1
|
Lurthy T, Gerin F, Rey M, Mercier PE, Comte G, Wisniewski-Dyé F, Prigent-Combaret C. Pseudomonas produce various metabolites displaying herbicide activity against broomrape. Microbiol Res 2025; 290:127933. [PMID: 39471583 DOI: 10.1016/j.micres.2024.127933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/22/2024] [Accepted: 10/11/2024] [Indexed: 11/01/2024]
Abstract
Pseudomonads are well-known for their plant growth-promoting properties and biocontrol capabilities against microbial pathogens. Recently, their potential to protect crops from parasitic plants has garnered attention. This study investigates the potential of different Pseudomonas strains to inhibit broomrape growth and to protect host plants against weed infestation. Four Pseudomonas strains, two P. fluorescens JV391D17 and JV391D10, one P. chlororaphis JV395B and one P. ogarae F113 were cultivated using various carbon sources, including fructose, pyruvate, fumarate, and malate, to enhance the diversity of potential Orobanche growth inhibition (OGI)-specialized metabolites produced by Pseudomonas strains. Both global and targeted metabolomic approaches were utilized to identify specific OGI metabolites. Both carbon sources and Pseudomonas genetic diversity significantly influenced the production of OGI metabolites. P. chlororaphis JV395B and P. ogarae F113 produced unique OGI metabolites belonging to different chemical families, such as hydroxyphenazines and phloroglucinol compounds, respectively. Additionally, metabolomic analyses identified an unannotated potential OGI ion, M375T65. This ion was produced by all Pseudomonas strains but was found to be over-accumulated in JV395B, which likely explains its superior OGI activity. Then, greenhouse experiments were performed to evaluate the biocontrol efficacy of selected strains: they showed the efficacy of these strains, particularly JV395B, in reducing broomrape infestation in rapeseed. These findings suggest that certain Pseudomonas strains, through their metabolite production, can offer a sustainable biocontrol strategy against parasitic plants. This biocontrol activity can be optimized by environmental factors, such as carbon amendments. Ultimately, this approach presents a promising alternative to chemical herbicides.
Collapse
Affiliation(s)
- Tristan Lurthy
- Université de Lyon, Université Lyon1, Laboratoire d'Ecologie Microbienne, CNRS UMR-5557, INRAe UMR-1418, VetAgro Sup, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69622, France.
| | - Florence Gerin
- Université de Lyon, Université Lyon1, Laboratoire d'Ecologie Microbienne, CNRS UMR-5557, INRAe UMR-1418, VetAgro Sup, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69622, France
| | - Marjolaine Rey
- Université de Lyon, Université Lyon1, Laboratoire d'Ecologie Microbienne, CNRS UMR-5557, INRAe UMR-1418, VetAgro Sup, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69622, France.
| | - Pierre-Edouard Mercier
- Université de Lyon, Université Lyon1, Laboratoire d'Ecologie Microbienne, CNRS UMR-5557, INRAe UMR-1418, VetAgro Sup, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69622, France.
| | - Gilles Comte
- Université de Lyon, Université Lyon1, Laboratoire d'Ecologie Microbienne, CNRS UMR-5557, INRAe UMR-1418, VetAgro Sup, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69622, France.
| | - Florence Wisniewski-Dyé
- Université de Lyon, Université Lyon1, Laboratoire d'Ecologie Microbienne, CNRS UMR-5557, INRAe UMR-1418, VetAgro Sup, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69622, France.
| | - Claire Prigent-Combaret
- Université de Lyon, Université Lyon1, Laboratoire d'Ecologie Microbienne, CNRS UMR-5557, INRAe UMR-1418, VetAgro Sup, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69622, France.
| |
Collapse
|
2
|
Zhou L, Höfte M, Hennessy RC. Does regulation hold the key to optimizing lipopeptide production in Pseudomonas for biotechnology? Front Bioeng Biotechnol 2024; 12:1363183. [PMID: 38476965 PMCID: PMC10928948 DOI: 10.3389/fbioe.2024.1363183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Lipopeptides (LPs) produced by Pseudomonas spp. are specialized metabolites with diverse structures and functions, including powerful biosurfactant and antimicrobial properties. Despite their enormous potential in environmental and industrial biotechnology, low yield and high production cost limit their practical use. While genome mining and functional genomics have identified a multitude of LP biosynthetic gene clusters, the regulatory mechanisms underlying their biosynthesis remain poorly understood. We propose that regulation holds the key to unlocking LP production in Pseudomonas for biotechnology. In this review, we summarize the structure and function of Pseudomonas-derived LPs and describe the molecular basis for their biosynthesis and regulation. We examine the global and specific regulator-driven mechanisms controlling LP synthesis including the influence of environmental signals. Understanding LP regulation is key to modulating production of these valuable compounds, both quantitatively and qualitatively, for industrial and environmental biotechnology.
Collapse
Affiliation(s)
- Lu Zhou
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Rosanna C. Hennessy
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Hossain Z, Hubbard M. Genomic characterization of three bacterial isolates antagonistic to the pea root rot pathogen Aphanomyces euteiches. Can J Microbiol 2024; 70:52-62. [PMID: 38061385 DOI: 10.1139/cjm-2023-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Microorganisms living in soil and rhizosphere or inside plants can promote plant growth and health. Genomic characterization of beneficial microbes could shed light on their special features. Through extensive field survey across Saskatchewan, Canada, followed by in vitro and greenhouse characterization, we identified several bacterial isolates antagonistic to pea root rot pathogen Aphanomyces euteiches. In this study, the genomes of three isolates-Pseudomonas sp. rhizo 66 (PD-S66), Pseudomonas synxantha rhizo 25 (Ps-S25), and Serratia sp. root 2 (TS-R2)-were sequenced, assembled, and annotated. Genome size of PD-S66 was 6 279 416 bp with 65 contigs, 59.32% GC content, and 5653 predicted coding sequences (CDS). Genome size of Ps-S25 was 6 058 437 bp with 66 contigs, a GC content of 60.08%, and 5575 predicted CDS. The genome size of TS-R2 was 5 282 152 bp, containing 26 contigs, a GC content of 56.17%, and 4956 predicted CDS. For the identification of the isolates, digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values were determined, which confirmed PD-S66 and TS-R2 as potential new species, belonging to Pseudomonas and Serratia genera, respectively, while Ps-S25 belongs to species Pseudomonas synxantha. Biosynthetic gene clusters were predicted using antiSMASH. The genomic data provided insight into the genetics and biochemical pathways supporting the antagonistic activity against A. euteiches of these isolates.
Collapse
Affiliation(s)
- Zakir Hossain
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, 1 Airport Road, Swift Current, SK S9H 3X2, Canada
| | - Michelle Hubbard
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, 1 Airport Road, Swift Current, SK S9H 3X2, Canada
| |
Collapse
|
4
|
Zhu X, Ma K, Sun M, Zhang J, Liu L, Niu S. Isolation and identification of pathogens of Morchella sextelata bacterial disease. Front Microbiol 2023; 14:1231353. [PMID: 38029130 PMCID: PMC10657878 DOI: 10.3389/fmicb.2023.1231353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Morel mushroom (Morchella spp.) is a rare edible and medicinal fungus distributed worldwide. It is highly desired by the majority of consumers. Bacterial diseases have been commonly observed during artificial cultivation of Morchella sextelata. Bacterial pathogens spread rapidly and cause a wide range of infections, severely affecting the yield and quality of M. sextelata. In this study, two strains of bacterial pathogens, named M-B and M-5, were isolated, cultured, and purified from the tissues of the infected M. sextelata. Koch's postulates were used to determine the pathogenicity of bacteria affecting M. sextelata, and the pathogens were identified through morphological observation, physiological and biochemical analyses, and 16S rRNA gene sequence analysis. Subsequently, the effect of temperature on the growth of pathogenic bacteria, the inhibitory effect of the bacteria on M. sextelata on plates, and the changes in mycelial morphology of M. sextelata mycelium were analyzed when M. sextelata mycelium was double-cultured with pathogenic bacteria on plates. The results revealed that M-B was Pseudomonas chlororaphis subsp. aureofaciens and M-5 was Bacillus subtilis. Strain M-B started to multiply at 10-15°C, and strain M-5 started at 15-20°C. On the plates, the pathogenic bacteria also produced significant inhibition of M. sextelata mycelium, and the observation of mycelial morphology under the scanning electron microscopy revealed that the inhibited mycelium underwent obvious drying and crumpling, and the healthy mycelium were more plump. Thus, this study clarified the pathogens, optimal growth environment, and characteristics of M. sextelata bacterial diseases, thereby providing valuable basic data for the disease prevention and control of Morchella production.
