1
|
Arabi TZ, Alkattan W, Osman NA, Sabbah BN, Ashraf N, Ouban A. Deciphering the role of claudins in lung cancer. Front Oncol 2024; 14:1435535. [PMID: 39364319 PMCID: PMC11446878 DOI: 10.3389/fonc.2024.1435535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/27/2024] [Indexed: 10/05/2024] Open
Abstract
Lung cancer remains a major global health challenge, characterized by aggressive malignancy and poor prognostic outcomes. This review article focuses on the pivotal role of claudins, a family of tight junction proteins, in the pathophysiology of lung cancer. Claudins are integral to maintaining epithelial barrier function and cellular polarity, yet they are intricately involved in the progression and metastasis of lung cancer. The aberrant expression of claudins has been observed across various histological subtypes of lung cancer, indicating their potential as diagnostic and prognostic biomarkers. Specifically, claudins such as claudin-1, -2, -3, -4, and -7 exhibit diverse expression patterns that correlate with tumor aggressiveness, patient survival rates, and response to therapies. Inflammation and cytokine modulation significantly influence claudin expression, affecting tumor microenvironment dynamics and cancer progression. This review also highlights the therapeutic implications of targeting claudins, particularly in cases resistant to conventional treatments. Recent advances in this area suggest that claudin-modulating agents may enhance the efficacy of existing therapies and offer new avenues for targeted interventions. By integrating the latest research, this article aims to provide a comprehensive understanding of claudin's roles in lung cancer and encourages further clinical trials to explore claudin-targeting therapies. This could pave the way for more effective management strategies, improving outcomes for lung cancer patients.
Collapse
Affiliation(s)
| | - Wael Alkattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | | | - Nader Ashraf
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | |
Collapse
|
2
|
Yin Z(S, Wang Z. Strategies for engineering oncolytic viruses to enhance cancer immunotherapy. Front Pharmacol 2024; 15:1450203. [PMID: 39309012 PMCID: PMC11413971 DOI: 10.3389/fphar.2024.1450203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/30/2024] [Indexed: 09/25/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is the predominant form of lung cancer and is characterized by rapid metastasis and high mortality, presenting a challenge for early-stage treatment modalities. The heterogeneity of NSCLC's tumor microenvironment (TME) significantly influences the efficacy of anti-PD-1 immune checkpoint inhibitors (ICIs) therapy, leading to varied patient responses. This review characterized different strains of oncolytic viruses in NSCLC and the different gene edits in pre-existing oncolytic viruses. This study also aimed to provide strategies to enhance anti-PD-1 therapy in NSCLC by engineering oncolytic viruses (OVs). This study offers insights into the genomic adaptations necessary for OVs targeting NSCLC, identify genetic determinants of anti-PD-1 response variability, and propose genomic edits to bolster therapy effectiveness. The primary goal of this study is to present a theoretically designed OV with a detailed genomic framework capable of enhancing the response to anti-PD-1 therapy, thereby advancing the field of cancer immunotherapy.
Collapse
Affiliation(s)
| | - Zhengfeng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Tao D, Guan B, Li H, Zhou C. Expression patterns of claudins in cancer. Heliyon 2023; 9:e21338. [PMID: 37954388 PMCID: PMC10637965 DOI: 10.1016/j.heliyon.2023.e21338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023] Open
Abstract
Claudins are four-transmembrane proteins, which were found in tight junctions. They maintain cell barriers and regulate cell differentiation and proliferation. They are involved in maintaining cellular polarity and normal functions. Different claudins show different expression patterns. The expression level and localization of claudins are altered in various cancers. They promote or inhibit proliferation, invasion, and migration of cancer cells through multiple signaling pathways. Therefore, claudins may serve as diagnostic markers, novel therapeutic targets, and prognostic risk factors. The important roles of claudins in cancer aroused our great interest. In the present review, we provide a summary of insights into expression patterns of claudins in cancer, which is more comprehensive and provides new ideas for further research.
