1
|
Lin Y, Zhang Y, Li Y, Xu Q, Zhang Y, Chen T, Wang J, Li J, Gong J, Chen Z, Yang Q, Li X. EGCG suppressed activation of hepatic stellate cells by regulating the PLCE1/IP 3/Ca 2+ pathway. Eur J Nutr 2024; 63:3255-3268. [PMID: 39325099 DOI: 10.1007/s00394-024-03504-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
(-)-Epigallocatechin-3-O-gallate (EGCG), one of the green tea catechins, exhibits significant antioxidant properties that play an essential role in various diseases. However, the functional role and underlying mechanism of EGCG in stimulating of hepatic stellate cells (HSCs) remain unexplored in transcriptomics sequencing studies. The present study suggests that oral administration of EGCG at a dosage of 200 mg/kg/day for a duration of four weeks exhibits significant therapeutic potential in a murine model of liver fibrosis induced by CCl4. The activation of HSCs in vitro was dose-dependently inhibited by EGCG. The sequencing analysis data reveled that EGCG exerted a regulatory effect on the calcium signal in mouse HSCs, resulting in a decrease in calcium ion concentration. Further analysis revealed that EGCG inhibited the expression of phospholipase C epsilon-1 (PLCE1) and inositol 1, 4, 5-trisphosphate (IP3) in activated mouse HSCs. Additionally, EGCG contributes to the reduction the concentration of calcium ions by regulating PLCE1. After the knockdown of PLCE1, free calcium ion concentrations decreased, resulting in the inhibition of both cell proliferation and migration. Interestingly, the expression of PLCE1 and cytosolic calcium levels were regulated by reactive oxygen species(ROS). Furthermore, our findings suggest that ROS might inhibit the expression of PLCE1 by inhibiting TFEB, a transcription activator involved in the nuclear translocation process. Our study provided novel evidence regarding the regulatory effects of EGCG on activated HSCs (aHSCs) in mice by the calcium signaling pathway, emphasizing the crucial role of PLCE1 within the calcium signaling network of HSCs. The proposition was also made that PLCE1 holds promise as a novel therapeutic target for murine liver fibrosis.
Collapse
Affiliation(s)
- Ying Lin
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou City, Guangdong Province, 510515, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yan Zhang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou City, Guangdong Province, 510515, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yang Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou City, Guangdong Province, 510515, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qihan Xu
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou City, Guangdong Province, 510515, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yijie Zhang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou City, Guangdong Province, 510515, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Tingting Chen
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou City, Guangdong Province, 510515, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jun Wang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou City, Guangdong Province, 510515, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jierui Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou City, Guangdong Province, 510515, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiacheng Gong
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou City, Guangdong Province, 510515, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhuoer Chen
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou City, Guangdong Province, 510515, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qiaomu Yang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou City, Guangdong Province, 510515, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xu Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou City, Guangdong Province, 510515, China.
| |
Collapse
|
2
|
Han H, Zhang G, Zhang X, Zhao Q. Nrf2-mediated ferroptosis inhibition: a novel approach for managing inflammatory diseases. Inflammopharmacology 2024; 32:2961-2986. [PMID: 39126567 DOI: 10.1007/s10787-024-01519-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 06/28/2024] [Indexed: 08/12/2024]
Abstract
Inflammatory diseases, including psoriasis, atherosclerosis, rheumatoid arthritis, and ulcerative colitis, are characterized by persistent inflammation. Moreover, the existing treatments for inflammatory diseases only provide temporary relief by controlling symptoms, and treatments of unstable and expensive. Therefore, new therapeutic solutions are urgently needed to address the underlying causes or symptoms of inflammatory diseases. Inflammation frequently coincides with a high level of (reactive oxygen species) ROS activation, serving as a fundamental element in numerous physiological and pathological phenotypes that can result in serious harm to the organism. Given its pivotal role in inflammation, oxidative stress, and ferroptosis, ROS represents a focal node for investigating the (nuclear factor E2-related factor 2) Nrf2 pathway and ferroptosis, both of which are intricately linked to ROS. Ferroptosis is mainly triggered by oxidative stress and involves iron-dependent lipid peroxidation. The transcription factor Nrf2 targets several genes within the ferroptosis pathway. Recent studies have shown that Nrf2 plays a significant role in three key ferroptosis-related routes, including the synthesis and metabolism of glutathione/glutathione peroxidase 4, iron metabolism, and lipid processes. As a result, ferroptosis-related treatments for inflammatory diseases have attracted much attention. Moreover, drugs targeting Nrf2 can be used to manage inflammatory conditions. This review aimed to assess ferroptosis regulation mechanism and the role of Nrf2 in ferroptosis inhibition. Therefore, this review article may provide the basis for more research regarding the treatment of inflammatory diseases through Nrf2-inhibited ferroptosis.
Collapse
Affiliation(s)
- Hang Han
- College of Pharmacy, Chongqing Medical University, Chongqing, Chongqing, 400016, China
| | - Guojiang Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, Chongqing, 400016, China
| | - Xiao Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, Chongqing, 400016, China.
| | - Qinjian Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing, Chongqing, 400016, China.
| |
Collapse
|
3
|
Kim Y, Lee H, Park HJ, Kim MK, Kim YI, Kim HJ, Bae SK, Kim YJ, Bae MK. Hispidulin Inhibits the Vascular Inflammation Triggered by Porphyromonas gingivalis Lipopolysaccharide. Molecules 2023; 28:6717. [PMID: 37764491 PMCID: PMC10536826 DOI: 10.3390/molecules28186717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Hispidulin is a natural bioactive flavonoid that has been studied for its potential therapeutic properties, including its anti-inflammatory, antioxidant, and neuroprotective effects. The aim of this study was to explore whether hispidulin could inhibit the endothelial inflammation triggered by Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS). The adhesion of monocytes to the vascular endothelium was evaluated through in vitro and ex vivo monocyte adhesion assays. We analyzed the migration of monocytes across the endothelial layer using a transmigration assay. The results showed that treatment with hispidulin decreased the P. gingivalis LPS-induced adhesion of monocytes to endothelial cells and their migration by suppressing the P. gingivalis LPS-triggered expression of intercellular adhesion molecule-1 (ICAM-1) through downregulating nuclear factor-қB (NF-қB). In addition, hispidulin inhibited P. gingivalis LPS-induced mitogen-activated protein kinases (MAPKs) and AKT in endothelial cells. Altogether, the results indicate that hispidulin suppresses the vascular inflammation induced by P. gingivalis LPS. Mechanistically, it prevents the adhesion of monocytes to the vascular endothelium and migration and inhibits NF-қB, MAPKs, and AKT signaling in endothelial cells.
Collapse
Affiliation(s)
- Yeon Kim
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
- Periodontal Disease Signaling Network Research Center (MRC), Pusan National University, Yangsan 50612, Republic of Korea
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hoyong Lee
- Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Hyun-Joo Park
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
- Periodontal Disease Signaling Network Research Center (MRC), Pusan National University, Yangsan 50612, Republic of Korea
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Republic of Korea
| | - Mi-Kyoung Kim
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yong-Il Kim
- Department of Orthodontics, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hyung Joon Kim
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
- Periodontal Disease Signaling Network Research Center (MRC), Pusan National University, Yangsan 50612, Republic of Korea
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Republic of Korea
| | - Soo-Kyung Bae
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Dental Pharmacology, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yung-Jin Kim
- Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Moon-Kyoung Bae
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
- Periodontal Disease Signaling Network Research Center (MRC), Pusan National University, Yangsan 50612, Republic of Korea
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
4
|
Guo J, Li K, Lin Y, Liu Y. Protective effects and molecular mechanisms of tea polyphenols on cardiovascular diseases. Front Nutr 2023; 10:1202378. [PMID: 37448666 PMCID: PMC10336229 DOI: 10.3389/fnut.2023.1202378] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Aging is the most important factor contributing to cardiovascular diseases (CVDs), and the incidence and severity of cardiovascular events tend to increase with age. Currently, CVD is the leading cause of death in the global population. In-depth analysis of the mechanisms and interventions of cardiovascular aging and related diseases is an important basis for achieving healthy aging. Tea polyphenols (TPs) are the general term for the polyhydroxy compounds contained in tea leaves, whose main components are catechins, flavonoids, flavonols, anthocyanins, phenolic acids, condensed phenolic acids and polymeric phenols. Among them, catechins are the main components of TPs. In this article, we provide a detailed review of the classification and composition of teas, as well as an overview of the causes of aging-related CVDs. Then, we focus on ten aspects of the effects of TPs, including anti-hypertension, lipid-lowering effects, anti-oxidation, anti-inflammation, anti-proliferation, anti-angiogenesis, anti-atherosclerosis, recovery of endothelial function, anti-thrombosis, myocardial protective effect, to improve CVDs and the detailed molecular mechanisms.
