1
|
Humanes A, Lachs L, Beauchamp E, Bukurou L, Buzzoni D, Bythell J, Craggs JRK, de la Torre Cerro R, Edwards AJ, Golbuu Y, Martinez HM, Palmowski P, van der Steeg E, Sweet M, Ward A, Wilson AJ, Guest JR. Selective breeding enhances coral heat tolerance to marine heatwaves. Nat Commun 2024; 15:8703. [PMID: 39402025 PMCID: PMC11473779 DOI: 10.1038/s41467-024-52895-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/20/2024] [Indexed: 10/17/2024] Open
Abstract
Marine heatwaves are becoming more frequent, widespread and severe, causing mass coral bleaching and mortality. Natural adaptation may be insufficient to keep pace with climate warming, leading to calls for selective breeding interventions to enhance the ability of corals to survive such heatwaves, i.e., their heat tolerance. However, the heritability of this trait-a prerequisite for such approaches-remains unknown. We show that selecting parent colonies for high rather than low heat tolerance increased the tolerance of adult offspring (3-4-year-olds). This result held for the response to both 1-week +3.5 °C and 1-month +2.5 °C simulated marine heatwaves. In each case, narrow-sense heritability (h2) estimates are between 0.2 and 0.3, demonstrating a substantial genetic basis of heat tolerance. The phenotypic variability identified in this population could theoretically be leveraged to enhance heat tolerance by up to 1 °C-week within one generation. Concerningly, selective breeding for short-stress tolerance did not improve the ability of offspring to survive the long heat stress exposure. With no genetic correlation detected, these traits may be subject to independent genetic controls. Our finding on the heritability of coral heat tolerance indicates that selective breeding could be a viable tool to improve population resilience. Yet, the moderate levels of enhancement we found suggest that the effectiveness of such interventions also demands urgent climate action.
Collapse
Affiliation(s)
- Adriana Humanes
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Liam Lachs
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Elizabeth Beauchamp
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Leah Bukurou
- Palau International Coral Reef Center, Koror, Palau
| | | | - John Bythell
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | | | - Alasdair J Edwards
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Yimnang Golbuu
- The Nature Conservancy Micronesia and Polynesia, Koror, Palau
| | - Helios M Martinez
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Pawel Palmowski
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Eveline van der Steeg
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Michael Sweet
- Aquatic Research Facility, Nature-based Solutions Research Centre, University of Derby, Derby, UK
| | - Alex Ward
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | - James R Guest
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
2
|
Bell-Roberts L, Turner JFR, Werner GDA, Downing PA, Ross L, West SA. Larger colony sizes favoured the evolution of more worker castes in ants. Nat Ecol Evol 2024; 8:1959-1971. [PMID: 39187609 PMCID: PMC7616618 DOI: 10.1038/s41559-024-02512-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 07/18/2024] [Indexed: 08/28/2024]
Abstract
The size-complexity hypothesis is a leading explanation for the evolution of complex life on earth. It predicts that in lineages that have undergone a major transition in organismality, larger numbers of lower-level subunits select for increased division of labour. Current data from multicellular organisms and social insects support a positive correlation between the number of cells and number of cell types and between colony size and the number of castes. However, the implication of these results is unclear, because colony size and number of cells are correlated with other variables which may also influence selection for division of labour, and causality could be in either direction. Here, to resolve this problem, we tested multiple causal hypotheses using data from 794 ant species. We found that larger colony sizes favoured the evolution of increased division of labour, resulting in more worker castes and greater variation in worker size. By contrast, our results did not provide consistent support for alternative hypotheses regarding either queen mating frequency or number of queens per colony explaining variation in division of labour. Overall, our results provide strong support for the size-complexity hypothesis.
Collapse
Affiliation(s)
| | | | - Gijsbert D A Werner
- Department of Biology, University of Oxford, Oxford, UK
- Netherlands Scientific Council for Government Policy, The Hague, The Netherlands
| | - Philip A Downing
- Ecology & Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Laura Ross
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
| | - Stuart A West
- Department of Biology, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Cristina-Marianini-Rios, Sanchez MEC, de Paredes AGG, Rodríguez M, Barreto E, López JV, Fuentes R, Beltrán MM, Sanjuanbenito A, Lobo E, Caminoa A, Ruz-Caracuel I, Durán SL, Olcina JRF, Blázquez J, Sequeros EV, Carrato A, Ávila JCM, Earl J. The best linear unbiased prediction (BLUP) method as a tool to estimate the lifetime risk of pancreatic ductal adenocarcinoma in high-risk individuals with no known pathogenic germline variants. Fam Cancer 2024; 23:233-246. [PMID: 38780705 PMCID: PMC11254992 DOI: 10.1007/s10689-024-00397-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related death in the Western world. The number of diagnosed cases and the mortality rate are almost equal as the majority of patients present with advanced disease at diagnosis. Between 4 and 10% of pancreatic cancer cases have an apparent hereditary background, known as hereditary pancreatic cancer (HPC) and familial pancreatic cancer (FPC), when the genetic basis is unknown. Surveillance of high-risk individuals (HRI) from these families by imaging aims to detect PDAC at an early stage to improve prognosis. However, the genetic basis is unknown in the majority of HRIs, with only around 10-13% of families carrying known pathogenic germline mutations. The aim of this study was to assess an individual's genetic cancer risk based on sex and personal and family history of cancer. The Best Linear Unbiased Prediction (BLUP) methodology was used to estimate an individual's predicted risk of developing cancer during their lifetime. The model uses different demographic factors in order to estimate heritability. A reliable estimation of heritability for pancreatic cancer of 0.27 on the liability scale, and 0.07 at the observed data scale as obtained, which is different from zero, indicating a polygenic inheritance pattern of PDAC. BLUP was able to correctly discriminate PDAC cases from healthy individuals and those with other cancer types. Thus, providing an additional tool to assess PDAC risk HRI with an assumed genetic predisposition in the absence of known pathogenic germline mutations.
Collapse
Affiliation(s)
- Cristina-Marianini-Rios
- Department of Agricultural Economics, Statistics and Business Management, Universidad Politécnica de Madrid, Madrid, Spain
| | - María E Castillo Sanchez
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, Madrid, 28034, Spain
| | - Ana García García de Paredes
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, Madrid, 28034, Spain
- Gastroenterology and Hepatology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Mercedes Rodríguez
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, Madrid, 28034, Spain
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, 28034, Spain
- The Biomedical Research Network in Cancer (CIBERONC), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid, 28029, Spain
- University of Alcalá, Madrid, Spain
| | - Emma Barreto
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, Madrid, 28034, Spain
- The Biomedical Research Network in Cancer (CIBERONC), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid, 28029, Spain
- University of Alcalá, Madrid, Spain
| | - Jorge Villalón López
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, Madrid, 28034, Spain
| | - Raquel Fuentes
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, 28034, Spain
| | | | - Alfonso Sanjuanbenito
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, Madrid, 28034, Spain
- The Biomedical Research Network in Cancer (CIBERONC), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid, 28029, Spain
- Pancreatic and Biliopancreatic Surgery Unit, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Eduardo Lobo
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, Madrid, 28034, Spain
- Pancreatic and Biliopancreatic Surgery Unit, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Alejandra Caminoa
- Department of Pathology, Hospital Universitario Ramón y Cajal, Madrid, 28034, Spain
| | - Ignacio Ruz-Caracuel
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, Madrid, 28034, Spain
- The Biomedical Research Network in Cancer (CIBERONC), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid, 28029, Spain
- Department of Pathology, Hospital Universitario Ramón y Cajal, Madrid, 28034, Spain
| | - Sergio López Durán
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, Madrid, 28034, Spain
- Gastroenterology and Hepatology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - José Ramón Foruny Olcina
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, Madrid, 28034, Spain
- Gastroenterology and Hepatology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Javier Blázquez
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, Madrid, 28034, Spain
- Radiology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Enrique Vázquez Sequeros
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, Madrid, 28034, Spain
- Gastroenterology and Hepatology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
- The Biomedical Research Network in Cancer (CIBERONC), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid, 28029, Spain
| | - Alfredo Carrato
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, Madrid, 28034, Spain
- The Biomedical Research Network in Cancer (CIBERONC), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid, 28029, Spain
- University of Alcalá, Madrid, Spain
- Pancreatic Cancer Europe, Brussels, Belgium
| | - Jose Carlos Martínez Ávila
- Department of Agricultural Economics, Statistics and Business Management, Universidad Politécnica de Madrid, Madrid, Spain.
| | - Julie Earl
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, Madrid, 28034, Spain.
- The Biomedical Research Network in Cancer (CIBERONC), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid, 28029, Spain.
| |
Collapse
|
4
|
Sellem E, Paul K, Donkpegan A, Li Q, Masseron A, Chauveau A, Gagnepain-Germain F, Lefebvre T. Multitrait genetic parameter estimates in a Tenebrio molitor reference population: high potential for breeding gains. Animal 2024; 18:101197. [PMID: 38850579 DOI: 10.1016/j.animal.2024.101197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 06/10/2024] Open
Abstract
To address multiple issues impacting the climate imbalance, insects, and in particular Tenebrio molitor, represent now a promising alternative for producing high-quality protein products with low environmental impact. As with any new species farmed on an industrial scale, insect breeding production must be improved through the accumulation of knowledge on rearing techniques and genetic management. Little information on the inheritance of agronomically interesting traits, dedicated to Tenebrio molitor, is available. This study aims to decipher the genetic parameters (heritability and genetic correlations) of reproduction, larval growth and survival, pupation rate and developmental time from a reference population made up of 1 931 sib-groups reared under pedigree, in controlled and stable environments and generated with single pair mating. Considering all sib-groups, 29 599 offspring have been generated and phenotyped over four generations to support this study and provide enough data to estimate, under linear animal models, the additive genetic and common environmental effects. Phenotypic analyses underlined an important variability among sib-groups and individuals, as for the total oviposition during 4 weeks counting (0-680 eggs, min - max, respectively) or larval body mass 63 days posteclosion (36.3-206.8 mg, min - max, respectively). Moderate to important heritability values have been obtained and ranged from 0.17 to 0.54 for reproduction phenotypes, 0.10-0.44 for growth parameters, 0.06-0.22 for developmental time and 0.10-0.17 for larval survival rates. The proportion of phenotypic variance explained by the environmental part varyies from 0.10 to 0.36 for reproductive traits, from 0.17 to 0.38 for growth parameters, from 0.06 to 0.36 for developmental time and 0.17-0.22 for survival rates. Genetic correlations underline relationships among phenotypes such as the trade-off between developmental time from egg to pupae and pupae weight (r2 = 0.48 ± 0.06). These important phenotypic variations coupled with promising heritability values pave the road for future breeding programs in Tenebrio molitor.