Collapse
Affiliation(s)
- Daoyu Tao
- Department of Pathology, The Second Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Bingxin Guan
- Department of Pathology, The Second Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Hui Li
- Department of Pathology, The Second Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Chengjun Zhou
- Department of Pathology, The Second Hospital of Shandong University, Jinan, 250012, Shandong, China
| |
Collapse
|
4
|
Nehme Z, Roehlen N, Dhawan P, Baumert TF. Tight Junction Protein Signaling and Cancer Biology. Cells 2023; 12:243. [PMID: 36672179 PMCID: PMC9857217 DOI: 10.3390/cells12020243] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Tight junctions (TJs) are intercellular protein complexes that preserve tissue homeostasis and integrity through the control of paracellular permeability and cell polarity. Recent findings have revealed the functional role of TJ proteins outside TJs and beyond their classical cellular functions as selective gatekeepers. This is illustrated by the dysregulation in TJ protein expression levels in response to external and intracellular stimuli, notably during tumorigenesis. A large body of knowledge has uncovered the well-established functional role of TJ proteins in cancer pathogenesis. Mechanistically, TJ proteins act as bidirectional signaling hubs that connect the extracellular compartment to the intracellular compartment. By modulating key signaling pathways, TJ proteins are crucial players in the regulation of cell proliferation, migration, and differentiation, all of which being essential cancer hallmarks crucial for tumor growth and metastasis. TJ proteins also promote the acquisition of stem cell phenotypes in cancer cells. These findings highlight their contribution to carcinogenesis and therapeutic resistance. Moreover, recent preclinical and clinical studies have used TJ proteins as therapeutic targets or prognostic markers. This review summarizes the functional role of TJ proteins in cancer biology and their impact for novel strategies to prevent and treat cancer.
Collapse
Affiliation(s)
- Zeina Nehme
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France
| | - Natascha Roehlen
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, 68198 NE, USA
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, 68105 NE, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, 68105-1850 NE, USA
| | - Thomas F. Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France
- Institut Hospitalo-Universitaire (IHU), Pôle Hépato-Digestif, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- Institut Universitaire de France, 75006 Paris, France
| |
Collapse
|
5
|
Beier LS, Piontek J, Piontek A, Protze J, Kobelt D, Walther W. Claudin-Targeted Suicide Gene Therapy for Claudin-Overexpressing Tumor Cells by Using Modified Clostridium perfringens Enterotoxin (CPE). Methods Mol Biol 2022; 2521:173-188. [PMID: 35732998 DOI: 10.1007/978-1-0716-2441-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bacterial toxins gain growing attention as potential cancer treatment due to their potent cytotoxic effects. Among the very different toxins with diverse modes of action, the Clostridium perfringens enterotoxin (CPE) is in focus to treat solid cancers. This toxin targets the tight junction proteins claudin-3 and -4 (Cldn-3/4), which are frequently overexpressed in solid cancers. Binding to these claudins induces pore formation in the host cell plasma membrane leading to rapid oncoleaking cell death of tumor cells. Based on this, extending the targeting of CPE beyond Cldn-3/4 is of interest, since other claudins, such as claudin-1 or -5 are often overexpressed in various cancer entities such as non-small-cell lung cancer (NSCLC) or papillary thyroid carcinoma. In this chapter we describe the modification of a CPE-encoding vector by structure-directed mutagenesis to either preferentially target Cldn-1 and -5 or to expand targeting to Cldn1-9 for improved broadened cytotoxic targeting of claudin-overexpressing tumors such as but not limited to lung cancer via CPE gene transfer.
Collapse
Affiliation(s)
- Laura-Sophie Beier
- Division of Gastroenterology, Infectiology, Rheumatology, Clinical Physiology/Nutritional Medicine, Medical Department, Charitè - Universitätsmedizin Berlin, Berlin, Germany
- Division of Cell and Developmental Biology, Institute of Biology, University of Leipzig, Leipzig, Germany
| | - Jörg Piontek
- Division of Gastroenterology, Infectiology, Rheumatology, Clinical Physiology/Nutritional Medicine, Medical Department, Charitè - Universitätsmedizin Berlin, Berlin, Germany
| | - Anna Piontek
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Jonas Protze
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Dennis Kobelt
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Wolfgang Walther
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
- Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
6
|
Li J. Targeting claudins in cancer: diagnosis, prognosis and therapy. Am J Cancer Res 2021; 11:3406-3424. [PMID: 34354852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/18/2021] [Indexed: 11/09/2022] Open
Abstract
Increasing evidence has linked claudins to signal transduction and tumorigenesis. The expression of claudins is frequently dysregulated in the context of neoplastic transformation, suggesting their promise as biomarkers for diagnosis and prognosis or targets for treatment. Claudin binders (Clostridium perfringens enterotoxin and monoclonal antibody) have been tested in preclinical experiments, and some of them have progressed into clinical trials involving patients with certain cancers. However, the clinical development of many of these agents has not advanced to clinical applications. Herein, I review the current status of preclinical and clinical investigations of agents targeting claudins for diagnosis, prognosis and therapy. I also discuss the potential of combining claudin binders with other currently approved therapeutic agents.
