1
|
Anver S, Sumit AF, Sun XM, Hatimy A, Thalassinos K, Marguerat S, Alic N, Bähler J. Ageing-associated long non-coding RNA extends lifespan and reduces translation in non-dividing cells. EMBO Rep 2024; 25:4921-4949. [PMID: 39358553 PMCID: PMC11549352 DOI: 10.1038/s44319-024-00265-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024] Open
Abstract
Genomes produce widespread long non-coding RNAs (lncRNAs) of largely unknown functions. We characterize aal1 (ageing-associated lncRNA), which is induced in quiescent fission yeast cells. Deletion of aal1 shortens the chronological lifespan of non-dividing cells, while ectopic overexpression prolongs their lifespan, indicating that aal1 acts in trans. Overexpression of aal1 represses ribosomal-protein gene expression and inhibits cell growth, and aal1 genetically interacts with coding genes functioning in protein translation. The aal1 lncRNA localizes to the cytoplasm and associates with ribosomes. Notably, aal1 overexpression decreases the cellular ribosome content and inhibits protein translation. The aal1 lncRNA binds to the rpl1901 mRNA, encoding a ribosomal protein. The rpl1901 levels are reduced ~2-fold by aal1, which is sufficient to extend lifespan. Remarkably, the expression of the aal1 lncRNA in Drosophila boosts fly lifespan. We propose that aal1 reduces the ribosome content by decreasing Rpl1901 levels, thus attenuating the translational capacity and promoting longevity. Although aal1 is not conserved, its effect in flies suggests that animals feature related mechanisms that modulate ageing, based on the conserved translational machinery.
Collapse
Affiliation(s)
- Shajahan Anver
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Ahmed Faisal Sumit
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Xi-Ming Sun
- Institute of Clinical Sciences, Imperial College London, London, W12 0NN, UK
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK
| | - Abubakar Hatimy
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, WC1E 7HX, UK
| | - Samuel Marguerat
- Institute of Clinical Sciences, Imperial College London, London, W12 0NN, UK
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK
- UCL Cancer Institute, University College London, London, WC1E 6BT, UK
| | - Nazif Alic
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Jürg Bähler
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
2
|
Fan SB, Xie XF, Wei W, Hua T. Senescence-Related LncRNAs: Pioneering Indicators for Ovarian Cancer Outcomes. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:379-393. [PMID: 39583315 PMCID: PMC11584837 DOI: 10.1007/s43657-024-00163-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 11/26/2024]
Abstract
In gynecological oncology, ovarian cancer (OC) remains the most lethal, highlighting its significance in public health. Our research focused on the role of long non-coding RNA (lncRNA) in OC, particularly senescence-related lncRNAs (SnRlncRNAs), crucial for OC prognosis. Utilizing data from the genotype-tissue expression (GTEx) and cancer genome Atlas (TCGA), SnRlncRNAs were discerned and subsequently, a risk signature was sculpted using co-expression and differential expression analyses, Cox regression, and least absolute shrinkage and selection operator (LASSO). This signature's robustness was validated through time-dependent receiver operating characteristics (ROC), and multivariate Cox regression, with further validation in the international cancer genome consortium (ICGC). Gene set enrichment analyses (GSEA) unveiled pathways intertwined with risk groups. The ROC, alongside the nomogram and calibration outcomes, attested to the model's robust predictive accuracy. Of particular significance, our model has demonstrated superiority over several commonly utilized clinical indicators, such as stage and grade. Patients in the low-risk group demonstrated greater immune infiltration and varied drug sensitivities compared to other groups. Moreover, consensus clustering classified OC patients into four distinct groups based on the expression of 17 SnRlncRNAs, showing diverse survival rates. In conclusion, these findings underscored the robustness and reliability of our model and highlighted its potential for facilitating improved decision-making in the context of risk assessment, and demonstrated that these markers potentially served as robust, efficacious biomarkers and prognostic tools, offering insights into predicting OC response to anticancer therapeutics. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-024-00163-z.
Collapse
Affiliation(s)
- Shao-Bei Fan
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei 054001 People’s Republic of China
| | - Xiao-Feng Xie
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei 054001 People’s Republic of China
| | - Wang Wei
- Department of Obstetrics and Gynaecology, Hebei Medical University, Second Hospital, 215 Heping Road, Shijiazhuang, Hebei 050000 People’s Republic of China
| | - Tian Hua
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei 054001 People’s Republic of China
| |
Collapse
|
3
|
Salluzzo M, Vianello C, Flotta F, Rimondini R, Carboni L. MicroRNAs Associated with IgLON Cell Adhesion Molecule Expression. Curr Issues Mol Biol 2024; 46:7702-7718. [PMID: 39057097 PMCID: PMC11276434 DOI: 10.3390/cimb46070456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
The IgLON family of cell adhesion molecules consists of five members (LSAMP, OPCML, neurotrimin, NEGR1, and IgLON5) discovered as supporters of neuronal development, axon growth and guidance, and synapse formation and maintenance. Tumour suppression properties have recently been emerging based on antiproliferative effects through the modulation of oncogenic pathways. Available evidence endorses a role for non-coding RNAs or microRNAs as relevant controllers of IgLON molecule expression that can impact their critical physiological and pathological roles. Current findings support a function for long non-coding RNAs and microRNAs in the modulation of LSAMP expression in cell senescence, cancer biogenesis, addiction, and pulmonary hypertension. For OPCML, data point to a role for several microRNAs in the control of tumorigenesis. MicroRNAs were detected in neurotrimin-mediated functions in cancer biogenesis and in Schwann cell responses to peripheral nerve injury. For NEGR1, studies have mainly investigated microRNA involvement in neuronal responses to ischaemic injury, although data also exist about tumorigenesis and endothelial cell dysfunction. For IgLON5, information is only available about microRNA involved in myocardial infarction. In conclusion, despite much information being still missing and further research needed, the emerging picture favours a model in which non-coding RNAs exert a crucial role in modulating IgLON expression, ultimately affecting their important physiological functions.
Collapse
Affiliation(s)
- Marco Salluzzo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| | - Clara Vianello
- Department for Life Quality Studies, Alma Mater Studiorum University of Bologna, 47921 Rimini, Italy;
| | - Francesca Flotta
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (F.F.); (R.R.)
| | - Roberto Rimondini
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (F.F.); (R.R.)
| | - Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
4
|
Yin F, Zhao W, Ding C, Hou C, Wang S, Sun C, Zhao Z, Zhang Z, Ren F, Liu Y, Li X. A Novel Cellular Senescence-related lncRNA Signature for Predicting the Prognosis of Breast Cancer Patients. J Cancer 2024; 15:4700-4716. [PMID: 39006073 PMCID: PMC11242350 DOI: 10.7150/jca.96107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Background: Long non-coding RNA (lncRNA), a crucial regulator in breast cancer (BC) development, is intricately linked with cellular senescence. However, there is a lack of cellular senescence-related lncRNAs (CSRLs) signature to evaluate the prognosis of BC patients. Methods: Correlation analysis was conducted to identify lncRNAs associated with cellular senescence. Subsequently, a CSRL signature was crafted in the training cohort. The model's accuracy was evaluated through survival analysis and receiver operating characteristic curves. Furthermore, prognostic nomograms amalgamating cellular senescence and clinical characteristics were devised. Tumor microenvironment and checkpoint disparities were compared between low-risk and high-risk groups. The correlation between these signatures and treatment response in BC patients was also investigated. Finally, functional experiments were conducted for validation. Results: A signature comprising nine CSRLs was devised, which demonstrated adept prognostic capability in BC patients. Functional enrichment analysis revealed that tumor and immune-related pathways were predominantly enriched. Compared to the low-risk group, the high-risk group could benefit more from immunotherapy and certain chemotherapeutic agents. The expression of the 9 CSRLs was validated through in vitro experiments in different subtypes of BC cell lines and tissues. AC098484.1 was specifically verified for its association with senescence-associated secretory phenotypes. Conclusion: The CSRLs signature emerges as a promising prognostic biomarker for BC, with implications for immunological studies and treatment strategies. AC098484.1 has potential relevance in the treatment of BC cell senescence, and these findings improve the clinical treatment levels for BC patients.