Collapse
|
5
|
Andrić S, Rigolet A, Argüelles Arias A, Steels S, Hoff G, Balleux G, Ongena L, Höfte M, Meyer T, Ongena M. Plant-associated Bacillus mobilizes its secondary metabolites upon perception of the siderophore pyochelin produced by a Pseudomonas competitor. THE ISME JOURNAL 2023; 17:263-275. [PMID: 36357782 PMCID: PMC9860033 DOI: 10.1038/s41396-022-01337-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/12/2022]
Abstract
Bacillus velezensis is considered as model species for plant-associated bacilli providing benefits to its host such as protection against phytopathogens. This is mainly due to the potential to secrete a wide range of secondary metabolites with specific and complementary bioactivities. This metabolite arsenal has been quite well defined genetically and chemically but much remains to be explored regarding how it is expressed under natural conditions and notably how it can be modulated upon interspecies interactions in the competitive rhizosphere niche. Here, we show that B. velezensis can mobilize a substantial part of its metabolome upon the perception of Pseudomonas, as a soil-dwelling competitor. This metabolite response reflects a multimodal defensive strategy as it includes polyketides and the bacteriocin amylocyclicin, with broad antibiotic activity, as well as surfactin lipopeptides, contributing to biofilm formation and enhanced motility. Furthermore, we identified the secondary Pseudomonas siderophore pyochelin as an info-chemical, which triggers this response via a mechanism independent of iron stress. We hypothesize that B. velezensis relies on such chelator sensing to accurately identify competitors, illustrating a new facet of siderophore-mediated interactions beyond the concept of competition for iron and siderophore piracy. This phenomenon may thus represent a new component of the microbial conversations driving the behavior of members of the rhizosphere community.
Collapse
Affiliation(s)
- Sofija Andrić
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.
| | - Augustin Rigolet
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Anthony Argüelles Arias
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Sébastien Steels
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Grégory Hoff
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
- Ecology and Biodiversity, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Guillaume Balleux
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Loïc Ongena
- Laboratory of Gene Expression and Cancer, GIGA-MBD, University of Liège, Liège, Belgium
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Thibault Meyer
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.
- UMR Ecologie Microbienne, F-69622, University of Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, Villeurbanne, France.
| | - Marc Ongena
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.
| |
Collapse
|
6
|
Zhang W, Mao G, Zhuang J, Yang H. The co-inoculation of Pseudomonas chlororaphis H1 and Bacillus altitudinis Y1 promoted soybean [ Glycine max (L.) Merrill] growth and increased the relative abundance of beneficial microorganisms in rhizosphere and root. Front Microbiol 2023; 13:1079348. [PMID: 36699592 PMCID: PMC9868396 DOI: 10.3389/fmicb.2022.1079348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/16/2022] [Indexed: 01/10/2023] Open
Abstract
Currently, plant growth-promoting rhizobacteria (PGPR) microbial inoculants are heavily used in agricultural production among which Pseudomonas sp. and Bacillus sp. are two excellent inoculum strains, which are widely used in plant growth promotion and disease control. However, few studies have been conducted on the combined use of the two bacteria. The aim of this study was to investigate the effects of co-inoculation of these two bacteria on soybean [Glycine max (L.) Merrill] growth and physiological indexes and further study the effect of microbial inoculants on native soil bacterial communities and plant endophyte microbiota, especially microorganisms in rhizosphere and root. A pot experiment was conducted and four treatments were designed: group without any strain inoculant (CK); group inoculated with Pseudomonas chlororaphis H1 inoculant (J); group inoculated with Bacillus altitudinis Y1 inoculant (Y) and group inoculated with equal volume of P. chlororaphis H1 inoculant and B. altitudinis Y1 inoculant (H). Compared with CK, the three inoculant groups J, Y, and H exhibited improved soybean growth and physiological indexes, and group H was the most significant (p < 0.05). In terms of rhizosphere bacterial community structure, the relative abundance of native Luteimonas (9.31%) was higher in the H group than in the J (6.07%), Y (3.40%), and CK (5.69%) groups, which has potential value of disease suppression. Besides, compared with bacterial communities of the other three groups in soybean roots, group H increased the abundance of beneficial bacterial community for the contents of Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Devosia, and Methylobacillus significantly increased (p < 0.05). In conclusion, we found that the composite inoculum of Pseudomonas chlororaphis H1 and Bacillus altitudinis Y1 could effectively promote soybean growth, increase yield and improve the beneficial bacterial community in root and rhizosphere and have certain value for soil improvement.
Collapse
Affiliation(s)
- Wentao Zhang
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China,College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Guohao Mao
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China,College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Jiayao Zhuang
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China,College of Forestry, Nanjing Forestry University, Nanjing, China,*Correspondence: Jiayao Zhuang, ✉
| | - Hao Yang
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China,College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
7
|
Bonaterra A, Badosa E, Daranas N, Francés J, Roselló G, Montesinos E. Bacteria as Biological Control Agents of Plant Diseases. Microorganisms 2022; 10:microorganisms10091759. [PMID: 36144361 PMCID: PMC9502092 DOI: 10.3390/microorganisms10091759] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 12/04/2022] Open
Abstract
Biological control is an effective and sustainable alternative or complement to conventional pesticides for fungal and bacterial plant disease management. Some of the most intensively studied biological control agents are bacteria that can use multiple mechanisms implicated in the limitation of plant disease development, and several bacterial-based products have been already registered and marketed as biopesticides. However, efforts are still required to increase the commercially available microbial biopesticides. The inconsistency in the performance of bacterial biocontrol agents in the biological control has limited their extensive use in commercial agriculture. Pathosystem factors and environmental conditions have been shown to be key factors involved in the final levels of disease control achieved by bacteria. Several biotic and abiotic factors can influence the performance of the biocontrol agents, affecting their mechanisms of action or the multitrophic interaction between the plant, the pathogen, and the bacteria. This review shows some relevant examples of known bacterial biocontrol agents, with especial emphasis on research carried out by Spanish groups. In addition, the importance of the screening process and of the key steps in the development of bacterial biocontrol agents is highlighted. Besides, some improvement approaches and future trends are considered.
Collapse
|
8
|
De Roo V, Verleysen Y, Kovács B, De Vleeschouwer M, Muangkaew P, Girard L, Höfte M, De Mot R, Madder A, Geudens N, Martins JC. An Nuclear Magnetic Resonance Fingerprint Matching Approach for the Identification and Structural Re-Evaluation of Pseudomonas Lipopeptides. Microbiol Spectr 2022; 10:e0126122. [PMID: 35876524 PMCID: PMC9431178 DOI: 10.1128/spectrum.01261-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/26/2022] [Indexed: 01/21/2023] Open
Abstract
Cyclic lipopeptides (CLiPs) are secondary metabolites secreted by a range of bacterial phyla. CLiPs from Pseudomonas in particular, display diverse structural variations in terms of the number of amino acid residues, macrocycle size, amino acid identity, and stereochemistry (e.g., d- versus l-amino acids). Reports detailing the discovery of novel or already characterized CLiPs from new sources appear regularly in literature. Increasingly, however, the lack of detailed characterization threatens to cause considerable confusion, especially if configurational heterogeneity is present for one or more amino acids. Using Pseudomonas CLiPs from the Bananamide, Orfamide, and Xantholysin groups as test cases, we demonstrate and validate that the combined 1H and 13C Nuclear Magnetic Resonance (NMR) chemical shifts of CLiPs constitute a spectral fingerprint that is sufficiently sensitive to differentiate between possible diastereomers of a particular sequence even when they only differ in a single d/l configuration. Rapid screening, involving simple matching of the NMR fingerprint of a newly isolated CLiP with that of a reference CLiP of known stereochemistry, can then be applied to resolve dead-ends in configurational characterization and avoid the much more cumbersome chemical characterization protocols. Even when the stereochemistry of a particular reference CLiP remains to be established, its spectral fingerprint allows to quickly verify whether a newly isolated CLiP is novel or already present in the reference collection. We show NMR fingerprinting leads to a simple approach for early on dereplication which should become more effective as more fingerprints are collected. To benefit research involving CLiPs, we have made a publicly available data repository accompanied by a 'knowledge base' at https://www.rhizoclip.be, where we present an overview of published NMR fingerprint data of characterized CLiPs, together with literature data on the originally determined structures. IMPORTANCE Pseudomonas CLiPs are ubiquitous specialized metabolites, impacting the producer's lifestyle and interactions with the (a)biotic environment. Consequently, they generate interest for agricultural and clinical applications. Establishing structure-activity relationships as a premise to their development is hindered because full structural characterization including stereochemical information requires labor-intensive analyses, without guarantee for success. Moreover, increasing use of superficial comparison with previously characterized CLiPs introduces or propagates erroneous attributions, clouding further scientific progress. We provide a generally applicable characterization methodology based on matching NMR spectral fingerprints of newly isolated CLiPs to natural and synthetic reference compounds with (un)known stereochemistry. In addition, NMR fingerprinting is shown to provide a suitable basis for structural dereplication. A publicly available reference compound repository promises to facilitate participation of the lipopeptide research community in structural assessment and dereplication of newly isolated CLiPs, which should also support further developments in genome mining for novel CLiPs.