Collapse
Affiliation(s)
- Jian Li
- Department of General Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center Mianyang 621000, Sichuan, China
| |
Collapse
|
7
|
DoĞan E, DÜzgÜn Z, Yildirim Z, Özdİl B, AktuĞ H, Bozok ÇetİntaŞ V. The effects of PIKfyve inhibitor YM201636 on claudins and malignancy potential of nonsmall cell cancer cells. ACTA ACUST UNITED AC 2021; 45:26-34. [PMID: 33597819 PMCID: PMC7877718 DOI: 10.3906/biy-2010-32] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/22/2020] [Indexed: 11/15/2022]
Abstract
PIKfyve is an evolutionarily conserved lipid and protein kinase enzyme that has pleiotropic cellular functions. The aim of the present study was to investigate the effects of phosphatidylinositol-3-phosphate 5-kinase (PIKfyve) inhibitor, YM201636, on nonsmall cell lung cancer (NSCLC) cells growth, tumorigenicity, and claudin (CLDN) expressions. Three NSCLC cell lines (Calu-1, H1299 and HCC827) were used to compare the effects of YM201636. Cytotoxic effects of YM201636 were analysed using XTT assay. Malignancy potential of cells assesses with wound healing and soft agar colony-forming assays. mRNA and protein expressions of claudins were analysed by qRT-PCR and immunofluorescence staining. Our results revealed that YM201636 inhibited the proliferation and malignancy potential of Calu-1, H1299, and HCC827 cells in a dose-dependent manner. After YM201636 treatment CLDN1, -3 and -5 expressions increased significantly in HCC827 cells. CLDN3 and -5 expressions also significantly increased in Calu1 cell line. YM201636 treatment significantly reduced the CLDN1 and increased the CLDN5 expression in H1299 cells. Immunofluorescence staining of CLDN1, -3 and -5 proteins showed a significant increase after YM201636 treatment. Besides, YM201636 induced EGFR mRNA expression in all NSCLC cell lines. Our results have shown that YM201636 inhibits tumorigenicity of NSCLC cells. Furthermore, estimated glomerular filtration rate (EGFR) pathway is important signalling involved in the regulation of claudins. Understanding the mechanisms of PIKfyve inhibitors may improve cancer treatment particularly for EGFR overactivated NSCLC.
Collapse
Affiliation(s)
- Eda DoĞan
- Department of Medical Biology, Faculty of Medicine, Ege University, İzmir Turkey
| | - Zekeriya DÜzgÜn
- Department of Medical Biology, Faculty of Medicine, Giresun University, Giresun Turkey
| | - Zafer Yildirim
- Department of Medical Biology, Faculty of Medicine, Ege University, İzmir Turkey
| | - Berrin Özdİl
- Department of Histology and Embryology, Faculty of Medicine, Ege University, İzmir Turkey
| | - Hüseyin AktuĞ
- Department of Histology and Embryology, Faculty of Medicine, Ege University, İzmir Turkey
| | | |
Collapse
|
8
|
Nasako H, Takashina Y, Eguchi H, Ito A, Ishikawa Y, Matsunaga T, Endo S, Ikari A. Increase in Toxicity of Anticancer Drugs by PMTPV, a Claudin-1-Binding Peptide, Mediated via Down-Regulation of Claudin-1 in Human Lung Adenocarcinoma A549 Cells. Int J Mol Sci 2020; 21:ijms21165909. [PMID: 32824620 PMCID: PMC7460671 DOI: 10.3390/ijms21165909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 01/15/2023] Open
Abstract
Claudin-1 (CLDN1), a tight junctional protein, is highly expressed in lung cancer cells and may contribute to chemoresistance. A drug which decreases CLDN1 expression could be a chemosensitizer for enhancing the efficacy of anticancer drugs, but there is no such drug known. We found that PMTPV, a short peptide, which mimics the structure of second extracellular loop (ECL2) of CLDN1, can reduce the protein level of CLDN1 without affecting the mRNA level in A549 cells derived from human lung adenocarcinoma. The PMTPV-induced decrease in CLDN1 expression was inhibited by monodansylcadaverine, a clathrin-mediated endocytosis inhibitor, and chloroquine, a lysosome inhibitor. Quartz crystal microbalance assay showed that PMTPV can directly bind to the ECL2 of CLDN1. In transwell assay, PMTPV increased fluxes of Lucifer yellow (LY), a paracellular flux marker, and doxorubicin (DXR), an anthracycline anticancer drug, without affecting transepithelial electrical resistance. In three-dimensional spheroid culture, the size and cell viability were unchanged by short peptides, but the fluorescence intensity of hypoxia probe LOX-1 was decreased by PMTPV. PMTPV elevated the accumulation and cytotoxicity of DXR in the spheroids. Similar results were observed by knockdown of CLDN1. Furthermore, the sensitivities to cisplatin (CDDP), docetaxel, and gefitinib were enhanced by PMTPV. The level of CLDN1 expression in CDDP-resistant cells was higher than that in parental A549 cells, which was reduced by PMTPV. PMTPV restored the toxicity to DXR in the CDDP-resistant cells. Our data suggest that PMTPV may become a novel chemosensitizer for lung adenocarcinoma.