Collapse
Affiliation(s)
- E Sellem
- Ÿnsect, R&D Biotech Innovations, Evry 91000, France.
| | - K Paul
- Ÿnsect, R&D Biotech Innovations, Evry 91000, France
| | - A Donkpegan
- SYSAAF-Centre INRAE Val de Loire, UMR BOA, 37380 Nouzilly, France
| | - Q Li
- Ÿnsect, R&D Biotech Innovations, Evry 91000, France
| | - A Masseron
- Ÿnsect, R&D Biotech Innovations, Evry 91000, France
| | - A Chauveau
- Ÿnsect, R&D Biotech Innovations, Evry 91000, France
| | | | - T Lefebvre
- Ÿnsect, R&D Biotech Innovations, Evry 91000, France
| |
Collapse
|
5
|
Moran IG, Loo YY, Louca S, Young NBA, Whibley A, Withers SJ, Salloum PM, Hall ML, Stanley MC, Cain KE. Vocal convergence and social proximity shape the calls of the most basal Passeriformes, New Zealand Wrens. Commun Biol 2024; 7:575. [PMID: 38750083 PMCID: PMC11096322 DOI: 10.1038/s42003-024-06253-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
Despite extensive research on avian vocal learning, we still lack a general understanding of how and when this ability evolved in birds. As the closest living relatives of the earliest Passeriformes, the New Zealand wrens (Acanthisitti) hold a key phylogenetic position for furthering our understanding of the evolution of vocal learning because they share a common ancestor with two vocal learners: oscines and parrots. However, the vocal learning abilities of New Zealand wrens remain unexplored. Here, we test for the presence of prerequisite behaviors for vocal learning in one of the two extant species of New Zealand wrens, the rifleman (Acanthisitta chloris). We detect the presence of unique individual vocal signatures and show how these signatures are shaped by social proximity, as demonstrated by group vocal signatures and strong acoustic similarities among distantly related individuals in close social proximity. Further, we reveal that rifleman calls share similar phenotypic variance ratios to those previously reported in the learned vocalizations of the zebra finch, Taeniopygia guttata. Together these findings provide strong evidence that riflemen vocally converge, and though the mechanism still remains to be determined, they may also suggest that this vocal convergence is the result of rudimentary vocal learning abilities.
Collapse
Affiliation(s)
- Ines G Moran
- School of Biological Sciences, University of Auckland, Auckland, 1142, Aotearoa New Zealand.
- Centre for Biodiversity and Biosecurity, University of Auckland, Auckland, 1142, Aotearoa New Zealand.
| | - Yen Yi Loo
- School of Biological Sciences, University of Auckland, Auckland, 1142, Aotearoa New Zealand
- Centre for Biodiversity and Biosecurity, University of Auckland, Auckland, 1142, Aotearoa New Zealand
| | - Stilianos Louca
- Department of Biology, University of Oregon, Eugene, 97403-1210, OR, USA
| | - Nick B A Young
- Centre for eResearch, University of Auckland, Auckland, 1142, Aotearoa New Zealand
| | - Annabel Whibley
- School of Biological Sciences, University of Auckland, Auckland, 1142, Aotearoa New Zealand
| | - Sarah J Withers
- School of Biological Sciences, University of Auckland, Auckland, 1142, Aotearoa New Zealand
| | - Priscila M Salloum
- Department of Zoology, University of Otago, Dunedin, 9016, Aotearoa New Zealand
| | - Michelle L Hall
- School of BioSciences, University of Melbourne, Melbourne, VIC, 3010, Australia
- Bush Heritage Australia, Melbourne, VIC, 3000, Australia
- School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Margaret C Stanley
- School of Biological Sciences, University of Auckland, Auckland, 1142, Aotearoa New Zealand
- Centre for Biodiversity and Biosecurity, University of Auckland, Auckland, 1142, Aotearoa New Zealand
| | - Kristal E Cain
- School of Biological Sciences, University of Auckland, Auckland, 1142, Aotearoa New Zealand
- Centre for Biodiversity and Biosecurity, University of Auckland, Auckland, 1142, Aotearoa New Zealand
| |
Collapse
|
6
|
McCallum E, Shaw RC. Repeatability and heritability of inhibitory control performance in wild toutouwai ( Petroica longipes). ROYAL SOCIETY OPEN SCIENCE 2023; 10:231476. [PMID: 38026029 PMCID: PMC10646466 DOI: 10.1098/rsos.231476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Despite increasing interest in the evolution of inhibitory control, few studies have examined the validity of widespread testing paradigms, the long-term repeatability and the heritability of this cognitive ability in the wild. We investigated these aspects in the inhibitory control performance of wild toutouwai (North Island robin; Petroica longipes), using detour and reversal learning tasks. We assessed convergent validity by testing whether individual performance correlated across detour and reversal learning tasks. We then further evaluated task validity by examining whether individual performance was confounded by non-cognitive factors. We tested a subset of subjects twice in each task to estimate the repeatability of performance across a 1-year period. Finally, we used a population pedigree to estimate the heritability of task performance. Individual performance was unrelated across detour and reversal learning tasks, indicating that these measured different cognitive abilities. Task performance was not influenced by body condition, boldness or prior experience, and showed moderate between-year repeatability. Yet despite this individual consistency, we found no evidence that task performance was heritable. Our findings suggest that detour and reversal learning tasks measure consistent individual differences in distinct forms of inhibitory control in toutouwai, but this variation may be environmentally determined rather than genetic.
Collapse
Affiliation(s)
- Ella McCallum
- School of Biological Sciences, Te Herenga Waka Victoria University of Wellington, Wellington, New Zealand
| | - Rachael C. Shaw
- School of Biological Sciences, Te Herenga Waka Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
7
|
Bruijning M, Ayroles JF, Henry LP, Koskella B, Meyer KM, Metcalf CJE. Relative abundance data can misrepresent heritability of the microbiome. MICROBIOME 2023; 11:222. [PMID: 37814275 PMCID: PMC10561453 DOI: 10.1186/s40168-023-01669-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/13/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Host genetics can shape microbiome composition, but to what extent it does, remains unclear. Like any other complex trait, this important question can be addressed by estimating the heritability (h2) of the microbiome-the proportion of variance in the abundance in each taxon that is attributable to host genetic variation. However, unlike most complex traits, microbiome heritability is typically based on relative abundance data, where taxon-specific abundances are expressed as the proportion of the total microbial abundance in a sample. RESULTS We derived an analytical approximation for the heritability that one obtains when using such relative, and not absolute, abundances, based on an underlying quantitative genetic model for absolute abundances. Based on this, we uncovered three problems that can arise when using relative abundances to estimate microbiome heritability: (1) the interdependency between taxa can lead to imprecise heritability estimates. This problem is most apparent for dominant taxa. (2) Large sample size leads to high false discovery rates. With enough statistical power, the result is a strong overestimation of the number of heritable taxa in a community. (3) Microbial co-abundances lead to biased heritability estimates. CONCLUSIONS We discuss several potential solutions for advancing the field, focusing on technical and statistical developments, and conclude that caution must be taken when interpreting heritability estimates and comparing values across studies. Video Abstract.
Collapse
Affiliation(s)
- Marjolein Bruijning
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE, Amsterdam, The Netherlands.
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA.
| | - Julien F Ayroles
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton, NJ, 08544, USA
| | - Lucas P Henry
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton, NJ, 08544, USA
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York City, 10003, USA
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | - Kyle M Meyer
- Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | - C Jessica E Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
8
|
Nova A, Fazia T, Saddi V, Piras M, Bernardinelli L. Multiple Sclerosis Heritability Estimation on Sardinian Ascertained Extended Families Using Bayesian Liability Threshold Model. Genes (Basel) 2023; 14:1579. [PMID: 37628630 PMCID: PMC10454167 DOI: 10.3390/genes14081579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Heritability studies represent an important tool to investigate the main sources of variability for complex diseases, whose etiology involves both genetics and environmental factors. In this paper, we aimed to estimate multiple sclerosis (MS) narrow-sense heritability (h2), on a liability scale, using extended families ascertained from affected probands sampled in the Sardinian province of Nuoro, Italy. We also investigated the sources of MS liability variability among shared environment effects, sex, and categorized year of birth (<1946, ≥1946). The latter can be considered a proxy for different early environmental exposures. To this aim, we implemented a Bayesian liability threshold model to obtain posterior distributions for the parameters of interest adjusting for ascertainment bias. Our analysis highlighted categorized year of birth as the main explanatory factor, explaining ~70% of MS liability variability (median value = 0.69, 95% CI: 0.64, 0.73), while h2 resulted near to 0% (median value = 0.03, 95% CI: 0.00, 0.09). By performing a year of birth-stratified analysis, we found a high h2 only in individuals born on/after 1946 (median value = 0.82, 95% CI: 0.68, 0.93), meaning that the genetic variability acquired a high explanatory role only when focusing on this subpopulation. Overall, the results obtained highlighted early environmental exposures, in the Sardinian population, as a meaningful factor involved in MS to be further investigated.
Collapse
Affiliation(s)
- Andrea Nova
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.F.); (L.B.)
| | - Teresa Fazia
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.F.); (L.B.)
| | - Valeria Saddi
- Divisione di Neurologia, Presidio Ospedaliero S. Francesco, ASL Numero 3 Nuoro, 08100 Nuoro, Italy; (V.S.); (M.P.)
| | - Marialuisa Piras
- Divisione di Neurologia, Presidio Ospedaliero S. Francesco, ASL Numero 3 Nuoro, 08100 Nuoro, Italy; (V.S.); (M.P.)
| | - Luisa Bernardinelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.F.); (L.B.)
| |
Collapse
|
9
|
Taylor KL, Henry CS, Farkas TE. Why fake death? Environmental and genetic control of tonic immobility in larval lacewings (Neuroptera: Chrysopidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:15. [PMID: 37551937 PMCID: PMC10407979 DOI: 10.1093/jisesa/iead066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 08/09/2023]
Abstract
Tonic immobility is a passive antipredator strategy employed late in the predation sequence that may decrease individual mortality in prey animals. Here, we investigate how energetic state and genetic predisposition influence antipredator decision-making in green lacewing larvae, Chrysoperla plorabunda (Fitch), using simulated predatory encounters. We demonstrate that tonic immobility is a plastic response influenced by energetic resource limitation. Larvae exposed to 1 or 2 days of food deprivation initiate tonic immobility more often and with less physical provocation than individuals fed ad libitum. Recently molted individuals exposed to food deprivation, the individuals most energetically challenged, engage in tonic immobility at a higher rate than any other group. We also find that variation in antipredator strategy between individuals is partly the result of within-population genetic variation. We estimate the propensity to enter tonic immobility to have a broad-sense heritability of 0.502. Taken together our results suggest that larval lacewings under energetic stress are more likely to engage in tonic immobility. Yet, energetic state does not explain all within-population variation, as individuals can have a genetic predisposition for tonic immobility.
Collapse
Affiliation(s)
- Katherine L Taylor
- Department of Entomology, University of Maryland, College Park, MD 20742, USA
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Charles S Henry
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Timothy E Farkas
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
- Department of Biology, University of New Mexico, Albuquerque, NM 87101, USA
| |
Collapse
|
10
|
Minias P, Janiszewski T. Ground nesting in passerine birds: evolution, biogeography and life history correlates. OIKOS 2023. [DOI: 10.1111/oik.09870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Piotr Minias
- Dept of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, Univ. of Łódź Łódź Poland
| | - Tomasz Janiszewski
- Dept of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, Univ. of Łódź Łódź Poland
| |
Collapse
|
11
|
Street SE, Gutiérrez JS, Allen WL, Capellini I. Human activities favour prolific life histories in both traded and introduced vertebrates. Nat Commun 2023; 14:262. [PMID: 36650141 PMCID: PMC9845321 DOI: 10.1038/s41467-022-35765-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Species' life histories determine population demographics and thus the probability that introduced populations establish and spread. Life histories also influence which species are most likely to be introduced, but how such 'introduction biases' arise remains unclear. Here, we investigate how life histories affect the probability of trade and introduction in phylogenetic comparative analyses across three vertebrate classes: mammals, reptiles and amphibians. We find that traded species have relatively high reproductive rates and long reproductive lifespans. Within traded species, introduced species have a more extreme version of this same life history profile. Species in the pet trade also have long reproductive lifespans but lack 'fast' traits, likely reflecting demand for rare species which tend to have slow life histories. We identify multiple species not yet traded or introduced but with life histories indicative of high risk of future trade, introduction and potentially invasion. Our findings suggest that species with high invasion potential are favoured in the wildlife trade and therefore that trade regulation is crucial for preventing future invasions.
