1
|
Zhou K, Liu X, Wang M, Duan J, Zhao X, Yin H. The landscape in telomere related gene prognostic signature for survival and medication treatment effectiveness prediction in hepatocellular carcinoma. Discov Oncol 2024; 15:765. [PMID: 39692822 DOI: 10.1007/s12672-024-01659-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024] Open
Abstract
OBJECTIVE Telomeres, made of repetitive DNA sequences and shelterin complexes, which were found at the ends of chromosomes and had been extensively studied in cancer research. However, in hepatocellular carcinoma (HCC) was still relatively scarce. In this study, we investigated the correlation between telomerase-related genes (TRGs) and the prognosis and immunotherapy of HCC patients to enhance clinical outcomes. METHODS In this work, TRGs were gathered using TelNet, while clinical information and gene expression data for HCC patients were retrieved from the Cancer Genome Atlas (TCGA) database. A risk prediction model based on TRGs was created using COX and Lasso regression analyses, with ROC curves used to assess prognostic efficacy. Univariate and multifactorial COX regression analyses were used to determine if the risk model had an independent impact on prognosis. Nomograms were created to enhance clinical usability, and calibration curves were used to assess predictive ability at various time points. The Tumor Immune Dysfunction and Exclusion (TIDE) score was used to analyze differences in immune infiltrating cells between risk groups. The study analyzed the relationship between risk ratings and drug treatment effectiveness using data from the CellMiner database. The hub gene was identified and its relationship to prognostic markers of HCC patients was examined. The expression of hub genes in immune cell subpopulations was also investigated by single-cell data. RESULTS 2093 TRGs were identified, with 949 showing significant differences in expression between HCC and paracancerous tissues. Seven risk genes were overexpressed in tumor tissues, leading to lower survival rates in high-risk patients. Risk model could independently predict the prognosis of HCC patients. Analysis of tumor immune infiltrating cells revealed significant differences in cell abundance between risk groups, with notable variations in immune subset enrichment between subgroups. Higher risk scores correlated with increased sensitivity to sorafenib, mitoxantrone, oxaliplatin, gemcitabine, and entinostat, while sensitivity decreased for vincristine, etc. CDCA8 was identified as a key gene in the Protein Interaction Network, while high expression associated with poorer overall survival, tumor proliferation and metastasis. The results of single-cell data analysis suggest that CDCA8 may promote the development of HCC by affecting T lymphocytes. CONCLUSION The TRG-based risk model could predict HCC patient prognosis and closely linked to tumor immune environment, which could offer new possibilities for clinical treatment.
Collapse
Affiliation(s)
- Kai Zhou
- Department of Pediatric Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China.
| | - Xingyu Liu
- Department of Pediatric Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Mingda Wang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Jiangsu, China
| | - Jinjiang Duan
- Department of Pediatric Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xu Zhao
- Department of Pediatric Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Hanjun Yin
- Department of Pediatrics, The Affiliated Suqian Hospital of Xuzhou Medical University, Jiangsu, China.
| |
Collapse
|
2
|
Yadav S, Graham A, Al Hammood F, Garbark C, Vasudevan D, Pandey U, Asara JM, Rajasundaram D, Parkhitko AA. Unique tau- and synuclein-dependent metabolic reprogramming in neurons distinct from normal aging. Aging Cell 2024; 23:e14277. [PMID: 39137949 PMCID: PMC11561663 DOI: 10.1111/acel.14277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 08/15/2024] Open
Abstract
Neuronal cells are highly specialized cells and have a specific metabolic profile to support their function. It has been demonstrated that the metabolic profiles of different cells/tissues undergo significant reprogramming with advancing age, which has often been considered a contributing factor towards aging-related diseases including Alzheimer's (AD) and Parkinson's (PD) diseases. However, it is unclear if the metabolic changes associated with normal aging predispose neurons to disease conditions or a distinct set of metabolic alterations happen in neurons in AD or PD which might contribute to disease pathologies. To decipher the changes in neuronal metabolism with age, in AD, or in PD, we performed high-throughput steady-state metabolite profiling on heads in wildtype Drosophila and in Drosophila models relevant to AD and PD. Intriguingly, we found that the spectrum of affected metabolic pathways is dramatically different between normal aging, Tau, or Synuclein overexpressing neurons. Genetic targeting of the purine and glutamate metabolism pathways, which were dysregulated in both old age and disease conditions partially rescued the neurodegenerative phenotype associated with the overexpression of wildtype and mutant tau. Our findings support a "two-hit model" to explain the pathological manifestations associated with AD where both aging- and Tau/Synuclein- driven metabolic reprogramming events cooperate with each other, and targeting both could be a potent therapeutic strategy.
Collapse
Affiliation(s)
- Shweta Yadav
- Aging Institute of UPMC and the University of PittsburghPittsburghPennsylvaniaUSA
| | - Aidan Graham
- Aging Institute of UPMC and the University of PittsburghPittsburghPennsylvaniaUSA
| | - Farazdaq Al Hammood
- Aging Institute of UPMC and the University of PittsburghPittsburghPennsylvaniaUSA
| | - Chris Garbark
- Department of Cell BiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Deepika Vasudevan
- Department of Cell BiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Udai Pandey
- Department of Pediatrics, Children's Hospital of PittsburghUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - John M. Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, and Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Children's Hospital of PittsburghUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Andrey A. Parkhitko
- Aging Institute of UPMC and the University of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
3
|
Fernandez ME, Martinez-Romero J, Aon MA, Bernier M, Price NL, de Cabo R. How is Big Data reshaping preclinical aging research? Lab Anim (NY) 2023; 52:289-314. [PMID: 38017182 DOI: 10.1038/s41684-023-01286-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/10/2023] [Indexed: 11/30/2023]
Abstract
The exponential scientific and technological progress during the past 30 years has favored the comprehensive characterization of aging processes with their multivariate nature, leading to the advent of Big Data in preclinical aging research. Spanning from molecular omics to organism-level deep phenotyping, Big Data demands large computational resources for storage and analysis, as well as new analytical tools and conceptual frameworks to gain novel insights leading to discovery. Systems biology has emerged as a paradigm that utilizes Big Data to gain insightful information enabling a better understanding of living organisms, visualized as multilayered networks of interacting molecules, cells, tissues and organs at different spatiotemporal scales. In this framework, where aging, health and disease represent emergent states from an evolving dynamic complex system, context given by, for example, strain, sex and feeding times, becomes paramount for defining the biological trajectory of an organism. Using bioinformatics and artificial intelligence, the systems biology approach is leading to remarkable advances in our understanding of the underlying mechanism of aging biology and assisting in creative experimental study designs in animal models. Future in-depth knowledge acquisition will depend on the ability to fully integrate information from different spatiotemporal scales in organisms, which will probably require the adoption of theories and methods from the field of complex systems. Here we review state-of-the-art approaches in preclinical research, with a focus on rodent models, that are leading to conceptual and/or technical advances in leveraging Big Data to understand basic aging biology and its full translational potential.
Collapse
Affiliation(s)
- Maria Emilia Fernandez
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jorge Martinez-Romero
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Miguel A Aon
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Michel Bernier
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Nathan L Price
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
4
|
Robinson O, Lau CE. How do metabolic processes age: Evidence from human metabolomic studies. Curr Opin Chem Biol 2023; 76:102360. [PMID: 37393706 DOI: 10.1016/j.cbpa.2023.102360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023]
Abstract
Metabolomics, the global profiling of small molecules in the body, has emerged as a promising analytical approach for assessing molecular changes associated with ageing at the population level. Understanding root metabolic ageing pathways may have important implications for managing age-related disease risk. In this short review, relevant studies published in the last few years that have made valuable contributions to this field will be discussed. These include large-scale studies investigating metabolic changes with age, metabolomic clocks, and metabolic pathways associated with ageing phenotypes. Recent significant advances include the use of longitudinal study designs, populations spanning the whole life course, standardised analytical platforms of enhanced metabolome coverage and development of multivariate analyses. While many challenges remain, recent studies have demonstrated the considerable promise of this field.
Collapse
Affiliation(s)
- Oliver Robinson
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, United Kingdom; Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, United Kingdom.
| | - ChungHo E Lau
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, United Kingdom
| |
Collapse
|
5
|
Wang F, Tessier AJ, Liang L, Wittenbecher C, Haslam DE, Fernández-Duval G, Heather Eliassen A, Rexrode KM, Tobias DK, Li J, Zeleznik O, Grodstein F, Martínez-González MA, Salas-Salvadó J, Clish C, Lee KH, Sun Q, Stampfer MJ, Hu FB, Guasch-Ferré M. Plasma metabolomic profiles associated with mortality and longevity in a prospective analysis of 13,512 individuals. Nat Commun 2023; 14:5744. [PMID: 37717037 PMCID: PMC10505179 DOI: 10.1038/s41467-023-41515-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/01/2023] [Indexed: 09/18/2023] Open
Abstract
Experimental studies reported biochemical actions underpinning aging processes and mortality, but the relevant metabolic alterations in humans are not well understood. Here we examine the associations of 243 plasma metabolites with mortality and longevity (attaining age 85 years) in 11,634 US (median follow-up of 22.6 years, with 4288 deaths) and 1878 Spanish participants (median follow-up of 14.5 years, with 525 deaths). We find that, higher levels of N2,N2-dimethylguanosine, pseudouridine, N4-acetylcytidine, 4-acetamidobutanoic acid, N1-acetylspermidine, and lipids with fewer double bonds are associated with increased risk of all-cause mortality and reduced odds of longevity; whereas L-serine and lipids with more double bonds are associated with lower mortality risk and a higher likelihood of longevity. We further develop a multi-metabolite profile score that is associated with higher mortality risk. Our findings suggest that differences in levels of nucleosides, amino acids, and several lipid subclasses can predict mortality. The underlying mechanisms remain to be determined.
Collapse
Affiliation(s)
- Fenglei Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Anne-Julie Tessier
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Clemens Wittenbecher
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- SciLifeLab, Division of Food Science and Nutrition, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Danielle E Haslam
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Gonzalo Fernández-Duval
- Department of Preventive Medicine and Public Health, Navarra Health Research Institute (IDISNA), University of Navarra, Pamplona, Spain
| | - A Heather Eliassen
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kathryn M Rexrode
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Deirdre K Tobias
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jun Li
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Oana Zeleznik
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Francine Grodstein
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Miguel A Martínez-González
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Preventive Medicine and Public Health, Navarra Health Research Institute (IDISNA), University of Navarra, Pamplona, Spain
- Consorcio CIBER, Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Jordi Salas-Salvadó
- Consorcio CIBER, Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Clary Clish
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kyu Ha Lee
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Meir J Stampfer
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Marta Guasch-Ferré
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark.
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Liu HJ, Miao H, Yang JZ, Liu F, Cao G, Zhao YY. Deciphering the role of lipoproteins and lipid metabolic alterations in ageing and ageing-associated renal fibrosis. Ageing Res Rev 2023; 85:101861. [PMID: 36693450 DOI: 10.1016/j.arr.2023.101861] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/07/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Fibrosis is the ultimate pathological feature of many chronic diseases, and ageing a major risk factor for fibrotic diseases. Current therapies are limited to those that reduce the rate of functional decline in patients with mild to moderate disease, but few interventions are available to specifically target the pathogenesis of fibrosis. In this context, new treatments that can significantly improve survival time and quality of life for these patients are urgently needed. In this review, we outline both the synthesis and metabolism of lipids and lipoproteins associated with ageing-associated renal fibrosis and the prominent contribution of lipids and lipidomics in the discovery of biomarkers that can be used for the prevention, diagnosis, and treatment of renal ageing and fibrosis. Next, we describe the effect of dyslipidaemia on ageing-related renal fibrosis and the pathophysiological changes in the kidney caused by dyslipidaemia. We then summarize the enzymes, transporters, transcription factors, and RNAs that contribute to dysregulated lipid metabolism in renal fibrosis and discuss their role in renal fibrosis in detail. We conclude by discussing the progress in research on small molecule therapeutic agents that prevent and treat ageing and ageing-associated renal fibrosis by modulating lipid metabolism. A growing number of studies suggest that restoring aberrant lipid metabolism may be a novel and promising therapeutic strategy to combat ageing and ageing-associated renal fibrosis.
Collapse
Affiliation(s)
- Hong-Jiao Liu
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Jun-Zheng Yang
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, No. 71 Dongpeng Avenue, Guangzhou, Guangdong 510530, China
| | - Fei Liu
- Department of Urology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 South of Panjiayuan, Beijing 100021, China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China.
