j.jenvman.2019.04.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/20/2019] [Accepted: 04/07/2019] [Indexed: 06/09/2023]
Abstract
Plant species identity is assumed to be a major driver of belowground microbial diversity and composition. However, diagnosing which plant functional traits are responsible for shaping microbial communities remains elusive. Primary succession on barren metalliferous mining substrates was selected as the framework to study above-belowground interactions, and plant functional traits that lead the successional trajectories of soil bacterial communities were identified. The impact of the plant functional group (i.e. trees, shrubs, dwarf shrubs, perennial grasses), a trait integrating the life span and morphological structure, on the bacterial primary succession was monitored. Bacterial diversity and composition was estimated along plant size gradients including over 90 scattered patches ranging from seedlings to mature multispecific patches. Soil bacterial diversity was affected by heavy metals levels and increased towards higher resource availability underneath mature patches, with stress-tolerant heterotrophs and phototrophs being replaced by competitive heterotrophs. The plant functional group modulated these general patterns and shrubs had the greatest impact belowground by inducing the largest increase in soil fertility. Functional traits related to leaf decomposability and root architecture further determined the composition and structure of bacterial communities. These results underline the importance of plant functional traits in the assembly of soil bacterial communities, and can help guiding restoration of degraded lands.
Collapse
Affiliation(s)
- Yannick Colin
- Centro de Investigaciones sobre Desertificación (CSIC-UVEG-GV), Carretera Moncada ‒ Náquera, km 4.5, Moncada, Valencia, 46113, Spain.
| | - Marta Goberna
- Centro de Investigaciones sobre Desertificación (CSIC-UVEG-GV), Carretera Moncada ‒ Náquera, km 4.5, Moncada, Valencia, 46113, Spain; Department of Environment and Agronomy, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña, km 7.5, E-28040, Madrid, Spain
| | - Miguel Verdú
- Centro de Investigaciones sobre Desertificación (CSIC-UVEG-GV), Carretera Moncada ‒ Náquera, km 4.5, Moncada, Valencia, 46113, Spain
| | - Jose A Navarro-Cano
- Centro de Investigaciones sobre Desertificación (CSIC-UVEG-GV), Carretera Moncada ‒ Náquera, km 4.5, Moncada, Valencia, 46113, Spain
| |
Collapse
|
36
|
Variation of bacterial biodiversity from saline soils and estuary sediments present near the Mediterranean Sea coast of Camargue (France). Antonie van Leeuwenhoek 2018; 112:351-365. [PMID: 30232678 DOI: 10.1007/s10482-018-1164-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 09/07/2018] [Indexed: 10/28/2022]
Abstract
Salinity is an important environmental factor influencing microbial community composition. To better understand this influence, we determined the bacterial communities present in 17 different sites of brackish sediment (underwater) and soil (surface) samples from the Camargue region (Rhône river delta) in southern France during the fall of 2013 and 2014 using pyrosequencing of the V3-V4 regions of the 16S rRNA genes amplified by PCR. This region is known for abundant flora and fauna and, though saline, 30% of rice consumed in France is grown here. We found that bacterial abundance in 1 g of soil or sediment, calculated by qPCR, was higher in sediments than in surface soil samples. Members belonging to the Proteobacteria, Bacteroidetes, Chloroflexi and Firmicutes phyla dominated the bacterial communities of sediment samples, while members belonging to the Proteobacteria, Bacteroidetes, Gemmatimonadetes, Actinobacteria, Firmicutes and Acidobacteria phyla dominated the bacterial communities of the soil samples. The most abundant bacterial genera present in the saline sediments and soils from the Camargue belonged mostly to halophilic and sulphate reducing bacteria, suggesting that the Camargue may be a valuable system to investigate saline, yet agriculturally productive, sediment and soil microbial ecosystem.