Collapse
Affiliation(s)
- Sally E Street
- Department of Anthropology, Durham University, Durham, DH1 3LE, UK.
| | - Jorge S Gutiérrez
- Department of Anatomy, Cell Biology and Zoology, University of Extremadura, Badajoz, 06006, Spain
| | - William L Allen
- Department of Biosciences, Swansea University, Swansea, SA2 8PP, UK
| | - Isabella Capellini
- School of Biological Sciences, Queens University Belfast, Belfast, BT9 5DL, UK.
| |
Collapse
|
12
|
Head Shape Heritability in the Hungarian Meadow Viper Vipera ursinii rakosiensis. Animals (Basel) 2023; 13:ani13020322. [PMID: 36670862 PMCID: PMC9854840 DOI: 10.3390/ani13020322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Understanding heritability patterns in functionally relevant traits is a cornerstone for evaluating their evolutionary potential and their role in local adaptation. In this study, we investigated patterns of heritability in the head shape of the Hungarian meadow viper (Vipera ursinii rakosiensis). To this end, we used geometric morphometric data from 12 families composed of 8 mothers, 6 fathers and 221 offspring, bred in captivity at the Hungarian Meadow Viper Conservation Centre (Hungary). We separately evaluated maternal and paternal contributions to the offspring phenotype, in addition to additive genetic effects, all determined using a mixed animal model. Our results indicate a strong genetic and maternal contribution to head shape variations. In contrast, the paternal effects-which are rarely evaluated in wild-ranging species-as well as residual environmental variance, were minimal. Overall, our results indicate a high evolutionary potential for head shape in the Hungarian meadow viper, which suggests a strong contribution of this ecologically important trait in shaping the ability of this endangered species to adapt to changing conditions and/or habitats. Furthermore, our results suggest that maternal phenotypes should be carefully considered when designing captive breeding parental pairs for reinforcing the adaptive capacity of threatened populations, whereas the paternal phenotypes seem less relevant.
Collapse
|
13
|
Christoffersen B, Mahjani B, Clements M, Kjellström H, Humphreys K. Quasi-Monte Carlo Methods for Binary Event Models with Complex Family Data. J Comput Graph Stat 2022. [DOI: 10.1080/10618600.2022.2151454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Benjamin Christoffersen
- Division of Robotics, Perception and Learning, KTH Royal Institute of Technology
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet
- Swedish e-Science Research Center (SeRC)
| | - Behrang Mahjani
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai
| | - Mark Clements
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet
- Swedish e-Science Research Center (SeRC)
| | - Hedvig Kjellström
- Division of Robotics, Perception and Learning, KTH Royal Institute of Technology
- Swedish e-Science Research Center (SeRC)
| | - Keith Humphreys
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet
- Swedish e-Science Research Center (SeRC)
| |
Collapse
|
14
|
Furness AI, Capellini I. The reproductive ecology drivers of egg attendance in amphibians. Ecol Lett 2022; 25:2500-2512. [PMID: 36181688 PMCID: PMC9827844 DOI: 10.1111/ele.14109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/12/2023]
Abstract
Parental care is extremely diverse but, despite much research, why parental care evolves is poorly understood. Here we address this outstanding question using egg attendance, the simplest and most common care form in many taxa. We demonstrate that, in amphibians, terrestrial egg deposition, laying eggs in hidden locations and direct development promote the evolution of female egg attendance. Male egg attendance follows the evolution of hidden eggs and is associated with terrestrial egg deposition but not with direct development. We conclude that egg attendance, particularly by females, evolves following changes in reproductive ecology that are likely to increase egg survival, select for small clutches of large eggs and/or expose eggs to new environmental challenges. While our results resolve a long-standing question on whether reproductive ecology traits are drivers, consequences or alternative solutions to caring, they also unravel important, yet previously unappreciated, differences between the sexes.
Collapse
Affiliation(s)
- Andrew I. Furness
- Department of Biological and Marine SciencesUniversity of HullHullUK,Energy and Environment Institute, University of HullHullUK
| | | |
Collapse
|
15
|
Cristescu RH, Strickland K, Schultz AJ, Kruuk LEB, de Villiers D, Frère CH. Susceptibility to a sexually transmitted disease in a wild koala population shows heritable genetic variance but no inbreeding depression. Mol Ecol 2022; 31:5455-5467. [PMID: 36043238 PMCID: PMC9826501 DOI: 10.1111/mec.16676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 01/11/2023]
Abstract
The koala, one of the most iconic Australian wildlife species, is facing several concomitant threats that are driving population declines. Some threats are well known and have clear methods of prevention (e.g., habitat loss can be reduced with stronger land-clearing control), whereas others are less easily addressed. One of the major current threats to koalas is chlamydial disease, which can have major impacts on individual survival and reproduction rates and can translate into population declines. Effective management strategies for the disease in the wild are currently lacking, and, to date, we know little about the determinants of individual susceptibility to disease. Here, we investigated the genetic basis of variation in susceptibility to chlamydia using one of the most intensively studied wild koala populations. We combined data from veterinary examinations, chlamydia testing, genetic sampling and movement monitoring. Out of our sample of 342 wild koalas, 60 were found to have chlamydia. Using genotype information on 5007 SNPs to investigate the role of genetic variation in determining disease status, we found no evidence of inbreeding depression, but a heritability of 0.11 (95% CI: 0.06-0.23) for the probability that koalas had chlamydia. Heritability of susceptibility to chlamydia could be relevant for future disease management, as it suggests adaptive potential for the population.
Collapse
Affiliation(s)
- Romane H. Cristescu
- Global Change Ecology Research GroupUniversity of the Sunshine CoastSippy DownsQueenslandAustralia
| | - Kasha Strickland
- Institute of Ecology and EvolutionUniversity of EdinburghEdinburghUK
| | - Anthony J. Schultz
- Global Change Ecology Research GroupUniversity of the Sunshine CoastSippy DownsQueenslandAustralia,Icelandic Museum of Natural History (Náttúruminjasafn Íslands)ReykjavikIceland
| | - Loeske E. B. Kruuk
- Institute of Ecology and EvolutionUniversity of EdinburghEdinburghUK,Research School of BiologyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| | | | - Céline H. Frère
- School of Biological SciencesUniversity of QueenslandSt LuciaQueenslandAustralia
| |
Collapse
|
16
|
Jablonszky M, Canal D, Hegyi G, Herényi M, Laczi M, Lao O, Markó G, Nagy G, Rosivall B, Szász E, Török J, Zsebõk S, Garamszegi LZ. Estimating heritability of song considering within-individual variance in a wild songbird: The collared flycatcher. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.975687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Heritable genetic variation is a prerequisite for adaptive evolution; however, our knowledge about the heritability of plastic traits, such as behaviors, is scarce, especially in wild populations. In this study, we investigated the heritability of song traits in the collared flycatcher (Ficedula albicollis), a small oscine passerine with complex songs involved in sexual selection. We recorded the songs of 81 males in a natural population and obtained various measures describing the frequency, temporal organization, and complexity of each song. As we had multiple songs from each individual, we were able to statistically account for the first time for the effect of within-individual variance on the heritability of song. Heritability was calculated from the variance estimates of animal models relying on a genetic similarity matrix based on Single Nucleotide Polymorphism screening. Overall, we found small additive genetic variance and heritability values in all song traits, highlighting the role of environmental factors in shaping bird song.
Collapse
|
17
|
Cuervo JJ, Morales J, Soler JJ, Moreno J. Sexual selection, feather wear, and time constraints on the pre-basic molt explain the acquisition of the pre-alternate molt in European passerines. Ecol Evol 2022; 12:e9260. [PMID: 36091343 PMCID: PMC9448967 DOI: 10.1002/ece3.9260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/06/2022] Open
Abstract
Avian feathers need to be replaced periodically to fulfill their functions, with natural, social, and sexual selection presumably driving the evolution of molting strategies. In temperate birds, a common pattern is to molt feathers immediately after the breeding season, the pre-basic molt. However, some species undergo another molt in winter-spring, the pre-alternate molt. Using a sample of 188 European passerine species, Bayesian phylogenetic mixed models, and correlated evolution analyses, we tested whether the occurrence of the pre-alternate molt was positively associated with proxies for sexual selection (sexual selection hypothesis) and nonsexual social selection (social selection hypothesis), and with factors related to feather wear (feather wear hypothesis) and time constraints on the pre-basic molt (time constraints hypothesis). We found that the pre-alternate molt was more frequent in migratory and less gregarious species inhabiting open/xeric habitats and feeding on the wing, and marginally more frequent in species with strong sexual selection and those showing a winter territorial behavior. Moreover, an increase in migratory behavior and sexual selection intensity preceded the acquisition of the pre-alternate molt. These results provide support for the feather wear hypothesis, partial support for the sexual selection and time constraints hypotheses, and no support for the social selection hypothesis.
Collapse
Affiliation(s)
- José J. Cuervo
- Department of Evolutionary EcologyMuseo Nacional de Ciencias Naturales (MNCN‐CSIC)MadridSpain
| | - Judith Morales
- Department of Evolutionary EcologyMuseo Nacional de Ciencias Naturales (MNCN‐CSIC)MadridSpain
| | - Juan J. Soler
- Department of Functional and Evolutionary EcologyEstación Experimental de Zonas Áridas (EEZA‐CSIC)AlmeríaSpain
| | - Juan Moreno
- Department of Evolutionary EcologyMuseo Nacional de Ciencias Naturales (MNCN‐CSIC)MadridSpain
| |
Collapse
|
18
|
Johnson TL, Elgar MA, Symonds MRE. Movement and olfactory signals: Sexually dimorphic antennae and female flightlessness in moths. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.919093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Darwin argued a role for sexual selection in the evolution of male sensory structures, including insect antennae, the strength of which will depend upon the importance of early arrival at receptive females. There is remarkable variation in the nature and degree of sexual dimorphism in moth antennae, with males of some species having spectacular, feathery antennae. Although it is widely assumed that these elaborate structures provide greater sensitivity to chemical signals (sex pheromones), the factors underlying the interspecific diversity in male antennal structure and size are poorly understood. Because male antennal morphology may be affected by several female life–history traits, including flight ability, we conducted a phylogenetic comparative analysis to test how these traits are linked, using data from 93 species of moths across 11 superfamilies. Our results reveal that elaborate antennae in males have evolved more frequently in species where females are monandrous. Further, female loss of flight ability evolved more frequently in species where males have elaborate antennae. These results suggest that elaborate antennae have evolved in response to more intense male competition, arising from female monandry, and that the evolution of elaborate antennae in males has, in turn, shaped the evolution of female flightlessness.