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
7
|
Lysophospholipids and branched chain amino acids are associated with aging: a metabolomics-based study of Chinese adults. Eur J Med Res 2023; 28:58. [PMID: 36732870 PMCID: PMC9893616 DOI: 10.1186/s40001-023-01021-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Aging is an inevitable process associated with impairments in multiple organ systems, which increases the risk of comorbidity and disability, and reduces the health-span. Metabolomics is a powerful tool in aging research, which can reflect the characteristics of aging at the level of terminal metabolism, and may contribute to the exploration of aging mechanisms and the formulation of anti-aging strategies. METHODS To identify possible biomarkers and pathways associated with aging using untargeted metabolomics methods, we performed liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomics profiling on serum samples from 32 older adults and 32 sex-matched young controls. RESULTS Metabolite profiling could distinguish the two groups. Among the 349 metabolites identified, 80-including lysophospholipids whose levels gradually decline-are possible candidate aging biomarkers. Valine, leucine and isoleucine degradation and biosynthesis were important pathways in aging, with reduced levels of L-isoleucine (r = - 0.30, p = 0.017) and L-leucine (r = - 0.32, p = 0.010) observed in older adults. CONCLUSIONS We preliminarily revealed the metabolite changes associated with aging in Chinese adults. Decreases in mitochondrial membrane-related lysophospholipids and dysfunction of branched-chain amino acid metabolism were determined to be the characteristics and promising research targets for aging.
Collapse
|
8
|
Bresilla D, Habisch H, Pritišanac I, Zarse K, Parichatikanond W, Ristow M, Madl T, Madreiter-Sokolowski CT. The sex-specific metabolic signature of C57BL/6NRj mice during aging. Sci Rep 2022; 12:21050. [PMID: 36473898 PMCID: PMC9726821 DOI: 10.1038/s41598-022-25396-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Due to intact reactive oxygen species homeostasis and glucose metabolism, C57BL/6NRj mice are especially suitable to study cellular alterations in metabolism. We applied Nuclear Magnetic resonance spectroscopy to analyze five different tissues of this mouse strain during aging and included female and male mice aged 3, 6, 12, and 24 months. Metabolite signatures allowed separation between the age groups in all tissues, and we identified the most prominently changing metabolites in female and male tissues. A refined analysis of individual metabolite levels during aging revealed an early onset of age-related changes at 6 months, sex-specific differences in the liver, and a biphasic pattern for various metabolites in the brain, heart, liver, and lung. In contrast, a linear decrease of amino acids was apparent in muscle tissues. Based on these results, we assume that age-related metabolic alterations happen at a comparably early aging state and are potentially associated with a metabolic switch. Moreover, identified differences between female and male tissues stress the importance of distinguishing between sexes when studying age-related changes and developing new treatment approaches. Besides, metabolomic features seem to be highly dependent on the genetic background of mouse strains.
Collapse
Affiliation(s)
- Doruntina Bresilla
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/VI, 8010, Graz, Austria
| | - Hansjoerg Habisch
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/VI, 8010, Graz, Austria
| | - Iva Pritišanac
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/VI, 8010, Graz, Austria
| | - Kim Zarse
- Laboratory of Energy Metabolism, Department of Health Sciences and Technology, Institute of Translational Medicine, ETH Zurich, Schorenstrasse 16, 8603, Schwerzenbach, Switzerland
| | - Warisara Parichatikanond
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
- Faculty of Pharmacy, Center of Biopharmaceutical Science for Healthy Ageing (BSHA), Mahidol University, Bangkok, 10400, Thailand
| | - Michael Ristow
- Laboratory of Energy Metabolism, Department of Health Sciences and Technology, Institute of Translational Medicine, ETH Zurich, Schorenstrasse 16, 8603, Schwerzenbach, Switzerland
| | - Tobias Madl
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/VI, 8010, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| | - Corina T Madreiter-Sokolowski
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/VI, 8010, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
9
|
Balashova E, Trifonova O, Maslov D, Lichtenberg S, Lokhov P, Archakov A. Metabolome profiling in the study of aging processes. BIOMEDITSINSKAYA KHIMIYA 2022; 68:321-338. [DOI: 10.18097/pbmc20226805321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aging of a living organism is closely related to systemic metabolic changes. But due to the multilevel and network nature of metabolic pathways, it is difficult to understand these connections. Today, this problem is solved using one of the main approaches of metabolomics — untargeted metabolome profiling. The purpose of this publication is to systematize the results of metabolomic studies based on such profiling, both in animal models and in humans.
Collapse
Affiliation(s)
| | | | - D.L. Maslov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - P.G. Lokhov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | |
Collapse
|
10
|
Balashova EE, Maslov DL, Trifonova OP, Lokhov PG, Archakov AI. Metabolome Profiling in Aging Studies. BIOLOGY 2022; 11:1570. [PMID: 36358271 PMCID: PMC9687709 DOI: 10.3390/biology11111570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 06/07/2024]
Abstract
Organism aging is closely related to systemic metabolic changes. However, due to the multilevel and network nature of metabolic pathways, it is difficult to understand these connections. Today, scientists are trying to solve this problem using one of the main approaches of metabolomics-untargeted metabolome profiling. The purpose of this publication is to review metabolomic studies based on such profiling, both in animal models and in humans. This review describes metabolites that vary significantly across age groups and include carbohydrates, amino acids, carnitines, biogenic amines, and lipids. Metabolic pathways associated with the aging process are also shown, including those associated with amino acid, lipid, and energy metabolism. The presented data reveal the mechanisms of aging and can be used as a basis for monitoring biological age and predicting age-related diseases in the early stages of their development.
Collapse
Affiliation(s)
- Elena E. Balashova
- Institute of Biomedical Chemistry, Pogodinskaya St. 10, 119121 Moscow, Russia
| | | | | | | | | |
Collapse
|
11
|
Chou C, Mohanty S, Kang HA, Kong L, Avila‐Pacheco J, Joshi SR, Ueda I, Devine L, Raddassi K, Pierce K, Jeanfavre S, Bullock K, Meng H, Clish C, Santori FR, Shaw AC, Xavier RJ. Metabolomic and transcriptomic signatures of influenza vaccine response in healthy young and older adults. Aging Cell 2022; 21:e13682. [PMID: 35996998 PMCID: PMC9470889 DOI: 10.1111/acel.13682] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 01/25/2023] Open
Abstract
Seasonal influenza causes mild to severe respiratory infections and significant morbidity, especially in older adults. Transcriptomic analysis in populations across multiple flu seasons has provided insights into the molecular determinants of vaccine response. Still, the metabolic changes that underlie the immune response to influenza vaccination remain poorly characterized. We performed untargeted metabolomics to analyze plasma metabolites in a cohort of younger and older subjects before and after influenza vaccination to identify vaccine-induced molecular signatures. Metabolomic and transcriptomic data were combined to define networks of gene and metabolic signatures indicative of high and low antibody response in these individuals. We observed age-related differences in metabolic baselines and signatures of antibody response to influenza vaccination and the abundance of α-linolenic and linoleic acids, sterol esters, fatty-acylcarnitines, and triacylglycerol metabolism. We identified a metabolomic signature associated with age-dependent vaccine response, finding increased tryptophan and decreased polyunsaturated fatty acids (PUFAs) in young high responders (HRs), while fatty acid synthesis and cholesteryl esters accumulated in older HRs. Integrated metabolomic and transcriptomic analysis shows that depletion of PUFAs, which are building blocks for prostaglandins and other lipid immunomodulators, in young HR subjects at Day 28 is related to a robust immune response to influenza vaccination. Increased glycerophospholipid levels were associated with an inflammatory response in older HRs to flu vaccination. This multi-omics approach uncovered age-related molecular markers associated with influenza vaccine response and provides insight into vaccine-induced metabolic responses that may help guide development of more effective influenza vaccines.
Collapse
Affiliation(s)
- Chih‐Hung Chou
- Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
| | - Subhasis Mohanty
- Section of Infectious Diseases, Department of Internal MedicineYale School of MedicineNew HavenConnecticutUSA
| | | | - Lingjia Kong
- Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
| | | | - Samit R. Joshi
- Section of Infectious Diseases, Department of Internal MedicineYale School of MedicineNew HavenConnecticutUSA
| | - Ikuyo Ueda
- Section of Infectious Diseases, Department of Internal MedicineYale School of MedicineNew HavenConnecticutUSA
| | - Lesley Devine
- Department of Laboratory MedicineYale School of MedicineNew HavenConnecticutUSA
| | - Khadir Raddassi
- Department of NeurologyYale School of MedicineNew HavenConnecticutUSA
| | - Kerry Pierce
- Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
| | | | - Kevin Bullock
- Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
| | - Hailong Meng
- Department of PathologyYale School of MedicineNew HavenConnecticutUSA
| | - Clary Clish
- Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
| | - Fabio R. Santori
- Center for Molecular MedicineUniversity of GeorgiaAthensGeorgiaUSA
| | - Albert C. Shaw
- Section of Infectious Diseases, Department of Internal MedicineYale School of MedicineNew HavenConnecticutUSA
| | - Ramnik J. Xavier
- Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
- Klarman Cell ObservatoryBroad Institute of Harvard and MITCambridgeMassachusettsUSA
- Center for Computational and Integrative Biology and Department of Molecular BiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
12
|
Drapela S, Ilter D, Gomes AP. Metabolic reprogramming: a bridge between aging and tumorigenesis. Mol Oncol 2022; 16:3295-3318. [PMID: 35666002 PMCID: PMC9490145 DOI: 10.1002/1878-0261.13261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/07/2022] [Accepted: 05/23/2022] [Indexed: 12/01/2022] Open
Abstract
Aging is the most robust risk factor for cancer development, with more than 60% of cancers occurring in those aged 60 and above. However, how aging and tumorigenesis are intertwined is poorly understood and a matter of significant debate. Metabolic changes are hallmarks of both aging and tumorigenesis. The deleterious consequences of aging include dysfunctional cellular processes, the build‐up of metabolic byproducts and waste molecules in circulation and within tissues, and stiffer connective tissues that impede blood flow and oxygenation. Collectively, these age‐driven changes lead to metabolic reprogramming in different cell types of a given tissue that significantly affects their cellular functions. Here, we put forward the idea that metabolic changes that happen during aging help create a favorable environment for tumorigenesis. We review parallels in metabolic changes that happen during aging and how these changes function both as adaptive mechanisms that enable the development of malignant phenotypes in a cell‐autonomous manner and as mechanisms that suppress immune surveillance, collectively creating the perfect environment for cancers to thrive. Hence, antiaging therapeutic strategies that target the metabolic reprogramming that occurs as we age might provide new opportunities to prevent cancer initiation and/or improve responses to standard‐of‐care anticancer therapies.
Collapse
Affiliation(s)
- Stanislav Drapela
- Department of Molecular Oncology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL, USA
| | - Didem Ilter
- Department of Molecular Oncology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL, USA
| | - Ana P Gomes
- Department of Molecular Oncology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL, USA
| |
Collapse
|
13
|
Reece AS, Hulse GK. Geotemporospatial and causal inferential epidemiological overview and survey of USA cannabis, cannabidiol and cannabinoid genotoxicity expressed in cancer incidence 2003-2017: part 2 - categorical bivariate analysis and attributable fractions. Arch Public Health 2022; 80:100. [PMID: 35354495 PMCID: PMC8969377 DOI: 10.1186/s13690-022-00812-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/29/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND As the cannabis-cancer relationship remains an important open question epidemiological investigation is warranted to calculate key metrics including Rate Ratios (RR), Attributable Fractions in the Exposed (AFE) and Population Attributable Risks (PAR) to directly compare the implicated case burden between emerging cannabinoids and the established carcinogen tobacco. METHODS SEER*Stat software from Centres for Disease Control was used to access age-standardized state census incidence of 28 cancer types (including "All (non-skin) Cancer") from National Cancer Institute in US states 2001-2017. Drug exposures taken from the National Survey of Drug Use and Health 2003-2017, response rate 74.1%. Federal seizure data provided cannabinoid exposure. US Census Bureau furnished income and ethnicity. Exposure dichotomized as highest v. lowest exposure quintiles. Data processed in R. RESULTS Nineteen thousand eight hundred seventy-seven age-standardized cancer rates were returned. Based on these rates and state populations this equated to 51,623,922 cancer cases over an aggregated population 2003-2017 of 124,896,418,350. Fifteen cancers displayed elevated E-Values in the highest compared to the lowest quintiles of cannabidiol exposure, namely (in order): prostate, melanoma, Kaposi sarcoma, ovarian, bladder, colorectal, stomach, Hodgkins, esophagus, Non-Hodgkins lymphoma, All cancer, brain, lung, CLL and breast. Eleven cancers were elevated in the highest THC exposure quintile: melanoma, thyroid, liver, AML, ALL, pancreas, myeloma, CML, breast, oropharynx and stomach. Twelve cancers were elevated in the highest tobacco quintile confirming extant knowledge and study methodology. For cannabidiol RR declined from 1.397 (95%C.I. 1.392, 1.402), AFE declined from 28.40% (28.14, 28.66%), PAR declined from 15.3% (15.1, 15.5%) and minimum E-Values declined from 2.13. For THC RR declined from 2.166 (95%C.I. 2.153, 2.180), AFE declined from 53.8% (53.5, 54.1%); PAR declined from 36.1% (35.9, 36.4%) and minimum E-Values declined from 3.72. For tobacco, THC and cannabidiol based on AFE this implies an excess of 93,860, 91,677 and 48,510 cases; based on PAR data imply an excess of 36,450, 55,780 and 14,819 cases. CONCLUSION Data implicate 23/28 cancers as being linked with THC or cannabidiol exposure with epidemiologically-causal relationships comparable to those for tobacco. AFE-attributable cases for cannabinoids (91,677 and 48,510) compare with PAR-attributable cases for tobacco (36,450). Cannabinoids constitute an important multivalent community carcinogen.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, Western Australia, 6009, Australia.