Collapse
Affiliation(s)
- Fangxu Yin
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenhao Zhao
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Chen Ding
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Chong Hou
- Department of Emergency medicine, Tianjin Medical University General Hospital, China
| | - Song Wang
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Chao Sun
- Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Zexia Zhao
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhanrui Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Fan Ren
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuying Liu
- Department of Pathology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuanguang Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
5
|
Chmielewski PP, Data K, Strzelec B, Farzaneh M, Anbiyaiee A, Zaheer U, Uddin S, Sheykhi-Sabzehpoush M, Mozdziak P, Zabel M, Dzięgiel P, Kempisty B. Human Aging and Age-Related Diseases: From Underlying Mechanisms to Pro-Longevity Interventions. Aging Dis 2024:AD.2024.0280. [PMID: 38913049 DOI: 10.14336/ad.2024.0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/02/2024] [Indexed: 06/25/2024] Open
Abstract
As human life expectancy continues to rise, becoming a pressing global concern, it brings into focus the underlying mechanisms of aging. The increasing lifespan has led to a growing elderly population grappling with age-related diseases (ARDs), which strains healthcare systems and economies worldwide. While human senescence was once regarded as an immutable and inexorable phenomenon, impervious to interventions, the emerging field of geroscience now offers innovative approaches to aging, holding the promise of extending the period of healthspan in humans. Understanding the intricate links between aging and pathologies is essential in addressing the challenges presented by aging populations. A substantial body of evidence indicates shared mechanisms and pathways contributing to the development and progression of various ARDs. Consequently, novel interventions targeting the intrinsic mechanisms of aging have the potential to delay the onset of diverse pathological conditions, thereby extending healthspan. In this narrative review, we discuss the most promising methods and interventions aimed at modulating aging, which harbor the potential to mitigate ARDs in the future. We also outline the complexity of senescence and review recent empirical evidence to identify rational strategies for promoting healthy aging.
Collapse
Affiliation(s)
- Piotr Pawel Chmielewski
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Krzysztof Data
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Bartłomiej Strzelec
- 2nd Department of General Surgery and Surgical Oncology, Medical University Hospital, Wroclaw, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Anbiyaiee
- Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Uzma Zaheer
- School of Biosciences, Faculty of Health Sciences and Medicine, The University of Surrey, United Kingdom
| | - Shahab Uddin
- Translational Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | | | - Paul Mozdziak
- Graduate Physiology Program, North Carolina State University, Raleigh, NC 27695, USA
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
- Division of Anatomy and Histology, The University of Zielona Góra, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
- Center of Assisted Reproduction, Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czech Republic
| |
Collapse
|
6
|
Hosseinzadeh S, Masoudi AA. Investigating the expression of fertility-regulating LncRNAs in multiparous and uniparous Shal ewe's ovaries. Genome 2024; 67:78-89. [PMID: 37983732 DOI: 10.1139/gen-2023-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Sheep is the primary source of animal protein in Iran. Birth type is one of the significant features that determine total meat output. Little is known about how long non-coding RNAs (LncRNAs) affect litter size. The purpose of this research is to investigate the DE-LncRNAs in ovarian tissue between multiparous and uniparous Shal ewes. Through bioinformatics analyses, LncRNAs with variable expression levels between ewes were discovered. Target genes were annotated using the DAVID database, and STRING and Cytoscape software were used to evaluate their interactions. The expression levels of 148 LncRNAs were different in the multiparous and uniparous ewe groups (false discovery rate (FDR) < 0.05). Eight biological process terms, nine cellular component terms, 10 molecular function terms, and 38 KEGG pathways were significant (FDR < 0.05) in the GO analysis. One of the most significant processes impacting fertility is mitogen-activated protein kinase (MAPK) signaling pathway, followed by oocyte meiosis, gonadotropin-releasing hormone signaling pathway, progesterone-mediated oocyte maturation, oxytocin signaling pathway, and cAMP signaling pathway. ENSOARG00000025710, ENSOARG00000025667, ENSOARG00000026034, and ENSOARG00000026632 are LncRNAs that may affect litter size and fertility. The most crucial hub genes include MAPK1, BRD2, GAK, RAP1B, FGF2, RAP1B, and RAP1B. We hope that this study will encourage researchers to further investigate the effect of LncRNAs on fertility.
Collapse
Affiliation(s)
- Shahram Hosseinzadeh
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ali Akbar Masoudi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
7
|
Wyles SP, Carruthers JD, Dashti P, Yu G, Yap JQ, Gingery A, Tchkonia T, Kirkland JL. Cellular Senescence in Human Skin Aging: Leveraging Senotherapeutics. Gerontology 2023; 70:7-14. [PMID: 37879300 PMCID: PMC10873061 DOI: 10.1159/000534756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 10/18/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND As the largest organ in the human body, the skin is continuously exposed to intrinsic and extrinsic stimuli that impact its functionality and morphology with aging. Skin aging entails dysregulation of skin cells and loss, fragmentation, or fragility of extracellular matrix fibers that are manifested macroscopically by wrinkling, laxity, and pigmentary abnormalities. Age-related skin changes are the focus of many surgical and nonsurgical treatments aimed at improving overall skin appearance and health. SUMMARY As a hallmark of aging, cellular senescence, an essentially irreversible cell cycle arrest with apoptosis resistance and a secretory phenotype, manifests across skin layers by affecting epidermal and dermal cells. Knowledge of skin-specific senescent cells, such as melanocytes (epidermal aging) and fibroblasts (dermal aging), will promote our understanding of age-related skin changes and how to optimize patient outcomes in esthetic procedures. KEY MESSAGES This review provides an overview of skin aging in the context of cellular senescence and discusses senolytic intervention strategies to selectively target skin senescent cells that contribute to premature skin aging.
Collapse
Affiliation(s)
- Saranya P. Wyles
- Department of Dermatology, Mayo Clinic, Rochester, MN, United States
| | - Jean D. Carruthers
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Parisa Dashti
- Department of Dermatology, Mayo Clinic, Rochester, MN, United States
| | - Grace Yu
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic Alix School of Medicine, and Mayo Clinic Medical Scientist Training Program, Rochester, MN
| | - Jane Q. Yap
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Anne Gingery
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN United States
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - James L. Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
8
|
Jiang X, Li W, Ge L, Lu M. Mesenchymal Stem Cell Senescence during Aging:From Mechanisms to Rejuvenation Strategies. Aging Dis 2023; 14:1651-1676. [PMID: 37196126 PMCID: PMC10529739 DOI: 10.14336/ad.2023.0208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/08/2023] [Indexed: 05/19/2023] Open
Abstract
In cell transplantation therapy, mesenchymal stem cells(MSCs)are ideal seed cells due to their easy acquisition and cultivation, strong regenerative capacity, multi-directional differentiation abilities, and immunomodulatory effects. Autologous MSCs are better applicable compared with allogeneic MSCs in clinical practice. The elderly are the main population for cell transplantation therapy, but as donor aging, MSCs in the tissue show aging-related changes. When the number of generations of in vitro expansion is increased, MSCs will also exhibit replicative senescence. The quantity and quality of MSCs decline during aging, which limits the efficacy of autologous MSCs transplantation therapy. In this review, we examine the changes in MSC senescence as a result of aging, discuss the progress of research on mechanisms and signalling pathways of MSC senescence, and discuss possible rejuvenation strategies of aged MSCs to combat senescence and enhance the health and therapeutic potential of MSCs.
Collapse
Affiliation(s)
- Xinchen Jiang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.
