1
|
Lauer ME, Kodak H, Albayrak T, Lima MR, Ray D, Simpson-Wade E, Tevs DR, Sheldon EL, Martin LB, Schrey AW. Introduced house sparrows (Passer domesticus) have greater variation in DNA methylation than native house sparrows. J Hered 2024; 115:11-18. [PMID: 37910845 DOI: 10.1093/jhered/esad067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/27/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023] Open
Abstract
As a highly successful introduced species, house sparrows (Passer domesticus) respond rapidly to their new habitats, generating phenotypic patterns across their introduced range that resemble variation in native regions. Epigenetic mechanisms likely facilitate the success of introduced house sparrows by aiding particular individuals to adjust their phenotypes plastically to novel conditions. Our objective here was to investigate patterns of DNA methylation among populations of house sparrows at a broad geographic scale that included different introduction histories: invading, established, and native. We defined the invading category as the locations with introductions less than 70 years ago and the established category as the locations with greater than 70 years since introduction. We screened DNA methylation among individuals (n = 45) by epiRADseq, expecting that variation in DNA methylation among individuals from invading populations would be higher when compared with individuals from established and native populations. Invading house sparrows had the highest variance in DNA methylation of all three groups, but established house sparrows also had higher variance than native ones. The highest number of differently methylated regions were detected between invading and native populations of house sparrow. Additionally, DNA methylation was negatively correlated to time-since introduction, which further suggests that DNA methylation had a role in the successful colonization's of house sparrows.
Collapse
Affiliation(s)
- M Ellesse Lauer
- Department of Biology, Georgia Southern University, Statesboro and Savannah, GA 30458 and 31419, United States
| | - Haley Kodak
- Department of Biology, Georgia Southern University, Statesboro and Savannah, GA 30458 and 31419, United States
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, United States
| | - Tamer Albayrak
- Department of Biology, Budur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Marcos R Lima
- Laboratório de Ecologia Evolutiva e Conservação, Departamento de Biologia Animal e Vegetal, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Daniella Ray
- Department of Biology, Georgia Southern University, Statesboro and Savannah, GA 30458 and 31419, United States
| | - Emma Simpson-Wade
- Department of Biology, Georgia Southern University, Statesboro and Savannah, GA 30458 and 31419, United States
- Biomedical Science, University of Iowa, Iowa City, IA 52242, United States
| | - David R Tevs
- Department of Biology, Georgia Southern University, Statesboro and Savannah, GA 30458 and 31419, United States
| | - Elizabeth L Sheldon
- USF Global Health and Infectious Disease Research Center and USF Genomics Center, College of Public Health, University of South Florida, Tampa, FL 33620, United States
| | - Lynn B Martin
- USF Global Health and Infectious Disease Research Center and USF Genomics Center, College of Public Health, University of South Florida, Tampa, FL 33620, United States
| | - Aaron W Schrey
- Department of Biology, Georgia Southern University, Statesboro and Savannah, GA 30458 and 31419, United States
| |
Collapse
|
2
|
Rosner A, Ballarin L, Barnay-Verdier S, Borisenko I, Drago L, Drobne D, Concetta Eliso M, Harbuzov Z, Grimaldi A, Guy-Haim T, Karahan A, Lynch I, Giulia Lionetto M, Martinez P, Mehennaoui K, Oruc Ozcan E, Pinsino A, Paz G, Rinkevich B, Spagnuolo A, Sugni M, Cambier S. A broad-taxa approach as an important concept in ecotoxicological studies and pollution monitoring. Biol Rev Camb Philos Soc 2024; 99:131-176. [PMID: 37698089 DOI: 10.1111/brv.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Aquatic invertebrates play a pivotal role in (eco)toxicological assessments because they offer ethical, cost-effective and repeatable testing options. Additionally, their significance in the food chain and their ability to represent diverse aquatic ecosystems make them valuable subjects for (eco)toxicological studies. To ensure consistency and comparability across studies, international (eco)toxicology guidelines have been used to establish standardised methods and protocols for data collection, analysis and interpretation. However, the current standardised protocols primarily focus on a limited number of aquatic invertebrate species, mainly from Arthropoda, Mollusca and Annelida. These protocols are suitable for basic toxicity screening, effectively assessing the immediate and severe effects of toxic substances on organisms. For more comprehensive and ecologically relevant assessments, particularly those addressing long-term effects and ecosystem-wide impacts, we recommended the use of a broader diversity of species, since the present choice of taxa exacerbates the limited scope of basic ecotoxicological studies. This review provides a comprehensive overview of (eco)toxicological studies, focusing on major aquatic invertebrate taxa and how they are used to assess the impact of chemicals in diverse aquatic environments. The present work supports the use of a broad-taxa approach in basic environmental assessments, as it better represents the natural populations inhabiting various ecosystems. Advances in omics and other biochemical and computational techniques make the broad-taxa approach more feasible, enabling mechanistic studies on non-model organisms. By combining these approaches with in vitro techniques together with the broad-taxa approach, researchers can gain insights into less-explored impacts of pollution, such as changes in population diversity, the development of tolerance and transgenerational inheritance of pollution responses, the impact on organism phenotypic plasticity, biological invasion outcomes, social behaviour changes, metabolome changes, regeneration phenomena, disease susceptibility and tissue pathologies. This review also emphasises the need for harmonised data-reporting standards and minimum annotation checklists to ensure that research results are findable, accessible, interoperable and reusable (FAIR), maximising the use and reusability of data. The ultimate goal is to encourage integrated and holistic problem-focused collaboration between diverse scientific disciplines, international standardisation organisations and decision-making bodies, with a focus on transdisciplinary knowledge co-production for the One-Health approach.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Loriano Ballarin
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Stéphanie Barnay-Verdier
- Sorbonne Université; CNRS, INSERM, Université Côte d'Azur, Institute for Research on Cancer and Aging Nice, 28 avenue Valombrose, Nice, F-06107, France
| | - Ilya Borisenko
- Faculty of Biology, Department of Embryology, Saint Petersburg State University, Universitetskaya embankment 7/9, Saint Petersburg, 199034, Russia
| | - Laura Drago
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, 1111, Slovenia
| | - Maria Concetta Eliso
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Zoya Harbuzov
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
- Leon H. Charney School of Marine Sciences, Department of Marine Biology, University of Haifa, 199 Aba Koushy Ave., Haifa, 3498838, Israel
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant, Varese, 3-21100, Italy
| | - Tamar Guy-Haim
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Arzu Karahan
- Middle East Technical University, Institute of Marine Sciences, Erdemli-Mersin, PO 28, 33731, Turkey
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via prov. le Lecce -Monteroni, Lecce, I-73100, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina, 61, Palermo, I-90133, Italy
| | - Pedro Martinez
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, Barcelona, 08010, Spain
| | - Kahina Mehennaoui
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| | - Elif Oruc Ozcan
- Faculty of Arts and Science, Department of Biology, Cukurova University, Balcali, Saricam, Adana, 01330, Turkey
| | - Annalisa Pinsino
- National Research Council, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa 153, Palermo, 90146, Italy
| | - Guy Paz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, Milan, 20133, Italy
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| |
Collapse
|
3
|
Tevs DR, Mukhalian JA, Simpson E, Cox CL, Schrey AW, McBrayer LD. DNA Methylation and Counterdirectional Pigmentation Change following Immune Challenge in a Small Ectotherm. Physiol Biochem Zool 2023; 96:418-429. [PMID: 38237192 DOI: 10.1086/727692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
AbstractBy allowing for increased absorption or reflectance of solar radiation, changes in pigmentation may assist ectotherms in responding to immune challenges by enabling a more precise regulation of behavioral fever or hypothermia. Variation in epigenetic characteristics may also assist in regulating immune-induced pigmentation changes and managing the body's energetic reserves following infection. Here, we explore how dorsal pigmentation, metabolic rate, and DNA methylation in the Florida scrub lizard (Sceloporus woodi) respond to two levels of immune challenge across two habitat types. We found changes in pigmentation that are suggestive of efforts to assist in behavioral fever and hypothermia depending on the intensity of immune challenge. We also found correlations between DNA methylation in liver tissue and pigmentation change along the dorsum, indicating that color transitions may be part of a multifaceted immune response across tissue types. The relationship between immune response and metabolic rate supports the idea that energetic reserves may be conserved for the costs associated with behavioral fever when immune challenge is low and the immune functions when immune challenge is high. While immune response appeared to be unaffected by habitat type, we found differences in metabolic activity between habitats, suggesting differences in the energetic costs associated with each. To our knowledge, these results present the first potential evidence of pigmentation change in ectotherms in association with immune response. The relationship between immune response, DNA methylation, and pigmentation change also highlights the importance of epigenetic mechanisms in organism physiology.
Collapse
|
4
|
Gouin N, Notte AM, Kolok AS, Bertin A. Pesticide exposure affects DNA methylation patterns in natural populations of a mayfly. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161096. [PMID: 36572299 DOI: 10.1016/j.scitotenv.2022.161096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Chemical pollutants derived from agricultural activities represent a major threat to freshwater biota. Despite growing evidence involving epigenetic processes, such as DNA methylation, in response to pesticide contamination in agroecosystems, research on wild populations of non-model species remains scarce, particularly for endemic freshwater arthropods. Using the MethylRAD method, this study investigates whether exposure to pesticide contamination in natural populations of the endemic mayfly A. torrens produces genome wide changes in levels of DNA methylation. From a total of 1,377,147 MethylRAD markers produced from 285 specimens collected at 30 different study sites along the Limarí watershed of north-central Chile, six showed significant differential methylation between populations exposed and unexposed to pesticides. In all cases the effect of pesticides was positive, independent and stronger than the effects detected for other spatial and environmental factors. Only one candidate marker appeared correlated significantly with additional variables, nitrate and calcium levels, which also reflects the impact of agrichemicals and could additionally suggest, to a lower extent, antagonistic effects of mineral salts concentration for this specific marker. These results suggest that the effect of pesticide exposure on methylation levels is apparent at these six MethylRAD markers in A. torrens populations. Such data is challenging to obtain in natural populations and is, for the most part, lacking in ecotoxicological studies. Our study shows that DNA methylation processes are involved in the response to pesticide contamination in populations of the mayfly A. torrens in their natural habitat, and provides new evidence regarding the impact of pesticide contamination and agricultural activities on the endemic fauna of lotic ecosystems.
Collapse
Affiliation(s)
- Nicolas Gouin
- Instituto de Investigación Multidisciplinar en Ciencia y Tecnología, Universidad de La Serena, Raúl Bitrán 1305, La Serena, Chile; Departamento de Biología, Universidad de La Serena, Raúl Bitrán 1305, La Serena, Chile; Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Raúl Bitrán 1305, La Serena, Chile.
| | - Ana-Maria Notte
- Programa de doctorado en Biología y Ecología Aplicada, Departamento de Biología, Universidad de La Serena, Raúl Bitrán 1305, La Serena, Chile
| | - Alan S Kolok
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID 83844-3002, United States
| | - Angéline Bertin
- Departamento de Biología, Universidad de La Serena, Raúl Bitrán 1305, La Serena, Chile
| |
Collapse
|
5
|
Rajpal VR, Rathore P, Mehta S, Wadhwa N, Yadav P, Berry E, Goel S, Bhat V, Raina SN. Epigenetic variation: A major player in facilitating plant fitness under changing environmental conditions. Front Cell Dev Biol 2022; 10:1020958. [PMID: 36340045 PMCID: PMC9628676 DOI: 10.3389/fcell.2022.1020958] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Recent research in plant epigenetics has increased our understanding of how epigenetic variability can contribute to adaptive phenotypic plasticity in natural populations. Studies show that environmental changes induce epigenetic switches either independently or in complementation with the genetic variation. Although most of the induced epigenetic variability gets reset between generations and is short-lived, some variation becomes transgenerational and results in heritable phenotypic traits. The short-term epigenetic responses provide the first tier of transient plasticity required for local adaptations while transgenerational epigenetic changes contribute to stress memory and help the plants respond better to recurring or long-term stresses. These transgenerational epigenetic variations translate into an additional tier of diversity which results in stable epialleles. In recent years, studies have been conducted on epigenetic variation in natural populations related to various biological processes, ecological factors, communities, and habitats. With the advent of advanced NGS-based technologies, epigenetic studies targeting plants in diverse environments have increased manifold to enhance our understanding of epigenetic responses to environmental stimuli in facilitating plant fitness. Taking all points together in a frame, the present review is a compilation of present-day knowledge and understanding of the role of epigenetics and its fitness benefits in diverse ecological systems in natural populations.