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia.
- , Brisbane, Australia.
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, Western Australia, 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
| |
Collapse
|
14
|
Güneşliol BE, Karaca E, Ağagündüz D, Acar ZA. Association of physical activity and nutrition with telomere length, a marker of cellular aging: A comprehensive review. Crit Rev Food Sci Nutr 2021; 63:674-692. [PMID: 34553645 DOI: 10.1080/10408398.2021.1952402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The aging of the population has great social and economic effects because it is characterized by a gradual loss in physiological integrity, resulting in functional decline, thereby loss of ability to move independently. Telomeres, the hallmarks of biological aging, play a protective role in both cell death and aging. Critically short telomeres give rise to a metabolically active cell that is unable to repair damage or divide, thereby leading to aging. Lifestyle factors such as physical activity (PA) and nutrition could be associated with telomere length (TL). Indeed, regular PA and healthy nutrition as integral parts of our lifestyle can slow down telomere shortening, thereby delaying aging. In this context, the present comprehensive review summarizes the data from recent literature on the association of PA and nutrition with TL.
Collapse
Affiliation(s)
| | - Esen Karaca
- Department of Nutrition and Dietetics, Izmir Demokrasi University, Izmir, Turkey
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Gazi University, Ankara, Turkey
| | | |
Collapse
|
15
|
Circulating Metabolomic Analysis following Cecal Ligation and Puncture in Young and Aged Mice Reveals Age-Associated Temporal Shifts in Nicotinamide and Histidine/Histamine Metabolic Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5534241. [PMID: 34512866 PMCID: PMC8433009 DOI: 10.1155/2021/5534241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/13/2021] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Aged individuals are at higher risk for morbidity and mortality following acute stressors than similarly stressed young people. Evaluation of age-associated metabolic changes could lead to the identification of specific therapeutic targets to improve outcomes from acute stressors, such as infections, in the elderly. We thus compared the plasma metabolomes of both young and old mice following cecal ligation and puncture (CLP), an accepted model of acute infection and stress. METHODS Young (9-17 wks) and aged (78-96 wks) male C57bl/6 mice were subjected to a retro-orbital bleed and two-week recovery prior to sham surgery (laparotomy alone) or CLP. Animals were sacrificed at 4 h, 8 h, or 12 h following intervention, and plasma was isolated from blood for subsequent analysis. Metabolomic analysis of samples were performed (Metabolon; Durham, NC). RESULTS Aged animals demonstrated greater intraprocedural mortality than young (30.2% vs. 17.4%, χ 2 p = 0.0004), confirming enhanced frailty. Principal component analysis and partial-least squares discriminant analysis of 566 metabolites demonstrated distinct metabolomic shifts following sham surgery or CLP in both young and aged animals. Identification of metabolites of interest using a consensus statistical approach revealed that both the histidine/histamine pathway and the nicotinamide pathway have significant age-associated alterations following CLP. CONCLUSIONS The application of untargeted plasma metabolomics identified key pathways underpinning metabolomic responses to CLP in both young and aged animals. Ultimately, these data provide a robust foundation for future mechanistic studies that may assist in improving outcomes in frail patients in response to acute stressors such as infection, trauma, or surgery.
Collapse
|
16
|
Su X, Yu J, Wang N, Zhao S, Han W, Chen D, Li L, Li L. High-Coverage Metabolome Analysis Reveals Significant Diet Effects of Autoclaved and Irradiated Feed on Mouse Fecal and Urine Metabolomics. Mol Nutr Food Res 2021; 65:e2100110. [PMID: 33861501 DOI: 10.1002/mnfr.202100110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/02/2021] [Indexed: 12/17/2022]
Abstract
SCOPE Using metabolomics to study the relations of nutrition and health requires stringent control of the experimental conditions used in an animal model. This work investigates the diet effects of autoclaved and irradiated feed on mouse urine and fecal metabolomics. METHODS AND RESULTS C57BL/6 mice are fed normal-irradiation sterilized diet (n = 9), autoclave sterilized diet (n = 9), and high-irradiation sterilized diet (n = 9) for 4 weeks. Differential chemical isotope labeling liquid chromatography mass spectrometry is used to quantify the metabolome variations of urine and feces collected at five time points. Significant differences are observed in urine or fecal metabolomes of mice fed autoclaved diet versus mice fed high-irradiation diet or fed normal-irradiation diet, while the differences are small between the mice fed normal-irradiation and high-irradiation diet. Correlation studies of metabolite changes of diet- and aging-related biomarkers indicate a large overlap of significantly affected metabolites by the two factors. CONCLUSIONS Diet can be a confounding factor that needs to be carefully considered when a metabolomics study is designed and metabolomic results of a mouse model of nutritional or other biological study are interpreted. Using the same sterilized diet for a given metabolomics project is essential to control the diet effect.
Collapse
Affiliation(s)
- Xiaoling Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jiong Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Nan Wang
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Shuang Zhao
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Wei Han
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Deying Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Liang Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| |
Collapse
|
17
|
Vallianatou T, Shariatgorji R, Nilsson A, Karlgren M, Hulme H, Fridjonsdottir E, Svenningsson P, Andrén PE. Integration of Mass Spectrometry Imaging and Machine Learning Visualizes Region-Specific Age-Induced and Drug-Target Metabolic Perturbations in the Brain. ACS Chem Neurosci 2021; 12:1811-1823. [PMID: 33939923 PMCID: PMC8291481 DOI: 10.1021/acschemneuro.1c00103] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
![]()
Detailed metabolic
imaging of specific brain regions in early aging
may expose pathophysiological mechanisms and indicate effective neuropharmacological
targets in the onset of cognitive decline. Comprehensive imaging of
brain aging and drug-target effects is restricted using conventional
methodology. We simultaneously visualized multiple metabolic alterations
induced by normal aging in specific regions of mouse brains by integrating
Fourier-transform ion cyclotron resonance mass spectrometry imaging
and combined supervised and unsupervised machine learning models.
We examined the interplay between aging and the response to tacrine-induced
acetylcholinesterase inhibition, a well-characterized therapeutic
treatment against dementia. The dipeptide carnosine (β-alanyl-l-histidine) and the vitamin α-tocopherol were significantly
elevated by aging in different brain regions. l-Carnitine
and acetylcholine metabolism were found to be major pathways affected
by aging and tacrine administration in a brain region-specific manner,
indicating altered mitochondrial function and neurotransmission. The
highly interconnected hippocampus and retrosplenial cortex displayed
different age-induced alterations in lipids and acylcarnitines, reflecting
diverse region-specific metabolic effects. The subregional differences
observed in the hippocampal formation of several lipid metabolites
demonstrate the unique potential of the technique compared to standard
mass spectrometry approaches. An age-induced increase of endogenous
antioxidants, such as α-tocopherol, in the hippocampus was detected,
suggesting an augmentation of neuroprotective mechanisms in early
aging. Our comprehensive imaging approach visualized heterogeneous
age-induced metabolic perturbations in mitochondrial function, neurotransmission,
and lipid signaling, not always attenuated by acetylcholinesterase
inhibition.
Collapse
Affiliation(s)
- Theodosia Vallianatou
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Biomedical Centre 591, Uppsala University, SE-75124 Uppsala, Sweden
| | - Reza Shariatgorji
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Biomedical Centre 591, Uppsala University, SE-75124 Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Biomedical Centre 591, Uppsala University, SE-75124 Uppsala, Sweden
| | - Anna Nilsson
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Biomedical Centre 591, Uppsala University, SE-75124 Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Biomedical Centre 591, Uppsala University, SE-75124 Uppsala, Sweden
| | - Maria Karlgren
- Department of Pharmacy, Uppsala Drug Optimization and Pharmaceutical Profiling (UDOPP), Biomedical Centre 580, Uppsala University, SE-75123 Uppsala, Sweden
| | - Heather Hulme
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Biomedical Centre 591, Uppsala University, SE-75124 Uppsala, Sweden
| | - Elva Fridjonsdottir
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Biomedical Centre 591, Uppsala University, SE-75124 Uppsala, Sweden
| | - Per Svenningsson
- Section of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Per E. Andrén
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Biomedical Centre 591, Uppsala University, SE-75124 Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Biomedical Centre 591, Uppsala University, SE-75124 Uppsala, Sweden
| |
Collapse
|
18
|
Shi D, Tan Q, Ruan J, Tian Z, Wang X, Liu J, Liu X, Liu Z, Zhang Y, Sun C, Niu Y. Aging-related markers in rat urine revealed by dynamic metabolic profiling using machine learning. Aging (Albany NY) 2021; 13:14322-14341. [PMID: 34016789 PMCID: PMC8202887 DOI: 10.18632/aging.203046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 04/29/2021] [Indexed: 12/29/2022]
Abstract
The process of aging and metabolism is intimately intertwined; thus, developing biomarkers related to metabolism is critical for delaying aging. However, few studies have identified reliable markers that reflect aging trajectories based on machine learning. We generated metabolomic profiles from rat urine using ultra-performance liquid chromatography/mass spectrometry. This was dynamically collected at four stages of the rat's age (20, 50, 75, and 100 weeks) for both the training and test groups. Partial least squares-discriminant analysis score plots revealed a perfect separation trajectory in one direction with increasing age in the training and test groups. We further screened 25 aging-related biomarkers through the combination of four algorithms (VIP, time-series, LASSO, and SVM-RFE) in the training group. They were validated in the test group with an area under the curve of 1. Finally, six metabolites, known or novel aging-related markers, were identified, including epinephrine, glutarylcarnitine, L-kynurenine, taurine, 3-hydroxydodecanedioic acid, and N-acetylcitrulline. We also found that, except for N-acetylcitrulline (p < 0.05), the identified aging-related metabolites did not differ between tumor-free and tumor-bearing rats at 100 weeks (p > 0.05). Our findings reveal the metabolic trajectories of aging and provide novel biomarkers as potential therapeutic antiaging targets.
Collapse
Affiliation(s)
- Dan Shi
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China
| | - Qilong Tan
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Jingqi Ruan
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Zhen Tian
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Xinyue Wang
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Jinxiao Liu
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Xin Liu
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Zhipeng Liu
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Yuntao Zhang
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Changhao Sun
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Yucun Niu
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| |
Collapse
|
19
|
Adav SS, Wang Y. Metabolomics Signatures of Aging: Recent Advances. Aging Dis 2021; 12:646-661. [PMID: 33815888 PMCID: PMC7990359 DOI: 10.14336/ad.2020.0909] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/09/2020] [Indexed: 01/17/2023] Open
Abstract
Metabolomics is the latest state-of-the-art omics technology that provides a comprehensive quantitative profile of metabolites. The metabolites are the cellular end products of metabolic reactions that explain the ultimate response to genomic, transcriptomic, proteomic, or environmental changes. Aging is a natural inevitable process characterized by a time-dependent decline of various physiological and metabolic functions and are dominated collectively by genetics, proteomics, metabolomics, environmental factors, diet, and lifestyle. The precise mechanism of the aging process is unclear, but the metabolomics has the potential to add significant insight by providing a detailed metabolite profile and altered metabolomic functions with age. Although the application of metabolomics to aging research is still relatively new, extensive attempts have been made to understand the biology of aging through a quantitative metabolite profile. This review summarises recent developments and up-to-date information on metabolomics studies in aging research with a major emphasis on aging biomarkers in less invasive biofluids. The importance of an integrative approach that combines multi-omics data to understand the complex aging process is discussed. Despite various innovations in metabolomics and metabolite associated with redox homeostasis, central energy pathways, lipid metabolism, and amino acid, a major challenge remains to provide conclusive aging biomarkers.