- Hunan provincical key laboratory of Neurorestoratology, the Second Affiliated Hospital, Hunan Normal University, Changsha, China.
| | - Wenshui Li
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.
- Hunan provincical key laboratory of Neurorestoratology, the Second Affiliated Hospital, Hunan Normal University, Changsha, China.
| | - Lite Ge
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.
- Hunan provincical key laboratory of Neurorestoratology, the Second Affiliated Hospital, Hunan Normal University, Changsha, China.
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China, Changsha
| | - Ming Lu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.
- Hunan provincical key laboratory of Neurorestoratology, the Second Affiliated Hospital, Hunan Normal University, Changsha, China.
| |
Collapse
|
9
|
Li R, Teng Y, Guo Y, Ren J, Li R, Luo H, Chen D, Feng Z, Fu Z, Zou X, Wang W, Zhou C. Aging-related decrease of histone methyltransferase SUV39H1 in adipose-derived stem cells enhanced SASP. Mech Ageing Dev 2023; 215:111868. [PMID: 37666472 DOI: 10.1016/j.mad.2023.111868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/27/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
Aging-related diseases are closely associated with the state of inflammation, which is known as "inflammaging." Senescent cells are metabolically active, as exemplified by the secretion of inflammatory cytokines, chemokines, and growth factors, which is termed the senescence-associated secretory phenotype (SASP). Epigenetic regulation, especially the structural regulation of chromatin, is closely linked to the regulation of SASP. In our previous study, the suppressor of variegation 3-9 homolog 1 (SUV39H1) was elucidated to interact with Lhx8 and determine the cell fate of mesenchyme stem cells. However, the function of SUV39H1 during aging and the underlying mechanism of its epigenetic regulation remains controversial. Therefore, the C57BL/6 J CAG-Cre; SUV39H1fl/fl knockout mice and irradiation-induced cellular senescence model were built in this study to deepen the understanding of epigenetic regulation by SUV39H1 and its relation to SASP. In vivo and in vitro studies demonstrated that SUV39H1 decreased with aging and served as an inhibitor of SASP, especially IL-6, MCP-1, and Vcam-1, by altering H3K9me3 enrichment in their promoter region. These results provide new insights into the epigenetic regulation of SASP.
Collapse
Affiliation(s)
- Ruoyu Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Yungshan Teng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Yuqing Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Jianhan Ren
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Runze Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Haotian Luo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Danying Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Zhicai Feng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Zheng Fu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Weicai Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China.
| | - Chen Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China.
| |
Collapse
|
10
|
Qin X, Zhong J, Wang L, Chen Z, Liu X. LncRNA LNC-565686 Promotes Proliferation of Prostate Cancer by Inhibiting Apoptosis through Stabilizing SND1. Biomedicines 2023; 11:2627. [PMID: 37893001 PMCID: PMC10603871 DOI: 10.3390/biomedicines11102627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/27/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Long non-coding RNAs (lncRNAs), typically more than 200 nt long, cannot encode proteins, but can regulate gene expression. They play an indispensable role in the occurrence and progression of various cancers. The main purpose of this study is to discuss the role and mechanism of LNC-565686 in prostate cancer. First, we found an increased expression of LNC-565686 in prostate cancer cells using RNA sequencing, which was further verified using qRT-PCR. Then, catRAPID was used to find that LNC-565686 might regulate SND1. Furthermore, a protein half-life experiment was performed to verify that LNC-565686 could stabilize the expression of SND1. In order to further explore the effects of LNC-565686 and SND1 on prostate cancer cells, we knocked down LNC-565686 and SND1 in prostate cancer cells, and verified using CCK8 and flow cytometry and western blot for the detection of apoptosis-related indicators. Collectively, we have found that LNC-565686 can promote the proliferation of prostate cancer cells and inhibit apoptosis by stabilizing the expression of SND1. Therefore, targeting LNC-565686 might be a new treatment for prostate cancer.
Collapse
Affiliation(s)
| | | | | | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (X.Q.); (J.Z.); (L.W.)
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (X.Q.); (J.Z.); (L.W.)
| |
Collapse
|
11
|
Macvanin MT, Gluvic Z, Bajic V, Isenovic ER. Novel insights regarding the role of noncoding RNAs in diabetes. World J Diabetes 2023; 14:958-976. [PMID: 37547582 PMCID: PMC10401459 DOI: 10.4239/wjd.v14.i7.958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/01/2023] [Accepted: 05/23/2023] [Indexed: 07/12/2023] Open
Abstract
Diabetes mellitus (DM) is a group of metabolic disorders defined by hyperglycemia induced by insulin resistance, inadequate insulin secretion, or excessive glucagon secretion. In 2021, the global prevalence of diabetes is anticipated to be 10.7% (537 million people). Noncoding RNAs (ncRNAs) appear to have an important role in the initiation and progression of DM, according to a growing body of research. The two major groups of ncRNAs implicated in diabetic disorders are miRNAs and long noncoding RNAs. miRNAs are single-stranded, short (17–25 nucleotides), ncRNAs that influence gene expression at the post-transcriptional level. Because DM has reached epidemic proportions worldwide, it appears that novel diagnostic and therapeutic strategies are required to identify and treat complications associated with these diseases efficiently. miRNAs are gaining attention as biomarkers for DM diagnosis and potential treatment due to their function in maintaining physiological homeostasis via gene expression regulation. In this review, we address the issue of the gradually expanding global prevalence of DM by presenting a complete and up-to-date synopsis of various regulatory miRNAs involved in these disorders. We hope this review will spark discussion about ncRNAs as prognostic biomarkers and therapeutic tools for DM. We examine and synthesize recent research that used novel, high-throughput technologies to uncover ncRNAs involved in DM, necessitating a systematic approach to examining and summarizing their roles and possible diagnostic and therapeutic uses.
Collapse
Affiliation(s)
- Mirjana T Macvanin
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Zoran Gluvic
- Department of Endocrinology and Diabetes, Clinic for Internal Medicine, Zemun Clinical Hospital, School of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Vladan Bajic
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| |
Collapse
|
12
|
Han JDJ. LncRNAs: the missing link to senescence nuclear architecture. Trends Biochem Sci 2023; 48:618-628. [PMID: 37069045 DOI: 10.1016/j.tibs.2023.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/19/2023]
Abstract
During cellular senescence and organismal aging, cells display various molecular and morphological changes. Although many aging-related long noncoding RNAs (lncRNAs) are highly associated with senescence-associated secretory phenotype, the roles of lncRNAs in senescence-associated nuclear architecture and morphological changes are just starting to emerge. Here I review lncRNAs associated with nuclear structure establishment and maintenance, their aging-related changes, and then focus on the pervasive, yet underappreciated, role of RNA double-strand DNA triplexes for lncRNAs to recognize targeted genomic regions, making lncRNAs the nexus between DNA and proteins to regulate nuclear structural changes. Finally, I discuss the future of deciphering direct links of lncRNA changes to various nuclear morphology changes assisted by artificial intelligence and genetic perturbations.