Collapse
Affiliation(s)
- Vijay Rani Rajpal
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- *Correspondence: Vijay Rani Rajpal, , ; Shailendra Goel, ; Vishnu Bhat, ; Soom Nath Raina,
| | | | - Sahil Mehta
- School of Agricultural Sciences, K.R. Mangalam University, Gurugram, Haryana, India
| | - Nikita Wadhwa
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | | | - Eapsa Berry
- Maharishi Kanad Bhawan, Delhi School of Climate Change and Sustainability, University of Delhi, Delhi, India
| | - Shailendra Goel
- Department of Botany, University of Delhi, Delhi, India
- *Correspondence: Vijay Rani Rajpal, , ; Shailendra Goel, ; Vishnu Bhat, ; Soom Nath Raina,
| | - Vishnu Bhat
- Department of Botany, University of Delhi, Delhi, India
- *Correspondence: Vijay Rani Rajpal, , ; Shailendra Goel, ; Vishnu Bhat, ; Soom Nath Raina,
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
- *Correspondence: Vijay Rani Rajpal, , ; Shailendra Goel, ; Vishnu Bhat, ; Soom Nath Raina,
| |
Collapse
|
6
|
Šrut M. Environmental Epigenetics in Soil Ecosystems: Earthworms as Model Organisms. TOXICS 2022; 10:toxics10070406. [PMID: 35878310 PMCID: PMC9323174 DOI: 10.3390/toxics10070406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022]
Abstract
One of the major emerging concerns within ecotoxicology is the effect of environmental pollutants on epigenetic changes, including DNA methylation, histone modifications, and non-coding RNAs. Epigenetic mechanisms regulate gene expression, meaning that the alterations of epigenetic marks can induce long-term physiological effects that can even be inherited across generations. Many invertebrate species have been used as models in environmental epigenetics, with a special focus on DNA methylation changes caused by environmental perturbations (e.g., pollution). Among soil organisms, earthworms are considered the most relevant sentinel organisms for anthropogenic stress assessment and are widely used as standard models in ecotoxicological testing of soil toxicity. In the last decade, several research groups have focused on assessing the impact of environmental stress on earthworm epigenetic mechanisms and tried to link these mechanisms to the physiological effects. The aim of this review is to give an overview and to critically examine the available literature covering this topic. The high level of earthworm genome methylation for an invertebrate species, responsiveness of epigenome to environmental stimuli, availability of molecular resources, and the possibility to study epigenetic inheritance make earthworms adequate models in environmental epigenomics. However, there are still many knowledge gaps that need to be filled in, before we can fully explore earthworms as models in this field. These include detailed characterization of the methylome using next-generation sequencing tools, exploration of multigenerational and transgenerational effects of pollutants, and information about other epigenetic mechanisms apart from DNA methylation. Moreover, the connection between epigenetic effects and phenotype has to be further explored.
Collapse
Affiliation(s)
- Maja Šrut
- Department of Zoology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
7
|
Feiner N, Radersma R, Vasquez L, Ringnér M, Nystedt B, Raine A, Tobi EW, Heijmans BT, Uller T. Environmentally induced DNA methylation is inherited across generations in an aquatic keystone species. iScience 2022; 25:104303. [PMID: 35573201 PMCID: PMC9097707 DOI: 10.1016/j.isci.2022.104303] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/02/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
Transgenerational inheritance of environmentally induced epigenetic marks can have significant impacts on eco-evolutionary dynamics, but the phenomenon remains controversial in ecological model systems. We used whole-genome bisulfite sequencing of individual water fleas (Daphnia magna) to assess whether environmentally induced DNA methylation is transgenerationally inherited. Genetically identical females were exposed to one of three natural stressors, or a de-methylating drug, and their offspring were propagated clonally for four generations under control conditions. We identified between 70 and 225 differentially methylated CpG positions (DMPs) in F1 individuals whose mothers were exposed to a natural stressor. Roughly half of these environmentally induced DMPs persisted until generation F4. In contrast, treatment with the drug demonstrated that pervasive hypomethylation upon exposure is reset almost completely after one generation. These results suggest that environmentally induced DNA methylation is non-random and stably inherited across generations in Daphnia, making epigenetic inheritance a putative factor in the eco-evolutionary dynamics of freshwater communities.
Collapse
Affiliation(s)
| | - Reinder Radersma
- Department of Biology, Lund University, Lund, Sweden
- Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
| | - Louella Vasquez
- Department of Laboratory Medicine, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Markus Ringnér
- Department of Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Björn Nystedt
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Amanda Raine
- Department of Medical Sciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Elmar W. Tobi
- Periconceptional Epidemiology, Department of Obstetrics and Gynaecology, Division of Obstetrics and Prenatal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Division of Human Nutrition and Health, Department of Agrotechnology and Food Science, Wageningen University & Research, Wageningen, The Netherlands
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Bastiaan T. Heijmans
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Tobias Uller
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Hanson HE, Wang C, Schrey AW, Liebl AL, Ravinet M, Jiang RH, Martin LB. Epigenetic Potential and DNA Methylation in an Ongoing House Sparrow (Passer domesticus) Range Expansion. Am Nat 2022; 200:662-674. [DOI: 10.1086/720950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Eckert S, Herden J, Stift M, Durka W, van Kleunen M, Joshi J. Traces of Genetic but Not Epigenetic Adaptation in the Invasive Goldenrod Solidago canadensis Despite the Absence of Population Structure. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.856453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Biological invasions may result from multiple introductions, which might compensate for reduced gene pools caused by bottleneck events, but could also dilute adaptive processes. A previous common-garden experiment showed heritable latitudinal clines in fitness-related traits in the invasive goldenrod Solidago canadensis in Central Europe. These latitudinal clines remained stable even in plants chemically treated with zebularine to reduce epigenetic variation. However, despite the heritability of traits investigated, genetic isolation-by-distance was non-significant. Utilizing the same specimens, we applied a molecular analysis of (epi)genetic differentiation with standard and methylation-sensitive (MSAP) AFLPs. We tested whether this variation was spatially structured among populations and whether zebularine had altered epigenetic variation. Additionally, we used genome scans to mine for putative outlier loci susceptible to selection processes in the invaded range. Despite the absence of isolation-by-distance, we found spatial genetic neighborhoods among populations and two AFLP clusters differentiating northern and southern Solidago populations. Genetic and epigenetic diversity were significantly correlated, but not linked to phenotypic variation. Hence, no spatial epigenetic patterns were detected along the latitudinal gradient sampled. Applying genome-scan approaches (BAYESCAN, BAYESCENV, RDA, and LFMM), we found 51 genetic and epigenetic loci putatively responding to selection. One of these genetic loci was significantly more frequent in populations at the northern range. Also, one epigenetic locus was more frequent in populations in the southern range, but this pattern was lost under zebularine treatment. Our results point to some genetic, but not epigenetic adaptation processes along a large-scale latitudinal gradient of S. canadensis in its invasive range.
Collapse
|
10
|
Lamka GF, Harder AM, Sundaram M, Schwartz TS, Christie MR, DeWoody JA, Willoughby JR. Epigenetics in Ecology, Evolution, and Conservation. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.871791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Epigenetic variation is often characterized by modifications to DNA that do not alter the underlying nucleotide sequence, but can influence behavior, morphology, and physiological phenotypes by affecting gene expression and protein synthesis. In this review, we consider how the emerging field of ecological epigenetics (eco-epi) aims to use epigenetic variation to explain ecologically relevant phenotypic variation and predict evolutionary trajectories that are important in conservation. Here, we focus on how epigenetic data have contributed to our understanding of wild populations, including plants, animals, and fungi. First, we identified published eco-epi literature and found that there was limited taxonomic and ecosystem coverage and that, by necessity of available technology, these studies have most often focused on the summarized epigenome rather than locus- or nucleotide-level epigenome characteristics. We also found that while many studies focused on adaptation and heritability of the epigenome, the field has thematically expanded into topics such as disease ecology and epigenome-based ageing of individuals. In the second part of our synthesis, we discuss key insights that have emerged from the epigenetic field broadly and use these to preview the path toward integration of epigenetics into ecology. Specifically, we suggest moving focus to nucleotide-level differences in the epigenome rather than whole-epigenome data and that we incorporate several facets of epigenome characterization (e.g., methylation, chromatin structure). Finally, we also suggest that incorporation of behavior and stress data will be critical to the process of fully integrating eco-epi data into ecology, conservation, and evolutionary biology.
Collapse
|
11
|
Abstract
Epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNAs are increasingly targeted in studies of natural populations. Here, I review some of the insights gained from this research, examine some of the methods currently in use and discuss some of the challenges that researchers working on natural populations are likely to face when probing epigenetic mechanisms. While studies supporting the involvement of epigenetic mechanisms in generating phenotypic variation in natural populations are amassing, many of these studies are currently correlative in nature. Thus, while empirical data point to widespread contributions of epigenetic mechanisms in generating phenotypic variation, there are still concerns as to whether epigenetic variation is instead ultimately controlled by genetic variation. Disentangling these two sources of variation will be a key to resolving the debate about the importance of epigenetic mechanisms, and studies on natural populations that partition the relative contribution of genetic and epigenetic factors to phenotypic variation can play an important role in this debate.
Collapse
Affiliation(s)
- Arild Husby
- Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-75236 Uppsala, Sweden.,Centre for Biodiversity Dynamics, Norwegian University for Science and Technology, Trondheim, Norway
| |
Collapse
|
12
|
Abstract
Restriction enzymes have been one of the primary tools in the population genetics toolkit for 50 years, being coupled with each new generation of technology to provide a more detailed view into the genetics of natural populations. Restriction site-Associated DNA protocols, which joined enzymes with short-read sequencing technology, have democratized the field of population genomics, providing a means to assay the underlying alleles in scores of populations. More than 10 years on, the technique has been widely applied across the tree of life and served as the basis for many different analysis techniques. Here, we provide a detailed protocol to conduct a RAD analysis from experimental design to de novo analysis-including parameter optimization-as well as reference-based analysis, all in Stacks version 2, which is designed to work with paired-end reads to assemble RAD loci up to 1000 nucleotides in length. The protocol focuses on major points of friction in the molecular approaches and downstream analysis, with special attention given to validating experimental analyses. Finally, the protocol provides several points of departure for further analysis.