Collapse
|
19
|
Nova A, Baldrighi GN, Fazia T, Graziano F, Saddi V, Piras M, Beecham A, McCauley JL, Bernardinelli L. Heritability Estimation of Multiple Sclerosis Related Plasma Protein Levels in Sardinian Families with Immunochip Genotyping Data. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071101. [PMID: 35888189 PMCID: PMC9317284 DOI: 10.3390/life12071101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/25/2022]
Abstract
This work aimed at estimating narrow-sense heritability, defined as the proportion of the phenotypic variance explained by the sum of additive genetic effects, via Haseman–Elston regression for a subset of 56 plasma protein levels related to Multiple Sclerosis (MS). These were measured in 212 related individuals (with 69 MS cases and 143 healthy controls) obtained from 20 Sardinian families with MS history. Using pedigree information, we found seven statistically significant heritable plasma protein levels (after multiple testing correction), i.e., Gc (h2 = 0.77; 95%CI: 0.36, 1.00), Plat (h2 = 0.70; 95%CI: 0.27, 0.95), Anxa1 (h2 = 0.68; 95%CI: 0.27, 1.00), Sod1 (h2 = 0.58; 95%CI: 0.18, 0.96), Irf8 (h2 = 0.56; 95%CI: 0.19, 0.99), Ptger4 (h2 = 0.45; 95%CI: 0.10, 0.96), and Fadd (h2 = 0.41; 95%CI: 0.06, 0.84). A subsequent analysis was performed on these statistically significant heritable plasma protein levels employing Immunochip genotyping data obtained in 155 healthy controls (92 related and 63 unrelated); we found a meaningful proportion of heritable plasma protein levels’ variability explained by a small set of SNPs. Overall, the results obtained, for these seven MS-related proteins, emphasized a high additive genetic variance component explaining plasma levels’ variability.
Collapse
Affiliation(s)
- Andrea Nova
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (G.N.B.); (T.F.); (L.B.)
- Correspondence:
| | - Giulia Nicole Baldrighi
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (G.N.B.); (T.F.); (L.B.)
| | - Teresa Fazia
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (G.N.B.); (T.F.); (L.B.)
| | - Francesca Graziano
- Centre of Biostatistics for Clinical Epidemiology, University of Milano-Bicocca, 20900 Monza, Italy;
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Valeria Saddi
- Divisione di Neurologia, Presidio Ospedaliero S. Francesco, ASL Numero 3 Nuoro, 08100 Nuoro, Italy; (V.S.); (M.P.)
| | - Marialuisa Piras
- Divisione di Neurologia, Presidio Ospedaliero S. Francesco, ASL Numero 3 Nuoro, 08100 Nuoro, Italy; (V.S.); (M.P.)
| | - Ashley Beecham
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33146, USA; (A.B.); (J.L.M.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jacob L. McCauley
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33146, USA; (A.B.); (J.L.M.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Luisa Bernardinelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (G.N.B.); (T.F.); (L.B.)
| |
Collapse
|
20
|
Klemme I, Debes PV, Primmer CR, Härkönen LS, Erkinaro J, Hyvärinen P, Karvonen A. Host developmental stage effects on parasite resistance and tolerance. Am Nat 2022; 200:646-661. [DOI: 10.1086/721159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Cheng C, Liu J, Ma Z. Effects of aquaculture on the maintenance of waterbird populations. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36. [PMID: 35338517 DOI: 10.1111/cobi.13913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The global aquaculture industry has expanded rapidly and is increasingly important for maintaining food security while also providing alternative artificial habitats for many waterbirds. Clarifying how waterbirds use aquafarms and how aquafarm use affects waterbird population maintenance can be useful for improving management of the artificial landscape that can also provide waterbird habitat. Here, we investigated aquafarm use by waterbirds in China, the world's largest producer of aquaculture products, supported by literature review and questionnaire survey. We used Bayesian phylogenetic generalized linear mixed models to analyze the relationship between the degree of aquafarm use and population trends of waterbirds. The results showed that 69% of waterbird species in China have been recorded at aquafarms. Approximately one-quarter of all waterbird species and about the same proportion of threatened species were found to forage at aquafarms, consuming either cultured aquatic products or other food types. In general, species with a high degree of aquafarm use were unlikely to exhibit a population decline over the past two decades, when rapid loss of natural habitats occurred in China. This relationship was not detected in threatened species, despite there being no significant difference in the degree of aquafarm use between threatened and non-threatened species. Our study suggests that the large and expanding aquaculture industry is important for maintaining waterbird populations in China. However, aquafarms are not a replacement for natural habitats, because threatened species benefit less from aquafarm use. Given that aquafarms often come at the expense of natural wetlands, the degree to which aquafarms compensate for natural habitat loss probably depends on the quality of aquafarm habitat. We recommend an integrated ecological and economic analysis for formulating management policies that help conserve wildlife within the constraints and opportunities associated with maintaining human livelihoods. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chuyu Cheng
- Shanghai Institute of Infectious Disease and Biosecurity, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai, 200438, China
| | - Jiajia Liu
- Shanghai Institute of Infectious Disease and Biosecurity, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai, 200438, China
| | - Zhijun Ma
- Shanghai Institute of Infectious Disease and Biosecurity, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai, 200438, China
| |
Collapse
|
22
|
Evaluation of alternative methods for estimating the precision of REML-based estimates of variance components and heritability. Heredity (Edinb) 2022; 128:197-208. [PMID: 35197554 PMCID: PMC8986777 DOI: 10.1038/s41437-022-00509-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 11/08/2022] Open
Abstract
Residual Maximum Likelihood (REML) analysis is the most widely used method to estimate variance components and heritability. This method is based on large sample theory under the assumption that the parameter estimates are asymptotically multivariate normally distributed with covariance matrix given by the inverse of the information matrix. Hence, these sampling variances could be biased if the assumption of asymptotic approximation is incorrect, especially when the sample size is small. Though it is difficult to assess the impact of sample size, an alternative option is to generate a full distribution of the parameters to determine the uncertainty of estimates. In this study, we compared the REML estimates of variance components, heritability and sampling variances of body-weight (BW), body-depth (BD), and condition-factor (K) with those obtained from four sampling-based methods viz., parametric and nonparametric bootstrap, asymptotic sampling and Bayesian estimation. The aim was to understand if a sample size of order 1413 was sufficient to contain adequate information for a reliable asymptotic approximation. The REML solution was close to values obtained from different sampling-based methods indicating that the present sample size was sufficient to estimate reliable genetic variation in different traits with varying heritability. The variance and heritability estimated by a nonparametric bootstrap estimate based on randomization of family effects gave comparable results as evaluated by REML for different traits. Hence, the nonparametric bootstrap estimate can be effectively used to understand whether the sample size is large enough to contain sufficient information under likelihood estimation assumptions.
Collapse
|
23
|
Houslay TM, Nielsen JF, Clutton-Brock TH. Contributions of genetic and nongenetic sources to variation in cooperative behavior in a cooperative mammal. Evolution 2021; 75:3071-3086. [PMID: 34647327 DOI: 10.1111/evo.14383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 08/17/2021] [Accepted: 09/30/2021] [Indexed: 11/29/2022]
Abstract
The evolution of cooperative behavior is a major area of research among evolutionary biologists and behavioral ecologists, yet there are few estimates of its heritability or its evolutionary potential, and long-term studies of identifiable individuals are required to disentangle genetic and nongenetic components of cooperative behavior. Here, we use long-term data on over 1800 individually recognizable wild meerkats (Suricata suricatta) collected over 30 years and a multigenerational genetic pedigree to partition phenotypic variation in three cooperative behaviors (babysitting, pup feeding, and sentinel behavior) into individual, additive genetic, and other sources, and to assess their repeatability and heritability. In addition to strong effects of sex, age, and dominance status, we found significant repeatability in individual contributions to all three types of cooperative behavior both within and across breeding seasons. Like most other studies of the heritability of social behavior, we found that the heritability of cooperative behavior was low. However, our analysis suggests that a substantial component of the repeatable individual differences in cooperative behavior that we observed was a consequence of additive genetic variation. Our results consequently indicate that cooperative behavior can respond to selection, and suggest scope for further exploration of the genetic basis of social behavior.
Collapse
Affiliation(s)
- Thomas M Houslay
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom.,Kuruman River Reserve, Kalahari Research Centre, Van Zylsrus, 8467, South Africa
| | - Johanna F Nielsen
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - Tim H Clutton-Brock
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom.,Kuruman River Reserve, Kalahari Research Centre, Van Zylsrus, 8467, South Africa.,Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, 0028, South Africa
| |
Collapse
|
24
|
Chapuis M, Pélissié B, Piou C, Chardonnet F, Pagès C, Foucart A, Chapuis E, Jourdan‐Pineau H. Additive genetic variance for traits least related to fitness increases with environmental stress in the desert locust, Schistocerca gregaria. Ecol Evol 2021; 11:13930-13947. [PMID: 34707829 PMCID: PMC8525110 DOI: 10.1002/ece3.8099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 11/12/2022] Open
Abstract
Under environmental stress, previously hidden additive genetic variation can be unmasked and exposed to selection. The amount of hidden variation is expected to be higher for life history traits, which strongly correlate to individual fitness, than for morphological traits, in which fitness effects are more ambiguous. However, no consensual pattern has been recovered yet, and this idea is still debated in the literature. Here, we hypothesize that the classical categorization of traits (i.e., life history and morphology) may fail to capture their proximity to fitness. In the desert locust, Schistocerca gregaria, a model organism for the study of insect polyphenism, we quantified changes in additive genetic variation elicited by lifetime thermal stress for ten traits, in which evolutionary significance is known. Irrespective of their category, traits under strong stabilizing selection showed genetic invariance with environmental stress, while traits more loosely associated with fitness showed a marked increase in additive genetic variation in the stressful environment. Furthermore, traits involved in adaptive phenotypic plasticity (growth compensation) showed either no change in additive genetic variance or a change of moderate magnitude across thermal environments. We interpret this mitigated response of plastic traits in the context of integrated evolution to adjust the entire phenotype in heterogeneous environments (i.e., adaptiveness of initial plasticity, compromise of phenotypic compensation with stress, and shared developmental pathway). Altogether, our results indicate, in agreement with theoretical expectations, that environmental stress can increase available additive genetic variance in some desert locust traits, but those closely linked to fitness are largely unaffected. Our study also highlights the importance of assessing the proximity to fitness of a trait on a case-by-case basis and in an ecologically relevant context, as well as considering the processes of canalization and plasticity, involved in the control of phenotypic variation.