Collapse
Affiliation(s)
- Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Kai Li
- General Surgery Department, The First People’s Hospital of Tai’an City, Tai’an, China
| | - Yajun Lin
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Yinghua Liu
- Department of Nutrition, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Bae KH, Chan KH, Kurisawa M. Autoxidation-Resistant, ROS-Scavenging, and Anti-Inflammatory Micellar Nanoparticles Self-Assembled from Poly(acrylic acid)-Green Tea Catechin Conjugates. ACS Macro Lett 2022; 11:835-840. [PMID: 35713474 DOI: 10.1021/acsmacrolett.2c00239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
(-)-Epigallocatechin-3-O-gallate (EGCG), the most bioactive catechin in green tea, has drawn significant interest as a potent antioxidant and anti-inflammatory compound. However, the application of EGCG has been limited by its rapid autoxidation at physiological pH, which generates cytotoxic levels of reactive oxygen species (ROS). Herein, we report the synthesis of poly(acrylic acid)-EGCG conjugates with tunable degrees of substitution and their spontaneous self-assembly into micellar nanoparticles with enhanced resistance against autoxidation. These nanoparticles not only exhibited superior oxidative stability and cytocompatibility over native EGCG, but also showed excellent ROS-scavenging and anti-inflammatory effects. This work presents a potential strategy to overcome the stability and cytotoxicity issues of EGCG, making it one step closer toward its widespread application.
Collapse
Affiliation(s)
- Ki Hyun Bae
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Kiat Hwa Chan
- Division of Science, Yale-NUS College, 16 College Avenue West, Singapore 138527, Singapore
| | - Motoichi Kurisawa
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| |
Collapse
|
6
|
Li Y, Karim MR, Wang B, Peng J. Effects of Green Tea (-)-Epigallocatechin-3-Gallate (EGCG) on Cardiac Function - A Review of the Therapeutic Mechanism and Potentials. Mini Rev Med Chem 2022; 22:2371-2382. [PMID: 35345998 DOI: 10.2174/1389557522666220328161826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/10/2022] [Accepted: 02/09/2022] [Indexed: 11/22/2022]
Abstract
Heart disease, the leading cause of death globally, refers to various illnesses that affect heart structure and function. Specific abnormalities affecting cardiac muscle contractility and remodeling and common factors including oxidative stress, inflammation, and apoptosis underlie the pathogenesis of heart diseases. Epidemiology studies have associated green tea consumption with lower morbidity and mortality of cardiovascular diseases, including heart and blood vessel dysfunction. Among the various compounds found in green tea, catechins are believed to play a significant role in producing benefits to cardiovascular health. Comprehensive literature reviews have been published to summarize the tea catechins' antioxidative, anti-inflammatory, and anti-apoptosis effects in the context of various diseases, such as cardiovascular diseases, cancers, and metabolic diseases. However, recent studies on tea catechins, especially the most abundant (-)-Epigallocatechin-3-Gallate (EGCG), revealed their capabilities in regulating cardiac muscle contraction by directly altering myofilament Ca2+ sensitivity on force development and Ca2+ ion handling in cardiomyocytes under both physiological and pathological conditions. In vitro and in vivo data also demonstrated that green tea extract or EGCG protected or rescued cardiac function, independent of their well-known effects against oxidative stress and inflammation. This minireview will focus on the specific effects of tea catechins on heart muscle contractility at the molecular and cellular level, revisit their effects on oxidative stress and inflammation in a variety of heart diseases, and discuss EGCG's potential as one of the lead compounds for new drug discovery for heart diseases.
Collapse
Affiliation(s)
- Yuejin Li
- Department of Biology, Morgan State University, Baltimore
| | | | - Buheng Wang
- Department of Biology, Morgan State University, Baltimore
| | - Jiangnan Peng
- Department of Biology, Morgan State University, Baltimore
- Department of Chemistry, Morgan State University, Baltimore
| |
Collapse
|
7
|
Monfoulet LE, Ruskovska T, Ajdžanović V, Havlik J, Vauzour D, Bayram B, Krga I, Corral-Jara KF, Kistanova E, Abadjieva D, Massaro M, Scoditti E, Deligiannidou E, Kontogiorgis C, Arola-Arnal A, van Schothorst EM, Morand C, Milenkovic D. Molecular Determinants of the Cardiometabolic Improvements of Dietary Flavanols Identified by an Integrative Analysis of Nutrigenomic Data from a Systematic Review of Animal Studies. Mol Nutr Food Res 2021; 65:e2100227. [PMID: 34048642 DOI: 10.1002/mnfr.202100227] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/21/2021] [Indexed: 12/11/2022]
Abstract
SCOPE Flavanols are important polyphenols of the human diet with extensive demonstrations of their beneficial effects on cardiometabolic health. They contribute to preserve health acting on a large range of cellular processes. The underlying mechanisms of action of flavanols are not fully understood but involve a nutrigenomic regulation. METHODS AND RESULTS To further capture how the intake of dietary flavanols results in the modulation of gene expression, nutrigenomics data in response to dietary flavanols obtained from animal models of cardiometabolic diseases have been collected and submitted to a bioinformatics analysis. This systematic analysis shows that dietary flavanols modulate a large range of genes mainly involved in endocrine function, fatty acid metabolism, and inflammation. Several regulators of the gene expression have been predicted and include transcription factors, miRNAs and epigenetic factors. CONCLUSION This review highlights the complex and multilevel action of dietary flavanols contributing to their strong potential to preserve cardiometabolic health. The identification of the potential molecular mediators and of the flavanol metabolites driving the nutrigenomic response in the target organs is still a pending question which the answer will contribute to optimize the beneficial health effects of dietary bioactives.
Collapse
Affiliation(s)
| | - Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia
| | - Vladimir Ajdžanović
- Department of Cytology, Institute for Biological Research "Siniša Stanković,", National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., Belgrade, Serbia
| | - Jaroslav Havlik
- Department of Food Science, Czech University of Life Sciences Prague, Prague 6, Suchdol, Czech Republic
| | - David Vauzour
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Banu Bayram
- Department of Nutrition and Dietetics, University of Health Sciences, Istanbul, Turkey
| | - Irena Krga
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, F-63000, France.,Centre of Excellence in Nutrition and Metabolism Research, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | - Elena Kistanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Desislava Abadjieva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Marika Massaro
- National Research Council (CNR) Institute of Clinical Physiology, Lecce, Italy
| | - Egeria Scoditti
- National Research Council (CNR) Institute of Clinical Physiology, Lecce, Italy
| | - Eirini Deligiannidou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Christos Kontogiorgis
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Anna Arola-Arnal
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Tarragona, 43007, Spain
| | | | - Christine Morand
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, F-63000, France
| | - Dragan Milenkovic
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, F-63000, France.,Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, California, 95616, USA
| |
Collapse
|
8
|
Vargas-Sanchez PK, Pitol DL, de Sousa LG, Beloti MM, Rosa AL, Rossi AC, Siéssere S, Bombonato-Prado KF. Green tea extract rich in epigallocatechin gallate impairs alveolar bone loss in ovariectomized rats with experimental periodontal disease. Int J Exp Pathol 2020; 101:277-288. [PMID: 33174663 DOI: 10.1111/iep.12379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 09/17/2020] [Indexed: 12/30/2022] Open
Abstract
Periodontal disease and osteoporosis are characterized by bone resorption, and researchers have shown an association between these two diseases through increasing loss of systemic bone mass and triggering alveolar bone loss. Green tea is a common and easily accessible beverage, and evidences show that flavonoid epigallocatechin gallate (EGCG) could decrease bone loss in pathologies such as osteoporosis and periodontal disease. In order to verify its possible effects and apply them in the treatment and prevention of these diseases, this investigation aimed to evaluate the influence of green tea extract (GTE) on bone metabolism of ovariectomized rats after experimental periodontal disease (EPD) by histological, morphological and microtomographic parameters. Wistar female rats were divided into Sham, Sham + EPD, Sham + EPD + GTE, OVX, OVX + EPD and OVX + EPD + GTE groups. Immediately after surgery, gavage administration of 50 mg/kg of green tea extract (GTE) was performed for 60 days, with subsequent induction of periodontal disease by ligature 15 days before euthanasia. Mandible and femur samples were collected for histological, morphometric and microtomographic analysis. The results were analysed by means of statistical software with significance set at 5%. Histological and morphometric analysis showed a significant decrease in alveolar and femoral trabecular bone loss in groups that received GTE. Microtomographic results showed that trabecular thickness and bone surface density values in alveolar bone interradicular septum of the OVX + EPD + GTE groups were similar to the Sham group. The results obtained suggest that green tea extract may improve bone metabolism in osteoporotic rats with periodontal disease.