Collapse
Affiliation(s)
- Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China; International Center for Aging and Cancer (ICAC), The First Affiliated Hospital, Hainan Medical University, Haikou, China.
| |
Collapse
|
13
|
Zhu Y, Yan Z, Fu C, Wen X, Jia L, Zhou L, Du Z, Wang C, Wang Y, Chen J, Nie Y, Wang W, Cui J, Wang G, Hoffman AR, Hu JF, Li W. LncRNA Osilr9 coordinates promoter DNA demethylation and the intrachromosomal loop structure required for maintaining stem cell pluripotency. Mol Ther 2023; 31:1791-1806. [PMID: 36523163 PMCID: PMC10278046 DOI: 10.1016/j.ymthe.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Nuclear reprogramming of somatic cells into a pluripotent status has the potential to create patient-specific induced pluripotent stem cells for regenerative medicine. Currently, however, the epigenetic mechanisms underlying this pluripotent reprogramming are poorly understood. To delineate this epigenetic regulatory network, we utilized a chromatin RNA in situ reverse transcription sequencing (CRIST-seq) approach to identify long noncoding RNAs (lncRNAs) embedded in the 3-dimensional intrachromosomal architecture of stem cell core factor genes. By combining CRIST-seq and RNA sequencing, we identified Oct4-Sox2 interacting lncRNA 9 (Osilr9) as a pluripotency-associated lncRNA. Osilr9 expression was associated with the status of stem cell pluripotency in reprogramming. Using short hairpin RNA (shRNA) knockdown, we showed that this lncRNA was required for the optimal maintenance of stem cell pluripotency. Overexpression of Osilr9 induced robust activation of endogenous stem cell core factor genes in fibroblasts. Osilr9 participated in the formation of the intrachromosomal looping required for the maintenance of pluripotency. After binding to the Oct4 promoter, Osilr9 recruited the DNA demethylase ten-eleven translocation 1, leading to promoter demethylation. These data demonstrate that Osilr9 is a critical chromatin epigenetic modulator that coordinates the promoter activity of core stem cell factor genes, highlighting the critical role of pluripotency-associated lncRNAs in stem cell pluripotency and reprogramming.
Collapse
Affiliation(s)
- Yanbo Zhu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China; Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Zi Yan
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, Jilin, China; Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Changhao Fu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China; Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Xue Wen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Lin Jia
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Lei Zhou
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Zhonghua Du
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China; Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Cong Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China; Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Yichen Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China; Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Jingcheng Chen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China; Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Yuanyuan Nie
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China; Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Wenjun Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China; Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Jiuwei Cui
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, Jilin, China.
| | - Andrew R Hoffman
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Ji-Fan Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China; Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| | - Wei Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
14
|
Sherazi SAM, Abbasi A, Jamil A, Uzair M, Ikram A, Qamar S, Olamide AA, Arshad M, Fried PJ, Ljubisavljevic M, Wang R, Bashir S. Molecular hallmarks of long non-coding RNAs in aging and its significant effect on aging-associated diseases. Neural Regen Res 2023; 18:959-968. [PMID: 36254975 PMCID: PMC9827784 DOI: 10.4103/1673-5374.355751] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 01/11/2023] Open
Abstract
Aging is linked to the deterioration of many physical and cognitive abilities and is the leading risk factor for Alzheimer's disease. The growing aging population is a significant healthcare problem globally that researchers must investigate to better understand the underlying aging processes. Advances in microarrays and sequencing techniques have resulted in deeper analyses of diverse essential genomes (e.g., mouse, human, and rat) and their corresponding cell types, their organ-specific transcriptomes, and the tissue involved in aging. Traditional gene controllers such as DNA- and RNA-binding proteins significantly influence such programs, causing the need to sort out long non-coding RNAs, a new class of powerful gene regulatory elements. However, their functional significance in the aging process and senescence has yet to be investigated and identified. Several recent researchers have associated the initiation and development of senescence and aging in mammals with several well-reported and novel long non-coding RNAs. In this review article, we identified and analyzed the evolving functions of long non-coding RNAs in cellular processes, including cellular senescence, aging, and age-related pathogenesis, which are the major hallmarks of long non-coding RNAs in aging.
Collapse
Affiliation(s)
- Syed Aoun Mehmood Sherazi
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Asim Abbasi
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Abdullah Jamil
- Department of Pharmacology, Government College University, Faisalabad, Pakistan
| | - Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Ayesha Ikram
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Shanzay Qamar
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | | | - Muhammad Arshad
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Peter J. Fried
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center (KS 158), Harvard Medical School, Boston, MA, USA
| | - Milos Ljubisavljevic
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ran Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Mental Health Institute of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| |
Collapse
|
15
|
Hou B, Mao M, Dong S, Deng M, Sun B, Guo Y, Li Y, Liu D, Liu G. Transcriptome analysis reveals mRNAs and long non-coding RNAs associated with fecundity in the hypothalamus of high-and low-fecundity goat. Front Vet Sci 2023; 10:1145594. [PMID: 37056233 PMCID: PMC10086355 DOI: 10.3389/fvets.2023.1145594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
As an important organ that coordinates the neuroendocrine system, the hypothalamus synthesizes and secretes reproductive hormones that act on the goat organism, thereby precisely regulating follicular development and reproductive processes in goats. However, it is still elusive to explore the mechanism of hypothalamic effects on goat fertility alone. Therefore, RNA-seq was used to analyze the gene expression in hypothalamic tissues of goats in high fertility group (HFG: litter size per litter ≥2) and low fertility group (LFG: litter size per litter = 1), and identified the differential lncRNAs and mRNAs and their associated pathways related to their fertility. The results showed that a total of 23 lncRNAs and 57 mRNAs were differentially expressed in the hypothalamic tissue of high and low fertility goats. GO terms and KEGG functional annotation suggest that DE lncRNAs and DE mRNAs were significantly enriched in hormone-related pathways regulating ovarian development, hormone synthesis and secretion, regulation of reproductive processes, Estrogen signaling pathway, Oxytocin signaling pathway and GnRH signaling pathway. And we constructed a co-expression network of lncRNAs and target genes, and identified reproduction-related genes such as NMUR2, FEZF1, and WT1. The sequencing results of the hypothalamic transcriptome have broadened our understanding of lncRNA and mRNA in goat hypothalamic tissue and provided some new insights into the molecular mechanisms of follicle development and regulation of its fertility in goats.
Collapse
|
16
|
Jacksi M, Schad E, Buday L, Tantos A. Absence of Scaffold Protein Tks4 Disrupts Several Signaling Pathways in Colon Cancer Cells. Int J Mol Sci 2023; 24:ijms24021310. [PMID: 36674824 PMCID: PMC9861885 DOI: 10.3390/ijms24021310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Tks4 is a large scaffold protein in the EGFR signal transduction pathway that is involved in several cellular processes, such as cellular motility, reactive oxygen species-dependent processes, and embryonic development. It is also implicated in a rare developmental disorder, Frank-ter Haar syndrome. Loss of Tks4 resulted in the induction of an EMT-like process, with increased motility and overexpression of EMT markers in colorectal carcinoma cells. In this work, we explored the broader effects of deletion of Tks4 on the gene expression pattern of HCT116 colorectal carcinoma cells by transcriptome sequencing of wild-type and Tks4 knockout (KO) cells. We identified several protein coding genes with altered mRNA levels in the Tks4 KO cell line, as well as a set of long non-coding RNAs, and confirmed these changes with quantitative PCR on a selected set of genes. Our results show a significant perturbation of gene expression upon the deletion of Tks4, suggesting the involvement of different signal transduction pathways over the well-known EGFR signaling.
Collapse
Affiliation(s)
- Mevan Jacksi
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Eva Schad
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - László Buday
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Department of Molecular Biology, Semmelweis University Medical School, 1094 Budapest, Hungary
| | - Agnes Tantos
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Correspondence:
| |
Collapse
|
17
|
Wang D, Hao X, Jia L, Jing Y, Jiang B, Xin S. Cellular senescence and abdominal aortic aneurysm: From pathogenesis to therapeutics. Front Cardiovasc Med 2022; 9:999465. [PMID: 36187019 PMCID: PMC9515360 DOI: 10.3389/fcvm.2022.999465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/15/2022] [Indexed: 01/10/2023] Open
Abstract
As China’s population enters the aging stage, the threat of abdominal aortic aneurysm (AAA) mainly in elderly patients is becoming more and more serious. It is of great clinical significance to study the pathogenesis of AAA and explore potential therapeutic targets. The purpose of this paper is to analyze the pathogenesis of AAA from the perspective of cellular senescence: on the basis of clear evidence of cellular senescence in aneurysm wall, we actively elucidate specific molecular and regulatory pathways, and to explore the targeted drugs related to senescence and senescent cells eliminate measures, eventually improve the health of patients with AAA and prolong the life of human beings.