Collapse
Affiliation(s)
- Vic De Roo
- NMR and Structure Analysis Unit, Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| | - Yentl Verleysen
- NMR and Structure Analysis Unit, Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
- Organic and Biomimetic Chemistry Research Group, Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| | - Benjámin Kovács
- NMR and Structure Analysis Unit, Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| | - Matthias De Vleeschouwer
- NMR and Structure Analysis Unit, Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
- Organic and Biomimetic Chemistry Research Group, Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| | - Penthip Muangkaew
- Organic and Biomimetic Chemistry Research Group, Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| | - Léa Girard
- Centre for Microbial and Plant Genetics, Faculty of Bioscience Engineering, KULeuven, Heverlee-Leuven, Belgium
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent, Belgium
| | - René De Mot
- Centre for Microbial and Plant Genetics, Faculty of Bioscience Engineering, KULeuven, Heverlee-Leuven, Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| | - Niels Geudens
- NMR and Structure Analysis Unit, Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| | - José C. Martins
- NMR and Structure Analysis Unit, Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| |
Collapse
|
9
|
Deng X, Zhang N, Li Y, Zhu C, Qu B, Liu H, Li R, Bai Y, Shen Q, Falcao Salles J. Bio-organic soil amendment promotes the suppression of Ralstonia solanacearum by inducing changes in the functionality and composition of rhizosphere bacterial communities. THE NEW PHYTOLOGIST 2022; 235:1558-1574. [PMID: 35569105 DOI: 10.1111/nph.18221] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Stimulating the development of soil suppressiveness against certain pathogens represents a sustainable solution toward reducing pesticide use in agriculture. However, understanding the dynamics of suppressiveness and the mechanisms leading to pathogen control remain largely elusive. Here, we investigated the mechanisms used by the rhizosphere microbiome induces bacterial wilt disease suppression in a long-term field experiment where continuous application of bio-organic fertilizers (BFs) triggered disease suppressiveness when compared to chemical fertilizer application. We further demonstrated in a glasshouse experiment that the suppressiveness of the rhizosphere bacterial communities was triggered mainly by changes in community composition rather than only by the abundance of the introduced biocontrol strain. Metagenomics approaches revealed that members of the families Sphingomonadaceae and Xanthomonadaceae with the ability to produce secondary metabolites were enriched in the BF plant rhizosphere but only upon pathogen invasion. We experimentally validated this observation by inoculating bacterial isolates belonging to the families Sphingomonadaceae and Xanthomonadaceae into conducive soil, which led to a significant reduction in pathogen abundance and increase in nonribosomal peptide synthetase gene abundance. We conclude that priming of the soil microbiome with BF amendment fostered reactive bacterial communities in the rhizosphere of tomato plants in response to biotic disturbance.
Collapse
Affiliation(s)
- Xuhui Deng
- Jiangsu Provincial Key Laboratory of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Microbial Ecology Cluster, Genomics Research in Ecology and Evolution in Nature, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, 9747AG, the Netherlands
| | - Na Zhang
- Jiangsu Provincial Key Laboratory of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yuchan Li
- Jiangsu Provincial Key Laboratory of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Chengzhi Zhu
- Jiangsu Provincial Key Laboratory of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Baoyuan Qu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Hongjun Liu
- Jiangsu Provincial Key Laboratory of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Rong Li
- Jiangsu Provincial Key Laboratory of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yang Bai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Qirong Shen
- Jiangsu Provincial Key Laboratory of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Joana Falcao Salles
- Microbial Ecology Cluster, Genomics Research in Ecology and Evolution in Nature, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, 9747AG, the Netherlands
| |
Collapse
|
10
|
Lee JH, Anderson AJ, Kim YC. Root-Associated Bacteria Are Biocontrol Agents for Multiple Plant Pests. Microorganisms 2022; 10:microorganisms10051053. [PMID: 35630495 PMCID: PMC9146382 DOI: 10.3390/microorganisms10051053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
Biological control is an important process for sustainable plant production, and this trait is found in many plant-associated microbes. This study reviews microbes that could be formulated into pesticides active against various microbial plant pathogens as well as damaging insects or nematodes. The focus is on the beneficial microbes that colonize the rhizosphere where, through various mechanisms, they promote healthy plant growth. Although these microbes have adapted to cohabit root tissues without causing disease, they are pathogenic to plant pathogens, including microbes, insects, and nematodes. The cocktail of metabolites released from the beneficial strains inhibits the growth of certain bacterial and fungal plant pathogens and participates in insect and nematode toxicity. There is a reinforcement of plant health through the systemic induction of defenses against pathogen attack and abiotic stress in the plant; metabolites in the beneficial microbial cocktail function in triggering the plant defenses. The review discusses a wide range of metabolites involved in plant protection through biocontrol in the rhizosphere. The focus is on the beneficial firmicutes and pseudomonads, because of the extensive studies with these isolates. The review evaluates how culture conditions can be optimized to provide formulations containing the preformed active metabolites for rapid control, with or without viable microbial cells as plant inocula, to boost plant productivity in field situations.
Collapse
Affiliation(s)
- Jang Hoon Lee
- Agricultural Solutions, BASF Korea Ltd., Seoul 04518, Korea;
| | - Anne J. Anderson
- Department of Biological Engineering, Utah State University, Logan, UT 84322, USA;
| | - Young Cheol Kim
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea
- Correspondence:
| |
Collapse
|
11
|
Harnessing phytomicrobiome signals for phytopathogenic stress management. J Biosci 2022. [DOI: 10.1007/s12038-021-00240-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Oni FE, Esmaeel Q, Onyeka JT, Adeleke R, Jacquard C, Clement C, Gross H, Ait Barka E, Höfte M. Pseudomonas Lipopeptide-Mediated Biocontrol: Chemotaxonomy and Biological Activity. Molecules 2022; 27:372. [PMID: 35056688 PMCID: PMC8777863 DOI: 10.3390/molecules27020372] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022] Open
Abstract
Pseudomonas lipopeptides (Ps-LPs) play crucial roles in bacterial physiology, host-microbe interactions and plant disease control. Beneficial LP producers have mainly been isolated from the rhizosphere, phyllosphere and from bulk soils. Despite their wide geographic distribution and host range, emerging evidence suggests that LP-producing pseudomonads and their corresponding molecules display tight specificity and follow a phylogenetic distribution. About a decade ago, biocontrol LPs were mainly reported from the P. fluorescens group, but this has drastically advanced due to increased LP diversity research. On the one hand, the presence of a close-knit relationship between Pseudomonas taxonomy and the molecule produced may provide a startup toolbox for the delineation of unknown LPs into existing (or novel) LP groups. Furthermore, a taxonomy-molecule match may facilitate decisions regarding antimicrobial activity profiling and subsequent agricultural relevance of such LPs. In this review, we highlight and discuss the production of beneficial Ps-LPs by strains situated within unique taxonomic groups and the lineage-specificity and coevolution of this relationship. We also chronicle the antimicrobial activity demonstrated by these biomolecules in limited plant systems compared with multiple in vitro assays. Our review further stresses the need to systematically elucidate the roles of diverse Ps-LP groups in direct plant-pathogen interactions and in the enhancement of plant innate immunity.
Collapse
Affiliation(s)
- Feyisara Eyiwumi Oni
- Université de Reims Champagne Ardenne, Unité de Recherche RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France; (Q.E.); (C.J.); (C.C.); (E.A.B.)
- Department of Biological Sciences, Faculty of Science, Anchor University, Ayobo P.M.B 00001, Lagos State, Nigeria
- Unit for Environmental Sciences and Management, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2520, South Africa;
| | - Qassim Esmaeel
- Université de Reims Champagne Ardenne, Unité de Recherche RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France; (Q.E.); (C.J.); (C.C.); (E.A.B.)
| | - Joseph Tobias Onyeka
- Plant Pathology Unit, National Root Crops Research Institute (NRCRI), Umudike 440001, Abia State, Nigeria;
| | - Rasheed Adeleke
- Unit for Environmental Sciences and Management, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2520, South Africa;
| | - Cedric Jacquard
- Université de Reims Champagne Ardenne, Unité de Recherche RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France; (Q.E.); (C.J.); (C.C.); (E.A.B.)
| | - Christophe Clement
- Université de Reims Champagne Ardenne, Unité de Recherche RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France; (Q.E.); (C.J.); (C.C.); (E.A.B.)
| | - Harald Gross
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tubingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany;
| | - Essaid Ait Barka
- Université de Reims Champagne Ardenne, Unité de Recherche RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France; (Q.E.); (C.J.); (C.C.); (E.A.B.)
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium;
| |
Collapse
|
13
|
Zubair M, Farzand A, Mumtaz F, Khan AR, Sheikh TMM, Haider MS, Yu C, Wang Y, Ayaz M, Gu Q, Gao X, Wu H. Novel Genetic Dysregulations and Oxidative Damage in Fusarium graminearum Induced by Plant Defense Eliciting Psychrophilic Bacillus atrophaeus TS1. Int J Mol Sci 2021; 22:ijms222212094. [PMID: 34829976 PMCID: PMC8622878 DOI: 10.3390/ijms222212094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/27/2022] Open
Abstract
This study elaborates inter-kingdom signaling mechanisms, presenting a sustainable and eco-friendly approach to combat biotic as well as abiotic stress in wheat. Fusarium graminearum is a devastating pathogen causing head and seedling blight in wheat, leading to huge yield and economic losses. Psychrophilic Bacillus atrophaeus strain TS1 was found as a potential biocontrol agent for suppression of F. graminearum under low temperature by carrying out extensive biochemical and molecular studies in comparison with a temperate biocontrol model strain Bacillus amyloliquefaciens FZB42 at 15 and 25 °C. TS1 was able to produce hydrolytic extracellular enzymes as well as antimicrobial lipopeptides, i.e., surfactin, bacillomycin, and fengycin, efficiently at low temperatures. The Bacillus strain-induced oxidative cellular damage, ultrastructural deformities, and novel genetic dysregulations in the fungal pathogen as the bacterial treatment at low temperature were able to downregulate the expression of newly predicted novel fungal genes potentially belonging to necrosis inducing protein families (fgHCE and fgNPP1). The wheat pot experiments conducted at 15 and 25 °C revealed the potential of TS1 to elicit sudden induction of plant defense, namely, H2O2 and callose enhanced activity of plant defense-related enzymes and induced over-expression of defense-related genes which accumulatively lead to the suppression of F. graminearum and decreased diseased leaf area.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; (M.Z.); (A.F.); (A.R.K.); (T.M.M.S.); (C.Y.); (Y.W.); (M.A.); (Q.G.); (X.G.)
| | - Ayaz Farzand
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; (M.Z.); (A.F.); (A.R.K.); (T.M.M.S.); (C.Y.); (Y.W.); (M.A.); (Q.G.); (X.G.)