Collapse
|
37
|
Wei W, Yang M, Liu Y, Huang H, Ye C, Zheng J, Guo C, Hao M, He X, Zhu S. Fertilizer N application rate impacts plant-soil feedback in a sanqi production system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 633:796-807. [PMID: 29602118 DOI: 10.1016/j.scitotenv.2018.03.219] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/06/2018] [Accepted: 03/19/2018] [Indexed: 05/14/2023]
Abstract
Replant failure caused by negative plant-soil feedback (NPFS) in agricultural ecosystems is a critical factor restricting the development of sustainable agriculture. Soil nutrient availability has the capacity to affect plant-soil feedback. Here, we used sanqi (Panax notoginseng), which is severely threatened by NPSF, as a model plant to decipher the overall effects of nitrogen (N) rates on NPSF and the underlying mechanism. We found that a high rate of N at 450kgNha-1 (450N) aggravated the NPSF through the accumulation of pathogens in the soil compared with the optimal 250N. The increased N rates resulted in a significant increase in the soil electrical conductivity and available nitrogen but a decrease in the soil pH and C/N ratio. GeoChip 5.0 data demonstrated that these changed soil properties caused the soil to undergo stress (acidification, salinization and carbon starvation), as indicated by the enriched soil microbial gene abundances related to stress response and nutrition cycling (N, C and S). Accordingly, increased N rates reduced the richness and diversity of soil fungi and bacteria and eventually caused a shift in soil microbes from a bacterial-dominant community to a fungal-dominant community. In particular, the high 450N treatment significantly suppressed the abundance of copiotrophic bacteria, including beneficial genera Bacillus and Pseudomonas, thus weakening the antagonistic activity of these bacteria against fungal pathogens. Moreover, 450N application significantly enriched the abundance of pathogen pathogenicity-related genes. Once sanqi plants were grown in this N-stressed soil, their host-specific fungal pathogen Fusarium oxysporum significantly accumulated, which aggravated the process of NPSF. This study suggested that over-application of nitrogen is not beneficial for disease management or the reduction of fungicide application in agricultural production.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Min Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Yixiang Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Huichuan Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Chen Ye
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Jianfen Zheng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; Yunnan Tasly Notoginseng Planting Co., Ltd, Wenshan 663000, China
| | - Cunwu Guo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Minwen Hao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Xiahong He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Shusheng Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
38
|
Thiel V, Tank M, Bryant DA. Diversity of Chlorophototrophic Bacteria Revealed in the Omics Era. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:21-49. [PMID: 29505738 DOI: 10.1146/annurev-arplant-042817-040500] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Because of recent advances in omics methodologies, knowledge of chlorophototrophy (i.e., chlorophyll-based phototrophy) in bacteria has rapidly increased. Chlorophototrophs currently are known to occur in seven bacterial phyla: Cyanobacteria, Proteobacteria, Chlorobi, Chloroflexi, Firmicutes, Acidobacteria, and Gemmatimonadetes. Other organisms that can produce chlorophylls and photochemical reaction centers may still be undiscovered. Here we summarize the current status of the taxonomy and phylogeny of chlorophototrophic bacteria as revealed by genomic methods. In specific cases, we briefly describe important ecophysiological and metabolic insights that have been gained from the application of genomic methods to these bacteria. In the 20 years since the completion of the Synechocystis sp. PCC 6803 genome in 1996, approximately 1,100 genomes have been sequenced, which represents nearly the complete diversity of known chlorophototrophic bacteria. These data are leading to new insights into many important processes, including photosynthesis, nitrogen and carbon fixation, cellular differentiation and development, symbiosis, and ecosystem functionality.