Collapse
Affiliation(s)
- Angel G Rivera-Colón
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Julian Catchen
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
13
|
Šrut M. Ecotoxicological epigenetics in invertebrates: Emerging tool for the evaluation of present and past pollution burden. CHEMOSPHERE 2021; 282:131026. [PMID: 34111635 DOI: 10.1016/j.chemosphere.2021.131026] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
The effect of environmental pollution on epigenetic changes and their heredity in affected organisms is of major concern as such changes can play a significant role in adaptation to changing environmental conditions. Changes of epigenetic marks including DNA methylation, histone modifications, and non-coding RNA's can induce changes in gene transcription leading to physiological long-term changes or even transgenerational inheritance. Such mechanisms have until recently been scarcely studied in invertebrate organisms, mainly focusing on model species including Caenorhabditis elegans and Daphnia magna. However, more data are becoming available, particularly focused on DNA methylation changes caused by anthropogenic pollutants in a wide range of invertebrates. This review examines the literature from field and laboratory studies utilising invertebrate species exposed to environmental pollutants and their effect on DNA methylation. Possible mechanisms of epigenetic modifications and their role on physiology and adaptation as well as the incidence of intergenerational and transgenerational inheritance are discussed. Furthermore, critical research challenges are defined and the way forward is proposed. Future studies should focus on the use of next generation sequencing tools to define invertebrate methylomes under environmental stress in higher resolution, those data should further be linked to gene expression patterns and phenotypes and detailed studies focusing on transgenerational effects are encouraged. Moreover, studies of other epigenetic mechanisms in various invertebrate species, apart from DNA methylation would provide better understanding of interconnected cross-talk between epigenetic marks. Taken together incorporating epigenetic studies in ecotoxicology context presents a promising tool for development of sensitive biomarkers for environmental stress assessment.
Collapse
Affiliation(s)
- Maja Šrut
- University of Innsbruck, Institute of Zoology, Technikerstraße 25, 6020, Innsbruck, Austria.
| |
Collapse
|
14
|
Crotti M, Yohannes E, Winfield IJ, Lyle AA, Adams CE, Elmer KR. Rapid adaptation through genomic and epigenomic responses following translocations in an endangered salmonid. Evol Appl 2021; 14:2470-2489. [PMID: 34745338 PMCID: PMC8549615 DOI: 10.1111/eva.13267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Identifying the molecular mechanisms facilitating adaptation to new environments is a key question in evolutionary biology, especially in the face of current rapid and human-induced changes. Translocations have become an important tool for species conservation, but the attendant small population sizes and new ecological pressures might affect phenotypic and genotypic variation and trajectories dramatically and in unknown ways. In Scotland, the European whitefish (Coregonus lavaretus) is native to only two lakes and vulnerable to extirpation. Six new refuge populations were established over the last 30 years as a conservation measure. In this study, we examined whether there is a predictable ecological and evolutionary response of these fishes to translocation. We found eco-morphological differences, as functional traits relating to body shape differed between source and refuge populations. Dual isotopic analyses suggested some ecological release, with the diets in refuge populations being more diverse than in source populations. Analyses of up to 9117 genome-mapped SNPs showed that refuge populations had reduced genetic diversity and elevated inbreeding and relatedness relative to source populations, though genomic differentiation was low (F ST = 0.002-0.030). We identified 14 genomic SNPs that showed shared signals of a selective response to translocations, including some located near or within genes involved in the immune system, nervous system and hepatic functions. Analysis of up to 120,897 epigenomic loci identified a component of consistent differential methylation between source and refuge populations. We found that epigenomic variation and genomic variation were associated with morphological variation, but we were not able to infer an effect of population age because the patterns were also linked with the methodology of the translocations. These results show that conservation-driven translocations affect evolutionary potential by impacting eco-morphological, genomic and epigenomic components of diversity, shedding light on acclimation and adaptation process in these contexts.
Collapse
Affiliation(s)
- Marco Crotti
- Institute of BiodiversityAnimal Health & Comparative MedicineCollege of Medical, Veterinary & Life SciencesUniversity of GlasgowGlasgowUK
| | - Elizabeth Yohannes
- Limnological InstituteUniversity of KonstanzKonstanzGermany
- Present address:
Max‐Planck Institute of Animal BehaviorAm Obstberg 1D‐78315RadolfzellGermany
- Present address:
University of KonstanzKonstanzGermany
| | - Ian J. Winfield
- Lake Ecosystems GroupUK Centre for Ecology & HydrologyLancaster Environment CentreBailrigg, LancasterUK
| | - Alex A. Lyle
- Scottish Centre for Ecology and the Natural EnvironmentUniversity of GlasgowRowardennanUK
| | - Colin E. Adams
- Institute of BiodiversityAnimal Health & Comparative MedicineCollege of Medical, Veterinary & Life SciencesUniversity of GlasgowGlasgowUK
- Scottish Centre for Ecology and the Natural EnvironmentUniversity of GlasgowRowardennanUK
| | - Kathryn R. Elmer
- Institute of BiodiversityAnimal Health & Comparative MedicineCollege of Medical, Veterinary & Life SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
15
|
Palaiokostas C, Anjum A, Jeuthe H, Kurta K, Lopes Pinto F, Koning DJ. A genomic‐based vision on the genetic diversity and key performance traits in selectively bred Arctic charr (
Salvelinus alpinus
). Evol Appl 2021; 15:565-577. [PMID: 35505879 PMCID: PMC9046918 DOI: 10.1111/eva.13261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/19/2021] [Accepted: 05/29/2021] [Indexed: 12/25/2022] Open
Abstract
Routine implementation of genomic information for guiding selection decisions is not yet common in the majority of aquaculture species. Reduced representation sequencing approaches offer a cost‐effective solution for obtaining genome‐wide information in species with a limited availability of genomic resources. In the current study, we implemented double‐digest restriction site‐associated DNA sequencing (ddRAD‐seq) on an Arctic charr strain with the longest known history of selection (approximately 40 years) aiming to improve selection decisions. In total, 1730 animals reared at four different farms in Sweden and spanning from year classes 2013–2017 were genotyped using ddRAD‐seq. Approximately 5000 single nucleotide polymorphisms (SNPs) were identified, genetic diversity‐related metrics were estimated, and genome‐wide association studies (GWAS) for body length at different time points and age of sexual maturation were conducted. Low genetic differentiation amongst animals from the different farms was observed based on both the results from pairwise Fst values and principal component analysis (PCA). The existence of associations was investigated between the mean genome‐wide heterozygosity of each full‐sib family (year class 2017) and the corresponding inbreeding coefficient or survival to the eyed stage. A moderate correlation (−0.33) was estimated between the mean observed heterozygosity of each full‐sib family and the corresponding inbreeding coefficient, while no linear association was obtained with the survival to the eyed stage. GWAS did not detect loci with major effect for any of the studied traits. However, genomic regions explaining more than 1% of the additive genetic variance for either studied traits were suggested across 14 different chromosomes. Overall, key insights valuable for future selection decisions of Arctic charr have been obtained, suggesting ddRAD as an attractive genotyping platform for obtaining genome‐wide information in a cost‐effective manner.
Collapse
Affiliation(s)
- Christos Palaiokostas
- Department of Animal Breeding and Genetics Swedish University of Agricultural Sciences Uppsala Sweden
| | - Anam Anjum
- Department of Animal Breeding and Genetics Swedish University of Agricultural Sciences Uppsala Sweden
| | - Henrik Jeuthe
- Department of Animal Breeding and Genetics Swedish University of Agricultural Sciences Uppsala Sweden
- Aquaculture Center North Kälarne Sweden
| | - Khrystyna Kurta
- Department of Animal Breeding and Genetics Swedish University of Agricultural Sciences Uppsala Sweden
| | - Fernando Lopes Pinto
- Department of Animal Breeding and Genetics Swedish University of Agricultural Sciences Uppsala Sweden
| | - Dirk Jan Koning
- Department of Animal Breeding and Genetics Swedish University of Agricultural Sciences Uppsala Sweden
| |
Collapse
|
16
|
Liebl AL, Wesner JS, Russell AF, Schrey AW. Methylation patterns at fledging predict delayed dispersal in a cooperatively breeding bird. PLoS One 2021; 16:e0252227. [PMID: 34086730 PMCID: PMC8177507 DOI: 10.1371/journal.pone.0252227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/11/2021] [Indexed: 01/18/2023] Open
Abstract
Individuals may delay dispersing from their natal habitat, even after maturation to adulthood. Such delays can have broad consequences from determining population structure to allowing an individual to gain indirect fitness by helping parents rear future offspring. Dispersal in species that use delayed dispersal is largely thought to be opportunistic; however, how individuals, particularly inexperienced juveniles, assess their environments to determine the appropriate time to disperse is unknown. One relatively unexplored possibility is that dispersal decisions are the result of epigenetic mechanisms interacting between a genome and environment during development to generate variable dispersive phenotypes. Here, we tested this using epiRADseq to compare genome-wide levels of DNA methylation of blood in cooperatively breeding chestnut-crowned babblers (Pomatostomus ruficeps). We measured dispersive and philopatric individuals at hatching, before fledging, and at 1 year (following when first year dispersal decisions would be made). We found that individuals that dispersed in their first year had a reduced proportion of methylated loci than philopatric individuals before fledging, but not at hatching or as adults. Further, individuals that dispersed in the first year had a greater number of loci change methylation state (i.e. gain or lose) between hatching and fledging. The existence and timing of these changes indicate some influence of development on epigenetic changes that may influence dispersal behavior. However, further work needs to be done to address exactly how developmental environments may be associated with dispersal decisions and which loci in particular are manipulated to generate such changes.
Collapse
Affiliation(s)
- Andrea L Liebl
- Department of Biology, University of South Dakota, Vermillion, South Dakota, United States of America
| | - Jeff S Wesner
- Department of Biology, University of South Dakota, Vermillion, South Dakota, United States of America
| | - Andrew F Russell
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Aaron W Schrey
- Department of Biology, Georgia Southern University, Armstrong, Georgia, United States of America
| |
Collapse
|
17
|
Graeve A, Janßen M, Villalba de la Pena M, Tollrian R, Weiss LC. Higher, Faster, Better: Maternal Effects Shorten Time Lags and Increase Morphological Defenses in Daphnia lumholtzi Offspring Generations. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.637421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Prey species can respond to the presence of predators by inducing phenotypic plastic traits which form morphological, life history or behavioral defenses. These so-called inducible defenses have evolved within a cost-benefit framework. They are only formed when they are needed, and costs associated with defenses are saved when predators are not present. However, a disadvantage compared to permanent defenses are lag phases between predator perception and the full formation of defenses. This may be especially important when the predation risk persists for longer periods, e.g., outlasts one generation and challenges prey offspring. We hypothesized that transgenerational induced phenotypic plasticity reduces lag phases in situations where hazards threaten specimens over several generations. We tested this in three generations of the freshwater crustacean Daphnia lumholtzi using the three-spined stickleback Gasterosteus aculeatus as predator. In the presence of chemical cues from fish D. lumholtzi expresses elongated head and tail spines. In the F0 generation defenses are constraint by a comparatively long lag phase and are not developed prior to the 3rd instar. In the F1, and F2 of induced animals this lag phase is shortened and defenses are developed upon birth. We show that induction of TGP in the mothers takes place already during the juvenile stages and transfers to the offspring generation in forms of shortened time lags and enhanced trait expression. When progeny is additionally exposed to fish cues as embryos, the addition of maternal and embryonic effects further enhances the magnitude of defense expression. Our findings detail a distinguished strategy of transgenerational phenotypic plasticity which allows to shorten lag phases of trait changes in phenotypic plasticity.