Collapse
Affiliation(s)
- Sunil S Adav
- Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Yulan Wang
- Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
20
|
Mohammad K, Titorenko VI. Caloric restriction creates a metabolic pattern of chronological aging delay that in budding yeast differs from the metabolic design established by two other geroprotectors. Oncotarget 2021; 12:608-625. [PMID: 33868583 PMCID: PMC8021023 DOI: 10.18632/oncotarget.27926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Caloric restriction and the tor1Δ mutation are robust geroprotectors in yeast and other eukaryotes. Lithocholic acid is a potent geroprotector in Saccharomycescerevisiae. Here, we used liquid chromatography coupled with tandem mass spectrometry method of non-targeted metabolomics to compare the effects of these three geroprotectors on the intracellular metabolome of chronologically aging budding yeast. Yeast cells were cultured in a nutrient-rich medium. Our metabolomic analysis identified and quantitated 193 structurally and functionally diverse water-soluble metabolites implicated in the major pathways of cellular metabolism. We show that the three different geroprotectors create distinct metabolic profiles throughout the entire chronological lifespan of S. cerevisiae. We demonstrate that caloric restriction generates a unique metabolic pattern. Unlike the tor1Δ mutation or lithocholic acid, it slows down the metabolic pathway for sulfur amino acid biosynthesis from aspartate, sulfate and 5-methyltetrahydrofolate. Consequently, caloric restriction significantly lowers the intracellular concentrations of methionine, S-adenosylmethionine and cysteine. We also noticed that the low-calorie diet, but not the tor1Δ mutation or lithocholic acid, decreases intracellular ATP, increases the ADP:ATP and AMP:ATP ratios, and rises intracellular ADP during chronological aging. We propose a model of how the specific remodeling of cellular metabolism by caloric restriction contributes to yeast chronological aging delay.
Collapse
Affiliation(s)
- Karamat Mohammad
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | |
Collapse
|
21
|
Kunze S, Cecil A, Prehn C, Möller G, Ohlmann A, Wildner G, Thurau S, Unger K, Rößler U, Hölter SM, Tapio S, Wagner F, Beyerlein A, Theis F, Zitzelsberger H, Kulka U, Adamski J, Graw J, Dalke C. Posterior subcapsular cataracts are a late effect after acute exposure to 0.5 Gy ionizing radiation in mice. Int J Radiat Biol 2021; 97:529-540. [PMID: 33464160 DOI: 10.1080/09553002.2021.1876951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/28/2020] [Accepted: 01/11/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE The long-term effect of low and moderate doses of ionizing radiation on the lens is still a matter of debate and needs to be evaluated in more detail. MATERIAL AND METHODS We conducted a detailed histological analysis of eyes from B6C3F1 mice cohorts after acute gamma irradiation (60Co source; 0.063 Gy/min) at young adult age of 10 weeks with doses of 0.063, 0.125, and 0.5 Gy. Sham irradiated (0 Gy) mice were used as controls. To test for genetic susceptibility heterozygous Ercc2 mutant mice were used and compared to wild-type mice of the same strain background. Mice of both sexes were included in all cohorts. Eyes were collected 4 h, 12, 18 and 24 months after irradiation. For a better understanding of the underlying mechanisms, metabolomics analyses were performed in lenses and plasma samples of the same mouse cohorts at 4 and 12 h as well as 12, 18 and 24 months after irradiation. For this purpose, a targeted analysis was chosen. RESULTS This analysis revealed histological changes particularly in the posterior part of the lens that rarely can be observed by using Scheimpflug imaging, as we reported previously. We detected a significant increase of posterior subcapsular cataracts (PSCs) 18 and 24 months after irradiation with 0.5 Gy (odds ratio 9.3; 95% confidence interval 2.1-41.3) independent of sex and genotype. Doses below 0.5 Gy (i.e. 0.063 and 0.125 Gy) did not significantly increase the frequency of PSCs at any time point. In lenses, we observed a clear effect of sex and aging but not of irradiation or genotype. While metabolomics analyses of plasma from the same mice showed only a sex effect. CONCLUSIONS This article demonstrates a significant radiation-induced increase in the incidence of PSCs, which could not be identified using Scheimpflug imaging as the only diagnostic tool.
Collapse
Affiliation(s)
- Sarah Kunze
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany
| | - Alexander Cecil
- Research Unit Molecular Endocrinology and Metabolism, Genome Analysis Center, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
| | - Cornelia Prehn
- Research Unit Molecular Endocrinology and Metabolism, Genome Analysis Center, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
| | - Gabriele Möller
- Research Unit Molecular Endocrinology and Metabolism, Genome Analysis Center, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
| | - Andreas Ohlmann
- Department of Ophthalmology, University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Gerhild Wildner
- Department of Ophthalmology, University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Stephan Thurau
- Department of Ophthalmology, University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Kristian Unger
- Research Unit Radiation Cytogenetics, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
| | - Ute Rößler
- Department Radiation Protection and Health, Federal Office of Radiation Protection, Oberschleissheim, Germany
| | - Sabine M Hölter
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany
| | - Soile Tapio
- Institute of Radiation Biology, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
- School of Medicine, Technical University of Munich, Munich, Germany
| | - Florian Wagner
- Institute of Radiation Medicine, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Fabian Theis
- Institute of Computational Biology, Neuherberg, Germany
| | - Horst Zitzelsberger
- Research Unit Radiation Cytogenetics, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
| | - Ulrike Kulka
- Department Radiation Protection and Health, Federal Office of Radiation Protection, Oberschleissheim, Germany
| | - Jerzy Adamski
- Research Unit Molecular Endocrinology and Metabolism, Genome Analysis Center, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
- Lehrstuhl für Experimentelle Genetik, Technical University of Munich, Freising-Weihenstephan, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jochen Graw
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany
| | - Claudia Dalke
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
22
|
Wu CS, Muthyala SDV, Klemashevich C, Ufondu AU, Menon R, Chen Z, Devaraj S, Jayaraman A, Sun Y. Age-dependent remodeling of gut microbiome and host serum metabolome in mice. Aging (Albany NY) 2021; 13:6330-6345. [PMID: 33612480 PMCID: PMC7993679 DOI: 10.18632/aging.202525] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/04/2021] [Indexed: 04/12/2023]
Abstract
The interplay between microbiota and host metabolism plays an important role in health. Here, we examined the relationship between age, gut microbiome and host serum metabolites in male C57BL/6J mice. Fecal microbiome analysis of 3, 6, 18, and 28 months (M) old mice showed that the Firmicutes/Bacteroidetes ratio was highest in the 6M group; the decrease of Firmicutes in the older age groups suggests a reduced capacity of gut microflora to harvest energy from food. We found age-dependent increase in Proteobacteria, which may lead to altered mucus structure more susceptible to bacteria penetration and ultimately increased intestinal inflammation. Metabolomic profiling of polar serum metabolites at fed state in 3, 12, 18 and 28M mice revealed age-associated changes in metabolic cascades involved in tryptophan, purine, amino acids, and nicotinamide metabolism. Correlation analyses showed that nicotinamide decreased with age, while allantoin and guanosine, metabolites in purine metabolism, increased with age. Notably, tryptophan and its microbially derived compounds indole and indole-3-lactic acid significantly decreased with age, while kynurenine increased with age. Together, these results suggest a significant interplay between bacterial and host metabolism, and gut dysbiosis and altered microbial metabolism contribute to aging.
Collapse
Affiliation(s)
- Chia-Shan Wu
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Cory Klemashevich
- Integrated Metabolomics Analysis Core, Texas A&M University, College Station, TX 77843, USA
| | | | - Rani Menon
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Sridevi Devaraj
- Department of Pathology, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arul Jayaraman
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Yuxiang Sun
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
23
|
Simón J, Martínez-Chantar ML, Delgado TC. Glutamine, fatty liver disease and aging. Aging (Albany NY) 2021; 13:3165-3166. [PMID: 33589573 PMCID: PMC7906214 DOI: 10.18632/aging.202666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 01/23/2021] [Indexed: 01/20/2023]
Affiliation(s)
- Jorge Simón
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Bizkaia 48160, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia 48160, Spain
| | - María Luz Martínez-Chantar
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Bizkaia 48160, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia 48160, Spain
| | - Teresa C Delgado
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Bizkaia 48160, Spain
| |
Collapse
|
24
|
Parkhitko AA, Ramesh D, Wang L, Leshchiner D, Filine E, Binari R, Olsen AL, Asara JM, Cracan V, Rabinowitz JD, Brockmann A, Perrimon N. Downregulation of the tyrosine degradation pathway extends Drosophila lifespan. eLife 2020; 9:58053. [PMID: 33319750 PMCID: PMC7744100 DOI: 10.7554/elife.58053] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 11/28/2020] [Indexed: 12/31/2022] Open
Abstract
Aging is characterized by extensive metabolic reprogramming. To identify metabolic pathways associated with aging, we analyzed age-dependent changes in the metabolomes of long-lived Drosophila melanogaster. Among the metabolites that changed, levels of tyrosine were increased with age in long-lived flies. We demonstrate that the levels of enzymes in the tyrosine degradation pathway increase with age in wild-type flies. Whole-body and neuronal-specific downregulation of enzymes in the tyrosine degradation pathway significantly extends Drosophila lifespan, causes alterations of metabolites associated with increased lifespan, and upregulates the levels of tyrosine-derived neuromediators. Moreover, feeding wild-type flies with tyrosine increased their lifespan. Mechanistically, we show that suppression of ETC complex I drives the upregulation of enzymes in the tyrosine degradation pathway, an effect that can be rescued by tigecycline, an FDA-approved drug that specifically suppresses mitochondrial translation. In addition, tyrosine supplementation partially rescued lifespan of flies with ETC complex I suppression. Altogether, our study highlights the tyrosine degradation pathway as a regulator of longevity.
Collapse
Affiliation(s)
- Andrey A Parkhitko
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States.,Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, United States
| | - Divya Ramesh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Lin Wang
- Department of Chemistry, Princeton University, Princeton, United States.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, United States
| | - Dmitry Leshchiner
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
| | - Elizabeth Filine
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
| | - Richard Binari
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States.,Howard Hughes Medical Institute, Boston, United States
| | - Abby L Olsen
- Department of Neurology, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, United States
| | - Valentin Cracan
- Scintillon Institute, San Diego, United States.,Department of Chemistry, The Scripps Research Institute, La Jolla, United States
| | - Joshua D Rabinowitz
- Department of Chemistry, Princeton University, Princeton, United States.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, United States
| | - Axel Brockmann
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States.,Howard Hughes Medical Institute, Boston, United States
| |
Collapse
|
25
|
Targeting metabolic pathways for extension of lifespan and healthspan across multiple species. Ageing Res Rev 2020; 64:101188. [PMID: 33031925 DOI: 10.1016/j.arr.2020.101188] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/20/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022]
Abstract
Metabolism plays a significant role in the regulation of aging at different levels, and metabolic reprogramming represents a major driving force in aging. Metabolic reprogramming leads to impaired organismal fitness, an age-dependent increase in susceptibility to diseases, decreased ability to mount a stress response, and increased frailty. The complexity of age-dependent metabolic reprogramming comes from the multitude of levels on which metabolic changes can be connected to aging and regulation of lifespan. This is further complicated by the different metabolic requirements of various tissues, cross-organ communication via metabolite secretion, and direct effects of metabolites on epigenetic state and redox regulation; however, not all of these changes are causative to aging. Studies in yeast, flies, worms, and mice have played a crucial role in identifying mechanistic links between observed changes in various metabolic traits and their effects on lifespan. Here, we review how changes in the organismal and organ-specific metabolome are associated with aging and how targeting of any one of over a hundred different targets in specific metabolic pathways can extend lifespan. An important corollary is that restriction or supplementation of different metabolites can change activity of these metabolic pathways in ways that improve healthspan and extend lifespan in different organisms. Due to the high levels of conservation of metabolism in general, translating findings from model systems to human beings will allow for the development of effective strategies for human health- and lifespan extension.