Collapse
Affiliation(s)
- Marie‐Pierre Chapuis
- CIRADCBGPMontpellierFrance
- CBGPCIRADMontpellier SupAgroINRAIRDUniv MontpellierMontpellierFrance
| | - Benjamin Pélissié
- CIRADCBGPMontpellierFrance
- CBGPCIRADMontpellier SupAgroINRAIRDUniv MontpellierMontpellierFrance
- Department of BiologyUniversity of Nebraska at KearneyKearneyNebraskaUSA
| | - Cyril Piou
- CIRADCBGPMontpellierFrance
- CBGPCIRADMontpellier SupAgroINRAIRDUniv MontpellierMontpellierFrance
| | - Floriane Chardonnet
- CIRADCBGPMontpellierFrance
- CBGPCIRADMontpellier SupAgroINRAIRDUniv MontpellierMontpellierFrance
| | | | - Antoine Foucart
- CIRADCBGPMontpellierFrance
- CBGPCIRADMontpellier SupAgroINRAIRDUniv MontpellierMontpellierFrance
| | - Elodie Chapuis
- MIVEGECUniversité de MontpellierCNRSIRDMontpellierFrance
- CIRADUMR PVBMTSaint‐PierreFrance
| | - Hélène Jourdan‐Pineau
- CIRADCBGPMontpellierFrance
- CBGPCIRADMontpellier SupAgroINRAIRDUniv MontpellierMontpellierFrance
- CIRADUMR PVBMTSaint‐PierreFrance
- CIRADUMR ASTREMontpellierFrance
- ASTREUniv MontpellierCIRADINRAMontpellierFrance
| |
Collapse
|
25
|
Tamin T, Doligez B. Assortative mating for between-patch dispersal status in a wild bird population: Exploring the role of direct and indirect underlying mechanisms. J Evol Biol 2021; 35:561-574. [PMID: 34480809 DOI: 10.1111/jeb.13925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 07/15/2021] [Accepted: 07/30/2021] [Indexed: 11/26/2022]
Abstract
Previous studies have reported functional integration between dispersal and other phenotypic traits allowing individuals to alleviate dispersal costs, and such associations can affect dispersal evolution in return. In sexually reproducing species, assortative mating according to dispersal can shape the maintenance of such trait associations. Despite the potentially crucial consequences of dispersal in natural populations, assortative mating for dispersal and its underlying mechanisms remain largely unexplored. Here, we assessed assortative mating for between-patch dispersal status in a fragmented population of a small passerine bird, the collared flycatcher, and explored whether such assortative mating could result from (i) direct mate choice based on dispersal-related behavioural (aggressiveness and boldness) and morphological traits (tarsus and wing length), (ii) biased mating due to spatio-temporal heterogeneity in the distribution of dispersal phenotypes and/or (iii) post-mating adjustment of dispersal phenotype or dispersal-related traits. We found intrinsic assortative mating (i.e. positive among-pair correlation) for current dispersal status (in the year of mating) but not for natal dispersal status, even though we could not exclude it due to limited power. We also found assortative mating for boldness and age category (yearlings vs. older adults), and the probability for pair members to be assorted for current dispersal status was higher when both pair members were of similar boldness score and of the same age compared with mixed-age pairs. Mate choice based on boldness and age thus appears as a possible mechanism underlying assortative mating for dispersal status. Our analyses however remained correlative, and only an experimental manipulation of these traits could allow inferring causal links. Non-random mating for dispersal-related traits may affect the evolution of dispersal syndromes in this population. More work is nevertheless needed to fully assess the evolutionary implications of age- and behaviour-based assortative mating for dispersal.
Collapse
Affiliation(s)
- Thibault Tamin
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, UMR 5558, CNRS, Université de Lyon, Villeurbanne, France
| | - Blandine Doligez
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, UMR 5558, CNRS, Université de Lyon, Villeurbanne, France.,Department of Ecology and Genetics, Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
26
|
Plard F, Barthold Jones JA, Gaillard J, Coulson T, Tuljapurkar S. Demographic determinants of the phenotypic mother–offspring correlation. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Floriane Plard
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, CNRS Université Claude Bernard Lyon 1 Villeurbanne Cedex France
- Department of Aquaculture and Fish Biology Hólar University Háeyri 1 Sauðárkrókur 550 Iceland
| | | | - Jean‐Michel Gaillard
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, CNRS Université Claude Bernard Lyon 1 Villeurbanne Cedex France
| | - Tim Coulson
- Department of Zoology University of Oxford Oxford OX1 3PS UK
| | | |
Collapse
|
27
|
Šulc M, Hughes AE, Troscianko J, Štětková G, Procházka P, Požgayová M, Piálek L, Piálková R, Brlík V, Honza M. Automatic identification of bird females using egg phenotype. Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlab051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Individual identification is crucial for studying animal ecology and evolution. In birds this is often achieved by capturing and tagging. However, these methods are insufficient for identifying individuals/species that are secretive or difficult to catch. Here, we employ an automatic analytical approach to predict the identity of bird females based on the appearance of their eggs, using the common cuckoo (Cuculus canorus) as a model species. We analysed 192 cuckoo eggs using digital photography and spectrometry. Cuckoo females were identified from genetic sampling of nestlings, allowing us to determine the accuracy of automatic (unsupervised and supervised) and human assignment. Finally, we used a novel analytical approach to identify eggs that were not genetically analysed. Our results show that individual cuckoo females lay eggs with a relatively constant appearance and that eggs laid by more genetically distant females differ more in colour. Unsupervised clustering had similar cluster accuracy to experienced human observers, but supervised methods were able to outperform humans. Our novel method reliably assigned a relatively high number of eggs without genetic data to their mothers. Therefore, this is a cost-effective and minimally invasive method for increasing sample sizes, which may facilitate research on brood parasites and other avian species.
Collapse
Affiliation(s)
- Michal Šulc
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
| | - Anna E Hughes
- Department of Psychology, University of Essex, Colchester, UK
| | - Jolyon Troscianko
- Centre for Life and Environmental Sciences, University of Exeter, Penryn, UK
| | - Gabriela Štětková
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Sciences, Masaryk University, Brno, Czech Republic
| | - Petr Procházka
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
| | - Milica Požgayová
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
| | - Lubomír Piálek
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
- Faculty of Natural Sciences, University of South Bohemia, České Budějovice, Czech Republic
| | - Radka Piálková
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
- Faculty of Natural Sciences, University of South Bohemia, České Budějovice, Czech Republic
| | - Vojtěch Brlík
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Marcel Honza
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
| |
Collapse
|
28
|
Messina S, Edwards DP, Van Houtte N, Tomassi S, Benedick S, Eens M, Costantini D. Impacts of selective logging on haemosporidian infection and physiological correlates in tropical birds. Int J Parasitol 2021; 52:87-96. [PMID: 34450133 DOI: 10.1016/j.ijpara.2021.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022]
Abstract
Tropical forest degradation affects host-parasite interactions, determining the probability of animals acquiring an infection. The activation of an immune response to fight off infections requires energy and other resources such as antioxidants which may be redirected from growth and reproduction. A key question is how selective logging-the most common form of tropical forest degradation-impacts the prevalence of avian haemosporidian infection and its correlated physiological responses (nutritional and oxidative status markers). We investigated the prevalence of Plasmodium, Haemoproteus, and Leucocytozoon parasites in 14 understorey bird species in lowland, logged and unlogged, old-growth forests of Borneo. Prevalences of infections were similar between selectively logged and unlogged forests. To explore nutritional and oxidative status effects of haemosporidian infections, we examined associations between infections and plasma proteins, plasma triglycerides, and multiple blood-based markers of oxidative status, testing for an impact of selective logging on those markers. Birds infected with Plasmodium showed higher levels of plasma proteins and non-enzymatic antioxidant capacity, and lower levels of plasma triglycerides and glutathione, compared with haemosporidian-free individuals. Conversely, birds infected with Haemoproteus showed no changes in nutritional or physiological markers compared with uninfected individuals. These results indicate higher metabolic and physiological costs of controlling Plasmodium infection, compared with Haemoproteus, possibly due to higher pathogenicity of Plasmodium. Selectively logged forests had no effect on the responses of birds to infection, suggesting that the environmental conditions of degraded forests do not appear to induce any appreciable physiological demands in parasitised birds.
Collapse
Affiliation(s)
- Simone Messina
- Behavioural Ecology & Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - David Paul Edwards
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Natalie Van Houtte
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Suzanne Tomassi
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Suzan Benedick
- School of Sustainable Agriculture, Universiti Malaysia Sabah, Malaysia
| | - Marcel Eens
- Behavioural Ecology & Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - David Costantini
- UMR 7221 CNRS/MNHN, Muséum National d'Histoirie Naturelle, Sorbonne Universités, 7 rue Cuvier, 75005 Paris, France
| |
Collapse
|
29
|
Kruitwagen A, Wertheim B, Beukeboom LW. Artificial selection for nonreproductive host killing in a native parasitoid on the invasive pest, Drosophila suzukii. Evol Appl 2021; 14:1993-2011. [PMID: 34429744 PMCID: PMC8372078 DOI: 10.1111/eva.13252] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 11/30/2022] Open
Abstract
Establishment and spread of invasive species can be facilitated by lack of natural enemies in the invaded area. Host-range evolution of natural enemies augments their ability to reduce the impact of the invader and could enhance their value for biological control. We assessed the potential of the Drosophila parasitoid, Leptopilina heterotoma (Hymenoptera: Figitidae), to exploit the invasive pest Drosophila suzukii by focusing on three performance indices: (i) attack rate; (ii) host killing, consisting of killing rate and lethal attack rate (killing efficiency); and (iii) successful offspring development (reproductive success). We found significant intraspecific variation in attack rate and killing rate and lethal attack rate among seven European populations, but offspring generally failed to successfully develop from the D. suzukii host. We crossed these European lines to create a genetically variable source population and performed a half-sib analysis to quantify genetic variation. Using a Bayesian animal model, we found that attack rate and killing rate had a heritability ofh 2 = 0.2 , lethal attack rateh 2 = 0.4 , and offspring developmenth 2 = 0 . We then artificially selected wasps with the highest killing rate of D. suzukii for seven generations to test whether host-killing could be improved. There was a small and inconsistent response to selection in the three selection lines. Realized heritability ( h r 2 ) after four generations of selection was 0.17 but near zero after seven generations of selection. The genetic response might have been masked by an increased D. suzukii fitness resulting from adaptation to laboratory conditions. Our study reveals that native, European, L. heterotoma can attack the invasive pest, D. suzukii and significantly reduce fly survival and that different steps of the parasitization process need to be considered in the evolution of host-range. It highlights how evolutionary principles can be applied to optimize performance of native species for biological control.
Collapse
Affiliation(s)
- Astrid Kruitwagen
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Bregje Wertheim
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Leo W. Beukeboom
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
30
|
Debes PV, Piavchenko N, Ruokolainen A, Ovaskainen O, Moustakas-Verho JE, Parre N, Aykanat T, Erkinaro J, Primmer CR. Polygenic and major-locus contributions to sexual maturation timing in Atlantic salmon. Mol Ecol 2021; 30:4505-4519. [PMID: 34228841 DOI: 10.1111/mec.16062] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 06/16/2021] [Accepted: 07/01/2021] [Indexed: 12/13/2022]
Abstract
Sexual maturation timing is a life-history trait central to the balance between mortality and reproduction. Maturation may be triggered when an underlying compound trait, called liability, exceeds a threshold. In many different species and especially fishes, this liability is approximated by growth and body condition. However, environmental vs. genetic contributions either directly or via growth and body condition to maturation timing remain unclear. Uncertainty exists also because the maturation process can reverse this causality and itself affect growth and body condition. In addition, disentangling the contributions of polygenic and major loci can be important. In many fishes, males mature before females, enabling the study of associations between male maturation and maturation-unbiased female liability traits. Using 40 Atlantic salmon families, longitudinal common-garden experimentation, and quantitative genetic analyses, we disentangled environmental from polygenic and major locus (vgll3) effects on male maturation, and sex-specific growth and condition. We detected polygenic heritabilities for maturation, growth, and body condition, and vgll3 effects on maturation and body condition but not on growth. Longitudinal patterns for sex-specific phenotypic liability, and for genetic variances and correlations between sexes suggested that early growth and condition indeed positively affected maturation initiation. However, towards spawning time, causality appeared reversed for males whereby maturation affected growth negatively and condition positively via both the environmental and genetic effects. Altogether, the results indicate that growth and condition are useful traits to study liability for maturation initiation, but only until maturation alters their expression, and that vgll3 contributes to maturation initiation via condition.