Collapse
Affiliation(s)
- Paula Katherine Vargas-Sanchez
- Bone Research Lab, Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Dimitrius Leonardo Pitol
- Bone Research Lab, Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz Gustavo de Sousa
- Bone Research Lab, Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Márcio Mateus Beloti
- Bone Research Lab, Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Adalberto Luiz Rosa
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Ana Cláudia Rossi
- Department of Biosciences, School of Dentistry of Piracicaba, Campinas State University, Campinas, Brazil
| | - Selma Siéssere
- Bone Research Lab, Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Karina Fittipaldi Bombonato-Prado
- Bone Research Lab, Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
9
|
Reddy AT, Lakshmi SP, Maruthi Prasad E, Varadacharyulu NC, Kodidhela LD. Epigallocatechin gallate suppresses inflammation in human coronary artery endothelial cells by inhibiting NF-κB. Life Sci 2020; 258:118136. [PMID: 32726662 DOI: 10.1016/j.lfs.2020.118136] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022]
Abstract
The endothelium is a critical regulator of vascular homeostasis, controlling vascular tone and permeability as well as interactions of leukocytes and platelets with blood vessel walls. Consequently, endothelial dysfunction featuring inflammation and reduced vasodilation are considered central to cardiovascular disease (CVD) pathogenesis and have become a therapeutic area of focus. Type II endothelial cell (EC) activation by stress-related stimuli such as tumor necrosis factor-α (TNF-α) initiates the nuclear factor-κB (NF-κB) signaling pathway, a master regulator of inflammatory responses. Because dysregulated NF-κB signaling has been tightly linked to several CVDs, EC-specific inhibition of NF-κB represents an attractive pharmacological strategy. As accumulating evidence highlights the clinical benefits of tea catechin for multiple diseases including CVDs, we sought to determine whether the tea catechin epigallocatechin gallate (EGCG) that displays antioxidative, anti-inflammatory, hypolipidemic, anti-thrombogenic, and anti-hypertensive properties offers protection against CVDs by suppressing the canonical NF-κB pathway. Our findings indicate that EGCG downregulates multiple components of the TNF-α-induced NF-κB signaling pathway and thereby reduces the consequent increase in inflammatory gene transcription and protein expression. Furthermore, EGCG blocked type II EC activation, evidenced by diminished EC leakage and monocyte adhesion in EGCG-treated cells. In summary, our study advances knowledge of EGCG's anti-inflammatory effects on the NF-κB pathway and hence its benefits on endothelial health, supporting its therapeutic potential for CVDs.
Collapse
Affiliation(s)
- Aravind T Reddy
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, India.
| | - Sowmya P Lakshmi
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, India
| | - E Maruthi Prasad
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - N Ch Varadacharyulu
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, India
| | - Lakshmi Devi Kodidhela
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, India
| |
Collapse
|
10
|
Tanshinone IIA alleviates hypoxia/reoxygenation induced cardiomyocyte injury via lncRNA AK003290/miR-124-5p signaling. BMC Mol Cell Biol 2020; 21:20. [PMID: 32220226 PMCID: PMC7099794 DOI: 10.1186/s12860-020-00264-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/17/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) is the leading cause of death globally and has thus placed a heavy burden on healthcare. Tanshinone IIA (TSA) is a major active compound, extracted from Salvia miltiorrhiza Bunge, that possesses various pharmacological activities. The aim of the present study was to investigate the role of TSA in AMI and its underlying mechanism of action. RESULTS We have shown that TSA decreased the apoptosis rate, the amount of LDH, MDA as well as ROS of cardiomyocytes. Meantime, it elevated mitochondrial membrane potential (MMP) which was decreased by H/R treatment. It was also determined that miR-124-5p targets AK003290 directly. TSA up-regulated the expression of AK003290 and its function can be reversed by knock down of AK003290 as well as miR-124-5p overexpression. CONCLUSION TSA exerts the protective role against H/R induced apoptosis, oxidative and MMP loss of cardiomyocytes via regulating AK003290 and miR-124-5p signaling.
Collapse
|
11
|
Protective role of epigallocatechin gallate, a dietary antioxidant against oxidative stress in various diseases. Pathology 2020. [DOI: 10.1016/b978-0-12-815972-9.00021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
The Role of the Microbiota in the Diabetic Peripheral Artery Disease. Mediators Inflamm 2019; 2019:4128682. [PMID: 31205450 PMCID: PMC6530226 DOI: 10.1155/2019/4128682] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/01/2019] [Accepted: 04/14/2019] [Indexed: 02/07/2023] Open
Abstract
Vascular complications of diabetes mellitus represent a major public health problem. Although many steps forward have been made to define the causes and to find the best possible therapies, the problem remains crucial. In recent years, more and more evidences have defined a link between microbiota and the initiation, promotion, and evolution of atherosclerotic disease, even in the diabetic scenario. There is an urgency to develop the knowledge of modern medicine about the link between gut microbiota and its host's metabolic pathways, and it would be useful to understand and justify the interindividual diversity of clinical disease presentation of diabetic vascular complication even if an optimization of pharmacological treatment has been made or in the case of young patients where hypertension, dyslipidemia, and diabetes are not able to justify a very quick progress of atherosclerotic process. The aim of the present review is to gather all the best available evidence in this regard and to define a new role of the microbiota in this field, from biomarker to possible therapeutic target.
Collapse
|
13
|
Chen W, Wang H, Wang W, Ma X, Guo M, Ding T, Ye X, Liu D. Binding affinity and antioxidant activity of the complex of (‐)‐epigallocatechin‐3‐gallate and whey protein isolate: Effect of ultrasound pretreatment. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Weijun Chen
- College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou Zhejiang China
| | - Haiyang Wang
- College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou Zhejiang China
| | - Wenjun Wang
- College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou Zhejiang China
| | - Xiaobin Ma
- College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou Zhejiang China
| | - Mingming Guo
- College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou Zhejiang China
- Zhejiang Key Laboratory for Agro‐Food ProcessingZhejiang R&D Center for Food Technology and Equipment Hangzhou Zhejiang China
| | - Tian Ding
- College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou Zhejiang China
- Zhejiang Key Laboratory for Agro‐Food ProcessingZhejiang R&D Center for Food Technology and Equipment Hangzhou Zhejiang China
| | - Xingqian Ye
- College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou Zhejiang China
- Zhejiang Key Laboratory for Agro‐Food ProcessingZhejiang R&D Center for Food Technology and Equipment Hangzhou Zhejiang China
- Fuli Institute of Food ScienceZhejiang University Hangzhou Zhejiang China
| | - Donghong Liu
- College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou Zhejiang China
- Zhejiang Key Laboratory for Agro‐Food ProcessingZhejiang R&D Center for Food Technology and Equipment Hangzhou Zhejiang China
- Fuli Institute of Food ScienceZhejiang University Hangzhou Zhejiang China
| |
Collapse
|
14
|
Zein-polysaccharide nanoparticles as matrices for antioxidant compounds: A strategy for prevention of chronic degenerative diseases. Food Res Int 2018; 111:451-471. [DOI: 10.1016/j.foodres.2018.05.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 02/07/2023]
|
15
|
Xuan Y, Gao Y, Huang H, Wang X, Cai Y, Luan QX. Tanshinone IIA Attenuates Atherosclerosis in Apolipoprotein E Knockout Mice Infected with Porphyromonas gingivalis. Inflammation 2018. [PMID: 28646427 DOI: 10.1007/s10753-017-0603-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tanshinone IIA (TSA), a pharmacologically active component isolated from Danshen, may prevent cardiovascular diseases due to its anti-inflammatory, anti-oxidative, and anti-adipogenic effects. Porphyromonas gingivalis, a major periodontal pathogen, may contribute to the progression of atherosclerosis. Here, we studied the effects of TSA on atherosclerosis in ApoE-/- mice with P. gingivalis infection. Eight-week-old ApoE-/- mice were randomized to (a) phosphate-buffered saline (PBS), (b) P. gingivalis, and (c) P. gingivalis + TSA (60 mg kg-1 day-1). The mice were injected with (a) PBS, or (b) and (c) P. gingivalis 3 times per week for a total of 10 times. After 8 weeks, atherosclerotic risk factors in serum and in heart, aorta, and liver tissues were analyzed in all mice using Oil Red O, atherosclerosis cytokine antibody arrays, enzyme-linked immunosorbent assay (ELISA), real-time PCR, and microRNA array. CD40, G-CSF, IFN-γ, interleukin (IL)-1β, IL-6, MCP-1, MIP-3α, tumor necrosis factor-α (TNF-α), and VEGF were attenuated by TSA in atherosclerosis cytokine antibody arrays. TSA-treated mice showed a significant reduction of C-reactive protein (CRP), ox-LDL, IL-1β, IL-6, IL-12, and TNF-α in ELISA data. Real-time PCR analyses showed that TSA decreased the expression of CCL-2, CD40, IL-1β, IL-6, TNF-α, and MMP-2 in heart and aorta tissues. Moreover, hepatic CRP was downregulated by TSA, although FASN and HMG-CoA were not. The relative expressions of miR-146b and miR-155 were elevated by P. gingivalis infection and were downregulated by TSA treatment. These results suggest that TSA was a potential therapeutic agent that may have the ability to prevent P. gingivalis-induced atherosclerosis associated with anti-inflammatory and anti-oxidative effects.