Collapse
|
18
|
Fargeot L, Loot G, Prunier JG, Rey O, Veyssière C, Blanchet S. Patterns of Epigenetic Diversity in Two Sympatric Fish Species: Genetic vs. Environmental Determinants. Genes (Basel) 2021; 12:107. [PMID: 33467145 PMCID: PMC7830833 DOI: 10.3390/genes12010107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetic components are hypothesized to be sensitive to the environment, which should permit species to adapt to environmental changes. In wild populations, epigenetic variation should therefore be mainly driven by environmental variation. Here, we tested whether epigenetic variation (DNA methylation) observed in wild populations is related to their genetic background, and/or to the local environment. Focusing on two sympatric freshwater fish species (Gobio occitaniae and Phoxinus phoxinus), we tested the relationships between epigenetic differentiation, genetic differentiation (using microsatellite and single nucleotide polymorphism (SNP) markers), and environmental distances between sites. We identify positive relationships between pairwise genetic and epigenetic distances in both species. Moreover, epigenetic marks better discriminated populations than genetic markers, especially in G. occitaniae. In G. occitaniae, both pairwise epigenetic and genetic distances were significantly associated to environmental distances between sites. Nonetheless, when controlling for genetic differentiation, the link between epigenetic differentiation and environmental distances was not significant anymore, indicating a noncausal relationship. Our results suggest that fish epigenetic variation is mainly genetically determined and that the environment weakly contributed to epigenetic variation. We advocate the need to control for the genetic background of populations when inferring causal links between epigenetic variation and environmental heterogeneity in wild populations.
Collapse
Affiliation(s)
- Laura Fargeot
- Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Station d’Ecologie Théorique et Expérimentale, UMR 5321, F-09200 Moulis, France;
| | - Géraldine Loot
- CNRS, UPS, École Nationale de Formation Agronomique (ENFA), UMR 5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, F-31062 Toulouse CEDEX 4, France; (G.L.); (C.V.)
- Université Paul Sabatier (UPS), Institut Universitaire de France (IUF), F-75231 Paris CEDEX 05, France
| | - Jérôme G. Prunier
- Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Station d’Ecologie Théorique et Expérimentale, UMR 5321, F-09200 Moulis, France;
| | - Olivier Rey
- CNRS, Interaction Hôtes-Parasites-Environnements (IHPE), UMR 5244, F-66860 Perpignan, France;
| | - Charlotte Veyssière
- CNRS, UPS, École Nationale de Formation Agronomique (ENFA), UMR 5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, F-31062 Toulouse CEDEX 4, France; (G.L.); (C.V.)
| | - Simon Blanchet
- Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Station d’Ecologie Théorique et Expérimentale, UMR 5321, F-09200 Moulis, France;
- CNRS, UPS, École Nationale de Formation Agronomique (ENFA), UMR 5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, F-31062 Toulouse CEDEX 4, France; (G.L.); (C.V.)
| |
Collapse
|
19
|
García-García I, Méndez-Cea B, Martín-Gálvez D, Seco JI, Gallego FJ, Linares JC. Challenges and Perspectives in the Epigenetics of Climate Change-Induced Forests Decline. FRONTIERS IN PLANT SCIENCE 2021; 12:797958. [PMID: 35058957 PMCID: PMC8764141 DOI: 10.3389/fpls.2021.797958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/13/2021] [Indexed: 05/14/2023]
Abstract
Forest tree species are highly vulnerable to the effects of climate change. As sessile organisms with long generation times, their adaptation to a local changing environment may rely on epigenetic modifications when allele frequencies are not able to shift fast enough. However, the current lack of knowledge on this field is remarkable, due to many challenges that researchers face when studying this issue. Huge genome sizes, absence of reference genomes and annotation, and having to analyze huge amounts of data are among these difficulties, which limit the current ability to understand how climate change drives tree species epigenetic modifications. In spite of this challenging framework, some insights on the relationships among climate change-induced stress and epigenomics are coming. Advances in DNA sequencing technologies and an increasing number of studies dealing with this topic must boost our knowledge on tree adaptive capacity to changing environmental conditions. Here, we discuss challenges and perspectives in the epigenetics of climate change-induced forests decline, aiming to provide a general overview of the state of the art.
Collapse
Affiliation(s)
- Isabel García-García
- Departamento de Genética, Fisiología y Microbiología, UD Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid, Madrid, Spain
- *Correspondence: Isabel García-García,
| | - Belén Méndez-Cea
- Departamento de Genética, Fisiología y Microbiología, UD Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid, Madrid, Spain
- Belén Méndez-Cea,
| | - David Martín-Gálvez
- Departamento de Biodiversidad, Ecología y Evolución, UD Zoología, Facultad de CC Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - José Ignacio Seco
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Seville, Spain
| | - Francisco Javier Gallego
- Departamento de Genética, Fisiología y Microbiología, UD Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan Carlos Linares
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
20
|
Quantitative Epigenetics: A New Avenue for Crop Improvement. EPIGENOMES 2020; 4:epigenomes4040025. [PMID: 34968304 PMCID: PMC8594725 DOI: 10.3390/epigenomes4040025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/24/2020] [Accepted: 11/04/2020] [Indexed: 12/30/2022] Open
Abstract
Plant breeding conventionally depends on genetic variability available in a species to improve a particular trait in the crop. However, epigenetic diversity may provide an additional tier of variation. The recent advent of epigenome technologies has elucidated the role of epigenetic variation in shaping phenotype. Furthermore, the development of epigenetic recombinant inbred lines (epi-RILs) in model species such as Arabidopsis has enabled accurate genetic analysis of epigenetic variation. Subsequently, mapping of epigenetic quantitative trait loci (epiQTL) allowed association between epialleles and phenotypic traits. Likewise, epigenome-wide association study (EWAS) and epi-genotyping by sequencing (epi-GBS) have revolutionized the field of epigenetics research in plants. Thus, quantitative epigenetics provides ample opportunities to dissect the role of epigenetic variation in trait regulation, which can be eventually utilized in crop improvement programs. Moreover, locus-specific manipulation of DNA methylation by epigenome-editing tools such as clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) can potentially facilitate epigenetic based molecular breeding of important crop plants.
Collapse
|
21
|
Lallias D, Bernard M, Ciobotaru C, Dechamp N, Labbé L, Goardon L, Le Calvez JM, Bideau M, Fricot A, Prézelin A, Charles M, Moroldo M, Cousin X, Bouchez O, Roulet A, Quillet E, Dupont-Nivet M. Sources of variation of DNA methylation in rainbow trout: combined effects of temperature and genetic background. Epigenetics 2020; 16:1031-1052. [PMID: 33126823 DOI: 10.1080/15592294.2020.1834924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Phenotypic plasticity is a key component of the ability of organisms to respond to changing environmental conditions. In this study, we aimed to study the establishment of DNA methylation marks in response to an environmental stress in rainbow trout and to assess whether these marks depend on the genetic background. The environmental stress chosen here was temperature, a known induction factor of epigenetic marks in fish. To disentangle the role of epigenetic mechanisms such as DNA methylation in generating phenotypic variations, nine rainbow trout isogenic lines with no genetic variability within a line were used. For each line, half of the eggs were incubated at standard temperature (11°C) and the other half at high temperature (16°C), from eyed-stage to hatching. In order to gain a first insight into the establishment of DNA methylation marks in response to an early temperature regime (control 11°C vs. heated 16°C), we have studied the expression of 8 dnmt3 (DNA methyltransferase) genes, potentially involved in de novo methylation, and analysed global DNA methylation in the different rainbow trout isogenic lines using LUMA (LUminometric Methylation Assay). Finally, finer investigation of genome-wide methylation patterns was performed using EpiRADseq, a reduced-representation library approach based on the ddRADseq (Double Digest Restriction Associated DNA) protocol, for six rainbow trout isogenic lines. We have demonstrated that thermal history during embryonic development alters patterns of DNA methylation, but to a greater or lesser extent depending on the genetic background.
Collapse
Affiliation(s)
- Delphine Lallias
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Maria Bernard
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.,INRAE, SIGENAE, 78350, Jouy-en-Josas, France
| | - Céline Ciobotaru
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Nicolas Dechamp
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | | | | | | | | | - Alexandre Fricot
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | | | - Mathieu Charles
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.,INRAE, SIGENAE, 78350, Jouy-en-Josas, France
| | - Marco Moroldo
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Xavier Cousin
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | | | - Alain Roulet
- INRAE, GeT PlaGe, 31326, Castanet-Tolosan, France
| | - Edwige Quillet
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | | |
Collapse
|
22
|
Eaton DAR, Overcast I. ipyrad: Interactive assembly and analysis of RADseq datasets. Bioinformatics 2020; 36:2592-2594. [PMID: 31904816 DOI: 10.1093/bioinformatics/btz966] [Citation(s) in RCA: 359] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/09/2019] [Accepted: 12/31/2019] [Indexed: 12/31/2022] Open
Abstract
SUMMARY ipyrad is a free and open source tool for assembling and analyzing restriction site-associated DNA sequence datasets using de novo and/or reference-based approaches. It is designed to be massively scalable to hundreds of taxa and thousands of samples, and can be efficiently parallelized on high performance computing clusters. It is available both as a command line interface and as a Python package with an application programming interface, the latter of which can be used interactively to write complex, reproducible scripts and implement a suite of downstream analysis tools. AVAILABILITY AND IMPLEMENTATION ipyrad is a free and open source program written in Python. Source code is available from the GitHub repository (https://github.com/dereneaton/ipyrad/), and Linux and MacOS installs are distributed through the conda package manager. Complete documentation, including numerous tutorials, and Jupyter notebooks demonstrating example assemblies and applications of downstream analysis tools are available online: https://ipyrad.readthedocs.io/.
Collapse
Affiliation(s)
- Deren A R Eaton
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027, USA
| | - Isaac Overcast
- Department of Biology, Graduate School, University Center of the City University of New York, New York, NY 10016, USA
| |
Collapse
|
23
|
Lee W, Salinas S, Lee Y, Siskidis JA, Mangel M, Munch SB. Thermal transgenerational effects remain after two generations. Ecol Evol 2020; 10:11296-11303. [PMID: 33144965 PMCID: PMC7593139 DOI: 10.1002/ece3.6767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/18/2020] [Indexed: 11/26/2022] Open
Abstract
Transgenerational plasticity (TGP) is increasingly recognized as a mechanism by which organisms can respond to environments that change across generations. Although recent empirical and theoretical studies have explored conditions under which TGP is predicted to evolve, it is still unclear whether the effects of the parental environment will remain beyond the offspring generation. Using a small cyprinodontid fish, we explored multigenerational thermal TGP to address two related questions. First (experiment 1), does the strength of TGP decline or accumulate across multiple generations? Second (experiment 2), how does the experience of a temperature novel to both parents and offspring affect the strength of TGP? In the first experiment, we found a significant interaction between F1 and F2 temperatures and juvenile growth, but no effect of egg diameter. The strength of TGP between F0 and F1 generations was similar in both experiments but declined in subsequent generations. Further, experience of a novel temperature accelerated the decline. This pattern, although similar to that found in other species, is certainly not universally observed, suggesting that theoretical and empirical effort is needed to understand the multigenerational dynamics of TGP.