Collapse
Affiliation(s)
- Paul V Debes
- Organismal & Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences / Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE, University of Helsinki, Helsinki, Finland
| | - Nikolai Piavchenko
- Organismal & Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences / Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE, University of Helsinki, Helsinki, Finland
| | - Annukka Ruokolainen
- Organismal & Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences / Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE, University of Helsinki, Helsinki, Finland
| | - Outi Ovaskainen
- Organismal & Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences / Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jacqueline E Moustakas-Verho
- Organismal & Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences / Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE, University of Helsinki, Helsinki, Finland
| | - Noora Parre
- Organismal & Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences / Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE, University of Helsinki, Helsinki, Finland
| | - Tutku Aykanat
- Organismal & Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences / Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE, University of Helsinki, Helsinki, Finland
| | | | - Craig R Primmer
- Organismal & Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences / Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
31
|
Jourdan‐Pineau H, Antoine G, Galataud J, Delatte H, Simiand C, Clémencet J. Estimating heritability in honeybees: Comparison of three major methods based on empirical and simulated datasets. Ecol Evol 2021. [DOI: 10.1002/ece3.7389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Hélène Jourdan‐Pineau
- CIRAD UMR PVBMT Saint‐Pierre France
- ASTRE CIRAD, INRAE Univ Montpellier Montpellier France
- CIRAD UMR ASTRE Montpellier France
- UMR PVBMT Université de La Réunion St Denis France
| | - Gaëlle Antoine
- CIRAD UMR PVBMT Saint‐Pierre France
- UMR PVBMT Université de La Réunion St Denis France
| | - Julien Galataud
- CIRAD UMR PVBMT Saint‐Pierre France
- UMR PVBMT Université de La Réunion St Denis France
| | - Hélène Delatte
- CIRAD UMR PVBMT Saint‐Pierre France
- UMR PVBMT Université de La Réunion St Denis France
| | - Christophe Simiand
- CIRAD UMR PVBMT Saint‐Pierre France
- UMR PVBMT Université de La Réunion St Denis France
| | - Johanna Clémencet
- CIRAD UMR PVBMT Saint‐Pierre France
- UMR PVBMT Université de La Réunion St Denis France
| |
Collapse
|
32
|
Lifetime stability of social traits in bottlenose dolphins. Commun Biol 2021; 4:759. [PMID: 34145380 PMCID: PMC8213821 DOI: 10.1038/s42003-021-02292-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/01/2021] [Indexed: 11/20/2022] Open
Abstract
Behavioral phenotypic traits or “animal personalities” drive critical evolutionary processes such as fitness, disease and information spread. Yet the stability of behavioral traits, essential by definition, has rarely been measured over developmentally significant periods of time, limiting our understanding of how behavioral stability interacts with ontogeny. Based on 32 years of social behavioral data for 179 wild bottlenose dolphins, we show that social traits (associate number, time alone and in large groups) are stable from infancy to late adulthood. Multivariate analysis revealed strong relationships between these stable metrics within individuals, suggesting a complex behavioral syndrome comparable to human extraversion. Maternal effects (particularly vertical social learning) and sex-specific reproductive strategies are likely proximate and ultimate drivers for these patterns. We provide rare empirical evidence to demonstrate the persistence of social behavioral traits over decades in a non-human animal. Taylor Evans et al. present analyses based on 32 years of observations of dolphin social behaviour in Shark Bay, Western Australia. Their findings indicate that individual social traits, such as preference for time spent alone vs in groups, remain stable throughout an individual’s lifetime, despite physiological and social changes through adulthood.
Collapse
|
33
|
Kralj‐Fišer S, Schneider JM, Kuntner M, Laskowski K, Garcia‐Gonzalez F. The genetic architecture of behavioral traits in a spider. Ecol Evol 2021; 11:5381-5392. [PMID: 34026014 PMCID: PMC8131798 DOI: 10.1002/ece3.7430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/18/2021] [Indexed: 11/18/2022] Open
Abstract
The existence of consistent individual differences in behavior has been shown in a number of species, and several studies have found observable sex differences in these behaviors, yet their evolutionary implications remain unclear. Understanding the evolutionary dynamics of behavioral traits requires knowledge of their genetic architectures and whether this architecture differs between the sexes. We conducted a quantitative genetic study in a sexually size-dimorphic spider, Larinioides sclopetarius, which exhibits sex differences in adult lifestyles. We observed pedigreed spiders for aggression, activity, exploration, and boldness and used animal models to disentangle genetic and environmental influences on these behaviors. We detected trends toward (i) higher additive genetic variances in aggression, activity, and exploration in males than females, and (ii) difference in variances due to common environment/maternal effects, permanent environment and residual variance in aggression and activity with the first two variances being higher in males for both behaviors. We found no sex differences in the amount of genetic and environmental variance in boldness. The mean heritability estimates of aggression, activity, exploration, and boldness range from 0.039 to 0.222 with no sizeable differences between females and males. We note that the credible intervals of the estimates are large, implying a high degree of uncertainty, which disallow a robust conclusion of sex differences in the quantitative genetic estimates. However, the observed estimates suggest that sex differences in the quantitative genetic architecture of the behaviors cannot be ruled out. Notably, the present study suggests that genetic underpinnings of behaviors may differ between sexes and it thus underscores the importance of taking sex differences into account in quantitative genetic studies.
Collapse
Affiliation(s)
- Simona Kralj‐Fišer
- Scientific and Research Centre of the Slovenian Academy of Sciences and ArtsInstitute of BiologyEvolutionary Zoology LaboratoryLjubljanaSlovenia
| | - Jutta M. Schneider
- Institut für ZoologieFachbereich BiologieUniversität HamburgHamburgGermany
| | - Matjaž Kuntner
- Scientific and Research Centre of the Slovenian Academy of Sciences and ArtsInstitute of BiologyEvolutionary Zoology LaboratoryLjubljanaSlovenia
- Department of Organisms and Ecosystems ResearchEvolutionary Zoology LaboratoryNational Institute of BiologyLjubljanaSlovenia
| | | | - Francisco Garcia‐Gonzalez
- Estación Biológica de Doñana‐CSICSevilleSpain
- Centre for Evolutionary BiologySchool of Biological SciencesUniversity of Western AustraliaWestern AustraliaAustralia
| |
Collapse
|
34
|
A molecularphylogeny offorktail damselflies(genus Ischnura)revealsa dynamic macroevolutionary history of female colour polymorphisms. Mol Phylogenet Evol 2021; 160:107134. [PMID: 33677008 DOI: 10.1016/j.ympev.2021.107134] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 02/11/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022]
Abstract
Colour polymorphisms are popular study systems among biologists interested in evolutionary dynamics, genomics, sexual selection and sexual conflict. In many damselfly groups, such as in the globally distributed genus Ischnura (forktails), sex-limited female colour polymorphisms occur in multiple species. Female-polymorphic species contain two or three female morphs, one of which phenotypically matches the male (androchrome or male mimic) and the other(s) which are phenotypically distinct from the male (heterochrome). These female colour polymorphisms are thought to be maintained by frequency-dependent sexual conflict, but their macroevolutionary histories are unknown, due to the lack of a robust molecular phylogeny. Here, we present the first time-calibrated phylogeny of Ischnura, using a multispecies coalescent approach (StarBEAST2) and incorporating both molecular and fossil data for 41 extant species (55% of the genus). We estimate the age of Ischnura to be between 13.8 and 23.4 millions of years, i.e. Miocene. We infer the ancestral state of this genus as female monomorphism with heterochrome females, with multiple gains and losses of female polymorphisms, evidence of trans-species female polymorphisms and a significant positive relationship between female polymorphism incidence and current geographic range size. Our study provides a robust phylogenetic framework for future research on the dynamic macroevolutionary history of this clade with its extraordinary diversity of sex-limited female polymorphisms.
Collapse
|
35
|
DE LA Torre GM, Campião KM. Bird habitat preferences drive hemoparasite infection in the Neotropical region. Integr Zool 2021; 16:755-768. [PMID: 33452842 DOI: 10.1111/1749-4877.12515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role that the environment plays in vector-borne parasite infection is one of the central factors for understanding disease dynamics. We assessed how Neotropical bird foraging strata and habitat preferences determine infection by parasites of the genera Haemoproteus, Plasmodium, Leucocytozoon, and Trypanosoma and filarioids, and tested for phylogenetic signal in these host-parasite associations. We performed extensive searches of the scientific literature and created a database of hemoparasite surveys. We collected data on host body mass, foraging strata, habitat preference, and migratory status, and tested if host ecological traits predict each hemoparasite occurrence and prevalence using a phylogenetic Bayesian framework. Species of Plasmodium tend to infect birds from tropical forests while birds from altitudinal environments are likely to be infected by species of Leucocytozoon. The probability of a bird being infected by filarioid or Trypanosoma is higher in lowland forests. Bird species that occur in anthropic environments and dry habitats of tropical latitudes are more susceptible to infection by species of Haemoproteus. Host foraging strata is also influential and bird species that forage in the mid-high and canopy strata are more prone to infection by species of Haemoproteus and filarioids. We also identified phylogenetic signal for host-parasite associations with the probability of infection of Neotropical birds by any hemoparasite being more similar among more closely related species. We provided a useful framework to identify environments that correlate with hemoparasite infection, which is also helpful for detecting areas with potential suitability for hemoparasite infection due to land conversion and climate change.
Collapse
Affiliation(s)
- Gabriel Massaccesi DE LA Torre
- Biological Interactions, Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Brazil.,Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, Brazil
| | - Karla Magalhães Campião
- Biological Interactions, Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
36
|
Hasegawa M, Arai E. Opposing population trends of fork-tailed swallows and reddish-coloured swallows in our changing world. J Evol Biol 2020; 34:331-338. [PMID: 33164309 DOI: 10.1111/jeb.13736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/20/2020] [Accepted: 10/31/2020] [Indexed: 12/01/2022]
Abstract
Sexual selection can in theory lead to positive and negative effect on population-level fitness and hence population increase/decline in our changing world, but the empirical evidence is scarce. Using a phylogenetic comparative approach, we examined whether and how different sexually selected ornaments affect recent population trends and extinction risk in swallows (Aves: Hirundininae). We found that population trends decreased with increasing depth of male tails, that is a well-known sexually selected trait, and increased with increasing score of reddish plumage coloration, another sexually selected ornament. Similar contrasting patterns were observed for extinction risk. These findings indicate ornament-specific population trends and extinction risk, perhaps due to the differential costs and benefits of ornamentation. Previous studies have mostly focused on the overall effects of sexual selection by combining different kinds of traits, presumed to be sexually selected. However, as predicted by theory, sexual selection would not be a process with the same universal effect on population dynamics as we found here. Divergent ecological consequences would occur through minor differences in sexual selection, which should not be dismissed in future studies.