Collapse
Affiliation(s)
- Yan Xuan
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, China.,Central Laboratory, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, China
| | - Yue Gao
- Department of Pharmacology and Toxicology, Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Hao Huang
- Department of Pharmacology and Toxicology, Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Xiaoxuan Wang
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, China
| | - Yu Cai
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, China. .,Central Laboratory, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, China. .,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China.
| | - Qing Xian Luan
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, China. .,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
16
|
Xiang L, Li Y, Deng X, Kosanovic D, Schermuly RT, Li X. Natural plant products in treatment of pulmonary arterial hypertension. Pulm Circ 2018; 8:2045894018784033. [PMID: 29869936 PMCID: PMC6055327 DOI: 10.1177/2045894018784033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe disease characterized by
progressive remodeling of distal pulmonary arteries and persistent elevation of
pulmonary vascular resistance (PVR), which leads to right ventricular
dysfunction, heart failure, and eventually death. Although treatment
responsiveness for this disease is improving, it continues to be a
life-threatening condition. With the clinical efficacy of natural plant products
being fully confirmed by years of practice, more and more recognition and
attention have been obtained from the international pharmaceutical industry.
Moreover, studies over the past decades have demonstrated that drugs derived
from natural plants show unique advantages and broad application prospects in
PAH treatment, not to mention the historical application of Chinese traditional
medicine in cardiopulmonary diseases. In this review, we focus on summarizing
natural plant compounds with therapeutic properties in PAH, according to the
extracts, fractions, and pure compounds from plants into categories, hoping it
to be helpful for basic research and clinical application.
Collapse
Affiliation(s)
- Lili Xiang
- 1 Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Ying Li
- 2 Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China.,3 Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
| | - Xu Deng
- 4 Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Djuro Kosanovic
- 5 Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research, Giessen, Germany
| | - Ralph Theo Schermuly
- 5 Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research, Giessen, Germany
| | - Xiaohui Li
- 1 Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China.,3 Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
| |
Collapse
|
17
|
Eng QY, Thanikachalam PV, Ramamurthy S. Molecular understanding of Epigallocatechin gallate (EGCG) in cardiovascular and metabolic diseases. JOURNAL OF ETHNOPHARMACOLOGY 2018; 210:296-310. [PMID: 28864169 DOI: 10.1016/j.jep.2017.08.035] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 08/19/2017] [Accepted: 08/28/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The compound epigallocatechin-3-gallate (EGCG), the major polyphenolic compound present in green tea [Camellia sinensis (Theaceae], has shown numerous cardiovascular health promoting activity through modulating various pathways. However, molecular understanding of the cardiovascular protective role of EGCG has not been reported. AIM OF THE REVIEW This review aims to compile the preclinical and clinical studies that had been done on EGCG to investigate its protective effect on cardiovascular and metabolic diseases in order to provide a systematic guidance for future research. MATERIALS AND METHODS Research papers related to EGCG were obtained from the major scientific databases, for example, Science direct, PubMed, NCBI, Springer and Google scholar, from 1995 to 2017. RESULTS EGCG was found to exhibit a wide range of therapeutic properties including anti-atherosclerosis, anti-cardiac hypertrophy, anti-myocardial infarction, anti-diabetes, anti-inflammatory and antioxidant. These therapeutic effects are mainly associated with the inhibition of LDL cholesterol (anti-atherosclerosis), inhibition of NF-κB (anti-cardiac hypertrophy), inhibition of MPO activity (anti-myocardial infarction), reduction in plasma glucose and glycated haemoglobin level (anti-diabetes), reduction of inflammatory markers (anti-inflammatory) and the inhibition of ROS generation (antioxidant). CONCLUSION EGCG shows different biological activities and in this review, a compilation of how this bioactive molecule plays its role in treating cardiovascular and metabolic diseases was discussed.
Collapse
Affiliation(s)
- Qian Yi Eng
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Bukit Jalil 57000, Malaysia
| | | | - Srinivasan Ramamurthy
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Bukit Jalil 57000, Malaysia.
| |
Collapse
|
18
|
Infectious Agents in Atherosclerotic Cardiovascular Diseases through Oxidative Stress. Int J Mol Sci 2017; 18:ijms18112459. [PMID: 29156574 PMCID: PMC5713425 DOI: 10.3390/ijms18112459] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
Accumulating evidence demonstrates that vascular oxidative stress is a critical feature of atherosclerotic process, potentially triggered by several infectious agents that are considered as risk co-factors for the atherosclerotic cardiovascular diseases (CVDs). C. pneumoniae has been shown to upregulate multiple enzymatic systems capable of producing reactive oxygen species (ROS) such as NADPH oxidase (NOX) and cyclooxygenase in vascular endothelial cells, NOX and cytochrome c oxidase in macrophages as well as nitric oxide synthase and lipoxygenase in platelets contributing to both early and late stages of atherosclerosis. P. gingivalis seems to be markedly involved in the atherosclerotic process as compared to A. actinomycetemcomitans contributing to LDL oxidation and foam cell formation. Particularly interesting is the evidence describing the NLRP3 inflammasome activation as a new molecular mechanism underlying P. gingivalis-induced oxidative stress and inflammation. Amongst viral agents, immunodeficiency virus-1 and hepatitis C virus seem to have a major role in promoting ROS production, contributing, hence, to the early stages of atherosclerosis including endothelial dysfunction and LDL oxidation. In conclusion, oxidative mechanisms activated by several infectious agents during the atherosclerotic process underlying CVDs are very complex and not well-known, remaining, thus, an attractive target for future research.
Collapse
|
19
|
Amorphous Solid Dispersion of Epigallocatechin Gallate for Enhanced Physical Stability and Controlled Release. Pharmaceuticals (Basel) 2017; 10:ph10040088. [PMID: 29120370 PMCID: PMC5748645 DOI: 10.3390/ph10040088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/30/2017] [Accepted: 11/07/2017] [Indexed: 11/17/2022] Open
Abstract
Epigallocatechin gallate (EGCG) has been recognized as the most prominent green tea extract due to its healthy influences. The high instability and low bioavailability, however, strongly limit its utilization in food and drug industries. This work, for the first time, develops amorphous solid dispersion of EGCG to enhance its bioavailability and physical stability. Four commonly used polymeric excipients are found to be compatible with EGCG in water-dioxane mixtures via a stepwise mixing method aided by vigorous mechanical interference. The dispersions are successfully generated by lyophilization. The physical stability of the dispersions is significantly improved compared to pure amorphous EGCG in stress condition (elevated temperature and relative humidity) and simulated gastrointestinal tract environment. From the drug release tests, one of the dispersions, EGCG-Soluplus® 50:50 (w/w) shows a dissolution profile that only 50% EGCG is released in the first 20 min, and the remains are slowly released in 24 h. This sustained release profile may open up new possibilities to increase EGCG bioavailability via extending its elimination time in plasma.