Collapse
Affiliation(s)
- Haruka Nasako
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (H.N.); (Y.T.); (H.E.); (A.I.); (S.E.)
| | - Yui Takashina
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (H.N.); (Y.T.); (H.E.); (A.I.); (S.E.)
| | - Hiroaki Eguchi
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (H.N.); (Y.T.); (H.E.); (A.I.); (S.E.)
| | - Ayaka Ito
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (H.N.); (Y.T.); (H.E.); (A.I.); (S.E.)
| | - Yoshinobu Ishikawa
- Department of Physical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan;
| | - Toshiyuki Matsunaga
- Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 502-8585, Japan;
| | - Satoshi Endo
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (H.N.); (Y.T.); (H.E.); (A.I.); (S.E.)
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (H.N.); (Y.T.); (H.E.); (A.I.); (S.E.)
- Correspondence: ; Tel.: +81-58-230-8124; Fax: +81-58-230-8124
| |
Collapse
|
9
|
Uc PY, Miranda J, Raya-Sandino A, Alarcón L, Roldán ML, Ocadiz-Delgado R, Cortés-Malagón EM, Chávez-Munguía B, Ramírez G, Asomoza R, Shoshani L, Gariglio P, González-Mariscal L. E7 oncoprotein from human papillomavirus 16 alters claudins expression and the sealing of epithelial tight junctions. Int J Oncol 2020; 57:905-924. [PMID: 32945372 PMCID: PMC7473757 DOI: 10.3892/ijo.2020.5105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 04/16/2020] [Indexed: 11/24/2022] Open
Abstract
Tight junctions (TJs) are cell-cell adhesion structures frequently altered by oncogenic transformation. In the present study the role of human papillomavirus (HPV) 16 E7 oncoprotein on the sealing of TJs was investigated and also the expression level of claudins in mouse cervix and in epithelial Madin-Darby Canine Kidney (MDCK) cells. It was found that there was reduced expression of claudins -1 and -10 in the cervix of 7-month-old transgenic K14E7 mice treated with 17β-estradiol (E2), with invasive cancer. In addition, there was also a transient increase in claudin-1 expression in the cervix of 2-month-old K14E7 mice, and claudin-10 accumulated at the border of cells in the upper layer of the cervix in FvB mice treated with E2, and in K14E7 mice treated with or without E2. These changes were accompanied by an augmented paracellular permeability of the cervix in 2- and 7-monthold FvB mice treated with E2, which became more pronounced in K14E7 mice treated with or without E2. In MDCK cells the stable expression of E7 increased the space between adjacent cells and altered the architecture of the monolayers, induced the development of an acute peak of transepithelial electrical resistance accompanied by a reduced expression of claudins -1, -2 and -10, and an increase in claudin-4. Moreover, E7 enhances the ability of MDCK cells to migrate through a 3D matrix and induces cell stiffening and stress fiber formation. These observations revealed that cell transformation induced by HPV16 E7 oncoprotein was accompanied by changes in the pattern of expression of claudins and the degree of sealing of epithelial TJs.
Collapse
Affiliation(s)
- Perla Yaceli Uc
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Jael Miranda
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Arturo Raya-Sandino
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Lourdes Alarcón
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - María Luisa Roldán
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Rodolfo Ocadiz-Delgado
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Enoc Mariano Cortés-Malagón
- Research Unit on Genetics and Cancer, Research Division, Hospital Juárez de México, Mexico City 07760, Mexico
| | - Bibiana Chávez-Munguía
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Georgina Ramírez
- Department of Electrical Engineering, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - René Asomoza
- Department of Electrical Engineering, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Liora Shoshani
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Patricio Gariglio
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Lorenza González-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| |
Collapse
|
10
|
Bhat AA, Syed N, Therachiyil L, Nisar S, Hashem S, Macha MA, Yadav SK, Krishnankutty R, Muralitharan S, Al-Naemi H, Bagga P, Reddy R, Dhawan P, Akobeng A, Uddin S, Frenneaux MP, El-Rifai W, Haris M. Claudin-1, A Double-Edged Sword in Cancer. Int J Mol Sci 2020; 21:ijms21020569. [PMID: 31952355 PMCID: PMC7013445 DOI: 10.3390/ijms21020569] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
Claudins, a group of membrane proteins involved in the formation of tight junctions, are mainly found in endothelial or epithelial cells. These proteins have attracted much attention in recent years and have been implicated and studied in a multitude of diseases. Claudins not only regulate paracellular transepithelial/transendothelial transport but are also critical for cell growth and differentiation. Not only tissue-specific but the differential expression in malignant tumors is also the focus of claudin-related research. In addition to up- or down-regulation, claudin proteins also undergo delocalization, which plays a vital role in tumor invasion and aggressiveness. Claudin (CLDN)-1 is the most-studied claudin in cancers and to date, its role as either a tumor promoter or suppressor (or both) is not established. In some cancers, lower expression of CLDN-1 is shown to be associated with cancer progression and invasion, while in others, loss of CLDN-1 improves the patient survival. Another topic of discussion regarding the significance of CLDN-1 is its localization (nuclear or cytoplasmic vs perijunctional) in diseased states. This article reviews the evidence regarding CLDN-1 in cancers either as a tumor promoter or suppressor from the literature and we also review the literature regarding the pattern of CLDN-1 distribution in different cancers, focusing on whether this localization is associated with tumor aggressiveness. Furthermore, we utilized expression data from The Cancer Genome Atlas (TCGA) to investigate the association between CLDN-1 expression and overall survival (OS) in different cancer types. We also used TCGA data to compare CLDN-1 expression in normal and tumor tissues. Additionally, a pathway interaction analysis was performed to investigate the interaction of CLDN-1 with other proteins and as a future therapeutic target.