Collapse
Affiliation(s)
- Masaru Hasegawa
- Department of Environmental Science, Ishikawa Prefectural University, Ishikawa, Japan
| | - Emi Arai
- Department of Evolutionary Studies of Biosystems, Sokendai (The Graduate University for Advanced Studies), Kanagawa, Japan
| |
Collapse
|
37
|
Morris J, Darolti I, van der Bijl W, Mank JE. High-resolution characterization of male ornamentation and re-evaluation of sex linkage in guppies. Proc Biol Sci 2020; 287:20201677. [PMID: 33081622 PMCID: PMC7661287 DOI: 10.1098/rspb.2020.1677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/22/2020] [Indexed: 12/25/2022] Open
Abstract
Coloration plays a key role in the ecology of many species, influencing how an organism interacts with its environment, other species and conspecifics. Guppies are sexually dimorphic, with males displaying sexually selected coloration resulting from female preference. Previous work has suggested that much of guppy colour pattern variation is Y-linked. However, it remains unclear how many individual colour patterns are Y-linked in natural populations as much of the previous work has focused on phenotypes either not found in the wild, or aggregate measures such as total colour area. Moreover, ornaments have traditionally been identified and delineated by hand, and computational methods now make it possible to extract pixels and identify ornaments with automated methods, reducing the potential for human bias. Here we developed a pipeline for semi-automated ornament identification and high-resolution image analysis of male guppy colour patterns and applied it to a multigenerational pedigree. Our results show that loci controlling the presence or the absence of individual male ornaments in our population are not predominantly Y-linked. However, we find that ornaments of similar colour are not independent of each other, and modifier loci that affect whole animal coloration appear to be at least partially Y-linked. Considering these results, Y-linkage of individual ornaments may not be important in driving colour changes in natural populations of guppies, or in expansions of the non-recombining Y region, while Y-linked modifier loci that affect aggregate traits may well play an important role.
Collapse
Affiliation(s)
- Jake Morris
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Iulia Darolti
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wouter van der Bijl
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Judith E. Mank
- Department of Genetics, Evolution and Environment, University College London, London, UK
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
38
|
Gupta P, Vishnudas CK, Robin VV, Dharmarajan G. Host phylogeny matters: Examining sources of variation in infection risk by blood parasites across a tropical montane bird community in India. Parasit Vectors 2020; 13:536. [PMID: 33115505 PMCID: PMC7594458 DOI: 10.1186/s13071-020-04404-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/14/2020] [Indexed: 11/10/2022] Open
Abstract
Background Identifying patterns and drivers of infection risk among host communities is crucial to elucidate disease dynamics and predict infectious disease risk in wildlife populations. Blood parasites of the genera Plasmodium and Haemoproteus are a diverse group of vector-borne protozoan parasites that affect bird populations globally. Despite their widespread distribution and exceptional diversity, factors underlying haemosporidian infection risk in wild bird communities remain poorly understood. While some studies have examined variation in avian haemosporidian risk, researchers have primarily focused on host ecological traits without considering host phylogenetic relationships. In this study, we employ a phylogenetically informed approach to examine the association between host ecological traits and haemosporidian infection risk in endemic bird communities in the Western Ghats Sky Islands. Methods We used parasite sequence data based on partial mitochondrial cytochrome b gene, that was amplified from genomic DNA extracted from 1177 birds (28 species) across the Western Ghats to assess infection of birds with haemosporidian parasites. We employed a Bayesian phylogenetic mixed effect modelling approach to test whether haemosporidian infection risk was affected by seven species-specific and four individual-level ecological predictors. We also examined the effect of host phylogenetic relationships on the observed patterns of variation in haemosporidian infection risk by estimating phylogenetic signal. Results Our study shows that host ecological traits and host phylogeny differentially influence infection risk by Plasmodium (generalist parasite) and Haemoproteus (specialist parasite). For Plasmodium, we found that sociality, sexual dimorphism and foraging strata were important ecological predictors. For Haemoproteus, patterns of infection risk among host species were associated with sociality, species elevation and individual body condition. Interestingly, variance in infection risk explained by host phylogeny was higher for Haemoproteus parasites compared to Plasmodium. Conclusions Our study highlights that while host ecological traits promoting parasite exposure and host susceptibility are important determinants of infection risk, host phylogeny also contributes substantially to predicting patterns of haemosporidian infection risk in multi-host communities. Importantly, infection risk is driven by joint contributions of host ecology and host phylogeny and studying these effects together could increase our ability to better understand the drivers of infection risk and predict future disease threats. Graphical abstract ![]()
Collapse
Affiliation(s)
- Pooja Gupta
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA. .,Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602, USA. .,Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India.
| | - C K Vishnudas
- Indian Institute of Science Education and Research Tirupati, Mangalam, Tirupati, 517507, India
| | - V V Robin
- Indian Institute of Science Education and Research Tirupati, Mangalam, Tirupati, 517507, India
| | - Guha Dharmarajan
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA.,Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| |
Collapse
|
39
|
Jamieson A, Anderson SJ, Fuller J, Côté SD, Northrup JM, Shafer ABA. Heritability Estimates of Antler and Body Traits in White-Tailed Deer (Odocoileus virginianus) From Genomic-Relatedness Matrices. J Hered 2020; 111:429-435. [PMID: 32692835 DOI: 10.1093/jhered/esaa023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/09/2020] [Indexed: 12/23/2022] Open
Abstract
Estimating heritability (h2) is required to predict the response to selection and is useful in species that are managed or farmed using trait information. Estimating h2 in free-ranging populations is challenging due to the need for pedigrees; genomic-relatedness matrices (GRMs) circumvent this need and can be implemented in nearly any system where phenotypic and genome-wide single-nucleotide polymorphism (SNP) data are available. We estimated the heritability of 5 body and 3 antler traits in a free-ranging population of white-tailed deer (Odocoileus virginianus) on Anticosti Island, Quebec, Canada. We generated classic and robust GRMs from >10,000 SNPs: hind foot length, dressed body mass, and peroneus muscle mass had high h2 values of 0.62, 0.44, and 0.55, respectively. Heritability in male-only antler features ranged from 0.07 to 0.33. We explored the influence of filtering by minor allele frequency and data completion on h2: GRMs derived from fewer SNPs had reduced h2 estimates and the relatedness coefficients significantly deviated from those generated with more SNPs. As a corollary, we discussed limitations to the application of GRMs in the wild, notably how skewed GRMs, specifically many unrelated individuals, can increase variance around h2 estimates. This is the first study to estimate h2 on a free-ranging population of white-tailed deer and should be informative for breeding designs and management as these traits could respond to selection.
Collapse
Affiliation(s)
- Aidan Jamieson
- Department of Biology, Trent University, Peterborough, ON, Canada
| | - Spencer J Anderson
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | - Jérémie Fuller
- Département de biologie, Centre d'études nordiques and NSERC Industrial Research Chair in Integrated Resource Management of Anticosti Island, Université Laval, Québec City, QC, Canada
| | - Steeve D Côté
- Département de biologie, Centre d'études nordiques and NSERC Industrial Research Chair in Integrated Resource Management of Anticosti Island, Université Laval, Québec City, QC, Canada
| | - Joseph M Northrup
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada.,Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, Trent University, Peterborough, ON, Canada
| | - Aaron B A Shafer
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada.,Forensics Program Trent University, Peterborough, ON, Canada
| |
Collapse
|
40
|
Cis-regulatory differences in isoform expression associate with life history strategy variation in Atlantic salmon. PLoS Genet 2020; 16:e1009055. [PMID: 32997662 PMCID: PMC7549781 DOI: 10.1371/journal.pgen.1009055] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 10/12/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
A major goal in biology is to understand how evolution shapes variation in individual life histories. Genome-wide association studies have been successful in uncovering genome regions linked with traits underlying life history variation in a range of species. However, lack of functional studies of the discovered genotype-phenotype associations severely restrains our understanding how alternative life history traits evolved and are mediated at the molecular level. Here, we report a cis-regulatory mechanism whereby expression of alternative isoforms of the transcription co-factor vestigial-like 3 (vgll3) associate with variation in a key life history trait, age at maturity, in Atlantic salmon (Salmo salar). Using a common-garden experiment, we first show that vgll3 genotype associates with puberty timing in one-year-old salmon males. By way of temporal sampling of vgll3 expression in ten tissues across the first year of salmon development, we identify a pubertal transition in vgll3 expression where maturation coincided with a 66% reduction in testicular vgll3 expression. The late maturation allele was not only associated with a tendency to delay puberty, but also with expression of a rare transcript isoform of vgll3 pre-puberty. By comparing absolute vgll3 mRNA copies in heterozygotes we show that the expression difference between the early and late maturity alleles is largely cis-regulatory. We propose a model whereby expression of a rare isoform from the late allele shifts the liability of its carriers towards delaying puberty. These results exemplify the potential importance of regulatory differences as a mechanism for the evolution of life history traits. Alternative life history strategies are an important source of diversity within populations and promote the maintenance of adaptive capacity and population resilience. However, in many cases the molecular basis of different life history strategies remains elusive. Age at maturity is a key adaptive life history trait in Atlantic salmon and has a relatively simple genetic basis. Using salmon age at maturity as a model, we report a mechanism whereby different transcript isoforms of the key age at maturity gene, vestigial-like 3 (vgll3), associate with variation in the timing of male puberty. Our results show how gene regulatory differences in conjunction with variation in gene transcript structure can encode for complex alternative life histories.
Collapse
|
41
|
Ndung'u CW, Okeno TO, Muasya TK. Pooled parameter estimates for traits of economic importance in indigenous chicken in the tropics. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
42
|
Grinkov VG, Bauer A, Sternberg H, Wink M. Heritability of the extra-pair mating behaviour of the pied flycatcher in Western Siberia. PeerJ 2020; 8:e9571. [PMID: 32821536 PMCID: PMC7397985 DOI: 10.7717/peerj.9571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 06/29/2020] [Indexed: 02/01/2023] Open
Abstract
Males and females take part in extra-pair copulations in most socially monogamous bird species. The mechanisms leading to the frequent occurrence of extra-pair offspring in socially monogamous couples are strongly debated and unresolved, and they are often difficult to distinguish from one another. Most hypotheses explaining the evolution of extra-pair reproduction suggest selective and adaptive scenarios for their origination and persistence. Is extra-pair paternity a heritable trait? We evaluated the heritability of extra-pair paternity in the pied flycatcher (Ficedula hypoleuca) nesting in Western Siberia. Estimated heritability was low: depending on the model used, the point estimate of the heritability (mode) varied from 0.005 to 0.11, and the bounds of the 95% confidence interval are [0–0.16] in the widest range. Thus, it seems that extra-pair mating behaviour in the pied flycatchers is a plastic phenotypic mating tactic with a small or no genetic component. Our data can help to understand the evolution of extra-pair mating behaviour in socially monogamous species.