- Department of Plant Pathology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Faiza Mumtaz
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran 13145-784, Iran;
| | - Abdur Rashid Khan
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; (M.Z.); (A.F.); (A.R.K.); (T.M.M.S.); (C.Y.); (Y.W.); (M.A.); (Q.G.); (X.G.)
| | - Taha Majid Mahmood Sheikh
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; (M.Z.); (A.F.); (A.R.K.); (T.M.M.S.); (C.Y.); (Y.W.); (M.A.); (Q.G.); (X.G.)
| | | | - Chenjie Yu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; (M.Z.); (A.F.); (A.R.K.); (T.M.M.S.); (C.Y.); (Y.W.); (M.A.); (Q.G.); (X.G.)
| | - Yujie Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; (M.Z.); (A.F.); (A.R.K.); (T.M.M.S.); (C.Y.); (Y.W.); (M.A.); (Q.G.); (X.G.)
| | - Muhammad Ayaz
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; (M.Z.); (A.F.); (A.R.K.); (T.M.M.S.); (C.Y.); (Y.W.); (M.A.); (Q.G.); (X.G.)
| | - Qin Gu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; (M.Z.); (A.F.); (A.R.K.); (T.M.M.S.); (C.Y.); (Y.W.); (M.A.); (Q.G.); (X.G.)
| | - Xuewen Gao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; (M.Z.); (A.F.); (A.R.K.); (T.M.M.S.); (C.Y.); (Y.W.); (M.A.); (Q.G.); (X.G.)
| | - Huijun Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; (M.Z.); (A.F.); (A.R.K.); (T.M.M.S.); (C.Y.); (Y.W.); (M.A.); (Q.G.); (X.G.)
- Correspondence: ; Tel./Fax: +86-25-84395268
| |
Collapse
|
14
|
Paediatric Antimicrobial Stewardship for Respiratory Infections in the Emergency Setting: A Systematic Review. Antibiotics (Basel) 2021; 10:antibiotics10111366. [PMID: 34827304 PMCID: PMC8615165 DOI: 10.3390/antibiotics10111366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/29/2022] Open
Abstract
Antimicrobial resistance occurs due to the propensity of microbial pathogens to develop resistance to antibiotics over time. Antimicrobial stewardship programs (ASPs) have been developed in response to this growing crisis, to limit unnecessary antibiotic prescription through initiatives such as education-based seminars, prescribing guidelines, and rapid respiratory pathogen (RRP) testing. Paediatric patients who present to the emergency setting with respiratory symptoms are a particularly high-risk population susceptible to inappropriate antibiotic prescribing behaviours and are therefore an ideal cohort for focused ASPs. The purpose of this systematic review was to assess the efficacy and safety of ASPs in this clinical context. A systematic search of PubMed, Medline, EMBASE and the Cochrane Database of Systematic Reviews was conducted to review the current evidence. Thirteen studies were included in the review and these studies assessed a range of stewardship interventions and outcome measures. Overall, ASPs reduced the rates of antibiotic prescription, increased the prescription of narrow-spectrum antibiotics, and shortened the duration of antibiotic therapy. Multimodal interventions that were education-based and those that used RRP testing were found to be the most effective. Whilst we found strong evidence that ASPs are effective in reducing antibiotic prescribing, further studies are required to assess whether they translate to equivalent clinical outcomes.
Collapse
|
15
|
Bach E, Passaglia LMP, Jiao J, Gross H. Burkholderia in the genomic era: from taxonomy to the discovery of new antimicrobial secondary metabolites. Crit Rev Microbiol 2021; 48:121-160. [PMID: 34346791 DOI: 10.1080/1040841x.2021.1946009] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Species of Burkholderia are highly versatile being found not only abundantly in soil, but also as plants and animals' commensals or pathogens. Their complex multireplicon genomes harbour an impressive number of polyketide synthase (PKS) and nonribosomal peptide-synthetase (NRPS) genes coding for the production of antimicrobial secondary metabolites (SMs), which have been successfully deciphered by genome-guided tools. Moreover, genome metrics supported the split of this genus into Burkholderia sensu stricto (s.s.) and five new other genera. Here, we show that the successful antimicrobial SMs producers belong to Burkholderia s.s. Additionally, we reviewed the occurrence, bioactivities, modes of action, structural, and biosynthetic information of thirty-eight Burkholderia antimicrobial SMs shedding light on their diversity, complexity, and uniqueness as well as the importance of genome-guided strategies to facilitate their discovery. Several Burkholderia NRPS and PKS display unusual features, which are reflected in their structural diversity, important bioactivities, and varied modes of action. Up to now, it is possible to observe a general tendency of Burkholderia SMs being more active against fungi. Although the modes of action and biosynthetic gene clusters of many SMs remain unknown, we highlight the potential of Burkholderia SMs as alternatives to fight against new diseases and antibiotic resistance.
Collapse
Affiliation(s)
- Evelise Bach
- Departamento de Genética and Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Luciane Maria Pereira Passaglia
- Departamento de Genética and Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Junjing Jiao
- Department for Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Tübingen, Germany
| | - Harald Gross
- Department for Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Tübingen, Germany
| |
Collapse
|
16
|
Effects of Root-Colonizing Fluorescent Pseudomonas Strains on Arabidopsis Resistance to a Pathogen and an Herbivore. Appl Environ Microbiol 2021; 87:e0283120. [PMID: 33893115 DOI: 10.1128/aem.02831-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rhizobacteria in the genus Pseudomonas can enhance plant resistance to a range of pathogens and herbivores. However, resistance to these different classes of plant antagonists is mediated by different molecular mechanisms, and the extent to which induced systemic resistance by Pseudomonas can simultaneously protect plants against both pathogens and herbivores remains unclear. We screened 12 root-colonizing Pseudomonas strains to assess their ability to induce resistance in Arabidopsis thaliana against a foliar pathogen (Pseudomonas syringae DC3000) and a chewing herbivore (Spodoptera littoralis). None of our 12 strains increased plant resistance against herbivory; however, four strains enhanced pathogen resistance, and one of these (Pseudomonas strain P97-38) also made plants more susceptible to herbivory. Phytohormone analyses revealed stronger salicylic acid induction in plants colonized by P97-38 (versus controls) following subsequent pathogen infection but weaker induction of jasmonic acid (JA)-mediated defenses following herbivory. We found no effects of P97-38 inoculation on herbivore-relevant nutrients such as sugars and protein, suggesting that the observed enhancement of susceptibility to S. littoralis is due to effects on plant defense chemistry rather than nutrition. These findings suggest that Pseudomonas strains that enhance plant resistance to pathogens may have neutral or negative effects on resistance to herbivores and provide insight into potential mechanisms associated with effects on different classes of plant antagonists. Improved understanding of these effects has potentially important implications for the use of rhizobacteria inoculation in agriculture. IMPORTANCE Plant-associated microbes have significant potential to enhance agricultural production, for example, by enhancing plant resistance to pathogens and pests. Efforts to identify beneficial microbial strains typically focus on a narrow range of desirable plant traits; however, microbial symbionts can have complex effects on plant phenotypes, including susceptibility and resistance to different classes of plant antagonists. We examined the effects of 12 strains of Pseudomonas rhizobacteria on plant (Arabidopsis) resistance to a lepidopteran herbivore and a foliar pathogen. None of our strains increased plant resistance against herbivory; however, four strains enhanced pathogen resistance, and one of these made plants more susceptible to herbivory (likely via effects on plant defense chemistry). These findings indicate that microbial strains that enhance plant resistance to pathogens can have neutral or negative effects on resistance to herbivores, highlighting potential pitfalls in the application of beneficial rhizobacteria as biocontrol agents.
Collapse
|
17
|
Raio A, Puopolo G. Pseudomonas chlororaphis metabolites as biocontrol promoters of plant health and improved crop yield. World J Microbiol Biotechnol 2021; 37:99. [PMID: 33978868 DOI: 10.1007/s11274-021-03063-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/23/2021] [Indexed: 11/28/2022]
Abstract
The Pseudomonas fluorescens complex contains at least eight phylogenetic groups and each of these includes several bacterial species sharing ecological and physiological traits. Pseudomonas chlororaphis classified in a separate group is represented by three different subspecies that show distinctive traits exploitable for phytostimulation and biocontrol of phytopathogens. The high level of microbial competitiveness in soil as well as the effectiveness in controlling several plant pathogens and pests can be related to the P. chlororaphis ability to implement different stimulating and toxic mechanisms in its interaction with plants and the other micro- and macroorganisms. Pseudomonas chlororaphis strains produce antibiotics, such as phenazines, pyrrolnitrine, 2-hexyl, 5-propyl resorcinol and hydrogen cyanide, siderophores such as pyoverdine and achromobactine and a complex blend of volatile organic compounds (VOCs) that effectively contribute to the control of several plant pathogens, nematodes and insects. Phenazines and some VOCs are also involved in the induction of systemic resistance in plants. This complex set of beneficial strategies explains the high increasing interest in P. chlororaphis for commercial and biotechnological applications. The aim of this review is to highlight the role of the different mechanisms involved in the biocontrol activity of P. chlororaphis strains.