Collapse
Affiliation(s)
- Who‐Seung Lee
- Center for Stock Assessment ResearchUniversity of CaliforniaSanta CruzCAUSA
- NOAA National Marine Fisheries ServiceSanta CruzCAUSA
- Environmental Assessment GroupKorea Environment InstituteSejongKorea
| | | | - Young‐Rog Lee
- NOAA National Marine Fisheries ServiceSanta CruzCAUSA
| | | | - Marc Mangel
- Center for Stock Assessment ResearchUniversity of CaliforniaSanta CruzCAUSA
- Department of BiologyUniversity of BergenBergenNorway
| | - Stephan B. Munch
- Center for Stock Assessment ResearchUniversity of CaliforniaSanta CruzCAUSA
- NOAA National Marine Fisheries ServiceSanta CruzCAUSA
| |
Collapse
|
24
|
Tariel J, Plénet S, Luquet É. Transgenerational Plasticity in the Context of Predator-Prey Interactions. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.548660] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
25
|
Wright BR, Farquharson KA, McLennan EA, Belov K, Hogg CJ, Grueber CE. A demonstration of conservation genomics for threatened species management. Mol Ecol Resour 2020; 20:1526-1541. [DOI: 10.1111/1755-0998.13211] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Belinda R. Wright
- School of Life and Environmental Sciences Faculty of Science The University of Sydney Sydney NSW Australia
| | - Katherine A. Farquharson
- School of Life and Environmental Sciences Faculty of Science The University of Sydney Sydney NSW Australia
| | - Elspeth A. McLennan
- School of Life and Environmental Sciences Faculty of Science The University of Sydney Sydney NSW Australia
| | - Katherine Belov
- School of Life and Environmental Sciences Faculty of Science The University of Sydney Sydney NSW Australia
| | - Carolyn J. Hogg
- School of Life and Environmental Sciences Faculty of Science The University of Sydney Sydney NSW Australia
| | - Catherine E. Grueber
- School of Life and Environmental Sciences Faculty of Science The University of Sydney Sydney NSW Australia
- San Diego Zoo Global San Diego CA USA
| |
Collapse
|
26
|
Werner O, Prudencio ÁS, de la Cruz-Martínez E, Nieto-Lugilde M, Martínez-Gómez P, Ros RM. A Cost Reduced Variant of Epi-Genotyping by Sequencing for Studying DNA Methylation in Non-model Organisms. FRONTIERS IN PLANT SCIENCE 2020; 11:694. [PMID: 32547585 PMCID: PMC7270828 DOI: 10.3389/fpls.2020.00694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/01/2020] [Indexed: 05/27/2023]
Abstract
Reference-free reduced representation bisulfite sequencing uses enzymatic digestion for reducing genome complexity and allows detection of markers to study DNA methylation of a high number of individuals in natural populations of non-model organisms. Current methods like epiGBS enquire the use of a higher number of methylated DNA oligos with a significant cost (especially for small labs and first pilot studies). In this paper, we present a modification of this epiGBS protocol that requires the use of only one hemimethylated P2 (common) adapter, which is combined with unmethylated barcoded adapters. The unmethylated cytosines of one chain of the barcoded adapter are replaced by methylated cytosines using nick translation with methylated cytosines in dNTP solution. The basic version of our technique uses only one restriction enzyme, and as a result, genomic fragments are integrated into two orientations with respect to the adapter sequences. Comparing the sequences of two chain orientations makes it possible to reconstruct the original sequence before bisulfite treatment with the help of standard software and newly developed software written in C and described here. We provide a proof of concept via data obtained from almond (Prunus dulcis). Example data and a detailed description of the complete software pipeline starting from the raw reads up until the final differentially methylated cytosines are given in Supplementary Material making this technique accessible to non-expert computer users. The adapter design showed in this paper should allow the use of a two restriction enzyme approach with minor changes in software parameters.
Collapse
Affiliation(s)
- Olaf Werner
- Laboratory of Molecular Systematics, Phylogeography and Conservation in Bryophytes, Department of Plant Biology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Ángela S. Prudencio
- Laboratory of Fruit Tree Breeding, Department of Plant Breeding, CEBAS-CSIC, Murcia, Spain
| | - Elena de la Cruz-Martínez
- Laboratory of Molecular Systematics, Phylogeography and Conservation in Bryophytes, Department of Plant Biology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Marta Nieto-Lugilde
- Laboratory of Molecular Systematics, Phylogeography and Conservation in Bryophytes, Department of Plant Biology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Pedro Martínez-Gómez
- Laboratory of Fruit Tree Breeding, Department of Plant Breeding, CEBAS-CSIC, Murcia, Spain
| | - Rosa M. Ros
- Laboratory of Molecular Systematics, Phylogeography and Conservation in Bryophytes, Department of Plant Biology, Faculty of Biology, University of Murcia, Murcia, Spain
| |
Collapse
|
27
|
Crotti M, Adams CE, Elmer KR. Population genomic SNPs from epigenetic RADs: Gaining genetic and epigenetic data from a single established next‐generation sequencing approach. Methods Ecol Evol 2020. [DOI: 10.1111/2041-210x.13395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marco Crotti
- Institute of Biodiversity, Animal Health & Comparative Medicine College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| | - Colin E. Adams
- Institute of Biodiversity, Animal Health & Comparative Medicine College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
- Scottish Centre for Ecology and the Natural Environment University of Glasgow Rowardennan UK
| | - Kathryn R. Elmer
- Institute of Biodiversity, Animal Health & Comparative Medicine College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| |
Collapse
|
28
|
Tirnaz S, Batley J. DNA Methylation: Toward Crop Disease Resistance Improvement. TRENDS IN PLANT SCIENCE 2019; 24:1137-1150. [PMID: 31604599 DOI: 10.1016/j.tplants.2019.08.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/13/2019] [Accepted: 08/22/2019] [Indexed: 05/23/2023]
Abstract
Crop diseases, in conjunction with climate change, are a major threat to global crop production. DNA methylation is an epigenetic mark and is involved in plants' biological processes, including development, stress adaptation, and genome evolution. By providing a new source of variation, DNA methylation introduces novel direction to both scientists and breeders with its potential in disease resistance enhancement. Here, we discuss the impact of pathogen-induced DNA methylation modifications on a host's transcriptome reprogramming and genome stability, as part of the plant's defense mechanisms. We also highlight the knowledge gaps that need to be investigated for understanding the entire role of DNA methylation in plant pathogen interactions. This will ultimately assist breeders toward improving resistance and decreasing yield losses.
Collapse
Affiliation(s)
- Soodeh Tirnaz
- School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
29
|
Herden J, Eckert S, Stift M, Joshi J, van Kleunen M. No evidence for local adaptation and an epigenetic underpinning in native and non-native ruderal plant species in Germany. Ecol Evol 2019; 9:9412-9426. [PMID: 31534665 PMCID: PMC6745855 DOI: 10.1002/ece3.5325] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/07/2019] [Accepted: 05/08/2019] [Indexed: 12/15/2022] Open
Abstract
Many invasive species have rapidly adapted to different environments in their new ranges. This is surprising, as colonization is usually associated with reduced genetic variation. Heritable phenotypic variation with an epigenetic basis may explain this paradox.Here, we assessed the contribution of DNA methylation to local adaptation in native and naturalized non-native ruderal plant species in Germany. We reciprocally transplanted offspring from natural populations of seven native and five non-native plant species between the Konstanz region in the south and the Potsdam region in the north of Germany. Before the transplant, half of the seeds were treated with the demethylation agent zebularine. We recorded survival, flowering probability, and biomass production as fitness estimates.Contrary to our expectations, we found little evidence for local adaptation, both among the native and among the non-native plant species. Zebularine treatment had mostly negative effects on overall plant performance, regardless of whether plants were local or not, and regardless of whether they were native or non-native. Synthesis. We conclude that local adaptation, at least at the scale of our study, plays no major role in the success of non-native and native ruderal plants. Consequently, we found no evidence yet for an epigenetic basis of local adaptation.
Collapse
Affiliation(s)
- Jasmin Herden
- Ecology, Department of BiologyUniversity of KonstanzKonstanzGermany
| | - Silvia Eckert
- Biodiversity Research/Systematic Botany, Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| | - Marc Stift
- Ecology, Department of BiologyUniversity of KonstanzKonstanzGermany
| | - Jasmin Joshi
- Biodiversity Research/Systematic Botany, Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB), Institute of BiologyFreie Universität BerlinBerlinGermany
- Institute for Landscape and Open SpaceHochschule für Technik Rapperswil (HSR)RapperswilSwitzerland
| | - Mark van Kleunen
- Ecology, Department of BiologyUniversity of KonstanzKonstanzGermany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and ConservationTaizhou UniversityTaizhouChina
| |
Collapse
|
30
|
Banerjee AK, Guo W, Huang Y. Genetic and epigenetic regulation of phenotypic variation in invasive plants – linking research trends towards a unified framework. NEOBIOTA 2019. [DOI: 10.3897/neobiota.49.33723] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Phenotypic variation in the introduced range of an invasive species can be modified by genetic variation, environmental conditions and their interaction, as well as stochastic events like genetic drift. Recent studies found that epigenetic modifications may also contribute to phenotypic variation being independent of genetic changes. Despite gaining profound ecological insights from empirical studies, understanding the relative contributions of these molecular mechanisms behind phenotypic variation has received little attention for invasive plant species in particular.
This review therefore aimed at summarizing and synthesizing information on the genetic and epigenetic basis of phenotypic variation of alien invasive plants in the introduced range and their evolutionary consequences. Transgenerational inheritance of epigenetic modifications was highlighted focusing on its influence on microevolution of the invasive plant species. We presented a comprehensive account of epigenetic regulation of phenotypic variation and its role in plant invasion in the presence of reduced standing genetic variation, inbreeding depression and associated genomic events which have often been observed during introduction and range expansion of an invasive alien species. Finally, taking clues from the studies conducted so far, we proposed a unified framework of future experimental approaches to understand ecological and evolutionary aspects of phenotypic variation. This holistic approach, being aligned to the invasion process in particular (introduction-establishment-spread), was intended to understand the molecular mechanisms of phenotypic variation of an invasive species in its introduced range and to disentangle the effects of standing genetic variation and epigenetic regulation of phenotypic variation.
Collapse
|
31
|
Cerruti E, Comino C, Acquadro A, Marconi G, Repetto AM, Pisanu AB, Pilia R, Albertini E, Portis E. Analysis of DNA Methylation Patterns Associated with In Vitro Propagated Globe Artichoke Plants Using an EpiRADseq-Based Approach. Genes (Basel) 2019; 10:E263. [PMID: 30939865 PMCID: PMC6523903 DOI: 10.3390/genes10040263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 01/16/2023] Open
Abstract
Globe artichoke represents one of the main horticultural species of the Mediterranean basin, and 'Spinoso sardo' is the most widespread and economically relevant varietal type in Sardinia, Italy. In the last decades, in vitro culture of meristematic apices has increased the frequency of aberrant plants in open-field production. These off-type phenotypes showed highly pinnate-parted leaves and late inflorescence budding, and emerged from some branches of the true-to-type 'Spinoso sardo' plants. This phenomenon cannot be foreseen and is reversible through generations, suggesting the occurrence of epigenetic alterations. Here, we report an exploratory study on DNA methylation patterns in off-type/true-to-type globe artichoke plants, using a modified EpiRADseq technology, which allowed the identification of 2,897 differentially methylated loci (DML): 1,998 in CG, 458 in CHH, and 441 in CHG methylation contexts of which 720, 88, and 152, respectively, were in coding regions. Most of them appeared involved in primary metabolic processes, mostly linked to photosynthesis, regulation of flower development, and regulation of reproductive processes, coherently with the observed phenotype. Differences in the methylation status of some candidate genes were integrated with transcriptional analysis to test whether these two regulation levels might interplay in the emergence and spread of the 'Spinoso sardo' non-conventional phenotype.