Collapse
Affiliation(s)
- Ding Wang
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, Liaoning, China
| | - Xinyu Hao
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, Liaoning, China
| | - Longyuan Jia
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, Liaoning, China
| | - Yuchen Jing
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, Liaoning, China
| | - Bo Jiang
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, Liaoning, China
| | - Shijie Xin
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, Liaoning, China
- *Correspondence: Shijie Xin,
| |
Collapse
|
18
|
Jusic A, Thomas PB, Wettinger SB, Dogan S, Farrugia R, Gaetano C, Tuna BG, Pinet F, Robinson EL, Tual-Chalot S, Stellos K, Devaux Y. Noncoding RNAs in age-related cardiovascular diseases. Ageing Res Rev 2022; 77:101610. [PMID: 35338919 DOI: 10.1016/j.arr.2022.101610] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/28/2022] [Accepted: 03/15/2022] [Indexed: 11/01/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality in the adult population worldwide and represent a severe economic burden and public health concern. The majority of human genes do not code for proteins. However, noncoding transcripts play important roles in ageing that significantly increases the risk for CVDs. Noncoding RNAs (ncRNAs) are critical regulators of multiple biological processes related to ageing such as oxidative stress, mitochondrial dysfunction and chronic inflammation. NcRNAs are also involved in pathophysiological developments within the cardiovascular system including arrhythmias, cardiac hypertrophy, fibrosis, myocardial infarction and heart failure. In this review article, we cover the roles of ncRNAs in cardiovascular ageing and disease as well as their potential therapeutic applications in CVDs.
Collapse
|
19
|
Al-Jumayli M, Brown SL, Chetty IJ, Extermann M, Movsas B. The Biological Process of Aging and the Impact of Ionizing Radiation. Semin Radiat Oncol 2022; 32:172-178. [DOI: 10.1016/j.semradonc.2021.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
20
|
MicroRNAs, Long Non-Coding RNAs, and Circular RNAs in the Redox Control of Cell Senescence. Antioxidants (Basel) 2022; 11:antiox11030480. [PMID: 35326131 PMCID: PMC8944605 DOI: 10.3390/antiox11030480] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/18/2022] Open
Abstract
Cell senescence is critical in diverse aspects of organism life. It is involved in tissue development and homeostasis, as well as in tumor suppression. Consequently, it is tightly integrated with basic physiological processes during life. On the other hand, senescence is gradually being considered as a major contributor of organismal aging and age-related diseases. Increased oxidative stress is one of the main risk factors for cellular damages, and thus a driver of senescence. In fact, there is an intimate link between cell senescence and response to different types of cellular stress. Oxidative stress occurs when the production of reactive oxygen species/reactive nitrogen species (ROS/RNS) is not adequately detoxified by the antioxidant defense systems. Non-coding RNAs are endogenous transcripts that govern gene regulatory networks, thus impacting both physiological and pathological events. Among these molecules, microRNAs, long non-coding RNAs, and more recently circular RNAs are considered crucial mediators of almost all cellular processes, including those implicated in oxidative stress responses. Here, we will describe recent data on the link between ROS/RNS-induced senescence and the current knowledge on the role of non-coding RNAs in the senescence program.
Collapse
|
21
|
Wang C, Zhao Y, Yuan Z, Wu Y, Zhao Z, Wu C, Hou J, Zhang M. Genome-Wide Identification of mRNAs, lncRNAs, and Proteins, and Their Relationship With Sheep Fecundity. Front Genet 2022; 12:750947. [PMID: 35211149 PMCID: PMC8861438 DOI: 10.3389/fgene.2021.750947] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
The exploration of multiple birth-related genes has always been a significant focus in sheep breeding. This study aimed to find more genes and proteins related to the litter size in sheep. Ovarian specimens of Small Tail Han sheep (multiple births) and Xinji Fine Wool sheep (singleton) were collected during the natural estrus cycle. Transcriptome and proteome of ovarian specimens were analyzed. The transcriptome results showed that "steroid hormone biosynthesis" and "ovarian steroidogenesis" were significantly enriched, in which HSD17B1 played an important role. The proteome data also confirmed that the differentially expressed proteins (DEPs) were enriched in the ovarian steroidogenesis pathway, and the CYP17A1 was the candidate DEP. Furthermore, lncRNA MSTRG.28645 was highly expressed in Small Tailed Han sheep but lowly expressed in Xinji fine wool sheep. In addition, MSTRG.28645, a hub gene in the co-expression network between mRNAs and lncRNAs, was selected as one of the candidate genes for subsequent verification. Expectedly, the overexpression and interference of HSD17B1 and MSTRG.28645 showed a significant effect on hormone secretion in granulosa cells. Therefore, this study confirmed that HSD17B1 and MSTRG.28645 might be potential genes related to the fecundity of sheep. It was concluded that both HSD17B1 and MSTRG.28645 were critical regulators in the secretion of hormones that affect the fecundity of the sheep.
Collapse
Affiliation(s)
- Chunxin Wang
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yunhui Zhao
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, China
| | - ZhiYu Yuan
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yujin Wu
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Zhuo Zhao
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Cuiling Wu
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Jian Hou
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Mingxin Zhang
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
22
|
Crosstalk between Long Non Coding RNAs, microRNAs and DNA Damage Repair in Prostate Cancer: New Therapeutic Opportunities? Cancers (Basel) 2022; 14:cancers14030755. [PMID: 35159022 PMCID: PMC8834032 DOI: 10.3390/cancers14030755] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Non-coding RNAs are a type of genetic material that doesn’t make protein, but performs diverse regulatory functions. In prostate cancer, most treatments target proteins, and resistance to such therapies is common, leading to disease progression. Targeting non-coding RNAs may provide alterative treatment options and potentially overcome drug resistance. Major types of non-coding RNAs include tiny ‘microRNAs’ and much longer ‘long non-coding RNAs’. Scientific studies have shown that these form a major part of the human genome, and play key roles in altering gene activity and determining the fate of cells. Importantly, in cancer, their activity is altered. Recent evidence suggests that microRNAs and long non-coding RNAs play important roles in controlling response to DNA damage. In this review, we explore how different types of non-coding RNA interact to control cell DNA damage responses, and how this knowledge may be used to design better prostate cancer treatments and tests. Abstract It is increasingly appreciated that transcripts derived from non-coding parts of the human genome, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), are key regulators of biological processes both in normal physiology and disease. Their dysregulation during tumourigenesis has attracted significant interest in their exploitation as novel cancer therapeutics. Prostate cancer (PCa), as one of the most diagnosed malignancies and a leading cause of cancer-related death in men, continues to pose a major public health problem. In particular, survival of men with metastatic disease is very poor. Defects in DNA damage response (DDR) pathways culminate in genomic instability in PCa, which is associated with aggressive disease and poor patient outcome. Treatment options for metastatic PCa remain limited. Thus, researchers are increasingly targeting ncRNAs and DDR pathways to develop new biomarkers and therapeutics for PCa. Increasing evidence points to a widespread and biologically-relevant regulatory network of interactions between lncRNAs and miRNAs, with implications for major biological and pathological processes. This review summarises the current state of knowledge surrounding the roles of the lncRNA:miRNA interactions in PCa DDR, and their emerging potential as predictive and diagnostic biomarkers. We also discuss their therapeutic promise for the clinical management of PCa.