Collapse
Affiliation(s)
- Ajaz A. Bhat
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar; (A.A.B.); (N.S.); (S.N.); (S.H.); (S.K.Y.)
| | - Najeeb Syed
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar; (A.A.B.); (N.S.); (S.N.); (S.H.); (S.K.Y.)
| | - Lubna Therachiyil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (L.T.); (R.K.); (S.U.)
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Sabah Nisar
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar; (A.A.B.); (N.S.); (S.N.); (S.H.); (S.K.Y.)
| | - Sheema Hashem
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar; (A.A.B.); (N.S.); (S.N.); (S.H.); (S.K.Y.)
| | - Muzafar A. Macha
- Department of Biotechnology, Central University of Kashmir, Ganderbal, Jammu and Kashmir 191201, India;
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Santosh K. Yadav
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar; (A.A.B.); (N.S.); (S.N.); (S.H.); (S.K.Y.)
| | - Roopesh Krishnankutty
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (L.T.); (R.K.); (S.U.)
| | | | - Hamda Al-Naemi
- Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar; (S.M.); (H.A.-N.)
| | - Puneet Bagga
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (P.B.); (R.R.)
| | - Ravinder Reddy
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (P.B.); (R.R.)
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Anthony Akobeng
- Department of Pediatric Gastroenterology, Sidra Medicine, Doha 26999, Qatar;
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (L.T.); (R.K.); (S.U.)
| | | | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Mohammad Haris
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar; (A.A.B.); (N.S.); (S.N.); (S.H.); (S.K.Y.)
- Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar; (S.M.); (H.A.-N.)
- Correspondence: ; Tel.: +974-4003-7407
| |
Collapse
|
11
|
Piontek A, Eichner M, Zwanziger D, Beier L, Protze J, Walther W, Theurer S, Schmid KW, Führer‐Sakel D, Piontek J, Krause G. Targeting claudin-overexpressing thyroid and lung cancer by modified Clostridium perfringens enterotoxin. Mol Oncol 2020; 14:261-276. [PMID: 31825142 PMCID: PMC6998413 DOI: 10.1002/1878-0261.12615] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/22/2019] [Accepted: 12/09/2019] [Indexed: 01/04/2023] Open
Abstract
Clostridium perfringens enterotoxin (CPE) can be used to eliminate carcinoma cells that overexpress on their cell surface CPE receptors - a subset of claudins (e.g., Cldn3 and Cldn4). However, CPE cannot target tumors expressing solely CPE-insensitive claudins (such as Cldn1 and Cldn5). To overcome this limitation, structure-guided modifications were used to generate CPE variants that can strongly bind to Cldn1, Cldn2 and/or Cldn5, while maintaining the ability to bind Cldn3 and Cldn4. This enabled (a) targeting of the most frequent endocrine malignancy, namely, Cldn1-overexpressing thyroid cancer, and (b) improved targeting of the most common cancer type worldwide, non-small-cell lung cancer (NSCLC), which is characterized by high expression of several claudins, including Cldn1 and Cldn5. Different CPE variants, including the novel mutant CPE-Mut3 (S231R/S313H), were applied on thyroid cancer (K1 cells) and NSCLC (PC-9 cells) models. In vitro, CPE-Mut3, but not CPEwt, showed Cldn1-dependent binding and cytotoxicity toward K1 cells. For PC-9 cells, CPE-Mut3 improved claudin-dependent cytotoxic targeting, when compared to CPEwt. In vivo, intratumoral injection of CPE-Mut3 in xenograft models bearing K1 or PC-9 tumors induced necrosis and reduced the growth of both tumor types. Thus, directed modification of CPE enables eradication of tumor entities that cannot be targeted by CPEwt, for instance, Cldn1-overexpressing thyroid cancer by using the novel CPE-Mut3.