Collapse
Affiliation(s)
- Elisa Cerruti
- Department of Agricultural, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, 10095 Grugliasco, Italy.
| | - Cinzia Comino
- Department of Agricultural, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, 10095 Grugliasco, Italy.
| | - Alberto Acquadro
- Department of Agricultural, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, 10095 Grugliasco, Italy.
| | - Gianpiero Marconi
- Department of Agricultural, Food, and Environmental Sciences, University of Perugia, 06121 Perugia, Italy.
| | - Anna Maria Repetto
- Agris Sardegna-Agenzia Regionale per la Ricerca in Agricoltura-Servizio Ricerca sui Sistemi Colturali Erbacei, 09123 Cagliari, Italy.
| | - Anna Barbara Pisanu
- Agris Sardegna-Agenzia Regionale per la Ricerca in Agricoltura-Servizio Ricerca sui Sistemi Colturali Erbacei, 09123 Cagliari, Italy.
| | - Roberto Pilia
- Agris Sardegna-Agenzia Regionale per la Ricerca in Agricoltura-Servizio Ricerca sui Sistemi Colturali Erbacei, 09123 Cagliari, Italy.
| | - Emidio Albertini
- Department of Agricultural, Food, and Environmental Sciences, University of Perugia, 06121 Perugia, Italy.
| | - Ezio Portis
- Department of Agricultural, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, 10095 Grugliasco, Italy.
| |
Collapse
|
32
|
Gourcilleau D, Mousset M, Latutrie M, Marin S, Delaunay A, Maury S, Pujol B. Assessing Global DNA Methylation Changes Associated with Plasticity in Seven Highly Inbred Lines of Snapdragon Plants ( Antirrhinum majus). Genes (Basel) 2019; 10:E256. [PMID: 30925802 PMCID: PMC6523709 DOI: 10.3390/genes10040256] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/14/2019] [Accepted: 03/21/2019] [Indexed: 11/16/2022] Open
Abstract
Genetic and epigenetic variations are commonly known to underlie phenotypic plastic responses to environmental cues. However, the role of epigenetic variation in plastic responses harboring ecological significance in nature remains to be assessed. The shade avoidance response (SAR) of plants is one of the most prevalent examples of phenotypic plasticity. It is a phenotypic syndrome including stem elongation and multiple other traits. Its ecological significance is widely acknowledged, and it can be adaptive in the presence of competition for light. Underlying genes and pathways were identified, but evidence for its epigenetic basis remains scarce. We used a proven and accessible approach at the population level and compared global DNA methylation between plants exposed to regular light and three different magnitudes of shade in seven highly inbred lines of snapdragon plants (Antirrhinum majus) grown in a greenhouse. Our results brought evidence of a strong SAR syndrome for which magnitude did not vary between lines. They also brought evidence that its magnitude was not associated with the global DNA methylation percentage for five of the six traits under study. The magnitude of stem elongation was significantly associated with global DNA demethylation. We discuss the limits of this approach and why caution must be taken with such results. In-depth approaches at the DNA sequence level will be necessary to better understand the molecular basis of the SAR syndrome.
Collapse
Affiliation(s)
- Delphine Gourcilleau
- Laboratoire Évolution & Diversité Biologique (EDB, UMR 5174), Université Fédérale de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1, CEDEX 9, 31062 Toulouse, France.
| | - Mathilde Mousset
- Laboratoire Évolution & Diversité Biologique (EDB, UMR 5174), Université Fédérale de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1, CEDEX 9, 31062 Toulouse, France.
| | - Mathieu Latutrie
- Laboratoire Évolution & Diversité Biologique (EDB, UMR 5174), Université Fédérale de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1, CEDEX 9, 31062 Toulouse, France.
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, CEDEX 9, 66860 Perpignan, France.
| | - Sara Marin
- Laboratoire Évolution & Diversité Biologique (EDB, UMR 5174), Université Fédérale de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1, CEDEX 9, 31062 Toulouse, France.
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, CEDEX 9, 66860 Perpignan, France.
| | - Alain Delaunay
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC, EA 1207 USC 1328 INRA), Université Orléans, 45067 Orléans, France.
| | - Stéphane Maury
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC, EA 1207 USC 1328 INRA), Université Orléans, 45067 Orléans, France.
| | - Benoît Pujol
- Laboratoire Évolution & Diversité Biologique (EDB, UMR 5174), Université Fédérale de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1, CEDEX 9, 31062 Toulouse, France.
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, CEDEX 9, 66860 Perpignan, France.
| |
Collapse
|
33
|
De Paoli‐Iseppi R, Deagle BE, Polanowski AM, McMahon CR, Dickinson JL, Hindell MA, Jarman SN. Age estimation in a long‐lived seabird (
Ardenna tenuirostris
) using DNA methylation‐based biomarkers. Mol Ecol Resour 2019; 19:411-425. [DOI: 10.1111/1755-0998.12981] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Ricardo De Paoli‐Iseppi
- Institute for Marine and Antarctic Studies University of Tasmania Hobart Tasmania Australia
- Australian Antarctic Division Hobart Tasmania Australia
| | | | | | - Clive R. McMahon
- Institute for Marine and Antarctic Studies University of Tasmania Hobart Tasmania Australia
- Sydney Institute of Marine Science Sydney New South Wales Australia
| | - Joanne L. Dickinson
- Cancer, Genetics and Immunology Group Menzies Institute for Medical Research Tasmania Hobart Tasmania Australia
| | - Mark A. Hindell
- Institute for Marine and Antarctic Studies University of Tasmania Hobart Tasmania Australia
- Antarctic Climate and Ecosystems CRC Hobart Tasmania Australia
| | - Simon N. Jarman
- Trace and Environmental DNA Laboratory, Department of Environment and Agriculture Curtin University Perth Western Australia Australia
- CSIRO Indian Ocean Marine Research Centre The University of Western Australia Perth Western Australia Australia
| |
Collapse
|
34
|
Abstract
Marine organisms' persistence hinges on the capacity for acclimatization and adaptation to the myriad of interacting environmental stressors associated with global climate change. In this context, epigenetics-mechanisms that facilitate phenotypic variation through genotype-environment interactions-are of great interest ecologically and evolutionarily. Our comprehensive review of marine environmental epigenetics guides our recommendations of four key areas for future research: the dynamics of wash-in and wash-out of epigenetic effects, the mechanistic understanding of the interplay of different epigenetic marks and the interaction with the microbiome, the capacity for and mechanisms of transgenerational epigenetic inheritance, and the evolutionary implications of the interaction of genetic and epigenetic features. Emerging insights in marine environmental epigenetics can be applied to critical issues such as aquaculture, biomonitoring, and biological invasions, thereby improving our ability to explain and predict the responses of marine taxa to global climate change.
Collapse
Affiliation(s)
- Jose M Eirin-Lopez
- Environmental Epigenetics Laboratory, Center for Coastal Oceans Research, Institute for Water and Environment, Florida International University, North Miami, Florida 33181, USA;
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island 02881, USA;
| |
Collapse
|
35
|
Dewan S, De Frenne P, Vanden Broeck A, Steenackers M, Vander Mijnsbrugge K, Verheyen K. Transgenerational effects in asexually reproduced offspring of Populus. PLoS One 2018; 13:e0208591. [PMID: 30521624 PMCID: PMC6283561 DOI: 10.1371/journal.pone.0208591] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 11/20/2018] [Indexed: 11/18/2022] Open
Abstract
The response of trees to a changing climate can be affected by transgenerational phenotypic plasticity, i.e. phenotypic variation that is conserved and transferred to the offspring. Transgenerational plasticity that is influenced by epigenetics (heritable changes in gene function that do not result from changes in DNA sequence) during both sexual and asexual reproduction are of major relevance for adaptation of plants to climate change. To understand the transgenerational effects on the responses of vegetatively propagated poplar (Populus deltoides and P. trichocarpa) ramets (cuttings) to a changing environment, we tested whether the temperature and photoperiod experienced by the mother trees (genets) persistently affects the phenology of the cuttings grown in a common environment. We weekly monitored the bud phenology of the cuttings collected from the parent trees that have been growing across Europe along a >2100 km latitudinal gradient for at least 18 years. In addition, we asked whether there was variation in DNA methylation as measured by Methylation Sensitive Amplified Fragment Length Polymorphism (MSAPs) in the clones due to the different environmental conditions experienced by the parent trees. Our results indicate a transgenerational effect on bud phenology in the asexually reproduced offspring (vegetative cuttings). The temperatures experienced by the parent tree clones (from different geographic regions) altered the bud flush of the cuttings in the common garden. However, no significant epigenetic variation was detected in the cuttings of the parent trees within single genotypes growing under different climates. In sum, our results show that trees have the potential to respond to rapid climate change but the mechanism behind these changes needs to be further investigated by more powerful molecular methods like whole-genome bisulphite sequencing techniques.
Collapse
Affiliation(s)
- Sumitra Dewan
- Forest & Nature Lab, Department of Environment, Ghent University, Gontrode, Belgium
- * E-mail:
| | - Pieter De Frenne
- Forest & Nature Lab, Department of Environment, Ghent University, Gontrode, Belgium
| | - An Vanden Broeck
- Research Institute for Nature and Forest (INBO), Geraardsbergen, Belgium
| | | | | | - Kris Verheyen
- Forest & Nature Lab, Department of Environment, Ghent University, Gontrode, Belgium
| |
Collapse
|
36
|
Campbell EO, Brunet BMT, Dupuis JR, Sperling FAH. Would an
RRS
by any other name sound as
RAD
? Methods Ecol Evol 2018. [DOI: 10.1111/2041-210x.13038] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Erin O. Campbell
- Department of Biological SciencesCW405 Biosciences CentreUniversity of Alberta Edmonton Alberta Canada
| | - Bryan M. T. Brunet
- Department of Biological SciencesCW405 Biosciences CentreUniversity of Alberta Edmonton Alberta Canada
| | - Julian R. Dupuis
- Department of Plant and Environmental Protection SciencesUniversity of Hawai'i at Mãnoa Honolulu Hawai'i
| | - Felix A. H. Sperling
- Department of Biological SciencesCW405 Biosciences CentreUniversity of Alberta Edmonton Alberta Canada
| |
Collapse
|
37
|
Deagle BE, Thomas AC, McInnes JC, Clarke LJ, Vesterinen EJ, Clare EL, Kartzinel TR, Eveson JP. Counting with DNA in metabarcoding studies: How should we convert sequence reads to dietary data? Mol Ecol 2018; 28:391-406. [PMID: 29858539 PMCID: PMC6905394 DOI: 10.1111/mec.14734] [Citation(s) in RCA: 298] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
Abstract
Advances in DNA sequencing technology have revolutionized the field of molecular analysis of trophic interactions, and it is now possible to recover counts of food DNA sequences from a wide range of dietary samples. But what do these counts mean? To obtain an accurate estimate of a consumer's diet should we work strictly with data sets summarizing frequency of occurrence of different food taxa, or is it possible to use relative number of sequences? Both approaches are applied to obtain semi-quantitative diet summaries, but occurrence data are often promoted as a more conservative and reliable option due to taxa-specific biases in recovery of sequences. We explore representative dietary metabarcoding data sets and point out that diet summaries based on occurrence data often overestimate the importance of food consumed in small quantities (potentially including low-level contaminants) and are sensitive to the count threshold used to define an occurrence. Our simulations indicate that using relative read abundance (RRA) information often provides a more accurate view of population-level diet even with moderate recovery biases incorporated; however, RRA summaries are sensitive to recovery biases impacting common diet taxa. Both approaches are more accurate when the mean number of food taxa in samples is small. The ideas presented here highlight the need to consider all sources of bias and to justify the methods used to interpret count data in dietary metabarcoding studies. We encourage researchers to continue addressing methodological challenges and acknowledge unanswered questions to help spur future investigations in this rapidly developing area of research.