Collapse
Affiliation(s)
- Vera Thiel
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; ,
| | - Marcus Tank
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; ,
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA;
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, USA
| |
Collapse
|
39
|
Pascual J, Foesel BU, Geppert A, Huber KJ, Boedeker C, Luckner M, Wanner G, Overmann J. Roseisolibacter agri gen. nov., sp. nov., a novel slow-growing member of the under-represented phylum Gemmatimonadetes. Int J Syst Evol Microbiol 2018; 68:1028-1036. [PMID: 29458671 DOI: 10.1099/ijsem.0.002619] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
A novel slow-growing bacterium, designated strain AW1220T, was isolated from agricultural floodplain soil sampled at Mashare (Kavango region, Namibia) by using a high-throughput cultivation approach. Strain AW1220T was characterized as a Gram-negative, non-motile, rod-shaped bacterium. Occasionally, some cells attained an unusual length of up to 35 µm. The strain showed positive responses for catalase and cytochrome-c oxidase and divided by binary fission and/or budding. The strain had an aerobic chemoorganoheterotrophic metabolism and was also able to grow under micro-oxic conditions. Colonies were small and pink pigmented. Strain AW1220T was found to be a mesophilic, neutrophilic and non-halophilic bacterium. Cells accumulated polyphosphate intracellularly and mainly utilized complex protein substrates for growth. 16S rRNA gene sequence comparisons revealed that strain AW1220T belonged to the class Gemmatimonadetes (=group 1). Its closest relatives were found to be Gemmatimonas aurantiaca T-27T (90.9 % gene sequence similarity), Gemmatimonas phototrophica AP64T (90.8 %) and Longimicrobiumterrae CB-286315T (84.2 %). The genomic G+C content was 73.3 mol%. The major fatty acids were iso-C15 : 0, C16 : 1ω7c and/or iso-C15 : 0 2-OH, iso-C17 : 1ω9c, iso-C15 : 0 3-OH and C16 : 0. The predominant respiratory quinone was MK-9, albeit minor amounts of MK-8 and MK-10 are also present. The polar lipids comprised major amounts of phosphatidylethanolamine, phosphatidylcholine, diphosphatidylglycerol and one unidentified phosphoglycolipid. On the basis of its polyphasic characterization, strain AW1220T represents a novel genus and species of the class Gemmatimonadetes for which the name Roseisolibacter agri gen. nov., sp. nov. is proposed, with the type strain AW1220T (=DSM 104292T=LMG 29977T).
Collapse
Affiliation(s)
- Javier Pascual
- Department of Microbial Ecology and Diversity Research, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Bärbel U Foesel
- Department of Microbial Ecology and Diversity Research, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany.,Present address: Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Alicia Geppert
- Department of Microbial Ecology and Diversity Research, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Katharina J Huber
- Department of Microbial Ecology and Diversity Research, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Christian Boedeker
- Department of Microbial Ecology and Diversity Research, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Manja Luckner
- Department of Biology I, Biozentrum Ludwig Maximilian University Munich, Planegg-Martinsried, Germany
| | - Gerhard Wanner
- Department of Biology I, Biozentrum Ludwig Maximilian University Munich, Planegg-Martinsried, Germany
| | - Jörg Overmann
- Department of Microbial Ecology and Diversity Research, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany.,Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
40
|
Cabello-Yeves PJ, Zemskaya TI, Rosselli R, Coutinho FH, Zakharenko AS, Blinov VV, Rodriguez-Valera F. Genomes of Novel Microbial Lineages Assembled from the Sub-Ice Waters of Lake Baikal. Appl Environ Microbiol 2018; 84:e02132-17. [PMID: 29079621 PMCID: PMC5734018 DOI: 10.1128/aem.02132-17] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/19/2017] [Indexed: 11/20/2022] Open
Abstract
We present a metagenomic study of Lake Baikal (East Siberia). Two samples obtained from the water column under the ice cover (5 and 20 m deep) in March 2016 have been deep sequenced and the reads assembled to generate metagenome-assembled genomes (MAGs) that are representative of the microbes living in this special environment. Compared with freshwater bodies studied around the world, Lake Baikal had an unusually high fraction of Verrucomicrobia Other groups, such as Actinobacteria and Proteobacteria, were in proportions similar to those found in other lakes. The genomes (and probably cells) tended to be small, presumably reflecting the extremely oligotrophic and cold prevalent conditions. Baikal microbes are novel lineages recruiting very little from other water bodies and are distantly related to other freshwater microbes. Despite their novelty, they showed the closest relationship to genomes discovered by similar approaches from other freshwater lakes and reservoirs. Some of them were particularly similar to MAGs from the Baltic Sea, which, although it is brackish, connected to the ocean, and much more eutrophic, has similar climatological conditions. Many of the microbes contained rhodopsin genes, indicating that, in spite of the decreased light penetration allowed by the thick ice/snow cover, photoheterotrophy could be widespread in the water column, either because enough