Collapse
Affiliation(s)
- Aida Raio
- Institute for Sustainable Plant Protection, National Research Council, Sesto Fiorentino, FI, Italy.
| | - Gerardo Puopolo
- Center Agriculture Food Environment C3A, University of Trento/Fondazione Edmund Mach, San Michele all'Adige, TN, Italy.,Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
| |
Collapse
|
18
|
Vishwakarma K, Kumar N, Shandilya C, Mohapatra S, Bhayana S, Varma A. Revisiting Plant-Microbe Interactions and Microbial Consortia Application for Enhancing Sustainable Agriculture: A Review. Front Microbiol 2020; 11:560406. [PMID: 33408698 PMCID: PMC7779480 DOI: 10.3389/fmicb.2020.560406] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022] Open
Abstract
The present scenario of agricultural sector is dependent hugely on the use of chemical-based fertilizers and pesticides that impact the nutritional quality, health status, and productivity of the crops. Moreover, continuous release of these chemical inputs causes toxic compounds such as metals to accumulate in the soil and move to the plants with prolonged exposure, which ultimately impact the human health. Hence, it becomes necessary to bring out the alternatives to chemical pesticides/fertilizers for improvement of agricultural outputs. The rhizosphere of plant is an important niche with abundant microorganisms residing in it. They possess the properties of plant growth promotion, disease suppression, removal of toxic compounds, and assimilating nutrients to plants. Utilizing such beneficial microbes for crop productivity presents an efficient way to modulate the crop yield and productivity by maintaining healthy status and quality of the plants through bioformulations. To understand these microbial formulation compositions, it becomes essential to understand the processes going on in the rhizosphere as well as their concrete identification for better utilization of the microbial diversity such as plant growth–promoting bacteria and arbuscular mycorrhizal fungi. Hence, with this background, the present review article highlights the plant microbiome aboveground and belowground, importance of microbial inoculants in various plant species, and their subsequent interactive mechanisms for sustainable agriculture.
Collapse
Affiliation(s)
| | - Nitin Kumar
- Department of Biotechnology, Periyar Maniammai Institute of Science and Technology, Thanjavur, India
| | | | - Swati Mohapatra
- Amity Institute of Microbial Technology, Amity University, Noida, India
| | - Sahil Bhayana
- Amity Institute of Microbial Technology, Amity University, Noida, India
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University, Noida, India
| |
Collapse
|
19
|
Parvin W, Govender N, Othman R, Jaafar H, Rahman M, Wong MY. Phenazine from Pseudomonas aeruginosa UPMP3 induced the host resistance in oil palm (Elaeis guineensis Jacq.)-Ganoderma boninense pathosystem. Sci Rep 2020; 10:15621. [PMID: 32973199 PMCID: PMC7518433 DOI: 10.1038/s41598-020-72156-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/31/2020] [Indexed: 11/12/2022] Open
Abstract
Pseudomonas aeruginosa developed its biocontrol agent property through the production of antifungal derivatives, with the phenazine among them. In this study, the applications of crude phenazine synthesized by Pseudomonas aeruginosa UPMP3 and hexaconazole were comparatively evaluated for their effectiveness to suppress basal stem rot infection in artificially G. boninense-challenged oil palm seedlings. A glasshouse experiment under the randomized completely block design was set with the following treatments: non-inoculated seedlings, G. boninense inoculated seedlings, G. boninense inoculated seedlings with 1 mg/ml phenazine application, G. boninense inoculated seedlings with 2 mg/ml phenazine application and G. boninense inoculated seedlings with 0.048 mg/ml hexaconazole application. Seedlings were screened for disease parameters and plant vigour traits (plant height, plant fresh weight, root fresh, and dry weight, stem diameter, and total chlorophyll) at 1-to-4 month post-inoculation (mpi). The application of 2 mg/ml phenazine significantly reduced disease severity (DS) at 44% in comparison to fungicide application (DS = 67%). Plant vigour improved from 1 to 4 mpi and the rate of disease reduction in seedlings with phenazine application (2 mg/ml) was twofold greater than hexaconazole. At 4, 6 and 8 wpi, an up-regulation of chitinase and β-1,3 glucanase genes in seedlings treated with phenazine suggests the involvement of induced resistance in G. boninense-oil palm pathosystem.
Collapse
Affiliation(s)
- Waheeda Parvin
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia.
- Bangladesh Forest Research Institute, Chittagong, Bangladesh.
| | - Nisha Govender
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Radziah Othman
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hawa Jaafar
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mahbubur Rahman
- Bangladesh Forest Research Institute, Chittagong, Bangladesh
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mui-Yun Wong
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia.
- Institute of Plantation Studies, Universiti Putra Malaysia, Serdang, Malaysia.
| |
Collapse
|
20
|
Crouzet J, Arguelles-Arias A, Dhondt-Cordelier S, Cordelier S, Pršić J, Hoff G, Mazeyrat-Gourbeyre F, Baillieul F, Clément C, Ongena M, Dorey S. Biosurfactants in Plant Protection Against Diseases: Rhamnolipids and Lipopeptides Case Study. Front Bioeng Biotechnol 2020; 8:1014. [PMID: 33015005 PMCID: PMC7505919 DOI: 10.3389/fbioe.2020.01014] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/03/2020] [Indexed: 12/17/2022] Open
Abstract
Biosurfactants are amphiphilic surface-active molecules that are produced by a variety of microorganisms including fungi and bacteria. Pseudomonas, Burkholderia, and Bacillus species are known to secrete rhamnolipids and lipopeptides that are used in a wide range of industrial applications. Recently, these compounds have been studied in a context of plant-microbe interactions. This mini-review describes the direct antimicrobial activities of these compounds against plant pathogens. We also provide the current knowledge on how rhamnolipids and lipopeptides stimulate the plant immune system leading to plant resistance to phytopathogens. Given their low toxicity, high biodegradability and ecological acceptance, we discuss the possible role of these biosurfactants as alternative strategies to reduce or even replace pesticide use in agriculture.
Collapse
Affiliation(s)
- Jérôme Crouzet
- Unité RIBP EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Anthony Arguelles-Arias
- MiPI laboratory, Gembloux Agro-Bio Tech, SFR Condorcet FR CNRS 3417, University of LieÌge, Gembloux, Belgium
| | - Sandrine Dhondt-Cordelier
- Unité RIBP EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Sylvain Cordelier
- Unité RIBP EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Jelena Pršić
- MiPI laboratory, Gembloux Agro-Bio Tech, SFR Condorcet FR CNRS 3417, University of LieÌge, Gembloux, Belgium
| | - Gregory Hoff
- MiPI laboratory, Gembloux Agro-Bio Tech, SFR Condorcet FR CNRS 3417, University of LieÌge, Gembloux, Belgium
| | | | - Fabienne Baillieul
- Unité RIBP EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Christophe Clément
- Unité RIBP EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Marc Ongena
- MiPI laboratory, Gembloux Agro-Bio Tech, SFR Condorcet FR CNRS 3417, University of LieÌge, Gembloux, Belgium
| | - Stéphan Dorey
- Unité RIBP EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
21
|
Jin ZJ, Zhou L, Sun S, Cui Y, Song K, Zhang X, He YW. Identification of a Strong Quorum Sensing- and Thermo-Regulated Promoter for the Biosynthesis of a New Metabolite Pesticide Phenazine-1-carboxamide in Pseudomonas strain PA1201. ACS Synth Biol 2020; 9:1802-1812. [PMID: 32584550 DOI: 10.1021/acssynbio.0c00161] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Phenazine-1-carboxamide (PCN) produced by multifarious Pseudomonas strains represents a promising candidate as a new metabolite pesticide due to its broad-spectrum antifungal activity and capacity to induce systemic resistance in plants. The rice rhizosphere Pseudomonas strain PA1201 contains two reiterated gene clusters, phz1 and phz2, for phenazine-1-carboxylic acid (PCA) biosynthesis; PCA is further converted into PCN by this strain using a functional phzH-encoding glutamine aminotransferase. However, PCN levels in PA1201 constitute approximately one-fifth of PCA levels and the optimal temperature for PCN synthesis is 28 °C. In this study, the phzH open reading frame (ORF) and promoter region were investigated and reannotated. phzH promoter PphzH was found to be a weak promoter, and PhzH levels were not sufficient to convert all of the native PCA into PCN. Following RNA Seq and promoter-lacZ fusion analyses, a strong quorum sensing (QS)- and thermo-regulated promoter PrhlI was identified and characterized. The activity of PphzH is approximately 1% of PrhlI in PA1201. After three rounds of promoter editing and swapping by PrhlI, a new PCN-overproducing strain UP46 was generated. The optimal fermentation temperature for PCN biosynthesis in UP46 was increased from 28 to 37 °C and the PCN fermentation titer increased 179.5-fold, reaching 14.1 g/L, the highest ever reported.