Collapse
|
20
|
Che C, Liu J, Ma L, Xu H, Bai N, Zhang Q. LOX-1 is involved in IL-1β production and extracellular matrix breakdown in dental peri-implantitis. Int Immunopharmacol 2017; 52:127-135. [PMID: 28898769 DOI: 10.1016/j.intimp.2017.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/04/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE To explore whether lectin-type oxidized LDL receptor 1 (LOX-1), interleukin 1 beta (IL-1β), matrix metalloproteinase 2 (MMP2) and matrix metalloproteinase 9 (MMP9) are involved in the nosogenesis of human dental peri-implantitis and determine the role of LOX-1 in IL-1β, MMP2 and MMP9 production in response to Porphyromonas gingivalis. METHODS Peri-implant crevicular fluid (PICF) was collected from ten patients with healthy implants and ten patients with peri-implantitis. The LOX-1 protein in PICF was detected by Western-blot, and the expression of LOX-1 in superficial gingiva of peri-implantitis patients was detected by immunofluorescence staining. The IL-1β, MMP2 and MMP9 proteins in PICF were detected by enzyme-linked immunosorbent assay (ELISA). THP-1 macrophages were pretreated with neutralizing antibody (LOX-1) and inhibitors (LOX-1 and c-Jun N-terminal kinase, JNK) to evaluate the role of LOX-1 and JNK in IL-1β production, as well as the role of LOX-1 in MMP2 and MMP9 production in response to P. gingivalis by quantitative polymerase chain reaction (RT-PCR) and Western-blot. RESULTS LOX-1, IL-1β, MMP2 and MMP9 increased in PICF of peri-implantitis patients and in THP-1 macrophages on P. gingivalis stimulation. IL-1β, MMP2 and MMP9 production in response to P. gingivalis in THP-1 macrophages was dependent on LOX-1. JNK was responsible for LOX-1 induced IL-1β production as a result of P. gingivalis infection. CONCLUSION LOX-1 is involved in IL-1β production and extracellular matrix breakdown is a novel inflammatory pathway trigger and potential drug target in human dental peri-implantitis.
Collapse
Affiliation(s)
- Chengye Che
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jie Liu
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Lei Ma
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Huirong Xu
- Department of Pathology, ZiBo Central Hospital, ZiBo, Shandong Province, China
| | - Na Bai
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Qian Zhang
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
21
|
Epigallocatechin gallate protects against homocysteine-induced vascular smooth muscle cell proliferation. Mol Cell Biochem 2017; 439:131-140. [PMID: 28871467 DOI: 10.1007/s11010-017-3142-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/02/2017] [Indexed: 10/18/2022]
Abstract
Epigallocatechin gallate (EGCG), a bioactive ingredient of green tea, plays a protective role in the cardiovascular system. Homocysteine (Hcy) is a major risk factor for chronic kidney disease and cardiovascular disease. The present study aimed to investigate the role of EGCG in Hcy-induced proliferation of vascular smooth muscle cells (VSMCs) and its underlying mechanism. We also explored the roles of rennin-angiotensin system (RAS), extracellular signal-regulated kinases (ERK1/2), and p38 mitogen-activated protein kinase (p38 MAPK) in this process. Human aortic smooth muscle cells (HASMCs) were treated with different drugs for different periods. The proliferation rate of HASMCs was detected using the CCK-8 and BrdU labeling assays. The Western blot assay was used to determine the expression levels of angiotensin II type 1 receptor (AT-1R), ERK1/2, and p38 MAPK. Compared with the control group, the HASMCs treated with Hcy at different doses (100, 200, 500, and 1000 µM) showed significantly increased proliferation. Hcy increased the expression of AT-1R, whereas EGCG decreased the protein expression of AT-1R. Furthermore, we found that Hcy-induced expression of p-ERK1/2 and p-p38MAPK was dependent on AT-1R. Compared with Hcy (500 µM)-treated cells, EGCG (20 µM)-treated cells showed decreased proliferation as well as expression of AT-1R, p-ERK1/2, and p-p38MAPK. In addition, HASMC proliferation was suppressed by the addition of an AT-1R blocker (olmesartan), an ERK1/2 inhibitor (PD98059), and a p38MAPK inhibitor (SB202190). EGCG can inhibit AT-1R and affect ERK1/2 and p38MAPK signaling pathways, resulting in the decrease of VSMC proliferation induced by Hcy.
Collapse
|
22
|
Ding S, Jiang J, Yu P, Zhang G, Zhang G, Liu X. Green tea polyphenol treatment attenuates atherosclerosis in high-fat diet-fed apolipoprotein E-knockout mice via alleviating dyslipidemia and up-regulating autophagy. PLoS One 2017; 12:e0181666. [PMID: 28777810 PMCID: PMC5544182 DOI: 10.1371/journal.pone.0181666] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 07/05/2017] [Indexed: 02/06/2023] Open
Abstract
Background: Green tea polyphenol (GTP) is a polyphenol source from green tea that has drawn wide attention owing to epidemiological evidence of its beneficial effects in the prevention of cardiovascular disease; the underlying molecular mechanisms of these effects are not well understood. This study aimed to investigate the effects of GTP treatment on autophagy regulation in the vessel wall and lipid metabolism of HFD-fed male ApoE-knockout mice. Methods: Adult male ApoE-knockout mice (n = 30) fed with a high-fat diet (HFD) were treated with either vehicle or GTP (3.2 or 6.4 g/L) administered via drinking water for 15 weeks, and C57BL/6J mice fed with standard chow diet (STD) were used as the control group. Metabolic parameters, expression of key mRNAs and proteins of hepatic lipid metabolism and autophagy in the vessel wall of mice were determined after the 15-week treatment. Results: A HFD induced atherosclerosis formation and lipid metabolism disorders as well as reduced autophagy expression in the vessel wall of ApoE-knockout mice, but GTP treatment alleviated the lipid metabolism disorders, decreased the oxLDL levels in serum, and increased the mRNA and protein expressions of hepatic PPARα and autophagy markers (LC3, Beclin1 and p62) in the vessel wall of ApoE-knockout mice. Conclusions: Our findings suggest that GTP supplementation showed marked suppression of atherogenesis through improved lipid metabolism as well as through a direct impact on oxLDL and autophagy flux in the vessel wall.
Collapse
Affiliation(s)
- Shibin Ding
- Department of Nutrition and Food Hygiene, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, PR, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, PR, China
- * E-mail:
| | - Jinjin Jiang
- School of Public Health, Capital Medical University, Beijing, PR, China
| | - Pengxin Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, PR, China
| | - Guofu Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, PR, China
| | - Guanghui Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, PR, China
| | - Xiaoting Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, PR, China
| |
Collapse
|
23
|
Ding Y, Xiao C, Wu Q, Xie Y, Li X, Hu H, Li L. The Mechanisms Underlying the Hypolipidaemic Effects of Grifola frondosa in the Liver of Rats. Front Microbiol 2016; 7:1186. [PMID: 27536279 PMCID: PMC4971090 DOI: 10.3389/fmicb.2016.01186] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/18/2016] [Indexed: 11/16/2022] Open
Abstract
The present study investigated the hypolipidaemic effects of Grifola frondosa and its regulation mechanism involved in lipid metabolism in liver of rats fed a high-cholesterol diet. The body weights and serum lipid levels of control rats, of hyperlipidaemic rats, and of hyperlipidaemic rats treated with oral G. frondosa were determined. mRNA expression and concentration of key lipid metabolism enzymes were investigated. Serum cholesterol, triacylglycerol, and low-density lipoprotein cholesterol levels were markedly decreased in hyperlipidaemic rats treated with G. frondosa compared with untreated hyperlipidaemic rats. mRNA expression of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), acyl-coenzyme A: cholesterol acyltransferase (ACAT2), apolipoprotein B (ApoB), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC1) were significantly down-regulated, while expression of cholesterol 7-alpha-hydroxylase (CYP7A1) was significantly up-regulated in the livers of treated rats compared with untreated hyperlipidaemic rats. The concentrations of these enzymes also paralleled the observed changes in mRNA expression. Two-dimensional polyacrylamide gel electrophoresis (2-DE) and Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF-MS) were used to identify 20 proteins differentially expressed in livers of rats treated with G. frondosa compared with untreated hyperlipidemic rats. Of these 20 proteins, seven proteins were down-regulated, and 13 proteins were up-regulated. These findings indicate that the hypolipidaemic effects of G. frondosa reflected its modulation of key enzymes involved in cholesterol and triacylglycerol biosynthesis, absorption, and catabolic pathways. G. frondosa may exert anti-atherosclerotic effects by inhibiting LDL oxidation through down-regulation and up-regulating proteins expression in the liver of rats. Therefore, G. frondosa may produce both hypolipidaemic and anti-atherosclerotic effects, and potentially be of use as a functional food for the treatment or prevention of hyperlipidaemia and atherosclerosis.