Collapse
|
23
|
Rodriguez-Lopez M, Anver S, Cotobal C, Kamrad S, Malecki M, Correia-Melo C, Hoti M, Townsend S, Marguerat S, Pong SK, Wu MY, Montemayor L, Howell M, Ralser M, Bähler J. Functional profiling of long intergenic non-coding RNAs in fission yeast. eLife 2022; 11:e76000. [PMID: 34984977 PMCID: PMC8730722 DOI: 10.7554/elife.76000] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic genomes express numerous long intergenic non-coding RNAs (lincRNAs) that do not overlap any coding genes. Some lincRNAs function in various aspects of gene regulation, but it is not clear in general to what extent lincRNAs contribute to the information flow from genotype to phenotype. To explore this question, we systematically analysed cellular roles of lincRNAs in Schizosaccharomyces pombe. Using seamless CRISPR/Cas9-based genome editing, we deleted 141 lincRNA genes to broadly phenotype these mutants, together with 238 diverse coding-gene mutants for functional context. We applied high-throughput colony-based assays to determine mutant growth and viability in benign conditions and in response to 145 different nutrient, drug, and stress conditions. These analyses uncovered phenotypes for 47.5% of the lincRNAs and 96% of the protein-coding genes. For 110 lincRNA mutants, we also performed high-throughput microscopy and flow cytometry assays, linking 37% of these lincRNAs with cell-size and/or cell-cycle control. With all assays combined, we detected phenotypes for 84 (59.6%) of all lincRNA deletion mutants tested. For complementary functional inference, we analysed colony growth of strains ectopically overexpressing 113 lincRNA genes under 47 different conditions. Of these overexpression strains, 102 (90.3%) showed altered growth under certain conditions. Clustering analyses provided further functional clues and relationships for some of the lincRNAs. These rich phenomics datasets associate lincRNA mutants with hundreds of phenotypes, indicating that most of the lincRNAs analysed exert cellular functions in specific environmental or physiological contexts. This study provides groundwork to further dissect the roles of these lincRNAs in the relevant conditions.
Collapse
Affiliation(s)
- Maria Rodriguez-Lopez
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
| | - Shajahan Anver
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
| | - Cristina Cotobal
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
| | - Stephan Kamrad
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
- The Francis Crick Institute, Molecular Biology of Metabolism LaboratoryLondonUnited Kingdom
- Charité Universitätsmedizin Berlin, Institute of BiochemistryBerlinGermany
| | - Michal Malecki
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
| | - Clara Correia-Melo
- The Francis Crick Institute, Molecular Biology of Metabolism LaboratoryLondonUnited Kingdom
| | - Mimoza Hoti
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
| | - StJohn Townsend
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
- The Francis Crick Institute, Molecular Biology of Metabolism LaboratoryLondonUnited Kingdom
| | - Samuel Marguerat
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
| | - Sheng Kai Pong
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
| | - Mary Y Wu
- The Francis Crick Institute, High Throughput ScreeningLondonUnited Kingdom
| | - Luis Montemayor
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
| | - Michael Howell
- The Francis Crick Institute, High Throughput ScreeningLondonUnited Kingdom
| | - Markus Ralser
- The Francis Crick Institute, Molecular Biology of Metabolism LaboratoryLondonUnited Kingdom
- Charité Universitätsmedizin Berlin, Institute of BiochemistryBerlinGermany
| | - Jürg Bähler
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
| |
Collapse
|
24
|
Wu L, Xie X, Liang T, Ma J, Yang L, Yang J, Li L, Xi Y, Li H, Zhang J, Chen X, Ding Y, Wu Q. Integrated Multi-Omics for Novel Aging Biomarkers and Antiaging Targets. Biomolecules 2021; 12:39. [PMID: 35053186 PMCID: PMC8773837 DOI: 10.3390/biom12010039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022] Open
Abstract
Aging is closely related to the occurrence of human diseases; however, its exact biological mechanism is unclear. Advancements in high-throughput technology provide new opportunities for omics research to understand the pathological process of various complex human diseases. However, single-omics technologies only provide limited insights into the biological mechanisms of diseases. DNA, RNA, protein, metabolites, and microorganisms usually play complementary roles and perform certain biological functions together. In this review, we summarize multi-omics methods based on the most relevant biomarkers in single-omics to better understand molecular functions and disease causes. The integration of multi-omics technologies can systematically reveal the interactions among aging molecules from a multidimensional perspective. Our review provides new insights regarding the discovery of aging biomarkers, mechanism of aging, and identification of novel antiaging targets. Overall, data from genomics, transcriptomics, proteomics, metabolomics, integromics, microbiomics, and systems biology contribute to the identification of new candidate biomarkers for aging and novel targets for antiaging interventions.
Collapse
Affiliation(s)
- Lei Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (J.M.); (X.C.)
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Tingting Liang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (J.M.); (X.C.)
| | - Jun Ma
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (J.M.); (X.C.)
| | - Lingshuang Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Juan Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (J.M.); (X.C.)
| | - Longyan Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Yu Xi
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Haixin Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (J.M.); (X.C.)
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| |
Collapse
|
25
|
Dong Y, Lyu L, Wen H, Shi B. Brain and Pituitary Transcriptome Analyses Reveal the Differential Regulation of Reproduction-Related LncRNAs and mRNAs in Cynoglossus semilaevis. Front Genet 2021; 12:802953. [PMID: 34956338 PMCID: PMC8696122 DOI: 10.3389/fgene.2021.802953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been identified to be involved in half-smooth tongue sole (Cynoglossus semilaevis) reproduction. However, studies of their roles in reproduction have focused mainly on the ovary, and their expression patterns and potential roles in the brain and pituitary are unclear. Thus, to explore the mRNAs and lncRNAs that are closely associated with reproduction in the brain and pituitary, we collected tongue sole brain and pituitary tissues at three stages for RNA sequencing (RNA-seq), the 5,135 and 5,630 differentially expressed (DE) mRNAs and 378 and 532 DE lncRNAs were identified in the brain and pituitary, respectively. The RNA-seq results were verified by RT-qPCR. Moreover, enrichment analyses were performed to analyze the functions of DE mRNAs and lncRNAs. Interestingly, their involvement in pathways related to metabolism, signal transduction and endocrine signaling was revealed. LncRNA-target gene interaction networks were constructed based on antisense, cis and trans regulatory mechanisms. Moreover, we constructed competing endogenous RNA (ceRNA) networks. In summary, this study provides mRNA and lncRNA expression profiles in the brain and pituitary to understand the molecular mechanisms regulating tongue sole reproduction.
Collapse
Affiliation(s)
- Yani Dong
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean Unversity of China, Qingdao, China
| | - Likang Lyu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean Unversity of China, Qingdao, China
| | - Haishen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean Unversity of China, Qingdao, China
| | - Bao Shi
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
26
|
Kim Y, Ji H, Cho E, Park NH, Hwang K, Park W, Lee KS, Park D, Jung E. nc886, a Non-Coding RNA, Is a New Biomarker and Epigenetic Mediator of Cellular Senescence in Fibroblasts. Int J Mol Sci 2021; 22:ijms222413673. [PMID: 34948464 PMCID: PMC8705676 DOI: 10.3390/ijms222413673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 12/01/2022] Open
Abstract
Functional studies of organisms and human models have revealed that epigenetic changes can significantly impact the process of aging. Non-coding RNA (ncRNA), one of epigenetic regulators, plays an important role in modifying the expression of mRNAs and their proteins. It can mediate the phenotype of cells. It has been reported that nc886 (=vtRNA2-1 or pre-miR-886), a long ncRNA, can suppress tumor formation and photo-damages of keratinocytes caused by UVB. The aim of this study was to determine the role of nc886 in replicative senescence of fibroblasts and determine whether substances capable of controlling nc886 expression could regulate cellular senescence. In replicative senescence fibroblasts, nc886 expression was decreased while methylated nc886 was increased. There were changes of senescence biomarkers including SA-β-gal activity and expression of p16INK4A and p21Waf1/Cip1 in senescent cells. These findings indicate that the decrease of nc886 associated with aging is related to cellular senescence of fibroblasts and that increasing nc886 expression has potential to suppress cellular senescence. AbsoluTea Concentrate 2.0 (ATC) increased nc886 expression and ameliorated cellular senescence of fibroblasts by inhibiting age-related biomarkers. These results indicate that nc886 has potential as a new target for anti-aging and that ATC can be a potent epigenetic anti-aging ingredient.