Collapse
Affiliation(s)
- Zi-Jing Jin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lian Zhou
- Zhiyuan Innovation Research Centre, Student Innovation Institute, Zhiyuan College, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuang Sun
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Ji’nan, 250014, China
| | - Ying Cui
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kai Song
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ya-Wen He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
22
|
Understanding Phytomicrobiome: A Potential Reservoir for Better Crop Management. SUSTAINABILITY 2020. [DOI: 10.3390/su12135446] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent crop production studies have aimed at an increase in the biotic and abiotic tolerance of plant communities, along with increased nutrient availability and crop yields. This can be achieved in various ways, but one of the emerging approaches is to understand the phytomicrobiome structure and associated chemical communications. The phytomicrobiome was characterized with the advent of high-throughput techniques. Its composition and chemical signaling phenomena have been revealed, leading the way for “rhizosphere engineering”. In addition to the above, phytomicrobiome studies have paved the way to best tackling soil contamination with various anthropogenic activities. Agricultural lands have been found to be unbalanced for crop production. Due to the intense application of agricultural chemicals such as herbicides, fungicides, insecticides, fertilizers, etc., which can only be rejuvenated efficiently through detailed studies on the phytomicrobiome component, the phytomicrobiome has recently emerged as a primary plant trait that affects crop production. The phytomicrobiome also acts as an essential modifying factor in plant root exudation and vice versa, resulting in better plant health and crop yield both in terms of quantity and quality. Not only supporting better plant growth, phytomicrobiome members are involved in the degradation of toxic materials, alleviating the stress conditions that adversely affect plant development. Thus, the present review compiles the progress in understanding phytomicrobiome relationships and their application in achieving the goal of sustainable agriculture.
Collapse
|
23
|
Anderson AJ, Kim YC. Insights into plant-beneficial traits of probiotic Pseudomonas chlororaphis isolates. J Med Microbiol 2020; 69:361-371. [DOI: 10.1099/jmm.0.001157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas chlororaphisisolates have been studied intensively for their beneficial traits.P. chlororaphisspecies function as probiotics in plants and fish, offering plants protection against microbes, nematodes and insects. In this review, we discuss the classification ofP. chlororaphisisolates within four subspecies; the shared traits include the production of coloured antimicrobial phenazines, high sequence identity between housekeeping genes and similar cellular fatty acid composition. The direct antimicrobial, insecticidal and nematocidal effects ofP. chlororaphisisolates are correlated with known metabolites. Other metabolites prime the plants for stress tolerance and participate in microbial cell signalling events and biofilm formation among other things. Formulations ofP. chlororaphisisolates and their metabolites are currently being commercialized for agricultural use.
Collapse
Affiliation(s)
- Anne J. Anderson
- Department of Biological Engineering, Utah State University, Logan UT84322, USA
| | - Young Cheol Kim
- Department of Applied Biology, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
24
|
Pršić J, Ongena M. Elicitors of Plant Immunity Triggered by Beneficial Bacteria. FRONTIERS IN PLANT SCIENCE 2020; 11:594530. [PMID: 33304371 PMCID: PMC7693457 DOI: 10.3389/fpls.2020.594530] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/07/2020] [Indexed: 05/19/2023]
Abstract
The molecular basis of plant immunity triggered by microbial pathogens is being well-characterized as a complex sequential process leading to the activation of defense responses at the infection site, but which may also be systemically expressed in all organs, a phenomenon also known as systemic acquired resistance (SAR). Some plant-associated and beneficial bacteria are also able to stimulate their host to mount defenses against pathogen ingress via the phenotypically similar, induced systemic resistance phenomenon. Induced systemic resistance resembles SAR considering its mechanistic principle as it successively involves recognition at the plant cell surface, stimulation of early cellular immune-related events, systemic signaling via a fine-tuned hormonal cross-talk and activation of defense mechanisms. It thus represents an indirect but efficient mechanism by which beneficial bacteria with biocontrol potential improve the capacity of plants to restrict pathogen invasion. However, according to our current vision, induced systemic resistance is specific considering some molecular aspects underpinning these different steps. Here we overview the chemical diversity of compounds that have been identified as induced systemic resistance elicitors and thereby illustrating the diversity of plants species that are responsive as well as the range of pathogens that can be controlled via this phenomenon. We also point out the need for further investigations allowing better understanding how these elicitors are sensed by the host and the diversity and nature of the stimulated defense mechanisms.
Collapse
|
25
|
Zhao J, Liu D, Wang Y, Zhu X, Xuan Y, Liu X, Fan H, Chen L, Duan Y. Biocontrol potential of Microbacterium maritypicum Sneb159 against Heterodera glycines. PEST MANAGEMENT SCIENCE 2019; 75:3381-3391. [PMID: 31282045 DOI: 10.1002/ps.5546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/16/2019] [Accepted: 07/02/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND The soybean cyst nematode Heterodera glycines (Ichinohe) is the most devastating pathogen affecting soybean production worldwide. Biocontrol agents have become eco-friendly candidates to control pathogens. The aim of this study was to discover novel biocontrol agents against H. glycines. RESULTS Microbacterium maritypicum Sneb159, screened from 804 strains, effectively reduced the number of females in field experiments conducted in 2014 and 2015. The stability and efficiency of H. glycines control by Sneb159 was further assessed in growth chamber and field experiments. Sneb159 decreased H. glycines population densities, especially the number of females by 43.9%-67.7%. To confirm Sneb159 induced plant resistance, a split-root assay was conducted. Sneb159 induced local and systemic resistance to suppress the penetration and development of H. glycines, and enhanced the gene expression of PR2, PR3b, and JAZ1, involved in the salicylic acid and jasmonic acid pathways. CONCLUSION This is the first report of M. maritypicum Sneb159 suppressing H. glycines infection. This effect may be the result of Sneb159-induced resistance. Our study indicates that M. maritypicum Sneb159 is a promising biocontrol agent against H. glycines. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jing Zhao
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Dan Liu
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuanyuan Wang
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Xiaofeng Zhu
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuanhu Xuan
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Xiaoyu Liu
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
- College of Sciences, Shenyang Agricultural University, Shenyang, China
| | - Haiyan Fan
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Lijie Chen
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuxi Duan
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
26
|
Schellenberger R, Touchard M, Clément C, Baillieul F, Cordelier S, Crouzet J, Dorey S. Apoplastic invasion patterns triggering plant immunity: plasma membrane sensing at the frontline. MOLECULAR PLANT PATHOLOGY 2019; 20:1602-1616. [PMID: 31353775 PMCID: PMC6804340 DOI: 10.1111/mpp.12857] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plants are able to effectively cope with invading pathogens by activating an immune response based on the detection of invasion patterns (IPs) originating from the pathogen or released by the plant after infection. At a first level, this perception takes place at the plasma membrane through cell surface immune receptors and although the involvement of proteinaceous pattern recognition receptors (PRRs) is well established, increasing data are also pointing out the role of membrane lipids in the sensing of IPs. In this review, we discuss the evolution of various conceptual models describing plant immunity and present an overview of well-characterized IPs from different natures and origins. We summarize the current knowledge on how they are perceived by plants at the plasma membrane, highlighting the increasingly apparent diversity of sentinel-related systems in plants.
Collapse
Affiliation(s)
- Romain Schellenberger
- University of Reims Champagne‐ArdenneRIBP EA 4707, SFR Condorcet FR CNRS 3417Reims51100France
| | - Matthieu Touchard
- University of Reims Champagne‐ArdenneRIBP EA 4707, SFR Condorcet FR CNRS 3417Reims51100France
| | - Christophe Clément
- University of Reims Champagne‐ArdenneRIBP EA 4707, SFR Condorcet FR CNRS 3417Reims51100France
| | - Fabienne Baillieul
- University of Reims Champagne‐ArdenneRIBP EA 4707, SFR Condorcet FR CNRS 3417Reims51100France
| | - Sylvain Cordelier
- University of Reims Champagne‐ArdenneRIBP EA 4707, SFR Condorcet FR CNRS 3417Reims51100France
| | - Jérôme Crouzet
- University of Reims Champagne‐ArdenneRIBP EA 4707, SFR Condorcet FR CNRS 3417Reims51100France
| | - Stéphan Dorey
- University of Reims Champagne‐ArdenneRIBP EA 4707, SFR Condorcet FR CNRS 3417Reims51100France
| |
Collapse
|
27
|
Stringlis IA, Zhang H, Pieterse CMJ, Bolton MD, de Jonge R. Microbial small molecules - weapons of plant subversion. Nat Prod Rep 2019; 35:410-433. [PMID: 29756135 DOI: 10.1039/c7np00062f] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Covering: up to 2018 Plants live in close association with a myriad of microbes that are generally harmless. However, the minority of microbes that are pathogens can severely impact crop quality and yield, thereby endangering food security. By contrast, beneficial microbes provide plants with important services, such as enhanced nutrient uptake and protection against pests and diseases. Like pathogens, beneficial microbes can modulate host immunity to efficiently colonize the nutrient-rich niches within and around the roots and aerial tissues of a plant, a phenomenon mirroring the establishment of commensal microbes in the human gut. Numerous ingenious mechanisms have been described by which pathogenic and beneficial microbes in the plant microbiome communicate with their host, including the delivery of immune-suppressive effector proteins and the production of phytohormones, toxins and other bioactive molecules. Plants signal to their associated microbes via exudation of photosynthetically fixed carbon sources, quorum-sensing mimicry molecules and selective secondary metabolites such as strigolactones and flavonoids. Molecular communication thus forms an integral part of the establishment of both beneficial and pathogenic plant-microbe relations. Here, we review the current knowledge on microbe-derived small molecules that can act as signalling compounds to stimulate plant growth and health by beneficial microbes on the one hand, but also as weapons for plant invasion by pathogens on the other. As an exemplary case, we used comparative genomics to assess the small molecule biosynthetic capabilities of the Pseudomonas genus; a genus rich in both plant pathogenic and beneficial microbes. We highlight the biosynthetic potential of individual microbial genomes and the population at large, providing evidence for the hypothesis that the distinction between detrimental and beneficial microbes is increasingly fading. Knowledge on the biosynthesis and molecular activity of microbial small molecules will aid in the development of successful biological agents boosting crop resiliency in a sustainable manner and could also provide scientific routes to pathogen inhibition or eradication.