light penetrates or because the microbes are already adapted to the summer ice-less conditions. We have found a freshwater SAR11 subtype I/II representative showing striking synteny with Pelagibacterubique strains, as well as a phage infecting the widespread freshwater bacterium PolynucleobacterIMPORTANCE Despite the increasing number of metagenomic studies on different freshwater bodies, there is still a missing component in oligotrophic cold lakes suffering from long seasonal frozen cycles. Here, we describe microbial genomes from metagenomic assemblies that appear in the upper water column of Lake Baikal, the largest and deepest freshwater body on Earth. This lake is frozen from January to May, which generates conditions that include an inverted temperature gradient (colder up), decrease in light penetration due to ice, and, especially, snow cover, and oligotrophic conditions more similar to the open-ocean and high-altitude lakes than to other freshwater or brackish systems. As could be expected, most reconstructed genomes are novel lineages distantly related to others in cold environments, like the Baltic Sea and other freshwater lakes. Among them, there was a broad set of streamlined microbes with small genomes/intergenic spacers, including a new nonmarine Pelagibacter-like (subtype I/II) genome.
Collapse
Affiliation(s)
- Pedro J Cabello-Yeves
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Tamara I Zemskaya
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Riccardo Rosselli
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Felipe H Coutinho
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Alexandra S Zakharenko
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Vadim V Blinov
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| |
Collapse
|
41
|
Dachev M, Bína D, Sobotka R, Moravcová L, Gardian Z, Kaftan D, Šlouf V, Fuciman M, Polívka T, Koblížek M. Unique double concentric ring organization of light harvesting complexes in Gemmatimonas phototrophica. PLoS Biol 2017; 15:e2003943. [PMID: 29253871 PMCID: PMC5749889 DOI: 10.1371/journal.pbio.2003943] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/02/2018] [Accepted: 11/22/2017] [Indexed: 11/29/2022] Open
Abstract
The majority of life on Earth depends directly or indirectly on the sun as a source of energy. The initial step of photosynthesis is facilitated by light-harvesting complexes, which capture and transfer light energy into the reaction centers (RCs). Here, we analyzed the organization of photosynthetic (PS) complexes in the bacterium G. phototrophica, which so far is the only phototrophic representative of the bacterial phylum Gemmatimonadetes. The isolated complex has a molecular weight of about 800 ± 100 kDa, which is approximately 2 times larger than the core complex of Rhodospirillum rubrum. The complex contains 62.4 ± 4.7 bacteriochlorophyll (BChl) a molecules absorbing in 2 distinct infrared absorption bands with maxima at 816 and 868 nm. Using femtosecond transient absorption spectroscopy, we determined the energy transfer time between these spectral bands as 2 ps. Single particle analyses of the purified complexes showed that they were circular structures with an outer diameter of approximately 18 nm and a thickness of 7 nm. Based on the obtained, we propose that the light-harvesting complexes in G. phototrophica form 2 concentric rings surrounding the type 2 RC. The inner ring (corresponding to the B868 absorption band) is composed of 15 subunits and is analogous to the inner light-harvesting complex 1 (LH1) in purple bacteria. The outer ring is composed of 15 more distant BChl dimers with no or slow energy transfer between them, resulting in the B816 absorption band. This completely unique and elegant organization offers good structural stability, as well as high efficiency of light harvesting. Our results reveal that while the PS apparatus of Gemmatimonadetes was acquired via horizontal gene transfer from purple bacteria, it later evolved along its own pathway, devising a new arrangement of its light harvesting complexes. The majority of life on Earth depends directly or indirectly on the sun as a source of energy. Phototrophic organisms use energy from light to power various cellular and metabolic processes. The initial step of photosynthesis is facilitated by light-harvesting complexes, which capture and transfer light energy into the reaction centers where it is used to power proton gradients or to form new chemical bonds. Here, we analyzed photosynthetic complexes in Gemmatimonas phototrophica, the only known phototrophic representative of the bacterial phylum Gemmatimonadetes. Using a combination of biochemical and spectroscopic techniques, we show that the light-harvesting complexes of G. phototrophica are organized in 2 concentric rings around the reaction center. This organization is unique among anoxygenic phototrophs. It offers both structural stability and high efficiency of light harvesting. The structural unit of both antenna rings is a dimer of photosynthetic pigments called bacteriochlorophyll. The inner ring is populated by more densely packed dimers, while the outer ring contains more distant dimers with a minimal excitation exchange. Such an arrangement modifies the spectral properties of bacteriochlorophylls in the complex and ensures efficient capture of light in the near-infrared part of the solar spectrum.