Collapse
Affiliation(s)
- Yuna Kim
- Biospectrum Life Science Institute, A-1805, U-TOWER, Yongin-si 16827, Korea; (Y.K.); (H.J.); (E.C.); (K.-S.L.); (D.P.)
| | - Hyanggi Ji
- Biospectrum Life Science Institute, A-1805, U-TOWER, Yongin-si 16827, Korea; (Y.K.); (H.J.); (E.C.); (K.-S.L.); (D.P.)
| | - Eunae Cho
- Biospectrum Life Science Institute, A-1805, U-TOWER, Yongin-si 16827, Korea; (Y.K.); (H.J.); (E.C.); (K.-S.L.); (D.P.)
| | - Nok-Hyun Park
- Basic Research and Innovation Division, Amorepacific Corporation R&D Center, Youngin-si 17074, Korea; (N.-H.P.); (K.H.); (W.P.)
| | - Kyeonghwan Hwang
- Basic Research and Innovation Division, Amorepacific Corporation R&D Center, Youngin-si 17074, Korea; (N.-H.P.); (K.H.); (W.P.)
| | - Wonseok Park
- Basic Research and Innovation Division, Amorepacific Corporation R&D Center, Youngin-si 17074, Korea; (N.-H.P.); (K.H.); (W.P.)
| | - Kwang-Soo Lee
- Biospectrum Life Science Institute, A-1805, U-TOWER, Yongin-si 16827, Korea; (Y.K.); (H.J.); (E.C.); (K.-S.L.); (D.P.)
| | - Deokhoon Park
- Biospectrum Life Science Institute, A-1805, U-TOWER, Yongin-si 16827, Korea; (Y.K.); (H.J.); (E.C.); (K.-S.L.); (D.P.)
| | - Eunsun Jung
- Biospectrum Life Science Institute, A-1805, U-TOWER, Yongin-si 16827, Korea; (Y.K.); (H.J.); (E.C.); (K.-S.L.); (D.P.)
- Correspondence:
| |
Collapse
|
27
|
Mustafin RN. Relationship of Peptides and Long Non-Coding RNAs with Aging. ADVANCES IN GERONTOLOGY 2021. [DOI: 10.1134/s2079057021040081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Ghildiyal R, Sawant M, Renganathan A, Mahajan K, Kim EH, Luo J, Dang HX, Maher CA, Feng FY, Mahajan NP. Loss of long non-coding RNA NXTAR in prostate cancer augments androgen receptor expression and enzalutamide resistance. Cancer Res 2021; 82:155-168. [PMID: 34740892 DOI: 10.1158/0008-5472.can-20-3845] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/19/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022]
Abstract
Androgen receptor (AR) signaling continues to play a dominant role in all stages of prostate cancer (PC), including castration-resistant prostate cancers (CRPC) that have developed resistance to second-generation AR antagonists such as enzalutamide. In this study, we identified a long non-coding RNA (lncRNA), NXTAR (LOC105373241), that is located convergent with the AR gene and is repressed in human prostate tumors and cell lines. NXTAR bound upstream of the AR promoter and promoted EZH2 recruitment, causing significant loss of AR (and AR-V7) expression. Paradoxically, AR bound the NXTAR promoter, and inhibition of AR by the ACK1/TNK2 small molecule inhibitor (R)-9b excluded AR from the NXTAR promoter. The histone acetyltransferase GCN5 bound and deposited H3K14 acetylation marks, enhancing NXTAR expression. Application of an oligonucleotide derived from NXTAR exon 5 (NXTAR-N5) suppressed AR/AR-V7 expression and prostate cancer cell proliferation, indicating the translational relevance of the negative regulation of AR. In addition, pharmacological restoration of NXTAR using (R)-9b abrogated enzalutamide-resistant prostate xenograft tumor growth. Overall, this study uncovers a positive feedback loop, wherein NXTAR acts as a novel prostate tumor-suppressing lncRNA by inhibiting AR/AR-V7 expression, which in turn upregulates NXTAR levels, compromising enzalutamide-resistant prostate cancer. The restoration of NXTAR could serve as a new therapeutic modality for patients who have acquired resistance to second-generation AR antagonists.
Collapse
Affiliation(s)
| | | | | | | | - Eric H Kim
- Siteman Cancer Center, Moffitt Cancer Center
| | - Jingqin Luo
- Division of Public Health Sciences, Department of Surgery, Washington University in St. Louis School of Medicine
| | - Ha X Dang
- Internal Medicine, Washington University in St. Louis
| | | | - Felix Y Feng
- Radiation Oncology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco
| | | |
Collapse
|
29
|
Bär C, Chatterjee S, Falcão Pires I, Rodrigues P, Sluijter JPG, Boon RA, Nevado RM, Andrés V, Sansonetti M, de Windt L, Ciccarelli M, Hamdani N, Heymans S, Figuinha Videira R, Tocchetti CG, Giacca M, Zacchigna S, Engelhardt S, Dimmeler S, Madonna R, Thum T. Non-coding RNAs: update on mechanisms and therapeutic targets from the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. Cardiovasc Res 2021; 116:1805-1819. [PMID: 32638021 DOI: 10.1093/cvr/cvaa195] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/15/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
Vast parts of mammalian genomes are actively transcribed, predominantly giving rise to non-coding RNA (ncRNA) transcripts including microRNAs, long ncRNAs, and circular RNAs among others. Contrary to previous opinions that most of these RNAs are non-functional molecules, they are now recognized as critical regulators of many physiological and pathological processes including those of the cardiovascular system. The discovery of functional ncRNAs has opened up new research avenues aiming at understanding ncRNA-related disease mechanisms as well as exploiting them as novel therapeutics in cardiovascular therapy. In this review, we give an update on the current progress in ncRNA research, particularly focusing on cardiovascular physiological and disease processes, which are under current investigation at the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. This includes a range of topics such as extracellular vesicle-mediated communication, neurohormonal regulation, inflammation, cardiac remodelling, cardio-oncology as well as cardiac development and regeneration, collectively highlighting the wide-spread involvement and importance of ncRNAs in the cardiovascular system.