Collapse
|
26
|
Pann P, de Angelis MH, Prehn C, Adamski J. Mouse Age Matters: How Age Affects the Murine Plasma Metabolome. Metabolites 2020; 10:metabo10110472. [PMID: 33228074 PMCID: PMC7699431 DOI: 10.3390/metabo10110472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 11/16/2022] Open
Abstract
A large part of metabolomics research relies on experiments involving mouse models, which are usually 6 to 20 weeks of age. However, in this age range mice undergo dramatic developmental changes. Even small age differences may lead to different metabolomes, which in turn could increase inter-sample variability and impair the reproducibility and comparability of metabolomics results. In order to learn more about the variability of the murine plasma metabolome, we analyzed male and female C57BL/6J, C57BL/6NTac, 129S1/SvImJ, and C3HeB/FeJ mice at 6, 10, 14, and 20 weeks of age, using targeted metabolomics (BIOCRATES AbsoluteIDQ™ p150 Kit). Our analysis revealed high variability of the murine plasma metabolome during adolescence and early adulthood. A general age range with minimal variability, and thus a stable metabolome, could not be identified. Age-related metabolomic changes as well as the metabolite profiles at specific ages differed markedly between mouse strains. This observation illustrates the fact that the developmental timing in mice is strain specific. We therefore stress the importance of deliberate strain choice, as well as consistency and precise documentation of animal age, in metabolomics studies.
Collapse
Affiliation(s)
- Patrick Pann
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; (P.P.); (C.P.)
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany;
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Chair of Experimental Genetics, School of Life Science, Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Cornelia Prehn
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; (P.P.); (C.P.)
| | - Jerzy Adamski
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; (P.P.); (C.P.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Chair of Experimental Genetics, School of Life Science, Weihenstephan, Technische Universität München, 85354 Freising, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Correspondence:
| |
Collapse
|
27
|
Jin K, Wilson KA, Beck JN, Nelson CS, Brownridge GW, Harrison BR, Djukovic D, Raftery D, Brem RB, Yu S, Drton M, Shojaie A, Kapahi P, Promislow D. Genetic and metabolomic architecture of variation in diet restriction-mediated lifespan extension in Drosophila. PLoS Genet 2020; 16:e1008835. [PMID: 32644988 PMCID: PMC7347105 DOI: 10.1371/journal.pgen.1008835] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/06/2020] [Indexed: 01/08/2023] Open
Abstract
In most organisms, dietary restriction (DR) increases lifespan. However, several studies have found that genotypes within the same species vary widely in how they respond to DR. To explore the mechanisms underlying this variation, we exposed 178 inbred Drosophila melanogaster lines to a DR or ad libitum (AL) diet, and measured a panel of 105 metabolites under both diets. Twenty four out of 105 metabolites were associated with the magnitude of the lifespan response. These included proteinogenic amino acids and metabolites involved in α-ketoglutarate (α-KG)/glutamine metabolism. We confirm the role of α-KG/glutamine synthesis pathways in the DR response through genetic manipulations. We used covariance network analysis to investigate diet-dependent interactions between metabolites, identifying the essential amino acids threonine and arginine as “hub” metabolites in the DR response. Finally, we employ a novel metabolic and genetic bipartite network analysis to reveal multiple genes that influence DR lifespan response, some of which have not previously been implicated in DR regulation. One of these is CCHa2R, a gene that encodes a neuropeptide receptor that influences satiety response and insulin signaling. Across the lines, variation in an intronic single nucleotide variant of CCHa2R correlated with variation in levels of five metabolites, all of which in turn were correlated with DR lifespan response. Inhibition of adult CCHa2R expression extended DR lifespan of flies, confirming the role of CCHa2R in lifespan response. These results provide support for the power of combined genomic and metabolomic analysis to identify key pathways underlying variation in this complex quantitative trait. Dietary restriction extends lifespan across most organisms in which it has been tested. However, several studies have now demonstrated that this effect can vary dramatically across different genotypes within a population. Within a population, dietary restriction might be beneficial for some, yet detrimental for others. Here, we measure the metabolome of 178 genetically characterized fly strains on fully fed and restricted diets. The fly strains vary widely in their lifespan response to dietary restriction. We then use information about each strain’s genome and metabolome (a measure of small molecules circulating in flies) to pinpoint cellular pathways that govern this variation in response. We identify a novel pathway involving the gene CCHa2R, which encodes a neuropeptide receptor that has not previously been implicated in dietary restriction or age-related signaling pathways. This study demonstrates the power of leveraging systems biology and network biology methods to understand how and why different individuals vary in their response to health and lifespan-extending interventions.
Collapse
Affiliation(s)
- Kelly Jin
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Kenneth A. Wilson
- Buck Institute for Research on Aging, Novato, California, United States of America
- Davis School of Gerontology, University of Southern California, University Park, Los Angeles, California, United States of America
| | - Jennifer N. Beck
- Buck Institute for Research on Aging, Novato, California, United States of America
| | | | - George W. Brownridge
- Buck Institute for Research on Aging, Novato, California, United States of America
- Dominican University of California, San Rafael, California, United States of America
| | - Benjamin R. Harrison
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Danijel Djukovic
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, United States of America
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, United States of America
| | - Rachel B. Brem
- Buck Institute for Research on Aging, Novato, California, United States of America
- Davis School of Gerontology, University of Southern California, University Park, Los Angeles, California, United States of America
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Shiqing Yu
- Department of Statistics, University of Washington, Seattle, Washington, United States of America
| | - Mathias Drton
- Department of Mathematics, Technical University of Munich, Munich, Germany
| | - Ali Shojaie
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, Novato, California, United States of America
- Davis School of Gerontology, University of Southern California, University Park, Los Angeles, California, United States of America
| | - Daniel Promislow
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Biology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
28
|
Miletić Vukajlović J, Drakulić D, Pejić S, Ilić TV, Stefanović A, Petković M, Schiller J. Increased plasma phosphatidylcholine/lysophosphatidylcholine ratios in patients with Parkinson's disease. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8595. [PMID: 31519070 DOI: 10.1002/rcm.8595] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/03/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Changes in lipid composition might be associated with the onset and progression of various neurodegenerative diseases. Herein, we investigated the changes in the plasma phosphatidylcholine (PC)/lysophosphatidylcholine (LPC) ratios in patients with Parkinson's disease (PD) in comparison with healthy subjects and their correlation with clinico-pathological features. METHODS The study included 10 controls and 25 patients with PD. All patients were assigned to groups based on clinico-pathological characteristics (gender, age at examination, duration of disease and Hoehn and Yahr (H&Y) stage). The analysis of the PC/LPC intensity ratios in plasma lipid extracts was performed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. RESULTS PD patients exhibited an increased PC/LPC intensity ratio in comparison with the control group of healthy subjects. Furthermore, the investigated ratio was shown to be correlated with clinico-pathological parameters, in particular with H&Y stage and disease duration. The PC/LPC intensity ratio in plasma samples of PD patients was found to be elevated in all examined H&Y stages and throughout the disease duration. CONCLUSIONS To our knowledge, this is the first study examining the PC/LPC ratios in plasma of patients with PD and illustrating their correlation with clinico-pathological features. Although the presented results may be considered as preliminary due to the limited number of participants, the observed alterations of PC/LPC ratios in plasma might be a first step in the characterization of plasma lipid changes in PD patients and an indicator of lipid reconfiguration.
Collapse
Affiliation(s)
- Jadranka Miletić Vukajlović
- Department of Physical Chemistry, VINČA Institute of Nuclear Sciences - University of Belgrade, Belgrade, Republic of Serbia
| | - Dunja Drakulić
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences - University of Belgrade, Belgrade, Republic of Serbia
| | - Snežana Pejić
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences - University of Belgrade, Belgrade, Republic of Serbia
| | - Tihomir V Ilić
- Medical Faculty of Medical Military Academy, Clinic of Neurology, University of Defense, Belgrade, Republic of Serbia
| | - Aleksandra Stefanović
- Department of Medical Biochemistry, Faculty of Pharmacy - University of Belgrade, Belgrade, Republic of Serbia
| | - Marijana Petković
- Madeira Chemistry Research Centre, University of Madeira, Funchal, Portugal
- Department of Atomic Physics, VINČA Institute of Nuclear Sciences - University of Belgrade, Belgrade, Republic of Serbia
| | - Jürgen Schiller
- Institute of Medical Physics and Biophysics, Medical Department, University of Leipzig, Leipzig, Germany
| |
Collapse
|
29
|
Srivastava S. Emerging Insights into the Metabolic Alterations in Aging Using Metabolomics. Metabolites 2019; 9:E301. [PMID: 31847272 PMCID: PMC6950098 DOI: 10.3390/metabo9120301] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/08/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023] Open
Abstract
Metabolomics is the latest 'omics' technology and systems biology science that allows for comprehensive profiling of small-molecule metabolites in biological systems at a specific time and condition. Metabolites are cellular intermediate products of metabolic reactions, which reflect the ultimate response to genomic, transcriptomic, proteomic, or environmental changes in a biological system. Aging is a complex biological process that is characterized by a gradual and progressive decline in molecular, cellular, tissue, organ, and organismal functions, and it is influenced by a combination of genetic, environmental, diet, and lifestyle factors. The precise biological mechanisms of aging remain unknown. Metabolomics has emerged as a powerful tool to characterize the organism phenotypes, identify altered metabolites, pathways, novel biomarkers in aging and disease, and offers wide clinical applications. Here, I will provide a comprehensive overview of our current knowledge on metabolomics led studies in aging with particular emphasis on studies leading to biomarker discovery. Based on the data obtained from model organisms and humans, it is evident that metabolites associated with amino acids, lipids, carbohydrate, and redox metabolism may serve as biomarkers of aging and/or longevity. Current challenges and key questions that should be addressed in the future to advance our understanding of the biological mechanisms of aging are discussed.
Collapse
Affiliation(s)
- Sarika Srivastava
- Fralin Biomedical Research Institute at Virginia Tech Carilion, 2 Riverside Circle, Roanoke, VA 24016, USA
| |
Collapse
|
30
|
Pradas I, Jové M, Cabré R, Ayala V, Mota-Martorell N, Pamplona R. Effects of Aging and Methionine Restriction on Rat Kidney Metabolome. Metabolites 2019; 9:E280. [PMID: 31739579 PMCID: PMC6918429 DOI: 10.3390/metabo9110280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/30/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023] Open
Abstract
Methionine restriction (MetR) in animal models extends maximum longevity and seems to promote renoprotection by attenuating kidney injury. MetR has also been proven to affect several metabolic pathways including lipid metabolism. However, there is a lack of studies about the effect of MetR at old age on the kidney metabolome. In view of this, a mass spectrometry-based high-throughput metabolomic and lipidomic profiling was undertaken of renal cortex samples of three groups of male rats-An 8-month-old Adult group, a 26-month-old Aged group, and a MetR group that also comprised of 26-month-old rats but were subjected to an 80% MetR diet for 7 weeks. Additionally, markers of mitochondrial stress and protein oxidative damage were analyzed by mass spectrometry. Our results showed minor changes during aging in the renal cortex metabolome, with less than 59 differential metabolites between the Adult and Aged groups, which represents about 4% of changes in the kidney metabolome. Among the compounds identified are glycerolipids and lipid species derived from arachidonic acid metabolism. MetR at old age preferentially induces lipid changes affecting glycerophospholipids, docosanoids, and eicosanoids. No significant differences were observed between the experimental groups in the markers of mitochondrial stress and tissue protein damage. More than rejuvenation, MetR seems to induce a metabolic reprogramming.
Collapse
Affiliation(s)
| | | | | | | | | | - Reinald Pamplona
- Department of Experimental Medicine, Lleida University-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), 25198 Lleida, Spain; (I.P.); (M.J.); (R.C.); (V.A.); (N.M.-M.)
| |
Collapse
|
31
|
Luo D, Li J, Chen K, Yin Y, Fang Z, Pang H, Rong X, Guo J. Study on Metabolic Trajectory of Liver Aging and the Effect of Fufang Zhenzhu Tiaozhi on Aging Mice. Front Pharmacol 2019; 10:926. [PMID: 31555127 PMCID: PMC6722462 DOI: 10.3389/fphar.2019.00926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/22/2019] [Indexed: 01/22/2023] Open
Abstract
The aim of this study was to investigate the metabolic trajectory of liver aging, the effect of FTZ against liver aging in aging mice, and its mechanism using ultraperformance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Methods: A total of 80 C57BL/6J Narl mice were randomly divided into five groups: 3-month-old group, 9-month-old group, 14-month-old group, 20-month-old group, and FTZ treatment group (20 months old). The mice in the treatment group received a therapeutic dose of oral FTZ extract (1.0 g/kg, on raw material weight basis) once daily during the experiment. The other groups received the corresponding volume of oral normal saline solution. Liver samples of all five groups were collected after 12 weeks, and UPLC-Q-TOF/MS was used to analyze metabolic changes. Orthogonal partial least squares-discriminant analysis (OPLS-DA) was used to analyze the resulting data. Additionally, cholesterol (TC), triglyceride (TG), aspartate aminotransferase (AST), alanine aminotransferase (ALT), secretion levels of TNF-α, IL-6, 5-LOX, and COX-2, as well as their relative mRNA expression in the liver were determined. Results: The levels of TC, TG, AST, and ALT were increased, and liver tissue structure was damaged. The secretion levels of TNF-α, IL-6, 5-LOX, and COX-2, as well as their relative mRNA expression in the liver also increased with aging. FTZ administration reduced the symptoms of liver aging. The OPLS-DA score plot illustrated the effect of FTZ against liver aging, with N-acetyl-leukotriene E4, 20-hydroxy-leukotriene E4, leukotriene E4, and arachidonic acid among the key biomarkers. The pivotal pathways revealed by pathway analysis included arachidonic acid metabolism and biosynthesis of unsaturated fatty acids. The mechanism by which FTZ reduces the symptoms of liver aging in mice might be related to disorders of the abovementioned pathways. Conclusion: A metabolomic approach based on UPLC-Q-TOF/MS and multivariate statistical analysis was successfully applied to investigate the metabolic trajectory of liver aging. FTZ has a protective effect against liver aging, which may be mediated via interference with the metabolism of arachidonic acid, biosynthesis of unsaturated fatty acids, and downregulation of pro-inflammatory factors in the liver in mice in vivo.