Collapse
Affiliation(s)
- Yinrun Ding
- School of Bioscience and Bioengineering, South China University of TechnologyGuangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of MicrobiologyGuangzhou, China
- Department of Biology, Basic Medical College, Guangdong Medical UniversityZhangjiang, China
| | - Chun Xiao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of MicrobiologyGuangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of MicrobiologyGuangzhou, China
| | - Yizhen Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of MicrobiologyGuangzhou, China
| | - Xiangmin Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of MicrobiologyGuangzhou, China
| | - Huiping Hu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of MicrobiologyGuangzhou, China
| | - Liangqiu Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of MicrobiologyGuangzhou, China
| |
Collapse
|
24
|
Tu SH, Chen MY, Chen LC, Mao YT, Ho CH, Lee WJ, Lin YK, Pan MH, Lo CY, Chen CL, Yen Y, Whang-Peng J, Ho CT, Wu CH, Ho YS. Pu-erh Tea Extract Attenuates Nicotine-Induced Foam Cell Formation in Primary Cultured Monocytes: An in Vitro Mechanistic Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3186-3195. [PMID: 27001463 DOI: 10.1021/acs.jafc.6b00624] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study, the mechanisms by which pu-erh tea extract (PETE) attenuates nicotine-induced foam cell formation were investigated. Monocytes were purified from healthy individuals using commercial antibodies coated with magnetic beads. We found that the nicotine-induced (1-10 μM) expression of oxidized low-density lipoprotein receptors (ox-LDLRs) and α9-nAchRs in monocytes was significantly attenuated by 24 h of PETE (10 μg/mL; ∗, p < 0.05) cotreatment. Nicotine (1 μM for 24 h) significantly induced the expression of the surface adhesion molecule ICAM-1 and the monocyte integrin adhesion molecule (CD11b) by human umbilical vein endothelial cells (HUVECs) and triggered monocytes to differentiate into macrophages via interactions with the endothelium. After treatment with nicotine (0.1-10 μM for 24 h), the HUVECs released chemotactic factors (IL-8) to attract monocytes into the tunica intima of the artery, and the monocytes then transformed into foam cells. We demonstrated that PETE treatment (>1 μg/mL for 24 h; ∗, p < 0.05) significantly attenuates nicotine-induced (1 μM) monocyte migration toward HUVECs and foam cell formation. This study suggests that tea components effectively attenuate the initial step (foam cell formation) of nicotine-induced atherosclerosis in circulating monocytes.
Collapse
Affiliation(s)
- Shih-Hsin Tu
- Comprehensive Cancer Center, Taipei Medical University , Taipei, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University , Taipei, Taiwan
- Taipei Cancer Center, Taipei Medical University , Taipei, Taiwan
- Breast Medical Center, Taipei Medical University Hospital , Taipei, Taiwan
| | - Ming-Yao Chen
- Division of Gastroenterology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University , Taipei, Taiwan
| | - Li-Ching Chen
- Division of Gastroenterology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University , Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University , Taipei, Taiwan
| | - Yi-Ting Mao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University , Taipei, Taiwan
| | - Chi-Hou Ho
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University , Taipei, Taiwan
| | - Wen-Jui Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University , Taipei, Taiwan
| | - Yen-Kuang Lin
- Biostatistics Center, Taipei Medical University , Taipei, Taiwan
| | - Min-Hsiung Pan
- Institute of Food Sciences and Technology, National Taiwan University , Taipei, Taiwan
| | - Chih-Yu Lo
- Department of Food Science, National Chiayi University , Chiayi City, Taiwan
| | - Chi-Long Chen
- Department of Pathology, Taipei Medical University Hospital , Taipei, Taiwan
- Department of Pathology, College of Medicine, Taipei Medical University , Taipei, Taiwan
| | - Yun Yen
- Comprehensive Cancer Center, Taipei Medical University , Taipei, Taiwan
- Taipei Cancer Center, Taipei Medical University , Taipei, Taiwan
| | - Jacqueline Whang-Peng
- Comprehensive Cancer Center, Taipei Medical University , Taipei, Taiwan
- Taipei Cancer Center, Taipei Medical University , Taipei, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University , New Brunswick, New Jersey 08901, United States
| | - Chih-Hsiung Wu
- Comprehensive Cancer Center, Taipei Medical University , Taipei, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University , Taipei, Taiwan
- Department of Surgery, En Chu Kong Hospital , New Taipei City 237, Taiwan
| | - Yuan-Soon Ho
- Comprehensive Cancer Center, Taipei Medical University , Taipei, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University , Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University , Taipei, Taiwan
- Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
25
|
Leichsenring A, Bäcker I, Furtmüller PG, Obinger C, Lange F, Flemmig J. Long-Term Effects of (-)-Epigallocatechin Gallate (EGCG) on Pristane-Induced Arthritis (PIA) in Female Dark Agouti Rats. PLoS One 2016; 11:e0152518. [PMID: 27023113 PMCID: PMC4811407 DOI: 10.1371/journal.pone.0152518] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/15/2016] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis (RA)--a widespread chronic inflammatory disease in industrialized countries--is characterized by a persistent and progressive joint destruction. The chronic pro-inflammatory state results from a mutual activation of the innate and the adaptive immune system, while the exact pathogenesis mechanism is still under discussion. New data suggest a role of the innate immune system and especially polymorphonuclear granulocytes (PMNs, neutrophils) not only during onset and the destructive phase of RA but also at the chronification of the disease. Thereby the enzymatic activity of myeloperoxidase (MPO), a peroxidase strongly abundant in neutrophils, may be important: While its peroxidase activity is known to contribute to cartilage destruction at later stages of RA the almost MPO-specific oxidant hypochlorous acid (HOCl) is also discussed for certain anti-inflammatory effects. In this study we used pristane-induced arthritis (PIA) in Dark Agouti rats as a model for the chronic course of RA in man. We were able to shown that a specific detection of the HOCl-producing MPO activity provides a sensitive new marker to evaluate the actual systemic inflammatory status which is only partially detectable by the evaluation of clinical symptoms (joint swelling and redness measurements). Moreover, we evaluated the long-term pharmacological effect of the well-known anti-inflammatory flavonoid epigallocatechin gallate (EGCG). Thereby only upon early and continuous oral application of this polyphenol the arthritic symptoms were considerably diminished both in the acute and in the chronic phase of the disease. The obtained results were comparable to the treatment control (application of methotrexate, MTX). As revealed by stopped-flow kinetic measurements, EGCG may regenerate the HOCl-production of MPO which is known to be impaired at chronic inflammatory diseases like RA. It can be speculated that this MPO activity-promoting effect of EGCG may contribute to the pharmacological mode of action of this polyphenol.
Collapse
Affiliation(s)
- Anna Leichsenring
- Fraunhofer Institute for Cell Therapy and Immunology (IZI) Leipzig, Perlickstraße 1, 04103 Leipzig, Germany
| | - Ingo Bäcker
- Fraunhofer Institute for Cell Therapy and Immunology (IZI) Leipzig, Perlickstraße 1, 04103 Leipzig, Germany
| | - Paul G. Furtmüller
- Department of Chemistry, Division of Biochemistry, University of Natural Resources and Life Sciences (BOKU) Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Christian Obinger
- Department of Chemistry, Division of Biochemistry, University of Natural Resources and Life Sciences (BOKU) Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Franziska Lange
- Fraunhofer Institute for Cell Therapy and Immunology (IZI) Leipzig, Perlickstraße 1, 04103 Leipzig, Germany
| | - Jörg Flemmig
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Härtelstraße 16–18, 04107 Leipzig, Germany
- Translational Centre for Regenerative Medicine (TRM) Leipzig, Philipp-Rosenthal-Str. 55, 04103 Leipzig, Germany
| |
Collapse
|
26
|
Chowdhury A, Sarkar J, Chakraborti T, Pramanik PK, Chakraborti S. Protective role of epigallocatechin-3-gallate in health and disease: A perspective. Biomed Pharmacother 2016; 78:50-59. [DOI: 10.1016/j.biopha.2015.12.013] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 12/03/2015] [Accepted: 12/15/2015] [Indexed: 12/28/2022] Open
|
27
|
Zulli A, Smith RM, Kubatka P, Novak J, Uehara Y, Loftus H, Qaradakhi T, Pohanka M, Kobyliak N, Zagatina A, Klimas J, Hayes A, La Rocca G, Soucek M, Kruzliak P. Caffeine and cardiovascular diseases: critical review of current research. Eur J Nutr 2016; 55:1331-43. [PMID: 26932503 DOI: 10.1007/s00394-016-1179-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 02/06/2016] [Indexed: 12/21/2022]
Abstract
Caffeine is a most widely consumed physiological stimulant worldwide, which is consumed via natural sources, such as coffee and tea, and now marketed sources such as energy drinks and other dietary supplements. This wide use has led to concerns regarding the safety of caffeine and its proposed beneficial role in alertness, performance and energy expenditure and side effects in the cardiovascular system. The question remains "Which dose is safe?", as the population does not appear to adhere to the strict guidelines listed on caffeine consumption. Studies in humans and animal models yield controversial results, which can be explained by population, type and dose of caffeine and low statistical power. This review will focus on comprehensive and critical review of the current literature and provide an avenue for further study.