Collapse
Affiliation(s)
- Bruce E Deagle
- Australian Antarctic Division, Channel Highway, Kingston, TAS, Australia
| | | | - Julie C McInnes
- Australian Antarctic Division, Channel Highway, Kingston, TAS, Australia
| | - Laurence J Clarke
- Australian Antarctic Division, Channel Highway, Kingston, TAS, Australia.,Antarctic Climate & Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, TAS, Australia
| | - Eero J Vesterinen
- Biodiversity Unit and Department of Biology, University of Turku, Turku, Finland.,Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Elizabeth L Clare
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Tyler R Kartzinel
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island
| | | |
Collapse
|
38
|
Dewan S, De Frenne P, Vanden Broeck A, Steenackers M, Vander Mijnsbrugge K, Verheyen K. Transgenerational effects in asexually reproduced offspring of Populus. PLoS One 2018. [PMID: 30521624 DOI: 10.1038/s41598-019-56934-56936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
The response of trees to a changing climate can be affected by transgenerational phenotypic plasticity, i.e. phenotypic variation that is conserved and transferred to the offspring. Transgenerational plasticity that is influenced by epigenetics (heritable changes in gene function that do not result from changes in DNA sequence) during both sexual and asexual reproduction are of major relevance for adaptation of plants to climate change. To understand the transgenerational effects on the responses of vegetatively propagated poplar (Populus deltoides and P. trichocarpa) ramets (cuttings) to a changing environment, we tested whether the temperature and photoperiod experienced by the mother trees (genets) persistently affects the phenology of the cuttings grown in a common environment. We weekly monitored the bud phenology of the cuttings collected from the parent trees that have been growing across Europe along a >2100 km latitudinal gradient for at least 18 years. In addition, we asked whether there was variation in DNA methylation as measured by Methylation Sensitive Amplified Fragment Length Polymorphism (MSAPs) in the clones due to the different environmental conditions experienced by the parent trees. Our results indicate a transgenerational effect on bud phenology in the asexually reproduced offspring (vegetative cuttings). The temperatures experienced by the parent tree clones (from different geographic regions) altered the bud flush of the cuttings in the common garden. However, no significant epigenetic variation was detected in the cuttings of the parent trees within single genotypes growing under different climates. In sum, our results show that trees have the potential to respond to rapid climate change but the mechanism behind these changes needs to be further investigated by more powerful molecular methods like whole-genome bisulphite sequencing techniques.
Collapse
Affiliation(s)
- Sumitra Dewan
- Forest & Nature Lab, Department of Environment, Ghent University, Gontrode, Belgium
| | - Pieter De Frenne
- Forest & Nature Lab, Department of Environment, Ghent University, Gontrode, Belgium
| | - An Vanden Broeck
- Research Institute for Nature and Forest (INBO), Geraardsbergen, Belgium
| | | | | | - Kris Verheyen
- Forest & Nature Lab, Department of Environment, Ghent University, Gontrode, Belgium
| |
Collapse
|
39
|
Huang X, Li S, Ni P, Gao Y, Jiang B, Zhou Z, Zhan A. Rapid response to changing environments during biological invasions: DNA methylation perspectives. Mol Ecol 2017; 26:6621-6633. [PMID: 29057612 DOI: 10.1111/mec.14382] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 10/01/2017] [Accepted: 10/07/2017] [Indexed: 12/14/2022]
Abstract
Dissecting complex interactions between species and their environments has long been a research hot spot in the fields of ecology and evolutionary biology. The well-recognized Darwinian evolution has well-explained long-term adaptation scenarios; however, "rapid" processes of biological responses to environmental changes remain largely unexplored, particularly molecular mechanisms such as DNA methylation that have recently been proposed to play crucial roles in rapid environmental adaptation. Invasive species, which have capacities to successfully survive rapidly changing environments during biological invasions, provide great opportunities to study molecular mechanisms of rapid environmental adaptation. Here, we used the methylation-sensitive amplified polymorphism (MSAP) technique in an invasive model ascidian, Ciona savignyi, to investigate how species interact with rapidly changing environments at the whole-genome level. We detected quite rapid DNA methylation response: significant changes of DNA methylation frequency and epigenetic differentiation between treatment and control groups occurred only after 1 hr of high-temperature exposure or after 3 hr of low-salinity challenge. In addition, we detected time-dependent hemimethylation changes and increased intragroup epigenetic divergence induced by environmental stresses. Interestingly, we found evidence of DNA methylation resilience, as most stress-induced DNA methylation variation maintained shortly (~48 hr) and quickly returned back to the control levels. Our findings clearly showed that invasive species could rapidly respond to acute environmental changes through DNA methylation modifications, and rapid environmental changes left significant epigenetic signatures at the whole-genome level. All these results provide fundamental background to deeply investigate the contribution of DNA methylation mechanisms to rapid contemporary environmental adaptation.
Collapse
Affiliation(s)
- Xuena Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Shiguo Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ping Ni
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yangchun Gao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Bei Jiang
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fishery Science Research Institute, Dalian, Liaoning, China
| | - Zunchun Zhou
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fishery Science Research Institute, Dalian, Liaoning, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
40
|
Richards CL, Alonso C, Becker C, Bossdorf O, Bucher E, Colomé-Tatché M, Durka W, Engelhardt J, Gaspar B, Gogol-Döring A, Grosse I, van Gurp TP, Heer K, Kronholm I, Lampei C, Latzel V, Mirouze M, Opgenoorth L, Paun O, Prohaska SJ, Rensing SA, Stadler PF, Trucchi E, Ullrich K, Verhoeven KJF. Ecological plant epigenetics: Evidence from model and non-model species, and the way forward. Ecol Lett 2017; 20:1576-1590. [PMID: 29027325 DOI: 10.1111/ele.12858] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/15/2017] [Accepted: 09/04/2017] [Indexed: 12/15/2022]
Abstract
Growing evidence shows that epigenetic mechanisms contribute to complex traits, with implications across many fields of biology. In plant ecology, recent studies have attempted to merge ecological experiments with epigenetic analyses to elucidate the contribution of epigenetics to plant phenotypes, stress responses, adaptation to habitat, and range distributions. While there has been some progress in revealing the role of epigenetics in ecological processes, studies with non-model species have so far been limited to describing broad patterns based on anonymous markers of DNA methylation. In contrast, studies with model species have benefited from powerful genomic resources, which contribute to a more mechanistic understanding but have limited ecological realism. Understanding the significance of epigenetics for plant ecology requires increased transfer of knowledge and methods from model species research to genomes of evolutionarily divergent species, and examination of responses to complex natural environments at a more mechanistic level. This requires transforming genomics tools specifically for studying non-model species, which is challenging given the large and often polyploid genomes of plants. Collaboration among molecular geneticists, ecologists and bioinformaticians promises to enhance our understanding of the mutual links between genome function and ecological processes.
Collapse
Affiliation(s)
- Christina L Richards
- Department of Integrative Biology, University of South Florida, Tampa, FL, 33620, USA
| | | | - Claude Becker
- Gregor Mendel Institute of Molecular Plant Biology, 1030, Vienna, Austrian Academy of Sciences, Vienna Biocenter (VBC), Austria
| | - Oliver Bossdorf
- Plant Evolutionary Ecology, University of Tübingen, 72076, Tübingen, Germany
| | - Etienne Bucher
- Institut de Recherche en Horticulture et Semences, 49071, Beaucouzé Cedex, France
| | - Maria Colomé-Tatché
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, 9713, Groningen, The Netherlands.,Institute of Computational Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Walter Durka
- Department of Community Ecology, Helmholtz Centre for Environmental Research - UFZ, 06120, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
| | - Jan Engelhardt
- Institut für Informatik, University of Leipzig, 04107, Leipzig, Germany
| | - Bence Gaspar
- Plant Evolutionary Ecology, University of Tübingen, 72076, Tübingen, Germany
| | - Andreas Gogol-Döring
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany.,Institute of Computer Science, University of Halle, 06120, Halle, Germany
| | - Ivo Grosse
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany.,Institute of Computer Science, University of Halle, 06120, Halle, Germany
| | - Thomas P van Gurp
- Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Katrin Heer
- Conservation Biology, Philipps-University of Marburg, 35037, Marburg, Germany
| | - Ilkka Kronholm
- Department of Biological and Environmental Sciences, Center of Excellence in Biological Interactions, University of Jyväskylä, 40014, Jyväskylän yliopisto, Finland
| | - Christian Lampei
- Institute of Plant Breeding, Seed Science and Population Genetics, 70599, Stuttgart, Germany
| | - Vít Latzel
- Institute of Botany, The Czech Academy of Sciences, 25243, Průhonice, Czech Republic
| | - Marie Mirouze
- Institut de Recherche pour le Développement, Laboratoire Génome et Développement des Plantes, 66860, Perpignan, France
| | - Lars Opgenoorth
- Department of Ecology, Philipps-University Marburg, 35037, Marburg, Germany
| | - Ovidiu Paun
- Plant Ecological Genomics, University of Vienna, 1030, Vienna, Austria
| | - Sonja J Prohaska
- Institut für Informatik, University of Leipzig, 04107, Leipzig, Germany.,The Santa Fe Institute, Santa Fe NM, 87501, USA
| | - Stefan A Rensing
- Plant Cell Biology, Philipps-University Marburg, 35037, Marburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79098, Freiburg, Germany
| | - Peter F Stadler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany.,Institut für Informatik, University of Leipzig, 04107, Leipzig, Germany.,The Santa Fe Institute, Santa Fe NM, 87501, USA.,Max Planck Institute for Mathematics in the Sciences, 04103, Leipzig, Germany
| | - Emiliano Trucchi
- Plant Ecological Genomics, University of Vienna, 1030, Vienna, Austria
| | - Kristian Ullrich
- Plant Cell Biology, Philipps-University Marburg, 35037, Marburg, Germany
| | - Koen J F Verhoeven
- Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| |
Collapse
|
41
|
Bell AM, Stein LR. Transgenerational and developmental plasticity at the molecular level: Lessons from Daphnia. Mol Ecol 2017; 26:4859-4861. [PMID: 28892281 DOI: 10.1111/mec.14327] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 08/05/2017] [Indexed: 01/15/2023]
Abstract
Listen to the news and you are bound to hear that researchers are increasingly interested in the biological manifestations of trauma that reverberate through the generations. Research in this area can be controversial in the public realm, provoking societal issues about personal responsibility (are we really born free or are we born with the burden of our ancestors' experience?). It is also a touchy subject within evolutionary biology because it provokes concerns about Lamarckianism and general scepticism about the importance of extra-genetic inheritance (Laland et al., ). Part of why the research in this area has been controversial is because it is difficult to study. For one, there is the problem of how long it takes to track changes across generations, making long-term, multi-generational studies especially tricky in long-lived species. Moreover, there are presently very few (if any) known molecular mechanisms by which environmental effects can be incorporated into the genome and persist for multiple successive generations, casting doubt on their evolutionary repercussions. Fortunately, you only have to look in your local pond to find the creatures that are teaching us a great deal about how and why the experiences of parents are passed down to their offspring. In this issue of Molecular Ecology, Hales et al. (Hales et al., ) illustrate the power of Daphnia ("water fleas") for making headway in this field.