Collapse
Affiliation(s)
- Ioannis A Stringlis
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
28
|
Omoboye OO, Oni FE, Batool H, Yimer HZ, De Mot R, Höfte M. Pseudomonas Cyclic Lipopeptides Suppress the Rice Blast Fungus Magnaporthe oryzae by Induced Resistance and Direct Antagonism. FRONTIERS IN PLANT SCIENCE 2019; 10:901. [PMID: 31354771 PMCID: PMC6636606 DOI: 10.3389/fpls.2019.00901] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 06/26/2019] [Indexed: 05/25/2023]
Abstract
Beneficial Pseudomonas spp. produce an array of antimicrobial secondary metabolites such as cyclic lipopeptides (CLPs). We investigated the capacity of CLP-producing Pseudomonas strains and their crude CLP extracts to control rice blast caused by Magnaporthe oryzae, both in a direct manner and via induced systemic resistance (ISR). In planta biocontrol assays showed that lokisin-, white line inducing principle (WLIP)-, entolysin- and N3-producing strains successfully induced resistance to M. oryzae VT5M1. Furthermore, crude extracts of lokisin, WLIP and entolysin gave similar ISR results when tested in planta. In contrast, a xantholysin-producing strain and crude extracts of N3, xantholysin and orfamide did not induce resistance against the rice blast disease. The role of WLIP in triggering ISR was further confirmed by using WLIP-deficient mutants. The severity of rice blast disease was significantly reduced when M. oryzae spores were pre-treated with crude extracts of N3, lokisin, WLIP, entolysin or orfamide prior to inoculation. In vitro microscopic assays further revealed the capacity of crude N3, lokisin, WLIP, entolysin, xantholysin and orfamide to significantly inhibit appressoria formation by M. oryzae. In addition, the lokisin and WLIP biosynthetic gene clusters in the producing strains are described. In short, our study demonstrates the biological activity of structurally diverse CLPs in the control of the rice blast disease caused by M. oryzae. Furthermore, we provide insight into the non-ribosomal peptide synthetase genes encoding the WLIP and lokisin biosynthetic machineries.
Collapse
Affiliation(s)
- Olumide Owolabi Omoboye
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Feyisara Eyiwumi Oni
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Humaira Batool
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Henok Zimene Yimer
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - René De Mot
- Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, KU Leuven, Heverlee, Belgium
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
29
|
Passera A, Compant S, Casati P, Maturo MG, Battelli G, Quaglino F, Antonielli L, Salerno D, Brasca M, Toffolatti SL, Mantegazza F, Delledonne M, Mitter B. Not Just a Pathogen? Description of a Plant-Beneficial Pseudomonas syringae Strain. Front Microbiol 2019; 10:1409. [PMID: 31293547 PMCID: PMC6598456 DOI: 10.3389/fmicb.2019.01409] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/04/2019] [Indexed: 11/13/2022] Open
Abstract
Plants develop in a microbe-rich environment and must interact with a plethora of microorganisms, both pathogenic and beneficial. Indeed, such is the case of Pseudomonas, and its model organisms P. fluorescens and P. syringae, a bacterial genus that has received particular attention because of its beneficial effect on plants and its pathogenic strains. The present study aims to compare plant-beneficial and pathogenic strains belonging to the P. syringae species to get new insights into the distinction between the two types of plant–microbe interactions. In assays carried out under greenhouse conditions, P. syringae pv. syringae strain 260-02 was shown to promote plant-growth and to exert biocontrol of P. syringae pv. tomato strain DC3000, against the Botrytis cinerea fungus and the Cymbidium Ringspot Virus. This P. syringae strain also had a distinct volatile emission profile, as well as a different plant-colonization pattern, visualized by confocal microscopy and gfp labeled strains, compared to strain DC3000. Despite the different behavior, the P. syringae strain 260-02 showed great similarity to pathogenic strains at a genomic level. However, genome analyses highlighted a few differences that form the basis for the following hypotheses regarding strain 260-02. P. syringae strain 260-02: (i) possesses non-functional virulence genes, like the mangotoxin-producing operon Mbo; (ii) has different regulation pathways, suggested by the difference in the autoinducer system and the lack of a virulence activator gene; (iii) has genes encoding DNA methylases different from those found in other P. syringae strains, suggested by the presence of horizontal-gene-transfer-obtained methylases that could affect gene expression.
Collapse
Affiliation(s)
- Alessandro Passera
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Stéphane Compant
- Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Paola Casati
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Maria Giovanna Maturo
- Functional Genomics Laboratory, Department of Biotechnology, University of Verona, Verona, Italy
| | - Giovanna Battelli
- Institute of Sciences of Food Production, Italian National Research Council, Milan, Italy
| | - Fabio Quaglino
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Livio Antonielli
- Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Domenico Salerno
- Department Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Vedano al Lambro, Italy
| | - Milena Brasca
- Institute of Sciences of Food Production, Italian National Research Council, Milan, Italy
| | - Silvia Laura Toffolatti
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Francesco Mantegazza
- Department Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Vedano al Lambro, Italy
| | - Massimo Delledonne
- Functional Genomics Laboratory, Department of Biotechnology, University of Verona, Verona, Italy
| | - Birgit Mitter
- Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| |
Collapse
|
30
|
Oni FE, Geudens N, Omoboye OO, Bertier L, Hua HGK, Adiobo A, Sinnaeve D, Martins JC, Höfte M. Fluorescent Pseudomonas and cyclic lipopeptide diversity in the rhizosphere of cocoyam (Xanthosoma sagittifolium). Environ Microbiol 2019; 21:1019-1034. [PMID: 30623562 DOI: 10.1111/1462-2920.14520] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 12/21/2022]
Abstract
Cocoyam (Xanthosoma sagittifolium (L.)), an important tuber crop in the tropics, is severely affected by the cocoyam root rot disease (CRRD) caused by Pythium myriotylum. The white cocoyam genotype is very susceptible while the red cocoyam has some field tolerance to CRRD. Fluorescent Pseudomonas isolates obtained from the rhizosphere of healthy red and white cocoyams from three different fields in Cameroon were taxonomically characterized. The cocoyam rhizosphere was enriched with P. fluorescens complex and P. putida isolates independent of the plant genotype. LC-MS and NMR analyses revealed that 50% of the Pseudomonas isolates produced cyclic lipopeptides (CLPs) including entolysin, lokisin, WLIP, putisolvin and xantholysin together with eight novel CLPs. In general, CLP types were linked to specific taxonomic groups within the fluorescent pseudomonads. Representative CLP-producing bacteria showed effective control against CRRD while purified CLPs caused hyphal branching or hyphal leakage in P. myriotylum. The structure of cocoyamide A, a CLP which is predominantly produced by P. koreensis group isolates within the P. fluorescens complex is described. Compared with the white cocoyam, the red cocoyam rhizosphere appeared to support a more diverse CLP spectrum. It remains to be investigated whether this contributes to the field tolerance displayed by the red cocoyam.