Collapse
Affiliation(s)
- Anthony Zulli
- Centre for Chronic Disease (CCD), College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Renee M Smith
- Centre for Chronic Disease (CCD), College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Jan Novak
- 2nd Department of Internal Medicine, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic.,Department of Physiology, Masaryk University, Brno, Czech Republic
| | - Yoshio Uehara
- Division of Clinical Nutrition, Faculty of Home Economics, Kyoritsu Women's University, Tokyo, Japan
| | - Hayley Loftus
- Centre for Chronic Disease (CCD), College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Tawar Qaradakhi
- Centre for Chronic Disease (CCD), College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | | | | | - Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Odborarov 10, 832 32, Bratislava, Slovak Republic
| | - Alan Hayes
- Centre for Chronic Disease (CCD), College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Giampiero La Rocca
- Human Anatomy Section, Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Miroslav Soucek
- 2nd Department of Internal Medicine, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | - Peter Kruzliak
- Laboratory of Structural Biology and Proteomics, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho tr 1/1946, Brno, 612 42, Czech Republic.
| |
Collapse
|
28
|
Pang J, Zhang Z, Zheng TZ, Bassig BA, Mao C, Liu X, Zhu Y, Shi K, Ge J, Yang YJ, Dejia-Huang, Bai M, Peng Y. Green tea consumption and risk of cardiovascular and ischemic related diseases: A meta-analysis. Int J Cardiol 2016; 202:967-74. [DOI: 10.1016/j.ijcard.2014.12.176] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/16/2014] [Accepted: 12/31/2014] [Indexed: 12/31/2022]
|
29
|
Yin J, Huang F, Yi Y, Yin L, Peng D. EGCG attenuates atherosclerosis through the Jagged-1/Notch pathway. Int J Mol Med 2015; 37:398-406. [PMID: 26648562 DOI: 10.3892/ijmm.2015.2422] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 11/19/2015] [Indexed: 11/06/2022] Open
Abstract
Atherosclerosis is the most common cause of cardiovascular diseases worldwide. Oxidized low-density lipoprotein (ox-LDL) is a particularly important risk factor in the pathogenesis of atherosclerosis. Accumulating evidence has indicated that epigallocatechin-3-gallate (EGCG; a catechin found in the popular beverage, greent tea) protects against ox-LDL-induced atherosclerosis. However, the underlying mechanisms remain unclear. In the present study, ox-LDL (100 mg/l) induced damage to, and the apoptosis of human umbilical vein endothelial cells (HUVECs) by reducing endothelial nitric oxide synthase (eNOS) expression and promoting inducible nitric oxide synthase (iNOS) expression; these effects were abrogated by the addition of 50 µM EGCG. Furthermore, ox-LDL rapidly activated the membrane translocation of p22phox, and altered the protein expression of Jagged-1 and Notch pathway-related proteins [Math1, hairy and enhancer of split (HES)1 and HES5]; these effects were also prevented by pre-treatment with 50 µM EGCG. In addition, Jagged-1 played a significant role in the EGCG-mediated protection against ox-LDL-induced apoptosis and ox-LDL‑diminished cell adhesion in the HUVECs. Finally, EGCG inhibited high-fat diet (HFD)-induced atherosclerosis in apolipoprotein E (ApoE) knockout (ApoE-KO) mice through the Jagged-1/Notch pathway. Taken together, these findings demonstrate that 50 µM EGCG protects against ox-LDL-induced endothelial dysfunction through the Jagged-1/Notch signaling pathway. Moreover, our data provide insight into the possible molecular mechanisms through which EGCG attenuates ox-LDL‑induced vascular endothelial dysfunction.
Collapse
Affiliation(s)
- Jianguo Yin
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Fang Huang
- Department of Cardiology, The First Hospital of Changsha, Changsha, Hunan 410011, P.R. China
| | - Yuhong Yi
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Liang Yin
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Daoquan Peng
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
30
|
Cai Y, Chen Z, Liu H, Xuan Y, Wang X, Luan Q. Green tea epigallocatechin-3-gallate alleviates Porphyromonas gingivalis -induced periodontitis in mice. Int Immunopharmacol 2015; 29:839-845. [DOI: 10.1016/j.intimp.2015.08.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/22/2015] [Accepted: 08/27/2015] [Indexed: 12/29/2022]
|
31
|
Periodontal Disease-Induced Atherosclerosis and Oxidative Stress. Antioxidants (Basel) 2015; 4:577-90. [PMID: 26783845 PMCID: PMC4665422 DOI: 10.3390/antiox4030577] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/11/2015] [Accepted: 08/18/2015] [Indexed: 01/22/2023] Open
Abstract
Periodontal disease is a highly prevalent disorder affecting up to 80% of the global population. Recent epidemiological studies have shown an association between periodontal disease and cardiovascular disease, as oxidative stress plays an important role in chronic inflammatory diseases such as periodontal disease and cardiovascular disease. In this review, we focus on the mechanisms by which periodontopathic bacteria cause chronic inflammation through the enhancement of oxidative stress and accelerate cardiovascular disease. Furthermore, we comment on the antioxidative activity of catechin in atherosclerosis accelerated by periodontitis.
Collapse
|
32
|
Zheng XN, Wang XW, Li LY, Xu ZW, Huang HY, Zhao JS, Zhang D, Yin X, Sheng J, Tang JT. Pu-erh tea powder preventive effects on cisplatin-induced liver oxidative damage in Wistar rats. Asian Pac J Cancer Prev 2015; 15:7389-94. [PMID: 25227847 DOI: 10.7314/apjcp.2014.15.17.7389] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chemotherapy is one of the major means for control of malignancies, with cisplatin (CDDP) as one of the main agents, widely used for the treatment of various malignant solid tumors. However, prevention of hepatotoxicity from cisplatin is one of the urgent issues in cancer chemotherapy. In this study, we aimed to investigate the effects of pu-erh tea on hepatotoxicity through body weight and tissue antioxidant parameters like, liver coefficient, serum alanine aminotransferase (ALT), serum aspartate aminotransferase (AST), superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), malondialdehyde(MDA) and glutathione (GSH) levels, and light microscopic evaluation by histological findings. MATERIALS AND METHODS The rats were randomly divided into five groups: Control (n=10), cisplatin (3 mg/kg p.i., n=10), cisplatin+pu-erh (0.32 g/kg/day i.g., n=10), cisplatin+pu-erh (0.8 g/kg/day i.g., n=10) and cisplatin+pu-erh (1.6 g/kg/day i.g., n=10). Pu-erh tea powder was administrated for 31 consecutive days. The rats were sacrificed at the end on the second day after a single dose of cisplatin treatment for measuring indices. RESULTS Pu-erh tea powder exhibited a protective effect by decreasing MDA and GSH and increasing the SOD and GSH-PX levels and GSH-PX/MDA ratio in comparison with the control group. Besides, pu-erh tea was also able to alleviate the pathological damage to some extent. CONCLUSION Pu-erh tea powder is protective against cisplatin-induced liver oxidative damages, especially at the medium dosage (0.8 g/kg/d).