Collapse
Affiliation(s)
- Duosheng Luo
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Jingbiao Li
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Kechun Chen
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Yifan Yin
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Zhaoyan Fang
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Huiting Pang
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Xianglu Rong
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Jiao Guo
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| |
Collapse
|
32
|
Calvani R, Picca A, Marini F, Biancolillo A, Gervasoni J, Persichilli S, Primiano A, Coelho-Junior HJ, Bossola M, Urbani A, Landi F, Bernabei R, Marzetti E. A Distinct Pattern of Circulating Amino Acids Characterizes Older Persons with Physical Frailty and Sarcopenia: Results from the BIOSPHERE Study. Nutrients 2018; 10:E1691. [PMID: 30404172 PMCID: PMC6265849 DOI: 10.3390/nu10111691] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/30/2018] [Accepted: 11/01/2018] [Indexed: 11/25/2022] Open
Abstract
Physical frailty and sarcopenia (PF&S) are hallmarks of aging that share a common pathogenic background. Perturbations in protein/amino acid metabolism may play a role in the development of PF&S. In this initial report, 68 community-dwellers aged 70 years and older, 38 with PF&S and 30 non-sarcopenic, non-frail controls (nonPF&S), were enrolled as part as the "BIOmarkers associated with Sarcopenia and Physical frailty in EldeRly pErsons" (BIOSPHERE) study. A panel of 37 serum amino acids and derivatives was assayed by UPLC-MS. Partial Least Squares⁻Discriminant Analysis (PLS-DA) was used to characterize the amino acid profile of PF&S. The optimal complexity of the PLS-DA model was found to be three latent variables. The proportion of correct classification was 76.6 ± 3.9% (75.1 ± 4.6% for enrollees with PF&S; 78.5 ± 6.0% for nonPF&S). Older adults with PF&S were characterized by higher levels of asparagine, aspartic acid, citrulline, ethanolamine, glutamic acid, sarcosine, and taurine. The profile of nonPF&S participants was defined by higher concentrations of α-aminobutyric acid and methionine. Distinct profiles of circulating amino acids and derivatives characterize older people with PF&S. The dissection of these patterns may provide novel insights into the role played by protein/amino acid perturbations in the disabling cascade and possible new targets for interventions.
Collapse
Affiliation(s)
- Riccardo Calvani
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome 00168, Italy.
- Università Cattolica del Sacro Cuore, Rome 00168, Italy.
| | - Anna Picca
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome 00168, Italy.
- Università Cattolica del Sacro Cuore, Rome 00168, Italy.
| | - Federico Marini
- Department of Chemistry, Sapienza University of Rome, Rome 00168, Italy.
| | | | - Jacopo Gervasoni
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome 00168, Italy.
- Università Cattolica del Sacro Cuore, Rome 00168, Italy.
| | - Silvia Persichilli
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome 00168, Italy.
- Università Cattolica del Sacro Cuore, Rome 00168, Italy.
| | | | - Hélio José Coelho-Junior
- Università Cattolica del Sacro Cuore, Rome 00168, Italy.
- Applied Kinesiology Laboratory⁻LCA, School of Physical Education, University of Campinas, Campinas-SP 13.083-851, Brazil.
| | - Maurizio Bossola
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome 00168, Italy.
- Università Cattolica del Sacro Cuore, Rome 00168, Italy.
| | - Andrea Urbani
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome 00168, Italy.
- Università Cattolica del Sacro Cuore, Rome 00168, Italy.
| | - Francesco Landi
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome 00168, Italy.
- Università Cattolica del Sacro Cuore, Rome 00168, Italy.
| | - Roberto Bernabei
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome 00168, Italy.
- Università Cattolica del Sacro Cuore, Rome 00168, Italy.
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome 00168, Italy.
| |
Collapse
|
33
|
Abstract
SIGNIFICANCE Aging is a complex trait that is influenced by a combination of genetic and environmental factors. Although many cellular and physiological changes have been described to occur with aging, the precise molecular causes of aging remain unknown. Given the biological complexity and heterogeneity of the aging process, understanding the mechanisms that underlie aging requires integration of data about age-dependent changes that occur at the molecular, cellular, tissue, and organismal levels. Recent Advances: The development of high-throughput technologies such as next-generation sequencing, proteomics, metabolomics, and automated imaging techniques provides researchers with new opportunities to understand the mechanisms of aging. Using these methods, millions of biological molecules can be simultaneously monitored during the aging process with high accuracy and specificity. CRITICAL ISSUES Although the ability to produce big data has drastically increased over the years, integration and interpreting of high-throughput data to infer regulatory relationships between biological factors and identify causes of aging remain the major challenges. In this review, we describe recent advances and survey emerging omics approaches in aging research. We then discuss their limitations and emphasize the need for the further development of methods for the integration of different types of data. FUTURE DIRECTIONS Combining omics approaches and novel methods for single-cell analysis with systems biology tools would allow building interaction networks and investigate how these networks are perturbed with aging and disease states. Together, these studies are expected to provide a better understanding of the aging process and could provide insights into the pathophysiology of many age-associated human diseases. Antioxid. Redox Signal. 29, 985-1002.
Collapse
Affiliation(s)
- Jared S Lorusso
- 1 Department of Dermatology, Boston University School of Medicine , Boston, Massachusetts
| | - Oleg A Sviderskiy
- 2 Department of Ecology and Life Safety, Samara National Research University , Samara, Russia
| | - Vyacheslav M Labunskyy
- 1 Department of Dermatology, Boston University School of Medicine , Boston, Massachusetts
| |
Collapse
|
34
|
Mota-Martorell N, Pradas I, Jové M, Naudí A, Pamplona R. [De novo biosynthesis of glycerophospholipids and longevity]. Rev Esp Geriatr Gerontol 2018; 54:88-93. [PMID: 30879491 DOI: 10.1016/j.regg.2018.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND The glycerophospholipids, synthesised from diacylglycerol (DAG), are one of the main lipid components of cell membranes. The lipid profile is an optimised feature associated with animal longevity. In this context, the hypothesis is presented that the DAG biosynthesis rate, and thus, the glycerophospholipids content, is related to animal longevity. MATERIAL AND METHODS A plasma lipidomic analysis was performed based on the mass spectrometry of 11 mammalian species with a maximum longevity ranging from 3.5 to 120 years. Lipid identification was based on exact mass, retention time, and isotopic distribution. ANOVA test was applied to differentiate the lipids between animal species. The relationship between these lipids and longevity was carried out with a Spearman correlation. Data was analysed using SPSS and MetaboAnalyst. RESULTS Among the 1,061 different lipid molecular species found between species, 47 were defined as DAG. Interestingly, 14 of them showed a negative correlation with mammalian maximum longevity. Multivariate statistics revealed that 14 DAGs were enough to define mammalian species and their maximum longevity. CONCLUSIONS Data suggest that long-lived mammalian species have a lower rate of glycerophospholipids synthesis through the de novo pathway, possibly associated with a lower rate of membrane lipid exchange, which in turn is related to lower energy expenditure.
Collapse
Affiliation(s)
- Natalia Mota-Martorell
- Departament de Medicina Experimental, Universitat de Lleida-Institut de Recerca Biomèdica de Lleida (UdL-IRBLleida), Lleida, España
| | - Irene Pradas
- Departament de Medicina Experimental, Universitat de Lleida-Institut de Recerca Biomèdica de Lleida (UdL-IRBLleida), Lleida, España
| | - Mariona Jové
- Departament de Medicina Experimental, Universitat de Lleida-Institut de Recerca Biomèdica de Lleida (UdL-IRBLleida), Lleida, España
| | - Alba Naudí
- Departament de Medicina Experimental, Universitat de Lleida-Institut de Recerca Biomèdica de Lleida (UdL-IRBLleida), Lleida, España
| | - Reinald Pamplona
- Departament de Medicina Experimental, Universitat de Lleida-Institut de Recerca Biomèdica de Lleida (UdL-IRBLleida), Lleida, España.
| |
Collapse
|
35
|
Giorgi C, Marchi S, Simoes IC, Ren Z, Morciano G, Perrone M, Patalas-Krawczyk P, Borchard S, Jȩdrak P, Pierzynowska K, Szymański J, Wang DQ, Portincasa P, Wȩgrzyn G, Zischka H, Dobrzyn P, Bonora M, Duszynski J, Rimessi A, Karkucinska-Wieckowska A, Dobrzyn A, Szabadkai G, Zavan B, Oliveira PJ, Sardao VA, Pinton P, Wieckowski MR. Mitochondria and Reactive Oxygen Species in Aging and Age-Related Diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 340:209-344. [PMID: 30072092 PMCID: PMC8127332 DOI: 10.1016/bs.ircmb.2018.05.006] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aging has been linked to several degenerative processes that, through the accumulation of molecular and cellular damage, can progressively lead to cell dysfunction and organ failure. Human aging is linked with a higher risk for individuals to develop cancer, neurodegenerative, cardiovascular, and metabolic disorders. The understanding of the molecular basis of aging and associated diseases has been one major challenge of scientific research over the last decades. Mitochondria, the center of oxidative metabolism and principal site of reactive oxygen species (ROS) production, are crucial both in health and in pathogenesis of many diseases. Redox signaling is important for the modulation of cell functions and several studies indicate a dual role for ROS in cell physiology. In fact, high concentrations of ROS are pathogenic and can cause severe damage to cell and organelle membranes, DNA, and proteins. On the other hand, moderate amounts of ROS are essential for the maintenance of several biological processes, including gene expression. In this review, we provide an update regarding the key roles of ROS-mitochondria cross talk in different fundamental physiological or pathological situations accompanying aging and highlighting that mitochondrial ROS may be a decisive target in clinical practice.
Collapse
Affiliation(s)
- Carlotta Giorgi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Ines C.M. Simoes
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Ziyu Ren
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
| | - Giampaolo Morciano
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
- Maria Pia Hospital, GVM Care & Research, Torino, Italy
| | - Mariasole Perrone
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paulina Patalas-Krawczyk
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Sabine Borchard
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Paulina Jȩdrak
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | | | - Jȩdrzej Szymański
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - David Q. Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Dept. of Biomedical Sciences & Human Oncology, University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Grzegorz Wȩgrzyn
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, Munich, Germany
| | - Pawel Dobrzyn
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Massimo Bonora
- Departments of Cell Biology and Gottesman Institute for Stem Cell & Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jerzy Duszynski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Alessandro Rimessi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | | | | | - Gyorgy Szabadkai
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Barbara Zavan
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Paulo J. Oliveira
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park, University of Coimbra, Cantanhede, Portugal
| | - Vilma A. Sardao
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park, University of Coimbra, Cantanhede, Portugal
| | - Paolo Pinton
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
| | - Mariusz R. Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
36
|
Lewis KN, Rubinstein ND, Buffenstein R. A window into extreme longevity; the circulating metabolomic signature of the naked mole-rat, a mammal that shows negligible senescence. GeroScience 2018; 40:105-121. [PMID: 29679203 PMCID: PMC5964061 DOI: 10.1007/s11357-018-0014-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/15/2018] [Indexed: 12/23/2022] Open
Abstract
Mouse-sized naked mole-rats (Heterocephalus glaber), unlike other mammals, do not conform to Gompertzian laws of age-related mortality; adults show no age-related change in mortality risk. Moreover, we observe negligible hallmarks of aging with well-maintained physiological and molecular functions, commonly altered with age in other species. We questioned whether naked mole-rats, living an order of magnitude longer than laboratory mice, exhibit different plasma metabolite profiles, which could then highlight novel mechanisms or targets involved in disease and longevity. Using a comprehensive, unbiased metabolomics screen, we observe striking inter-species differences in amino acid, peptide, and lipid metabolites. Low circulating levels of specific amino acids, particularly those linked to the methionine pathway, resemble those observed during the fasting period at late torpor in hibernating ground squirrels and those seen in longer-lived methionine-restricted rats. These data also concur with metabolome reports on long-lived mutant mice, including the Ames dwarf mice and calorically restricted mice, as well as fruit flies, and even show similarities to circulating metabolite differences observed in young human adults when compared to older humans. During evolution, some of these beneficial nutrient/stress response pathways may have been positively selected in the naked mole-rat. These observations suggest that interventions that modify the aging metabolomic profile to a more youthful one may enable people to lead healthier and longer lives.