Collapse
Affiliation(s)
- Alison M Bell
- School of Integrative Biology, Program in Ecology, Evolution and Conservation, Neuroscience Program, Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, USA
| | - Laura R Stein
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
42
|
Dimond JL, Gamblewood SK, Roberts SB. Genetic and epigenetic insight into morphospecies in a reef coral. Mol Ecol 2017; 26:5031-5042. [DOI: 10.1111/mec.14252] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 12/27/2022]
Affiliation(s)
- James L. Dimond
- School of Aquatic and Fishery Sciences University of Washington Seattle WA USA
- Shannon Point Marine Center Western Washington University Anacortes WA USA
| | | | - Steven B. Roberts
- School of Aquatic and Fishery Sciences University of Washington Seattle WA USA
| |
Collapse
|
43
|
Hu J, Barrett RDH. Epigenetics in natural animal populations. J Evol Biol 2017; 30:1612-1632. [PMID: 28597938 DOI: 10.1111/jeb.13130] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 06/01/2017] [Accepted: 06/03/2017] [Indexed: 12/22/2022]
Abstract
Phenotypic plasticity is an important mechanism for populations to buffer themselves from environmental change. While it has long been appreciated that natural populations possess genetic variation in the extent of plasticity, a surge of recent evidence suggests that epigenetic variation could also play an important role in shaping phenotypic responses. Compared with genetic variation, epigenetic variation is more likely to have higher spontaneous rates of mutation and a more sensitive reaction to environmental inputs. In our review, we first provide an overview of recent studies on epigenetically encoded thermal plasticity in animals to illustrate environmentally-mediated epigenetic effects within and across generations. Second, we discuss the role of epigenetic effects during adaptation by exploring population epigenetics in natural animal populations. Finally, we evaluate the evolutionary potential of epigenetic variation depending on its autonomy from genetic variation and its transgenerational stability. Although many of the causal links between epigenetic variation and phenotypic plasticity remain elusive, new data has explored the role of epigenetic variation in facilitating evolution in natural populations. This recent progress in ecological epigenetics will be helpful for generating predictive models of the capacity of organisms to adapt to changing climates.
Collapse
Affiliation(s)
- J Hu
- Redpath Museum and Department of Biology, McGill University, Montreal, QC, Canada
| | - R D H Barrett
- Redpath Museum and Department of Biology, McGill University, Montreal, QC, Canada
| |
Collapse
|
44
|
Hales NR, Schield DR, Andrew AL, Card DC, Walsh MR, Castoe TA. Contrasting gene expression programs correspond with predator-induced phenotypic plasticity within and across generations in Daphnia. Mol Ecol 2017. [PMID: 28628257 DOI: 10.1111/mec.14213] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Research has shown that a change in environmental conditions can alter the expression of traits during development (i.e., "within-generation phenotypic plasticity") as well as induce heritable phenotypic responses that persist for multiple generations (i.e., "transgenerational plasticity", TGP). It has long been assumed that shifts in gene expression are tightly linked to observed trait responses at the phenotypic level. Yet, the manner in which organisms couple within- and TGP at the molecular level is unclear. Here we tested the influence of fish predator chemical cues on patterns of gene expression within- and across generations using a clone of Daphnia ambigua that is known to exhibit strong TGP but weak within-generation plasticity. Daphnia were reared in the presence of predator cues in generation 1, and shifts in gene expression were tracked across two additional asexual experimental generations that lacked exposure to predator cues. Initial exposure to predator cues in generation 1 was linked to ~50 responsive genes, but such shifts were 3-4× larger in later generations. Differentially expressed genes included those involved in reproduction, exoskeleton structure and digestion; major shifts in expression of genes encoding ribosomal proteins were also identified. Furthermore, shifts within the first-generation and transgenerational shifts in gene expression were largely distinct in terms of the genes that were differentially expressed. Such results argue that the gene expression programmes involved in within- vs. transgeneration plasticity are fundamentally different. Our study provides new key insights into the plasticity of gene expression and how it relates to phenotypic plasticity in nature.
Collapse
Affiliation(s)
- Nicole R Hales
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| | - Drew R Schield
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| | - Audra L Andrew
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| | - Daren C Card
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| | - Matthew R Walsh
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
45
|
Mallon EB, Amarasinghe HE, Ott SR. Acute and chronic gregarisation are associated with distinct DNA methylation fingerprints in desert locusts. Sci Rep 2016; 6:35608. [PMID: 27752110 PMCID: PMC5067648 DOI: 10.1038/srep35608] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/29/2016] [Indexed: 02/03/2023] Open
Abstract
Desert locusts (Schistocerca gregaria) show a dramatic form of socially induced phenotypic plasticity known as phase polyphenism. In the absence of conspecifics, locusts occur in a shy and cryptic solitarious phase. Crowding with conspecifics drives a behavioural transformation towards gregariousness that occurs within hours and is followed by changes in physiology, colouration and morphology, resulting in the full gregarious phase syndrome. We analysed methylation-sensitive amplified fragment length polymorphisms (MS-AFLP) to compare the effect of acute and chronic crowding on DNA methylation in the central nervous system. We find that crowd-reared and solitary-reared locusts show markedly different neural MS-AFLP fingerprints. However, crowding for a day resulted in neural MS-AFLP fingerprints that were clearly distinct from both crowd-reared and uncrowded solitary-reared locusts. Our results indicate that changes in DNA methylation associated with behavioural gregarisation proceed through intermediate states that are not simply partial realisations of the endpoint states.
Collapse
Affiliation(s)
- Eamonn B. Mallon
- Department of Genetics, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Harindra E. Amarasinghe
- Academic Unit of Cancer Genomics, Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
| | - Swidbert R. Ott
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, University Road, Leicester, LE1 7RH, UK
| |
Collapse
|
46
|
Putnam HM, Davidson JM, Gates RD. Ocean acidification influences host DNA methylation and phenotypic plasticity in environmentally susceptible corals. Evol Appl 2016; 9:1165-1178. [PMID: 27695524 PMCID: PMC5039329 DOI: 10.1111/eva.12408] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 06/27/2016] [Indexed: 12/13/2022] Open
Abstract
As climate change challenges organismal fitness by creating a phenotype-environment mismatch, phenotypic plasticity generated by epigenetic mechanisms (e.g., DNA methylation) can provide a temporal buffer for genetic adaptation. Epigenetic mechanisms may be crucial for sessile benthic marine organisms, such as reef-building corals, where ocean acidification (OA) and warming reflect in strong negative responses. We tested the potential for scleractinian corals to exhibit phenotypic plasticity associated with a change in DNA methylation in response to OA. Clonal coral fragments of the environmentally sensitive Pocillopora damicornis and more environmentally robust Montipora capitata were exposed to fluctuating ambient pH (7.9-7.65) and low pH (7.6-7.35) conditions in common garden tanks for ~6 weeks. M. capitata responded weakly, or acclimated more quickly, to OA, with no difference in calcification, minimal separation of metabolomic profiles, and no change in DNA methylation between treatments. Conversely, P. damicornis exhibited diminished calcification at low pH, stronger separation in metabolomic profiles, and responsiveness of DNA methylation to treatment. Our data suggest corals differ in their temporal dynamics and sensitivity for environmentally triggered real-time epigenetic reprogramming. The generation of potentially heritable plasticity via environmental induction of DNA methylation provides an avenue for assisted evolution applications in corals under rapid climate change.
Collapse
Affiliation(s)
- Hollie M. Putnam
- Hawaii Institute of Marine BiologyUniversity of HawaiiKaneoheHIUSA
| | | | - Ruth D. Gates
- Hawaii Institute of Marine BiologyUniversity of HawaiiKaneoheHIUSA
| |
Collapse
|
47
|
Burns M, Starrett J, Derkarabetian S, Richart CH, Cabrero A, Hedin M. Comparative performance of double‐digest
RAD
sequencing across divergent arachnid lineages. Mol Ecol Resour 2016; 17:418-430. [DOI: 10.1111/1755-0998.12575] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 06/23/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Mercedes Burns
- Department of Biology San Diego State University 5500 Campanile Drive San Diego CA 92182 USA
| | - James Starrett
- Department of Biology San Diego State University 5500 Campanile Drive San Diego CA 92182 USA
| | - Shahan Derkarabetian
- Department of Biology San Diego State University 5500 Campanile Drive San Diego CA 92182 USA
- Department of Biology University of California 900 University Avenue Riverside CA 92521 USA
| | - Casey H. Richart
- Department of Biology San Diego State University 5500 Campanile Drive San Diego CA 92182 USA
- Department of Biology University of California 900 University Avenue Riverside CA 92521 USA
| | - Allan Cabrero
- Department of Biology San Diego State University 5500 Campanile Drive San Diego CA 92182 USA
| | - Marshal Hedin
- Department of Biology San Diego State University 5500 Campanile Drive San Diego CA 92182 USA
| |
Collapse
|
48
|
Asselman J, De Coninck DIM, Pfrender ME, De Schamphelaere KAC. Gene Body Methylation Patterns in Daphnia Are Associated with Gene Family Size. Genome Biol Evol 2016; 8:1185-96. [PMID: 27017526 PMCID: PMC4860698 DOI: 10.1093/gbe/evw069] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The relation between gene body methylation and gene function remains elusive. Yet, our understanding of this relationship can contribute significant knowledge on how and why organisms target specific gene bodies for methylation. Here, we studied gene body methylation patterns in two Daphnia species. We observed both highly methylated genes and genes devoid of methylation in a background of low global methylation levels. A small but highly significant number of genes was highly methylated in both species. Remarkably, functional analyses indicate that variation in methylation within and between Daphnia species is primarily targeted to small gene families whereas large gene families tend to lack variation. The degree of sequence similarity could not explain the observed pattern. Furthermore, a significant negative correlation between gene family size and the degree of methylation suggests that gene body methylation may help regulate gene family expansion and functional diversification of gene families leading to phenotypic variation.
Collapse
Affiliation(s)
- Jana Asselman
- Laboratory for Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit (GhEnToxLab), Ghent University, Ghent, Belgium Department of Biological Sciences, University of Notre Dame
| | - Dieter I M De Coninck
- Laboratory for Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit (GhEnToxLab), Ghent University, Ghent, Belgium Laboratory of Pharmaceutical Biotechnology (labFBT), Ghent University, Ghent, Belgium
| | - Michael E Pfrender
- Department of Biological Sciences, University of Notre Dame Environmental Change Initiative, University of Notre Dame
| | - Karel A C De Schamphelaere
- Laboratory for Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit (GhEnToxLab), Ghent University, Ghent, Belgium
| |
Collapse
|
49
|
Abstract
High-throughput techniques based on restriction site-associated DNA sequencing (RADseq) are enabling the low-cost discovery and genotyping of thousands of genetic markers for any species, including non-model organisms, which is revolutionizing ecological, evolutionary and conservation genetics. Technical differences among these methods lead to important considerations for all steps of genomics studies, from the specific scientific questions that can be addressed, and the costs of library preparation and sequencing, to the types of bias and error inherent in the resulting data. In this Review, we provide a comprehensive discussion of RADseq methods to aid researchers in choosing among the many different approaches and avoiding erroneous scientific conclusions from RADseq data, a problem that has plagued other genetic marker types in the past.
Collapse
|