Collapse
Affiliation(s)
- Feyisara Eyiwumi Oni
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Niels Geudens
- NMR and Structural Analysis Unit, Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, Krijgslaan 281, B-9000, Ghent, Belgium
| | - Olumide Owolabi Omoboye
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Lien Bertier
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Hoang Gia Khuong Hua
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Amayana Adiobo
- Jay PJ Biotechnology Laboratory, Institute for Agricultural Research for Development (IRAD), Ekona, P.M.B 25, Buea, Cameroon
| | - Davy Sinnaeve
- NMR and Structural Analysis Unit, Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, Krijgslaan 281, B-9000, Ghent, Belgium
| | - José C Martins
- NMR and Structural Analysis Unit, Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, Krijgslaan 281, B-9000, Ghent, Belgium
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| |
Collapse
|
31
|
Biessy A, Filion M. Phenazines in plant-beneficialPseudomonasspp.: biosynthesis, regulation, function and genomics. Environ Microbiol 2018; 20:3905-3917. [DOI: 10.1111/1462-2920.14395] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/20/2018] [Accepted: 08/24/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Adrien Biessy
- Department of Biology; Université de Moncton; Moncton New Brunswick Canada
| | - Martin Filion
- Department of Biology; Université de Moncton; Moncton New Brunswick Canada
| |
Collapse
|
32
|
Geudens N, Martins JC. Cyclic Lipodepsipeptides From Pseudomonas spp. - Biological Swiss-Army Knives. Front Microbiol 2018; 9:1867. [PMID: 30158910 PMCID: PMC6104475 DOI: 10.3389/fmicb.2018.01867] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022] Open
Abstract
Cyclic lipodepsipeptides produced by Pseudomonas spp. (Ps-CLPs) are biosurfactants that constitute a diverse class of versatile bioactive natural compounds with promising application potential. While chemically diverse, they obey a common structural blue-print, allowing the definition of 14 distinct groups with multiple structurally homologous members. In addition to antibacterial and antifungal properties the reported activity profile of Ps-CLPs includes their effect on bacterial motility, biofilm formation, induced defense responses in plants, their insecticidal activity and anti-proliferation effects on human cancer cell-lines. To further validate their status of potential bioactive substances, we assessed the results of 775 biological tests on 51 Ps-CLPs available from literature. From this, a fragmented view emerges. Taken as a group, Ps-CLPs present a broad activity profile. However, reports on individual Ps-CLPs are often much more limited in the scope of organisms that are challenged or activities that are explored. As a result, our analysis shows that the available data is currently too sparse to allow biological function to be correlated to a particular group of Ps-CLPs. Consequently, certain generalizations that appear in literature with respect to the biological activities of Ps-CLPs should be nuanced. This notwithstanding, the data for the two most extensively studied Ps-CLPs does indicate they can display activities against various biological targets. As the discovery of novel Ps-CLPs accelerates, current challenges to complete and maintain a useful overview of biological activity are discussed.
Collapse
Affiliation(s)
- Niels Geudens
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - José C Martins
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| |
Collapse
|
33
|
Synthetic Rhamnolipid Bolaforms trigger an innate immune response in Arabidopsis thaliana. Sci Rep 2018; 8:8534. [PMID: 29867089 PMCID: PMC5986815 DOI: 10.1038/s41598-018-26838-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/21/2018] [Indexed: 12/20/2022] Open
Abstract
Stimulation of plant innate immunity by natural and synthetic elicitors is a promising alternative to conventional pesticides for a more sustainable agriculture. Sugar-based bolaamphiphiles are known for their biocompatibility, biodegradability and low toxicity. In this work, we show that Synthetic Rhamnolipid Bolaforms (SRBs) that have been synthesized by green chemistry trigger Arabidopsis innate immunity. Using structure-function analysis, we demonstrate that SRBs, depending on the acyl chain length, differentially activate early and late immunity-related plant defense responses and provide local increase in resistance to plant pathogenic bacteria. Our biophysical data suggest that SRBs can interact with plant biomimetic plasma membrane and open the possibility of a lipid driven process for plant-triggered immunity by SRBs.
Collapse
|
34
|
Ma Z, Ongena M, Höfte M. The cyclic lipopeptide orfamide induces systemic resistance in rice to Cochliobolus miyabeanus but not to Magnaporthe oryzae. PLANT CELL REPORTS 2017; 36:1731-1746. [PMID: 28801742 DOI: 10.1007/s00299-017-2187-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/23/2017] [Indexed: 06/07/2023]
Abstract
The Pseudomonas- derived cyclic lipopeptide orfamide can induce resistance to Cochliobolus miyabeanus but not to Magnaporthe oryzae in rice. Abscisic acid signaling is involved in the induced systemic resistance response triggered by orfamide. Diverse natural products produced by beneficial Pseudomonas species have the potential to trigger induced systemic resistance (ISR) in plants, and thus may contribute to control of diseases in crops. Some beneficial Pseudomonas spp. can produce cyclic lipopeptides (CLPs), amphiphilic molecules composed of a fatty acid tail linked to an oligopeptide which is cyclized. CLPs can have versatile biological functions, but the capacity of Pseudomonas-derived CLPs in triggering ISR responses has barely been studied. Pseudomonas protegens and related species can produce orfamide-type CLPs. Here we show that in rice, orfamides can act as ISR elicitors against the necrotrophic fungus Cochliobolus miyabeanus, the causal agent of brown spot disease, but are not active against the blast fungus Magnaporthe oryzae. Orfamide A can trigger early defensive events and activate transcripts of defense-related genes in rice cell suspension cultures, but does not cause cell death. Further testing in rice cell suspension cultures and rice plants showed that abscisic acid signaling, the transcriptional activator OsWRKY4 and pathogenesis-related protein PR1b are triggered by orfamide A and may play a role in the ISR response against C. miyabeanus.
Collapse
Affiliation(s)
- Zongwang Ma
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Marc Ongena
- Microbial Processes and Interactions Unit, Faculty of Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Monica Höfte
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| |
Collapse
|
35
|
Olorunleke FE, Kieu NP, De Waele E, Timmerman M, Ongena M, Höfte M. Coregulation of the cyclic lipopeptides orfamide and sessilin in the biocontrol strain Pseudomonas sp. CMR12a. Microbiologyopen 2017. [PMID: 28621084 PMCID: PMC5635164 DOI: 10.1002/mbo3.499] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cyclic lipopeptides (CLPs) are synthesized by nonribosomal peptide synthetases (NRPS), which are often flanked by LuxR‐type transcriptional regulators. Pseudomonas sp. CMR12a, an effective biocontrol strain, produces two different classes of CLPs namely sessilins and orfamides. The orfamide biosynthesis gene cluster is flanked up‐ and downstream by LuxR‐type regulatory genes designated ofaR1 and ofaR2, respectively, whereas the sessilin biosynthesis gene cluster has one LuxR‐type regulatory gene which is situated upstream of the cluster and is designated sesR. Our study investigated the role of these three regulators in the biosynthesis of orfamides and sessilins. Phylogenetic analyses positioned OfaR1 and OfaR2 with LuxR regulatory proteins of similar orfamide‐producing Pseudomonas strains and the SesR with that of the tolaasin producer, Pseudomonas tolaasii. LC‐ESI‐MS analyses revealed that sessilins and orfamides are coproduced and that production starts in the late exponential phase. However, sessilins are secreted earlier and in large amounts, while orfamides are predominantly retained in the cell. Deletion mutants in ofaR1 and ofaR2 lost the capacity to produce both orfamides and sessilins, whereas the sesR mutant showed no clear phenotype. Additionally, RT‐PCR analysis showed that in the sessilin cluster, a mutation in either ofaR1 or ofaR2 led to weaker transcripts of the biosynthesis genes, sesABC, and putative transporter genes, macA1B1. In the orfamide cluster, mainly the biosynthesis genes ofaBC were affected, while the first biosynthesis gene ofaA and putative macA2B2 transport genes were still transcribed. A mutation in either ofaR1, ofaR2, or sesR genes did not abolish the transcription of any of the other two.
Collapse
Affiliation(s)
- Feyisara E Olorunleke
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Nam P Kieu
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Evelien De Waele
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Marc Timmerman
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Marc Ongena
- Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Monica Höfte
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
36
|
Nie P, Li X, Wang S, Guo J, Zhao H, Niu D. Induced Systemic Resistance against Botrytis cinerea by Bacillus cereus AR156 through a JA/ET- and NPR1-Dependent Signaling Pathway and Activates PAMP-Triggered Immunity in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:238. [PMID: 28293243 PMCID: PMC5329000 DOI: 10.3389/fpls.2017.00238] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/08/2017] [Indexed: 05/18/2023]
Abstract
Induced resistance response is a potent and cost effective plant defense against pathogen attack. The effectiveness and underlying mechanisms of the suppressive ability by Bacillus cereus AR156 to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) in Arabidopsis has been investigated previously; however, the strength of induced systemic resistance (ISR) activity against Botrytis cinerea remains unknown. Here, we show that root-drench application of AR156 significantly reduces disease incidence through activation of ISR. This protection is accompanied with multilayered ISR defense response activated via enhanced accumulation of PR1 protein expression in a timely manner, hydrogen peroxide accumulation and callose deposition, which is significantly more intense in plants with both AR156 pretreatment and B. cinerea inoculation than that in plants with pathogen inoculation only. Moreover, AR156 can trigger ISR in sid2-2 and NahG mutants, but not in jar1, ein2 and npr1 mutant plants. Our results indicate that AR156-induced ISR depends on JA/ET-signaling pathway and NPR1, but not SA. Also, AR156-treated plants are able to rapidly activate MAPK signaling and FRK1/WRKY53 gene expression, both of which are involved in pathogen associated molecular pattern (PAMP)-triggered immunity (PTI). The results indicate that AR156 can induce ISR by the JA/ET-signaling pathways in an NPR1-dependent manner and involves multiple PTI components.
Collapse
Affiliation(s)
- Pingping Nie
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Ministry of EducationNanjing, China
| | - Xia Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Ministry of EducationNanjing, China
| | - Shune Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Ministry of EducationNanjing, China
| | - Jianhua Guo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Ministry of EducationNanjing, China
| | - Hongwei Zhao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Ministry of EducationNanjing, China
| | - Dongdong Niu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Ministry of EducationNanjing, China
| |
Collapse
|
37
|
Thomashow LS. Induced systemic resistance: a delicate balance. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:560-563. [PMID: 27656865 DOI: 10.1111/1758-2229.12474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Linda S Thomashow
- USDA-ARS Wheat Health, Genetics and Quality Research Unit, 365 Johnson Hall, Washington State University, Pullman, Washington, 99164-6430, USA
| |
Collapse
|