Collapse
Affiliation(s)
- Xiao-Nan Zheng
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, China E-mail :
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Cai Y, Zhao L, Qin Y, Wu XQ. EGCG Blocked Phenylephrin-Induced Hypertrophy in H9C2 Cardiomyocytes, by Activating AMPK-Dependent Pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 19:203-10. [PMID: 25954124 PMCID: PMC4422959 DOI: 10.4196/kjpp.2015.19.3.203] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 10/02/2014] [Accepted: 01/23/2015] [Indexed: 12/31/2022]
Abstract
AMP-activated protein kinase (AMPK) is a key regulator of energy metabolism. Previous studies have shown that activation of AMPK results in suppression of cardiac myocyte hypertrophy via inhibition of the p70S6 kinase (p70S6K) and eukaryotic elongation factor-2 (eEF2) signaling pathways. Epigallocatechin-3-gallate (EGCG), the major polyphenol found in green tea, possesses multiple protective effects on the cardiovascular system including cardiac hypertrophy. However, the molecular mechanisms has not been well investigated. In this study, we found that EGCG could significantly reduce natriuretic peptides type A (Nppa), brain natriuretic polypeptide (BNP) mRNA expression and decrease cell surface area in H9C2 cardiomyocytes stimulated with phenylephrine (PE). Moreover, we showed that AMPK is activated in H9C2 cardiomyocytes by EGCG, and AMPK-dependent pathway participates in the inhibitory effects of EGCG on cardiac hypertrophy. Taken together, our findings provide the first evidence that the effect of EGCG against cardiac hypertrophy may be attributed to its activation on AMPK-dependent signaling pathway, suggesting the therapeutic potential of EGCG on the prevention of cardiac remodeling in patients with pressure overload hypertrophy.
Collapse
Affiliation(s)
- Yi Cai
- Guangzhou Research Institute of Snake Venom, China
| | - Li Zhao
- Guangzhou Research Institute of Snake Venom, China
| | - Yuan Qin
- Guangzhou Research Institute of Snake Venom, China
| | - Xiao-Qian Wu
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, 510182, Guangdong, P.R. China
| |
Collapse
|
34
|
Thichanpiang P, Wongprasert K. Green Tea Polyphenol Epigallocatechin-3-Gallate Attenuates TNF-α-Induced Intercellular Adhesion Molecule-1 Expression and Monocyte Adhesion to Retinal Pigment Epithelial Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:103-19. [DOI: 10.1142/s0192415x1550007x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Epigallocatechin-3-gallate (EGCG) is a major polyphenol component of green tea (Camellia sinensis) and demonstrates anti-oxidant, anticancer and anti-inflammatory properties. EGCG has been shown to protect retinal pigment epithelium (RPE) against oxidative stress-induced cell death. The pathogenesis of diseases in the retina is usually initiated by local inflammation at the RPE cell layer, and inflammation is mostly associated with leukocyte migration and the secretion of pro-inflammatory cytokines. Whether EGCG can modulate the cytokine-induced inflammatory response of RPE, particularly leukocyte migration, has not been clearly elucidated, and was therefore the objective of this study. ARPE-19 cells were cultured with different concentrations of TNF-α in the presence or absence of EGCG to different time points. Intracellular reactive oxygen species (ROS) levels were determined. Intercellular adhesion molecule (ICAM)-1 and phosphor-NF-κB and IκB expression were determined by Western blot analysis. Phosphor-NF-κB nuclear translocation and monocyte–RPE adhesion were investigated using immunofluorescence confocal laser scanning microscopy. Scanning electron microscopy (SEM) was carried out to further determine the ultrastructure of monocyte–RPE adhesion. The results demonstrated that TNF-α modulated inflammatory effects in ARPE-19 by induction of ROS and up-regulation of ICAM-1 expression. Moreover, TNF-α-induced phosphor-NF-κB nuclear translocation, increased phosphor-NF-κB expression and IκB degradation, and increased the degree of monocyte–RPE adhesion. Pretreating the cells with EGCG ameliorated the inflammatory effects of TNF-α. The results indicated that EGCG significantly exerts anti-inflammatory effects in ARPE-19 cells, partly as a suppressor of TNF-α signaling and that the inhibition was mediated via the NF-κB pathway.
Collapse
Affiliation(s)
- Peeradech Thichanpiang
- Division of Occupational Therapy, Faculty of Physical Therapy, Nakhon Pathom 73170, Thailand
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Kanokpan Wongprasert
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
35
|
Olsen I, Potempa J. Strategies for the inhibition of gingipains for the potential treatment of periodontitis and associated systemic diseases. J Oral Microbiol 2014; 6:24800. [PMID: 25206939 PMCID: PMC4138498 DOI: 10.3402/jom.v6.24800] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/15/2014] [Accepted: 07/15/2014] [Indexed: 12/13/2022] Open
Abstract
Gingipains are the major virulence factors of Porphyromonas gingivalis, the main periodontopathogen. It is expected that inhibition of gingipain activity in vivo could prevent or slow down the progression of adult periodontitis. To date, several classes of gingipain inhibitors have been recognized. These include gingipain N-terminal prodomains, synthetic compounds, inhibitors from natural sources, antibiotics, antiseptics, antibodies, and bacteria. Several synthetic compounds are potent gingipain inhibitors but inhibit a broad spectrum of host proteases and have undesirable side effects. Synthetic compounds with high specificity for gingipains have unknown toxicity effects, making natural inhibitors more promising as therapeutic gingipain blockers. Cranberry and rice extracts interfere with gingipain activity and prevent the growth and biofilm formation of periodontopathogens. Although the ideal gingipain inhibitor has yet to be discovered, gingipain inhibition represents a novel approach to treat and prevent periodontitis. Gingipain inhibitors may also help treat systemic disorders that are associated with periodontitis, including cardiovascular disease, rheumatoid arthritis, aspiration pneumonia, pre-term birth, and low birth weight.
Collapse
Affiliation(s)
- Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland ; Department of Oral Immunology and Infectious Disease, School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
36
|
Periodontal pathogens and atherosclerosis: implications of inflammation and oxidative modification of LDL. BIOMED RESEARCH INTERNATIONAL 2014; 2014:595981. [PMID: 24949459 PMCID: PMC4052162 DOI: 10.1155/2014/595981] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/07/2014] [Accepted: 04/28/2014] [Indexed: 12/29/2022]
Abstract
Inflammation is well accepted to play a crucial role in the development of atherosclerotic lesions, and recent studies have demonstrated an association between periodontal disease and cardiovascular disease. Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, causative agents of destructive chronic inflammation in the periodontium, can accelerate atheroma deposition in animal models. Emerging evidence suggests that vaccination against virulence factors of these pathogens and anti-inflammatory therapy may confer disease resistance. In this review, we focus on the role of inflammatory mechanisms and oxidative modification in the formation and activation of atherosclerotic plaques accelerated by P. gingivalis or A. actinomycetemcomitans in an ApoE-deficient mouse model and high-fat-diet-fed mice. Furthermore, we examine whether mucosal vaccination with a periodontal pathogen or the anti-inflammatory activity of catechins can reduce periodontal pathogen-accelerated atherosclerosis.
Collapse
|
37
|
Lin CM, Hou SW, Wang BW, Ong JR, Chang H, Shyu KG. Molecular mechanism of (-)-epigallocatechin-3-gallate on balloon injury-induced neointimal formation and leptin expression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:1213-1220. [PMID: 24410132 DOI: 10.1021/jf404479x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Leptin contributes to the pathogenesis of vascular repair and cardiovascular events. This study evaluated the molecular mechanism of EGCG in balloon injury-induced leptin expression. According to immunohistochemical and confocal analyses, leptin expression was increased and the aortic lumen exhibited narrowing after balloon injury. EGCG treatment attenuated leptin expression and diminished neointimal formation. The in vitro study showed that angiotensin II (Ang II) induced the migration and proliferation of cultured vascular smooth muscle cells (VSMCs), whereas treatment with EGCG, leptin siRNA, and c-Jun siRNA inhibited the migration and proliferation of VSMCs significantly. The EMSA shows that balloon injury increased AP-1-binding activity, and EGCG and c-Jun siRNA inhibited the AP-1-binding activity. Western blot and real-time RT-PCR analyses revealed similar results in intimal tissue samples. In summary, balloon injury induces leptin expression in the carotid artery of rats, and EGCG inhibits leptin expression through the JNK/AP-1 pathway and also attenuates neointimal formation.
Collapse
Affiliation(s)
- Chiu-Mei Lin
- Department of Emergency Medicine, Shin Kong Wu Ho-Su Memorial Hospital , Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|