Collapse
Affiliation(s)
- Vladimir G Grinkov
- Evolutionary Biology Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation.,Tomsk State University, Tomsk, Russian Federation
| | - Andreas Bauer
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | | | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
43
|
|
44
|
Debes PV, Piavchenko N, Erkinaro J, Primmer CR. Genetic growth potential, rather than phenotypic size, predicts migration phenotype in Atlantic salmon. Proc Biol Sci 2020; 287:20200867. [PMID: 32693717 DOI: 10.1098/rspb.2020.0867] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Knowledge of the relative importance of genetic versus environmental determinants of major developmental transitions is pertinent to understanding phenotypic evolution. In salmonid fishes, a major developmental transition enables a risky seaward migration that provides access to feed resources. In Atlantic salmon, initiation of the migrant phenotype, and thus age of migrants, is presumably controlled via thresholds of a quantitative liability, approximated by body size expressed long before the migration. However, how well size approximates liability, both genetically and environmentally, remains uncertain. We studied 32 Atlantic salmon families in two temperatures and feeding regimes (fully fed, temporarily restricted) to completion of migration status at age 1 year. We detected a lower migrant probability in the cold (0.42) than the warm environment (0.76), but no effects of male maturation status or feed restriction. By contrast, body length in late summer predicted migrant probability and its control reduced migrant probability heritability by 50-70%. Furthermore, migrant probability and length showed high heritabilities and between-environment genetic correlations, and were phenotypically highly correlated with stronger genetic than environmental contributions. Altogether, quantitative estimates for the genetic and environmental effects predicting the migrant phenotype indicate, for a given temperature, a larger importance of genetic than environmental size effects.
Collapse
Affiliation(s)
- Paul V Debes
- Organismal & Evolutionary Biology Research Program, University of Helsinki, Helsinki 00014, Finland.,Department of Aquaculture and Fish Biology, Hólar University College, Sauðárkrókur 551, Iceland
| | - Nikolai Piavchenko
- Organismal & Evolutionary Biology Research Program, University of Helsinki, Helsinki 00014, Finland
| | - Jaakko Erkinaro
- Natural Resources Institute Finland (Luke), Oulu 90014, Finland
| | - Craig R Primmer
- Organismal & Evolutionary Biology Research Program, University of Helsinki, Helsinki 00014, Finland.,Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
45
|
Delia J, Bravo‐Valencia L, Warkentin KM. The evolution of extended parental care in glassfrogs: Do egg‐clutch phenotypes mediate coevolution between the sexes? ECOL MONOGR 2020. [DOI: 10.1002/ecm.1411] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jesse Delia
- Department of Biology Boston University Boston 02214 Massachusetts USA
| | - Laura Bravo‐Valencia
- Profesional equipo de fauna silvestre Corantioquia Santa Fe de Antioquia Colombia
| | - Karen M. Warkentin
- Department of Biology Boston University Boston 02214 Massachusetts USA
- Smithsonian Tropical Research Institute Panamá 0843-03092 República de Panamá
| |
Collapse
|
46
|
Kasper C, Ruiz-Ascacibar I, Stoll P, Bee G. Investigating the potential for genetic improvement of nitrogen and phosphorus efficiency in a Swiss large white pig population using chemical analysis. J Anim Breed Genet 2020; 137:545-558. [PMID: 32198799 PMCID: PMC7586817 DOI: 10.1111/jbg.12472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/17/2020] [Accepted: 02/23/2020] [Indexed: 12/04/2022]
Abstract
Pig production contributes to environmental pollution through excretion of phosphorus and nitrogenous compounds. European pig production requires annual imports of currently 36 million tons of soya bean, because domestic plant protein sources often do not meet the required protein quality. Most of the mineral phosphate sources are also imported. It is therefore desirable to improve nutrient deposition efficiency through selective breeding, that is to realise similar growth rates and carcass compositions as currently achieved but with a lower intake of dietary crude protein or phosphate. For a preliminary evaluation of the potential of selecting for increased nutrient deposition efficiency, we estimated genetic parameters for nitrogen and phosphorus efficiencies in a Swiss Large White pig population including 294 individuals. Nutrient efficiency phenotypes were obtained from wet‐chemistry analyses of pigs of various live weights. Heritability of nitrogen efficiency was estimated at 41%. Heritability of phosphorus efficiency was very low (0.3%), but positive genetic correlations with nitrogen efficiency suggest that breeding for nitrogen efficiency would positively affect phosphorus efficiency. Further studies are needed to improve the quality of estimates and to obtain accurate high‐throughput measures of nutrient efficiency to be implemented on farms.
Collapse
Affiliation(s)
- Claudia Kasper
- Swine Research Unit, Agroscope Posieux, Posieux, Switzerland
| | | | - Peter Stoll
- Swine Research Unit, Agroscope Posieux, Posieux, Switzerland
| | - Giuseppe Bee
- Swine Research Unit, Agroscope Posieux, Posieux, Switzerland
| |
Collapse
|
47
|
Developmental temperature influences color polymorphism but not hatchling size in a woodland salamander. Oecologia 2020; 192:909-918. [PMID: 32162072 DOI: 10.1007/s00442-020-04630-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/03/2020] [Indexed: 10/24/2022]
Abstract
Phenotypic plasticity can be an important adaptive response to climate change, particularly for dispersal-limited species. Temperature frequently alters developmental and phenotypic traits including morphology, behavior, and reproductive cycles. We often lack crucial information about if and how thermal conditions during development will interact with genetic responses and facilitate persistence or adaptation under climate change. Polymorphic species offer an ideal test for this, as alternative morphs often confer differential adaptive advantages. However, few studies have examined the effects of incubation temperature on color expression or development in polymorphic taxa. Here we test if developmental temperature mediates morph frequency in the polymorphic salamander Plethodon cinereus. Although previous research suggests geographic variation in morph proportions results from differential climate adaptation, it remains unknown if plasticity also contributes to this variation. We used a split-clutch common garden experiment to determine the effects of developmental temperature on the color and development of P. cinereus. Our results indicate developmental temperature affects coloration in P. cinereus, either via plasticity or differential mortality, with eggs incubated at warmer temperatures yielding a higher proportion of unstriped individuals than those from cooler temperatures. This temperature response may contribute to the spatial variation in morph frequencies in natural populations. Surprisingly, we found neither temperature nor egg size affected hatchling size. Our study provides important insights into the potential for climate-induced responses to preserve diversity in dispersal-limited species, like P. cinereus, and enable time for adaptive evolution.
Collapse
|
48
|
Rostaher A, Dolf G, Fischer NM, Silaghi C, Akdis C, Zwickl L, Audergon S, Favrot C. Atopic dermatitis in a cohort of West Highland white terriers in Switzerland. Part II: estimates of early life factors and heritability. Vet Dermatol 2020; 31:276-e66. [PMID: 32077169 DOI: 10.1111/vde.12843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND There is accumulating evidence in studies of allergic diseases in humans and dogs that environmental experiences during the first months of life can influence the development of allergic disease. No prospective study has evaluated this in veterinary medicine. HYPOTHESIS/OBJECTIVES To assess early-life risk factors for canine atopic dermatitis (cAD) and estimate its heritability. ANIMALS A West Highland white terrier birth cohort (n = 107) followed up to three years of age recording the development of cAD. METHODS AND MATERIALS The effect of environmental factors [house dust mites (HDM), hygiene, feeding, lifestyle] and early-life determinants [breeder, mode of delivery, birth season, sex, litter size, early-life immunoglobulin E (IgE) levels] were assessed, using Stata SE 15.1 statistical analysis. Heritabilities were estimated using the R program packages MCMCglmm and QGglmm. RESULTS Maternal allergic status [P = 0.013, odds ratio (OR 3.3)], male sex (P = 0.06), mode of delivery (P = 0.12), breeder (P = 0.06), presence of HDM (P = 0.11) and environmental hygiene level (P = 0.15) were identified as possible influence factors by bivariate analyses. In the multivariate analysis the male sex was significantly associated with the development of cAD in the offspring (P = 0.03, OR 2.4). The heritabilities on the observed scale were 0.31 (direct), 0.04 (maternal genetic effects) and 0.03 (maternal permanent environmental effects). CONCLUSION AND CLINICAL IMPORTANCE These results suggest that several environmental factors could influence the development of cAD but clearly demonstrate the genetic influence of the individual and the dam. Further studies are needed to identify specific environmental factors, which could be potential targets for primary disease intervention.
Collapse
Affiliation(s)
- Ana Rostaher
- Clinic for Small Animal Internal Medicine, Dermatology Unit, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| | - Gaudenz Dolf
- Institute of Genetics, Vetsuisse Faculty, University of Berne, Bremgartenstrasse 109a, 3001, Berne, Switzerland
| | - Nina Maria Fischer
- Clinic for Small Animal Internal Medicine, Dermatology Unit, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| | - Cornelia Silaghi
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland.,Institut für Infektionsmedizin, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | - Cezmi Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Obere Strasse 22, 7270, Davos, Switzerland.,Christine Kühne-Center for Allergy Research and Education, Herman-Burchard-Strasse 1, 7265, Davos, Switzerland
| | - Lena Zwickl
- Clinic for Small Animal Internal Medicine, Dermatology Unit, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| | - Sabrina Audergon
- Clinic for Small Animal Internal Medicine, Dermatology Unit, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| | - Claude Favrot
- Clinic for Small Animal Internal Medicine, Dermatology Unit, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| |
Collapse
|
49
|
Grinsted L, Schou MF, Settepani V, Holm C, Bird TL, Bilde T. Prey to predator body size ratio in the evolution of cooperative hunting-a social spider test case. Dev Genes Evol 2019; 230:173-184. [PMID: 31768622 DOI: 10.1007/s00427-019-00640-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/30/2019] [Indexed: 11/30/2022]
Abstract
One of the benefits of cooperative hunting may be that predators can subdue larger prey. In spiders, cooperative, social species can capture prey many times larger than an individual predator. However, we propose that cooperative prey capture does not have to be associated with larger caught prey per se, but with an increase in the ratio of prey to predator body size. This can be achieved either by catching larger prey while keeping predator body size constant, or by evolving a smaller predator body size while maintaining capture of large prey. We show that within a genus of relatively large spiders, Stegodyphus, subsocial spiders representing the ancestral state of social species are capable of catching the largest prey available in the environment. Hence, within this genus, the evolution of cooperation would not provide access to otherwise inaccessible, large prey. Instead, we show that social Stegodyphus spiders are smaller than their subsocial counterparts, while catching similar sized prey, leading to the predicted increase in prey-predator size ratio with sociality. We further show that in a genus of small spiders, Anelosimus, the level of sociality is associated with an increased size of prey caught while predator size is unaffected by sociality, leading to a similar, predicted increase in prey-predator size ratio. In summary, we find support for our proposed 'prey to predator size ratio hypothesis' and discuss how relaxed selection on large body size in the evolution of social, cooperative living may provide adaptive benefits for ancestrally relatively large predators.
Collapse
Affiliation(s)
- Lena Grinsted
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Mads F Schou
- Department of Biology, Lund University, 22362, Lund, Sweden
| | - Virginia Settepani
- Department of Biology, Aarhus University, Ny Munkegade 114-116, 8000, Aarhus C, Denmark
| | - Christina Holm
- Department of Biology, Aarhus University, Ny Munkegade 114-116, 8000, Aarhus C, Denmark
| | - Tharina L Bird
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology (BIUST), Plot, 10071, Palapye, Botswana
| | - Trine Bilde
- Department of Biology, Aarhus University, Ny Munkegade 114-116, 8000, Aarhus C, Denmark.
| |
Collapse
|
50
|
Asefa NG, Neustaeter A, Jansonius NM, Snieder H. Heritability of glaucoma and glaucoma-related endophenotypes: Systematic review and meta-analysis. Surv Ophthalmol 2019; 64:835-851. [DOI: 10.1016/j.survophthal.2019.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/28/2019] [Accepted: 06/07/2019] [Indexed: 02/09/2023]
|