Collapse
Affiliation(s)
- Anna Piontek
- Leibniz‐Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Miriam Eichner
- Institute of Clinical Physiology / Nutritional Medicine, Medical DepartmentDivision of Gastroenterology, Infectiology, Rheumatology, Charitè – Universitätsmedizin BerlinGermany
| | - Denise Zwanziger
- Department of Endocrinology, Diabetes and Metabolism and Clinical Chemistry – Division of Laboratory ResearchUniversity Hospital EssenGermany
| | - Laura‐Sophie Beier
- Institute of Clinical Physiology / Nutritional Medicine, Medical DepartmentDivision of Gastroenterology, Infectiology, Rheumatology, Charitè – Universitätsmedizin BerlinGermany
| | - Jonas Protze
- Leibniz‐Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Wolfgang Walther
- Experimental and Clinical Research CenterCharitè and Max‐Delbrück‐Center for Molecular MedicineBerlinGermany
| | - Sarah Theurer
- Institute of PathologyUniversity Hospital EssenGermany
| | | | - Dagmar Führer‐Sakel
- Department of Endocrinology, Diabetes and Metabolism and Clinical Chemistry – Division of Laboratory ResearchUniversity Hospital EssenGermany
| | - Jörg Piontek
- Institute of Clinical Physiology / Nutritional Medicine, Medical DepartmentDivision of Gastroenterology, Infectiology, Rheumatology, Charitè – Universitätsmedizin BerlinGermany
| | - Gerd Krause
- Leibniz‐Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| |
Collapse
|
12
|
Tong H, Li T, Qiu W, Zhu Z. Claudin-1 silencing increases sensitivity of liver cancer HepG2 cells to 5-fluorouracil by inhibiting autophagy. Oncol Lett 2019; 18:5709-5716. [PMID: 31788043 PMCID: PMC6865833 DOI: 10.3892/ol.2019.10967] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022] Open
Abstract
Liver cancer is one of the most common cancer types globally. However, the acquisition of drug resistance limits the effectiveness of chemotherapy and commonly results in metastasis. Therefore, an effective therapeutic approach to target chemoresistance-associated cellular molecules is imperative. Claudin-1 (CLDN1) has previously been reported to be associated with the development of drug resistance. The present study investigated the effect of CLDN1 on the sensitivity of 5-fluorouracil (5-FU)-resistant liver cancer cells. Firstly, a 5-FU-resistant HepG2 liver cancer cell line (Hep/5FU) was developed by continuous 5-FU treatment. MTT proliferation, Transwell and Matrigel assays indicated that Hep/5FU cells were significantly resistant to 5-FU, and demonstrated increased migration and invasion abilities, compared with parental HepG2 cells. Furthermore, reverse transcription-quantitative polymerase chain reaction and western blot analysis indicated that mRNA and protein expression levels of CLDN1 were significantly increased in Hep/5FU cells, compared with HepG2 cells. CLDN1 was knocked down by transfection with small interference RNA. MTT and Annexin V-fluorescein isothiocyanate/propidium iodide assays demonstrated that CLDN1 silencing significantly inhibits proliferation and enhances apoptosis induced by 5-FU treatment in Hep/5FU cells, compared with non-silenced Hep/5FU cells. Additionally, CLDN1 silencing attenuated the migration and invasion capabilities of Hep/5FU cells. In addition, it was identified that CLDN1 silencing decreased drug resistance by inhibiting autophagy, which was associated with a decrease in the ratio of microtubule-associated protein 1A/1B-light chain 3 (LC3)-II/LC3-I and upregulation of P62. A cell proliferation assay revealed that the addition of autophagy inhibitor 3-methyladenine decreased drug resistance of Hep/5FU cells. By contrast, incubation with the autophagy agonist Rapamycin elevated drug resistance of CLDN1-silenced Hep/5FU cells. In summary, these data indicate that CLDN1 may be a potential target for resensitizing resistant liver cancer HepG2 cells to 5-FU by regulating cell autophagy.