Collapse
Affiliation(s)
- Marko Dachev
- Center Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic
| | - David Bína
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Biology Center of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Roman Sobotka
- Center Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Lenka Moravcová
- Center Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic
| | - Zdenko Gardian
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Biology Center of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - David Kaftan
- Center Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Václav Šlouf
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Marcel Fuciman
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Tomáš Polívka
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Biology Center of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Michal Koblížek
- Center Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- * E-mail:
| |
Collapse
|
42
|
Jacquiod S, Brejnrod A, Morberg SM, Abu Al-Soud W, Sørensen SJ, Riber L. Deciphering conjugative plasmid permissiveness in wastewater microbiomes. Mol Ecol 2017; 26:3556-3571. [DOI: 10.1111/mec.14138] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/30/2017] [Accepted: 03/30/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Samuel Jacquiod
- Section of Microbiology; Department of Biology; University of Copenhagen; Copenhagen Denmark
| | - Asker Brejnrod
- Section of Microbiology; Department of Biology; University of Copenhagen; Copenhagen Denmark
| | - Stefan M. Morberg
- Section of Microbiology; Department of Biology; University of Copenhagen; Copenhagen Denmark
| | - Waleed Abu Al-Soud
- Section of Microbiology; Department of Biology; University of Copenhagen; Copenhagen Denmark
| | - Søren J. Sørensen
- Section of Microbiology; Department of Biology; University of Copenhagen; Copenhagen Denmark
| | - Leise Riber
- Section of Microbiology; Department of Biology; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
43
|
Microbial taxa and functional genes shift in degraded soil with bacterial wilt. Sci Rep 2017; 7:39911. [PMID: 28051173 PMCID: PMC5209727 DOI: 10.1038/srep39911] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/28/2016] [Indexed: 11/09/2022] Open
Abstract
Soil degradation is a serious global problem, but little is known about how soil microbial communities respond to soil degradation as well as their feedback to ecosystem functioning. In this study, we found the microbial community composition, structure and functional potential significantly altered in the degraded soils with bacterial wilt (termed as degraded soils). Compared with healthy soils, OTU richness of beneficial microorganisms were significantly decreased, but OTU richness of pathogenic microorganisms were significantly increased in the degraded soils. Functional gene array (GeoChip 5.0) analysis showed the functional metabolic potential of genes involved in stress, virulence, sulfur cycle, metal resistance, degradation of plant cell wall was significantly increased in the degraded soils. Increased functional metabolic potential of these genes may be related to the acidification and severe plant disease of degraded soils. Biological activity of degraded soils was obviously decreased with weakened soil enzyme activities when compared to the healthy soils. Soil pH and enzyme activities were negatively correlated with the abundance of genes involved in sulfur cycle, virulence, and stress responses. This study provides new insights into our understanding of soil microbial community responses to soil degradation.