Collapse
Affiliation(s)
- Kaitlyn N Lewis
- Calico Life Sciences LLC, 1170 Veterans Blvd., South San Francisco, 94080, USA
| | - Nimrod D Rubinstein
- Calico Life Sciences LLC, 1170 Veterans Blvd., South San Francisco, 94080, USA
| | | |
Collapse
|
37
|
Impact of Exercise and Aging on Rat Urine and Blood Metabolome. An LC-MS Based Metabolomics Longitudinal Study. Metabolites 2017; 7:metabo7010010. [PMID: 28241477 PMCID: PMC5372213 DOI: 10.3390/metabo7010010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/13/2017] [Accepted: 02/18/2017] [Indexed: 01/02/2023] Open
Abstract
Aging is an inevitable condition leading to health deterioration and death. Regular physical exercise can moderate the metabolic phenotype changes of aging. However, only a small number of metabolomics-based studies provide data on the effect of exercise along with aging. Here, urine and whole blood samples from Wistar rats were analyzed in a longitudinal study to explore metabolic alterations due to exercise and aging. The study comprised three different programs of exercises, including a life-long protocol which started at the age of 5 months and ended at the age of 21 months. An acute exercise session was also evaluated. Urine and whole blood samples were collected at different time points and were analyzed by LC-MS/MS (Liquid Chromatography–tandem Mass Spectrometry). Based on their metabolic profiles, samples from trained and sedentary rats were differentiated. The impact on the metabolome was found to depend on the length of exercise period with acute exercise also showing significant changes. Metabolic alterations due to aging were equally pronounced in sedentary and trained rats in both urine and blood analyzed samples.
Collapse
|
38
|
Jay PY, Akhirome E, Magnan RA, Zhang MR, Kang L, Qin Y, Ugwu N, Regmi SD, Nogee JM, Cheverud JM. Transgenerational cardiology: One way to a baby's heart is through the mother. Mol Cell Endocrinol 2016; 435:94-102. [PMID: 27555292 PMCID: PMC5014674 DOI: 10.1016/j.mce.2016.08.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 08/18/2016] [Accepted: 08/18/2016] [Indexed: 12/17/2022]
Abstract
Despite decades of progress, congenital heart disease remains a major cause of mortality and suffering in children and young adults. Prevention would be ideal, but formidable biological and technical hurdles face any intervention that seeks to target the main causes, genetic mutations in the embryo. Other factors, however, significantly modify the total risk in individuals who carry mutations. Investigation of these factors could lead to an alternative approach to prevention. To define the risk modifiers, our group has taken an "experimental epidemiologic" approach via inbred mouse strain crosses. The original intent was to map genes that modify an individual's risk of heart defects caused by an Nkx2-5 mutation. During the analysis of >2000 Nkx2-5(+/-) offspring from one cross we serendipitously discovered a maternal-age associated risk, which also exists in humans. Reciprocal ovarian transplants between young and old mothers indicate that the incidence of heart defects correlates with the age of the mother and not the oocyte, which implicates a maternal pathway as the basis of the risk. The quantitative risk varies between strain backgrounds, so maternal genetic polymorphisms determine the activity of a factor or factors in the pathway. Most strikingly, voluntary exercise by the mother mitigates the risk. Therefore, congenital heart disease can in principle be prevented by targeting a maternal pathway even if the embryo carries a causative mutation. Further mechanistic insight is necessary to develop an intervention that could be implemented on a broad scale, but the physiology of maternal-fetal interactions, aging, and exercise are notoriously complex and undefined. This suggests that an unbiased genetic approach would most efficiently lead to the relevant pathway. A genetic foundation would lay the groundwork for human studies and clinical trials.
Collapse
Affiliation(s)
- Patrick Y Jay
- Departments of Pediatrics, Washington University School of Medicine, Box 8208, 660 South Euclid Avenue, St. Louis, MO, 63110, USA; Departments of Genetics, Washington University School of Medicine, Box 8208, 660 South Euclid Avenue, St. Louis, MO, 63110, USA.
| | - Ehiole Akhirome
- Departments of Pediatrics, Washington University School of Medicine, Box 8208, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Rachel A Magnan
- Departments of Pediatrics, Washington University School of Medicine, Box 8208, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - M Rebecca Zhang
- Departments of Pediatrics, Washington University School of Medicine, Box 8208, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Lillian Kang
- Departments of Pediatrics, Washington University School of Medicine, Box 8208, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Yidan Qin
- Departments of Pediatrics, Washington University School of Medicine, Box 8208, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Nelson Ugwu
- Departments of Pediatrics, Washington University School of Medicine, Box 8208, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Suk Dev Regmi
- Departments of Pediatrics, Washington University School of Medicine, Box 8208, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Julie M Nogee
- Departments of Pediatrics, Washington University School of Medicine, Box 8208, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - James M Cheverud
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| |
Collapse
|
39
|
Parkhitko AA, Binari R, Zhang N, Asara JM, Demontis F, Perrimon N. Tissue-specific down-regulation of S-adenosyl-homocysteine via suppression of dAhcyL1/dAhcyL2 extends health span and life span in Drosophila. Genes Dev 2016; 30:1409-22. [PMID: 27313316 PMCID: PMC4926864 DOI: 10.1101/gad.282277.116] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/17/2016] [Indexed: 12/16/2022]
Abstract
Methionine generates the methyl donor SAM, which is converted via methylation to SAH, which accumulates during aging. Parkhitko et al. discovered significant life span extension in response to down-regulation of two noncanonical Drosophila homologs of the SAH hydrolase Ahcy, CG9977/dAhcyL1 and Ahcy89E/CG8956/dAhcyL2, which act as dominant-negative regulators of canonical AHCY. Tissue-specific down-regulation of dAhcyL1/L2 in the brain and intestine extends health and life span. Aging is a risk factor for many human pathologies and is characterized by extensive metabolic changes. Using targeted high-throughput metabolite profiling in Drosophila melanogaster at different ages, we demonstrate that methionine metabolism changes strikingly during aging. Methionine generates the methyl donor S-adenosyl-methionine (SAM), which is converted via methylation to S-adenosyl-homocysteine (SAH), which accumulates during aging. A targeted RNAi screen against methionine pathway components revealed significant life span extension in response to down-regulation of two noncanonical Drosophila homologs of the SAH hydrolase Ahcy (S-adenosyl-L-homocysteine hydrolase [SAHH[), CG9977/dAhcyL1 and Ahcy89E/CG8956/dAhcyL2, which act as dominant-negative regulators of canonical AHCY. Importantly, tissue-specific down-regulation of dAhcyL1/L2 in the brain and intestine extends health and life span. Furthermore, metabolomic analysis of dAhcyL1-deficient flies revealed its effect on age-dependent metabolic reprogramming and H3K4 methylation. Altogether, reprogramming of methionine metabolism in young flies and suppression of age-dependent SAH accumulation lead to increased life span. These studies highlight the role of noncanonical Ahcy enzymes as determinants of healthy aging and longevity.
Collapse
Affiliation(s)
- Andrey A Parkhitko
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Richard Binari
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA; Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| | - Nannan Zhang
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA; MOE Key Laboratory of Protein Sciences, Department of Pharmacology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Fabio Demontis
- Department of Developmental Neurobiology, Division of Developmental Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA; Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| |
Collapse
|
40
|
Abstract
Dietary restriction (DR), a moderate reduction in food intake, improves health during aging and extends life span across multiple species. Specific nutrients, rather than overall calories, mediate the effects of DR, with protein and specific amino acids (AAs) playing a key role. Modulations of single dietary AAs affect traits including growth, reproduction, physiology, health, and longevity in animals. Epidemiological data in humans also link the quality and quantity of dietary proteins to long-term health. Intricate nutrient-sensing pathways fine tune the metabolic responses to dietary AAs in a highly conserved manner. In turn, these metabolic responses can affect the onset of insulin resistance, obesity, neurodegenerative disease, and other age-related diseases. In this review we discuss how AA requirements are shaped and how ingested AAs regulate a spectrum of homeostatic processes. Finally, we highlight the resulting opportunity to develop nutritional strategies to improve human health during aging.
Collapse
Affiliation(s)
- George A Soultoukis
- Max Planck Institute for Biology of Ageing, Department of Biological Mechanisms of Ageing, Cologne 50931, Germany; ,
| | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Department of Biological Mechanisms of Ageing, Cologne 50931, Germany; , .,Institute of Healthy Ageing and Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
41
|
Abstract
Telomeres, the protective ends of linear chromosomes, shorten throughout an individual's lifetime. Telomere shortening is a hallmark of molecular aging and is associated with premature appearance of diseases associated with aging. Here, we discuss the role of telomere shortening as a direct cause for aging and age-related diseases. In particular, we draw attention to the fact that telomere length influences longevity. Furthermore, we discuss intrinsic and environmental factors that can impact on human telomere erosion. Finally, we highlight recent advances in telomerase-based therapeutic strategies for the treatment of diseases associated with extremely short telomeres owing to mutations in telomerase, as well as age-related diseases, and ultimately aging itself.
Collapse
Affiliation(s)
- Christian Bär
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| |
Collapse
|
42
|
DeVan AE, Johnson LC, Brooks FA, Evans TD, Justice JN, Cruickshank-Quinn C, Reisdorph N, Bryan NS, McQueen MB, Santos-Parker JR, Chonchol MB, Bassett CJ, Sindler AL, Giordano T, Seals DR. Effects of sodium nitrite supplementation on vascular function and related small metabolite signatures in middle-aged and older adults. J Appl Physiol (1985) 2015; 120:416-25. [PMID: 26607249 DOI: 10.1152/japplphysiol.00879.2015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/20/2015] [Indexed: 12/20/2022] Open
Abstract
Insufficient nitric oxide (NO) bioavailability plays an important role in endothelial dysfunction and arterial stiffening with aging. Supplementation with sodium nitrite, a precursor of NO, ameliorates age-related vascular endothelial dysfunction and arterial stiffness in mice, but effects on humans, including the metabolic pathways altered, are unknown. The purpose of this study was to determine the safety, feasibility, and efficacy of oral sodium nitrite supplementation for improving vascular function in middle-aged and older adults and to identify related circulating metabolites. Ten weeks of sodium nitrite (80 or 160 mg/day, capsules, TheraVasc; randomized, placebo control, double blind) increased plasma nitrite acutely (5- to 15-fold, P < 0.001 vs. placebo) and chronically (P < 0.10) and was well tolerated without symptomatic hypotension or clinically relevant elevations in blood methemoglobin. Endothelial function, measured by brachial artery flow-mediated dilation, increased 45-60% vs. baseline (P < 0.10) without changes in body mass or blood lipids. Measures of carotid artery elasticity (ultrasound and applanation tonometry) improved (decreased β-stiffness index, increased cross-sectional compliance, P < 0.05) without changes in brachial or carotid artery blood pressure. Aortic pulse wave velocity was unchanged. Nitrite-induced changes in vascular measures were significantly related to 11 plasma metabolites identified by untargeted analysis. Baseline abundance of multiple metabolites, including glycerophospholipids and fatty acyls, predicted vascular changes with nitrite. This study provides evidence that sodium nitrite supplementation is well tolerated, increases plasma nitrite concentrations, improves endothelial function, and lessens carotid artery stiffening in middle-aged and older adults, perhaps by altering multiple metabolic pathways, thereby warranting a larger clinical trial.