Collapse
Affiliation(s)
- Hui Tong
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Tao Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Weihua Qiu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Zhecheng Zhu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
13
|
Ecoy GAU, Chamni S, Suwanborirux K, Chanvorachote P, Chaotham C. Jorunnamycin A from Xestospongia sp. Suppresses Epithelial to Mesenchymal Transition and Sensitizes Anoikis in Human Lung Cancer Cells. JOURNAL OF NATURAL PRODUCTS 2019; 82:1861-1873. [PMID: 31260310 DOI: 10.1021/acs.jnatprod.9b00102] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Metastasis is a key driving force behind the high mortality rate associated with lung cancer. Herein, we report the first study revealing the antimetastasis activity of jorunnamycin A, a bistetrahydroisoquinolinequinone isolated from a Thai blue sponge Xestospongia sp. evidenced by its inhibition of epithelial to mesenchymal transition (EMT), sensitization of anoikis, and suppression of anchorage-independent survival in human lung cancer cells. Treatment with jorunnamycin A (0.05-0.5 μM) altered the expression of p53 and Bcl-2 family proteins, particularly causing the down-regulation of antiapoptosis Bcl-2 and Mcl-1 proteins. Under detachment conditions for 12 h, jorunnamycin A-treated cells exhibited diminution of pro-survival proteins p-Akt and p-Erk as well as the survival-promoting factor caveolin-1. Corresponding with the inhibition on the Akt and Erk pathway as well as activation of p53, there was an increase in the epithelial marker E-cadherin and a remarkable decrease of EMT markers and associated proteins including vimentin, snail, and claudin-1. As the loss of anchorage dependence is an important barrier to metastasis, the observed inhibitory effects of jorunnamycin A on the coordinating networks of EMT and anchorage-independent growth emphasize the potential development of jorunnamycin A as an effective agent against lung cancer metastasis.
Collapse
|
14
|
Akizuki R, Maruhashi R, Eguchi H, Kitabatake K, Tsukimoto M, Furuta T, Matsunaga T, Endo S, Ikari A. Decrease in paracellular permeability and chemosensitivity to doxorubicin by claudin-1 in spheroid culture models of human lung adenocarcinoma A549 cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:769-780. [PMID: 29524521 DOI: 10.1016/j.bbamcr.2018.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/07/2018] [Accepted: 03/02/2018] [Indexed: 12/19/2022]
Abstract
Chemotherapy resistance is a major problem in the treatment of cancer, but the underlying mechanisms are not fully understood. We found that the expression levels of claudin-1 (CLDN1) and 3, tight junctional proteins, are upregulated in cisplatin (CDDP)-resistant human lung adenocarcinoma A549 (A549R) cells. A549R cells showed cross-resistance to doxorubicin (DXR). Here, the expression mechanism and function of CLDN1 and 3 were examined. CLDN1 and 3 were mainly localized at tight junctions concomitant with zonula occludens (ZO)-1, a scaffolding protein, in A549 and A549R cells. The phosphorylation levels of Src, MEK, ERK, c-Fos, and Akt in A549R cells were higher than those in A549 cells. The expression levels of CLDN1 and 3 were decreased by LY-294002, a phosphoinositide 3-kinase (PI3K) inhibitor, and BAY 11-7082, an NF-κB inhibitor. The overexpression of CLDN1 and 3 decreased the paracellular permeability of DXR in A549 cells. Hypoxia levels in A549R and CLDN1-overexpressing cells (CLDN1/A549) were greater than those in A549, mock/A549, and CLDN3/A549 cells in a spheroid culture model. In contrast, accumulation in the region inside the spheroids and the toxicity of DXR in A549R and CLDN1/A549 cells were lower than those in other cells. Furthermore, the accumulation and toxicity of DXR were rescued by CLDN1 siRNA in A549R cells. We suggest that CLDN1 is upregulated by CDDP resistance through activation of a PI3K/Akt/NF-κB pathway, resulting in the inhibition of penetration of anticancer drugs into the inner area of spheroids.
Collapse
Affiliation(s)
- Risa Akizuki
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Japan
| | - Ryohei Maruhashi
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Japan
| | - Hiroaki Eguchi
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Japan
| | - Kazuki Kitabatake
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Japan
| | - Mitsutoshi Tsukimoto
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Japan
| | - Takumi Furuta
- Institute for Chemical Research, Kyoto University, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Japan.
| |
Collapse
|
15
|
TMPRSS4 promotes cancer stem cell traits by regulating CLDN1 in hepatocellular carcinoma. Biochem Biophys Res Commun 2017; 490:906-912. [PMID: 28651932 DOI: 10.1016/j.bbrc.2017.06.139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 06/22/2017] [Indexed: 01/02/2023]
Abstract
Encouraging advances in the treatment of hepatocellular carcinoma(HCC) have been achieved; however, a considerable part of patients still relapse or metastasize after therapy, and the underlying mechanisms have not been clarified yet. Here, we found that CLDN1 was markedly up-regulated in HCC tissues, and correlated with poor prognosis. Overexpression of CLDN1 dramatically promoted the capability of tumorsphere formation and cancer stem cell (CSC) traits. Furthermore, we found that TMPRSS4 was up-regulated in HCC tissues and there was a positive correlation between TMPRSS4 and CLDN1. In addition, the expression of CLDN1 was regulated by TMPRSS4. Moreover, TMPRSS4 mediated CSC properties and up-regulated CLDN1 by activating ERK1/2 signaling pathway. Taken together, our results revealed that CLDN1 contributed to CSC features of HCC, which was altered by TMPRSS4 expression via ERK1/2 signaling pathway, providing promising targets for novel specific therapies.