Collapse
|
44
|
Xiong J, Li G, An T. The microbial degradation of 2,4,6-tribromophenol (TBP) in water/sediments interface: Investigating bioaugmentation using Bacillus sp. GZT. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:573-580. [PMID: 27613672 DOI: 10.1016/j.scitotenv.2016.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 06/06/2023]
Abstract
The substance 2,4,6-Tribromophenol (TBP) is used as a flame retardant in electronic and electric devices, and is a replacement for pentachlorophenol in wood preservation. TBP is a contaminant in different environmental matrices, at levels where treatment is required. This study examined the relationship between the bioaugmention of TBP degradation and the evolution of the microbial community in river water/sediment microcosms. When compared with unamended controls, bioaugmentation with Bacillus sp. GZT effectively enhanced TBP biodegradation, with approximately 40.7% of the TBP removal after a 7-week incubation period, without a lag phase (p<0.01). Amendments with 2-bromophenol, 2,6-dibromophenol, and 2,4-dibromophenol did not promote TBP biodegradation in river water/sediments (p>0.05). However, TBP biodegradation was enhanced by adding other additives, including NaCl, humic acid, sodium lactate, and sodium propionate alone, especially glucose and yeast extract. A metagenomics analysis of the total 16S rRNA genes from the treatment system with bioaugmentation showed that four microbial phyla were dominant: Proteobacteria (52.08-66.22%), Actinobacteria (20.03-5.47%), Bacteroidetes (6.68-13.68%), and Firmicutes (4.53-20.83%). This study highlights the possible benefits using bioaugmentation with GZT to remediate TBP-polluted water and sediments.
Collapse
Affiliation(s)
- Jukun Xiong
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guiying Li
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Taicheng An
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
45
|
Novel acsF Gene Primers Revealed a Diverse Phototrophic Bacterial Population, Including Gemmatimonadetes, in Lake Taihu (China). Appl Environ Microbiol 2016; 82:5587-94. [PMID: 27401973 DOI: 10.1128/aem.01063-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/25/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Anoxygenic phototrophs represent an environmentally important and phylogenetically diverse group of organisms. They harvest light using bacteriochlorophyll-containing reaction centers. Recently, a novel phototrophic bacterium, Gemmatimonas phototrophica, belonging to a rarely studied phylum, Gemmatimonadetes, was isolated from a freshwater lake in the Gobi Desert. To obtain more information about the environmental distribution of phototrophic Gemmatimonadetes, we collected microbial samples from the water column, upper sediment, and deeper anoxic sediment of Lake Taihu, China. MiSeq sequencing of the 16S rRNA, pufM, and bchY genes was carried out to assess the diversity of local phototrophic communities. In addition, we designed new degenerate primers of aerobic cyclase gene acsF, which serves as a convenient marker for both phototrophic Gemmatimonadetes and phototrophic Proteobacteria Our results showed that most of the phototrophic species in Lake Taihu belong to Alpha- and Betaproteobacteria Sequences of green sulfur and green nonsulfur bacteria (phototrophic Chlorobi and Chloroflexi, respectively) were found in the sediment. Using the newly designed primers, we identified a diverse community of phototrophic Gemmatimonadetes forming 30 operational taxonomic units. These species represented 10.5 and 17.3% of the acsF reads in the upper semiaerobic sediment and anoxic sediment, whereas their abundance in the water column was <1%. IMPORTANCE Photosynthesis is one of the most fundamental biological processes on Earth. Recently, the presence of photosynthetic reaction centers has been reported from a rarely studied bacterial phylum, Gemmatimonadetes, but almost nothing is known about the diversity and environmental distribution of these organisms. The newly designed acsF primers were used to identify phototrophic Gemmatimonadetes from planktonic and sediment samples collected in Lake Taihu, China. The Gemmatimonadetes sequences were found mostly in the upper sediments, documenting the preference of Gemmatimonadetes for semiaerobic conditions. Our results also show that the phototrophic Gemmatimonadetes present in Lake Taihu were relatively diverse, encompassing 30 operational taxonomic units.
Collapse
|