Collapse
Affiliation(s)
- Allison E DeVan
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado;
| | - Lawrence C Johnson
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | - Forrest A Brooks
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | - Trent D Evans
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | - Jamie N Justice
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | | | - Nichole Reisdorph
- Integrated Department of Immunology, National Jewish Health, Denver, Colorado
| | | | - Matthew B McQueen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | | | - Michel B Chonchol
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado
| | - Candace J Bassett
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | - Amy L Sindler
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | | | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| |
Collapse
|
43
|
Laye MJ, Tran V, Jones DP, Kapahi P, Promislow DEL. The effects of age and dietary restriction on the tissue-specific metabolome of Drosophila. Aging Cell 2015; 14:797-808. [PMID: 26085309 PMCID: PMC4568967 DOI: 10.1111/acel.12358] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2015] [Indexed: 11/28/2022] Open
Abstract
Dietary restriction (DR) is a robust intervention that extends lifespan and slows the onset of age-related diseases in diverse organisms. While significant progress has been made in attempts to uncover the genetic mechanisms of DR, there are few studies on the effects of DR on the metabolome. In recent years, metabolomic profiling has emerged as a powerful technology to understand the molecular causes and consequences of natural aging and disease-associated phenotypes. Here, we use high-resolution mass spectroscopy and novel computational approaches to examine changes in the metabolome from the head, thorax, abdomen, and whole body at multiple ages in Drosophila fed either a nutrient-rich ad libitum (AL) or nutrient-restricted (DR) diet. Multivariate analysis clearly separates the metabolome by diet in different tissues and different ages. DR significantly altered the metabolome and, in particular, slowed age-related changes in the metabolome. Interestingly, we observed interacting metabolites whose correlation coefficients, but not mean levels, differed significantly between AL and DR. The number and magnitude of positively correlated metabolites was greater under a DR diet. Furthermore, there was a decrease in positive metabolite correlations as flies aged on an AL diet. Conversely, DR enhanced these correlations with age. Metabolic set enrichment analysis identified several known (e.g., amino acid and NAD metabolism) and novel metabolic pathways that may affect how DR effects aging. Our results suggest that network structure of metabolites is altered upon DR and may play an important role in preventing the decline of homeostasis with age.
Collapse
Affiliation(s)
| | - ViLinh Tran
- Division of Pulmonary Allergy & Critical Care Medicine Department of Medicine Emory University Atlanta GA USA
- Department of Medicine Clinical Biomarkers Laboratory Emory University Atlanta GA USA
| | - Dean P. Jones
- Division of Pulmonary Allergy & Critical Care Medicine Department of Medicine Emory University Atlanta GA USA
- Department of Medicine Clinical Biomarkers Laboratory Emory University Atlanta GA USA
| | | | - Daniel E. L. Promislow
- Department of Pathology University of Washington Seattle WA USA
- Department of Biology University of Washington Seattle WA USA
| |
Collapse
|
44
|
Dontsov VI, Krut’ko VN. Biological age as a method for systematic assessment of ontogenetic changes in the state of an organism. Russ J Dev Biol 2015. [DOI: 10.1134/s1062360415050033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Deda O, Gika HG, Wilson ID, Theodoridis GA. An overview of fecal sample preparation for global metabolic profiling. J Pharm Biomed Anal 2015; 113:137-50. [DOI: 10.1016/j.jpba.2015.02.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/05/2015] [Indexed: 01/25/2023]
|
46
|
Jové M, Maté I, Naudí A, Mota-Martorell N, Portero-Otín M, De la Fuente M, Pamplona R. Human Aging Is a Metabolome-related Matter of Gender. J Gerontol A Biol Sci Med Sci 2015; 71:578-85. [DOI: 10.1093/gerona/glv074] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/30/2015] [Indexed: 11/13/2022] Open
|
47
|
James EL, Michalek RD, Pitiyage GN, de Castro AM, Vignola KS, Jones J, Mohney RP, Karoly ED, Prime SS, Parkinson EK. Senescent human fibroblasts show increased glycolysis and redox homeostasis with extracellular metabolomes that overlap with those of irreparable DNA damage, aging, and disease. J Proteome Res 2015; 14:1854-71. [PMID: 25690941 DOI: 10.1021/pr501221g] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cellular senescence can modulate various pathologies and is associated with irreparable DNA double-strand breaks (IrrDSBs). Extracellular senescence metabolomes (ESMs) were generated from fibroblasts rendered senescent by proliferative exhaustion (PEsen) or 20 Gy of γ rays (IrrDSBsen) and compared with those of young proliferating cells, confluent cells, quiescent cells, and cells exposed to repairable levels of DNA damage to identify novel noninvasive markers of senescent cells. ESMs of PEsen and IrrDSBsen overlapped and showed increased levels of citrate, molecules involved in oxidative stress, a sterol, monohydroxylipids, tryptophan metabolism, phospholipid, and nucleotide catabolism, as well as reduced levels of dipeptides containing branched chain amino acids. The ESM overlaps with the aging and disease body fluid metabolomes, supporting their utility in the noninvasive detection of human senescent cells in vivo and by implication the detection of a variety of human pathologies. Intracellular metabolites of senescent cells showed a relative increase in glycolysis, gluconeogenesis, the pentose-phosphate pathway, and, consistent with this, pyruvate dehydrogenase kinase transcripts. In contrast, tricarboxylic acid cycle enzyme transcript levels were unchanged and their metabolites were depleted. These results are surprising because glycolysis antagonizes senescence entry but are consistent with established senescent cells entering a state of low oxidative stress.
Collapse
Affiliation(s)
| | - Ryan D Michalek
- ‡Metabolon, Inc., 617 Davis Drive, Suite 400, Durham, North Carolina 27713, United States
| | | | | | - Katie S Vignola
- ‡Metabolon, Inc., 617 Davis Drive, Suite 400, Durham, North Carolina 27713, United States
| | - Janice Jones
- ‡Metabolon, Inc., 617 Davis Drive, Suite 400, Durham, North Carolina 27713, United States
| | - Robert P Mohney
- ‡Metabolon, Inc., 617 Davis Drive, Suite 400, Durham, North Carolina 27713, United States
| | - Edward D Karoly
- ‡Metabolon, Inc., 617 Davis Drive, Suite 400, Durham, North Carolina 27713, United States
| | | | | |
Collapse
|
48
|
Bär C, Bernardes de Jesus B, Serrano R, Tejera A, Ayuso E, Jimenez V, Formentini I, Bobadilla M, Mizrahi J, de Martino A, Gomez G, Pisano D, Mulero F, Wollert KC, Bosch F, Blasco MA. Telomerase expression confers cardioprotection in the adult mouse heart after acute myocardial infarction. Nat Commun 2014; 5:5863. [PMID: 25519492 PMCID: PMC4871230 DOI: 10.1038/ncomms6863] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 11/14/2014] [Indexed: 12/13/2022] Open
Abstract
Coronary heart disease is one of the main causes of death in the developed world, and treatment success remains modest, with high mortality rates within 1 year after myocardial infarction (MI). Thus, new therapeutic targets and effective treatments are necessary. Short telomeres are risk factors for age-associated diseases, including heart disease. Here we address the potential of telomerase (Tert) activation in prevention of heart failure after MI in adult mice. We use adeno-associated viruses for cardiac-specific Tert expression. We find that upon MI, hearts expressing Tert show attenuated cardiac dilation, improved ventricular function and smaller infarct scars concomitant with increased mouse survival by 17% compared with controls. Furthermore, Tert treatment results in elongated telomeres, increased numbers of Ki67 and pH3-positive cardiomyocytes and a gene expression switch towards a regeneration signature of neonatal mice. Our work suggests telomerase activation could be a therapeutic strategy to prevent heart failure after MI.
Collapse
Affiliation(s)
- Christian Bär
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| | - Bruno Bernardes de Jesus
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| | - Rosa Serrano
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| | - Agueda Tejera
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| | - Eduard Ayuso
- Centre of Animal Biotechnology and Gene Therapy (CBATEG), Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autónoma de Barcelona, E-08193 Bellaterra, Spain
| | - Veronica Jimenez
- Centre of Animal Biotechnology and Gene Therapy (CBATEG), Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autónoma de Barcelona, E-08193 Bellaterra, Spain
| | - Ivan Formentini
- Cardiovascular and Metabolism Disease Therapy Area, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Maria Bobadilla
- Cardiovascular and Metabolism Disease Therapy Area, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Jacques Mizrahi
- Cardiovascular and Metabolism Disease Therapy Area, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Alba de Martino
- Histopathology Unit, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| | - Gonzalo Gomez
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| | - David Pisano
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| | - Francisca Mulero
- Molecular Imaging Unit, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| | - Kai C Wollert
- Molekulare und Translationale Kardiologie, Hans-Borst-Zentrum fuür Herzund Stammzellforschung, Klinik fuür Kardiologie und Angiologie, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| | - Fatima Bosch
- Centre of Animal Biotechnology and Gene Therapy (CBATEG), Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autónoma de Barcelona, E-08193 Bellaterra, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| |
Collapse
|
49
|
Kim S, Cheon HS, Song JC, Yun SM, Park SI, Jeon JP. Aging-related Changes in Mouse Serum Glycerophospholipid Profiles. Osong Public Health Res Perspect 2014; 5:345-50. [PMID: 25562043 PMCID: PMC4281626 DOI: 10.1016/j.phrp.2014.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/18/2014] [Accepted: 10/01/2014] [Indexed: 01/25/2023] Open
Abstract
Objectives Metabolic dysfunction is a common hallmark of the aging process and aging-related pathogenesis. Blood metabolites have been used as biomarkers for many diseases, including cancers, complex chronic diseases, and neurodegenerative diseases. Methods In order to identify aging-related biomarkers from blood metabolites, we investigated the specific metabolite profiles of mouse sera from 4-month-old and 21-month-old mice by using a combined flow injection analysis–tandem mass spectrometry and liquid chromatography–tandem mass spectrometry. Results Among the 156 metabolites detected, serum levels of nine individual metabolites were found to vary with aging. Specifically, lysophosphatidylcholine (LPC) acyl (a) C24:0 levels in aged mice were decreased compared to that in young mice, whereas phosphatidylcholine (PC) acyl-alkyl (ae) C38:4, PC ae C40:4, and PC ae C42:1 levels were increased. Three classes of metabolites (amino acids, LPCs, and PCs) differed in intraclass correlation patterns of the individual metabolites between sera from young and aged mice. Additionally, the ratio of LPC a C24:0 to PC ae C38:4 was decreased in the aged mice, whereas the ratio of PC ae C40:4 to LPC a C24:0 was increased, supporting the aging-related metabolic changes of glycerophospholipids. Conclusion The ratios of the individual metabolites PC and LPC could serve as potential biomarkers for aging and aging-related diseases.
Collapse
Affiliation(s)
- Seungwoo Kim
- Division of Brain Diseases, Korea National Institute of Health, Cheongju, Korea
| | - Hyo-Soon Cheon
- Division of Brain Diseases, Korea National Institute of Health, Cheongju, Korea
| | - Jae-Chun Song
- Division of Brain Diseases, Korea National Institute of Health, Cheongju, Korea
| | - Sang-Moon Yun
- Division of Brain Diseases, Korea National Institute of Health, Cheongju, Korea
| | - Sang Ick Park
- Division of Brain Diseases, Korea National Institute of Health, Cheongju, Korea
| | - Jae-Pil Jeon
- Division of Brain Diseases, Korea National Institute of Health, Cheongju, Korea
| |
Collapse
|
50
|
Melis JPM, Jonker MJ, Vijg J, Hoeijmakers JHJ, Breit TM, van Steeg H. Aging on a different scale--chronological versus pathology-related aging. Aging (Albany NY) 2014; 5:782-8. [PMID: 24131799 PMCID: PMC3838780 DOI: 10.18632/aging.100606] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the next decades the elderly population will increase dramatically, demanding appropriate solutions in health care and aging research focusing on healthy aging to prevent high burdens and costs in health care. For this, research targeting tissue-specific and individual aging is paramount to make the necessary progression in aging research. In a recently published study we have attempted to make a step interpreting aging data on chronological as well as pathological scale. For this, we sampled five major tissues at regular time intervals during the entire C57BL/6J murine lifespan from a controlled in vivo aging study, measured the whole transcriptome and incorporated temporal as well as physical health aspects into the analyses. In total, we used 18 different age-related pathological parameters and transcriptomic profiles of liver, kidney, spleen, lung and brain and created a database that can now be used for a broad systems biology approach. In our study, we focused on the dynamics of biological processes during chronological aging and the comparison between chronological and pathology-related aging.
Collapse
Affiliation(s)
- Joost P M Melis
- National Institute for Public Health and the Environment (RIVM), Center for Health Protection, Bilthoven, the Netherlands
| | | | | | | | | | | |
Collapse
|