Collapse
|
16
|
Zhao Z, Li J, Jiang Y, Xu W, Li X, Jing W. CLDN1 Increases Drug Resistance of Non-Small Cell Lung Cancer by Activating Autophagy via Up-Regulation of ULK1 Phosphorylation. Med Sci Monit 2017; 23:2906-2916. [PMID: 28614291 PMCID: PMC5479443 DOI: 10.12659/msm.904177] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/08/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the expression of CLDN1 in non-small cell lung cancer (NSCLC) and its mechanism of action in cisplatin resistance. MATERIAL AND METHODS A total of 55 patients with NSCLC admitted to our hospital between October 2013 and October 2015 were included. NSCLC tissues and tumor-adjacent tissues (≥5 cm from tumor edge) were collected. Among the 55 patients, 37 had adenocarcinoma and 18 had squamous cell carcinoma. Quantitative real-time polymerase chain reaction was used to determine mRNA expression, and protein expression was examined using Western blotting. CCK-8 assay was used to determine cell proliferation and Transwell assay was used to detect migration and invasion of the cells. Confocal microscopy was used to observe autophagosomes. RESULTS Increased CLDN1 expression promoted the development and metastasis of NSCLC. CLDN1 expression in A549/CDDP cells was up-regulated at both transcriptional and translational levels. Reduced CLDN1 expression decreased the drug resistance, proliferation, migration, and invasion abilities of A549/CDDP cells. Decreased CLDN1 expression promoted the apoptosis of A549/CDDP cells. CLDN1 enhanced CDDP drug resistance of A549 cells by activating autophagy. CLDN1 promoted the autophagy of A549 cells by up-regulating the phosphorylation level of ULK1. CONCLUSIONS The present study demonstrates that expression of CLDN1 in NSCLC is up-regulated and it is correlated with clinicopathological features. CLDN1 activates autophagy through up-regulation of ULK1 phosphorylation and promotes drug resistance of NSCLC cells to CDDP.
Collapse
Affiliation(s)
- Zhenhuan Zhao
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| | - Jing Li
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| | - Yan Jiang
- Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| | - Wen Xu
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| | - Xin Li
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| | - Weili Jing
- Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| |
Collapse
|
17
|
Mahati S, Xiao L, Yang Y, Mao R, Bao Y. miR-29a suppresses growth and migration of hepatocellular carcinoma by regulating CLDN1. Biochem Biophys Res Commun 2017; 486:732-737. [PMID: 28342862 DOI: 10.1016/j.bbrc.2017.03.110] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 03/21/2017] [Indexed: 01/17/2023]
Abstract
CLDN1 (claudin1) is essential for intercellular junctions and has been reported to be involving in cell migration and metastasis, making it as an oncogene in various cancer types. However, the biological function roles and regulatory mechanisms of CLDN1 in hepatocellular carcinoma (HCC) are still not clarified. In this study, we found down-regulation of miR-29a and up-regulation of CLDN1 in HCC tissues and cell lines. Further found an inverse relation between the expressions of miR-29a and CLDN1 in HCC. Dual-luciferase reporter assay indicated that miR-29a regulated the expression of CLDN1 by binding to its 3' untranslated region (3'UTR). Knockdown of CLDN1 led to decrease in tumor cell growth and migration capacities in vitro and in vivo. While overexpression of miR-29a suppressed tumor growth and migration, these effects could be reversed by re-expressing CLDN1. Taken together, out data suggested that miR-29a may regulate tumor growth and migration by targeting CLDN1, providing promising therapeutic targets for HCC.
Collapse
Affiliation(s)
- Shaya Mahati
- Department of Tumor Center, First Affiliated Hospital of Xinjiang Medical University (XJMU), Urumqi, 830011, China
| | - Lei Xiao
- Department of Tumor Center, First Affiliated Hospital of Xinjiang Medical University (XJMU), Urumqi, 830011, China
| | - Ying Yang
- Department of Tumor Center, First Affiliated Hospital of Xinjiang Medical University (XJMU), Urumqi, 830011, China
| | - Rui Mao
- Department of Tumor Center, First Affiliated Hospital of Xinjiang Medical University (XJMU), Urumqi, 830011, China
| | - Yongxing Bao
- Department of Tumor Center, First Affiliated Hospital of Xinjiang Medical University (XJMU), Urumqi, 830011, China.
| |
Collapse
|