Collapse
Affiliation(s)
- Christian Bär
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Shambhabi Chatterjee
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Inês Falcão Pires
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Patrícia Rodrigues
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Joost P G Sluijter
- Experimental Cardiology Laboratory, UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Reinier A Boon
- Department of Physiology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands.,Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,Partner site Rhein/Main, German Center for Cardiovascular Research (DZHK), Frankfurt am Main, Germany
| | - Rosa M Nevado
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Marida Sansonetti
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, The Netherlands.,Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Leon de Windt
- Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, The Netherlands.,Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Italy
| | - Nazha Hamdani
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Stephane Heymans
- Department of Cardiology, Maastricht University Medical Centre, University Hospital Maastricht, The Netherlands.,Center for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), University Hospital Maastricht, The Netherlands
| | - Raquel Figuinha Videira
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, The Netherlands.,Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Carlo G Tocchetti
- Department of Translational Medical Sciences and Interdepartmental Center of Clinical and Translational Research (CIRCET), Federico II University, Naples, Italy
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,School of Cardiovascular Medicine & Sciences, King's College London, London, UK.,Department of Medicine, Surgery and Health Sciences, University of Trieste, Italy
| | - Serena Zacchigna
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,Department of Medicine, Surgery and Health Sciences, University of Trieste, Italy
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technische Universität München, Biedersteiner Str. 29, Munich 80802, Germany.,DZHK (German Center for Cardiovascular Research), Partner site Munich Heart Alliance, Biedersteiner Str. 29, Munich 80802, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University, Germany.,German Center for Cardiovascular Research (DZHK), Frankfurt, Germany.,Cardio-Pulmonary Institute (CPI), Frankfurt, Germany
| | - Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Pisa, Italy.,Department of Internal Medicine, University of Texas Medical School, Houston, TX, USA
| | - Thomas Thum
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
30
|
Munk R, Anerillas C, Rossi M, Tsitsipatis D, Martindale JL, Herman AB, Yang JH, Roberts JA, Varma VR, Pandey PR, Thambisetty M, Gorospe M, Abdelmohsen K. Acid ceramidase promotes senescent cell survival. Aging (Albany NY) 2021; 13:15750-15769. [PMID: 34102611 PMCID: PMC8266329 DOI: 10.18632/aging.203170] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/18/2021] [Indexed: 01/18/2023]
Abstract
Cellular senescence is linked to chronic age-related diseases including atherosclerosis, diabetes, and neurodegeneration. Compared to proliferating cells, senescent cells express distinct subsets of proteins. In this study, we used cultured human diploid fibroblasts rendered senescent through replicative exhaustion or ionizing radiation to identify proteins differentially expressed during senescence. We identified acid ceramidase (ASAH1), a lysosomal enzyme that cleaves ceramide into sphingosine and fatty acid, as being highly elevated in senescent cells. This increase in ASAH1 levels in senescent cells was associated with a rise in the levels of ASAH1 mRNA and a robust increase in ASAH1 protein stability. Furthermore, silencing ASAH1 in pre-senescent fibroblasts decreased the levels of senescence proteins p16, p21, and p53, and reduced the activity of the senescence-associated β-galactosidase. Interestingly, depletion of ASAH1 in pre-senescent cells sensitized these cells to the senolytics Dasatinib and Quercetin (D+Q). Together, our study indicates that ASAH1 promotes senescence, protects senescent cells, and confers resistance against senolytic drugs. Given that inhibiting ASAH1 sensitizes cells towards senolysis, this enzyme represents an attractive therapeutic target in interventions aimed at eliminating senescent cells.
Collapse
Affiliation(s)
- Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Carlos Anerillas
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Martina Rossi
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Allison B Herman
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Jen-Hao Yang
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Jackson A Roberts
- Laboratory of Behavioral Neuroscience, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Vijay R Varma
- Laboratory of Behavioral Neuroscience, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Poonam R Pandey
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Madhav Thambisetty
- Laboratory of Behavioral Neuroscience, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| |
Collapse
|
31
|
Zheng Y, Liu T, Li Q, Li J. Integrated analysis of long non-coding RNAs (lncRNAs) and mRNA expression profiles identifies lncRNA PRKG1-AS1 playing important roles in skeletal muscle aging. Aging (Albany NY) 2021; 13:15044-15060. [PMID: 34051073 PMCID: PMC8221296 DOI: 10.18632/aging.203067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 04/28/2021] [Indexed: 12/27/2022]
Abstract
This study aimed to identify long non-coding RNAs (lncRNAs) involving in the skeletal muscle aging process. Skeletal muscle samples from old and young subjects were collected for lncRNA-sequencing. Differentially expressed genes (DEGs) and DElncRNAs between young and old groups were identified and a co-expression network was built. Further, a dexamethasone-induced muscle atrophy cell model was established to characterize the function of a critical lncRNA. A total of 424 DEGs, including 271 upregulated genes and 153 downregulated genes as well as 152 DElncRNAs including 76 up-regulated and 76 down-regulated lncRNAs were obtained. Functional analysis demonstrated that the DEGs were significantly related to immune response. Coexpression network demonstrated lncRNA AC004797.1, PRKG1-AS1 and GRPC5D-AS1 were crucial lncRNAs. Their expressions were further validated by qRT-PCR in human skeletal muscle and the muscle atrophy cell model. Further in vitro analysis suggested that knock-down of PRKG1-AS1 could significantly increase cell viability and decrease cell apoptosis. qRT-PCR and western blot analyses demonstrated that knock-down of PRKG1-AS1 could increase the expression of MyoD, MyoG and Mef2c. This study demonstrated that lncRNAs of GPRC5D-AS1, AC004797.1 and PRKG1-AS1 might involve the aging-associated disease processes.
Collapse
Affiliation(s)
- Yan Zheng
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, Jilin, P.R. China
| | - Ting Liu
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, Jilin, P.R. China
| | - Qun Li
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, P.R. China
| | - Jie Li
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, Jilin, P.R. China
| |
Collapse
|
32
|
Butler JM, Supharattanasitthi W, Yang YC, Paraoan L. RNA-seq analysis of ageing human retinal pigment epithelium: Unexpected up-regulation of visual cycle gene transcription. J Cell Mol Med 2021; 25:5572-5585. [PMID: 33934486 PMCID: PMC8184696 DOI: 10.1111/jcmm.16569] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
Ageing presents adverse effects on the retina and is the primary risk factor for age‐related macular degeneration (AMD). We report the first RNA‐seq analysis of age‐related transcriptional changes in the human retinal pigment epithelium (RPE), the primary site of AMD pathogenesis. Whole transcriptome sequencing of RPE from human donors ranging in age from 31 to 93 reveals that ageing is associated with increasing transcription of main RPE‐associated visual cycle genes (including LRAT, RPE65, RDH5, RDH10, RDH11; pathway enrichment BH‐adjusted P = 4.6 × 10−6). This positive correlation is replicated in an independent set of 28 donors and a microarray dataset of 50 donors previously published. LRAT expression is positively regulated by retinoid by‐products of the visual cycle (A2E and all‐trans‐retinal) involving modulation by retinoic acid receptor alpha transcription factor. The results substantiate a novel age‐related positive feedback mechanism between accumulation of retinoid by‐products in the RPE and the up‐regulation of visual cycle genes.
Collapse
Affiliation(s)
- Joe M Butler
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Wasu Supharattanasitthi
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Yit C Yang
- Department of Ophthalmology, Wolverhampton Eye Infirmary, New Cross Hospital, Wolverhampton, UK
| | - Luminita Paraoan
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
33
|
Pathak RU, Soujanya M, Mishra RK. Deterioration of nuclear morphology and architecture: A hallmark of senescence and aging. Ageing Res Rev 2021; 67:101264. [PMID: 33540043 DOI: 10.1016/j.arr.2021.101264] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/04/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
The metazoan nucleus is a highly structured organelle containing several well-defined sub-organelles. It is the largest organelle inside a cell taking up from one tenth to half of entire cell volume. This makes it one of the easiest organelles to identify and study under the microscope. Abnormalities in the nuclear morphology and architecture are commonly observed in an aged and senescent cell. For example, the nuclei enlarge, loose their shape, appear lobulated, harbour nuclear membrane invaginations, carry enlarged/fragmented nucleolus, loose heterochromatin, etc. In this review we discuss about the age-related changes in nuclear features and elaborate upon the molecular reasons driving the change. Many of these changes can be easily imaged under a microscope and analysed in silico. Thus, computational image analysis of nuclear features appears to be a promising tool to evaluate physiological age of a cell and offers to be a legitimate biomarker. It can be used to examine progression of age-related diseases and evaluate therapies.
Collapse
Affiliation(s)
| | - Mamilla Soujanya
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India
| | - Rakesh Kumar Mishra
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India.
| |
Collapse
|
34
|
Talyan S, Filipów S, Ignarski M, Smieszek M, Chen H, Kühne L, Butt L, Göbel H, Hoyer-Allo KJR, Koehler FC, Altmüller J, Brinkkötter P, Schermer B, Benzing T, Kann M, Müller RU, Dieterich C. CALINCA-A Novel Pipeline for the Identification of lncRNAs in Podocyte Disease. Cells 2021; 10:692. [PMID: 33804736 PMCID: PMC8003990 DOI: 10.3390/cells10030692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
Diseases of the renal filtration unit-the glomerulus-are the most common cause of chronic kidney disease. Podocytes are the pivotal cell type for the function of this filter and focal-segmental glomerulosclerosis (FSGS) is a classic example of a podocytopathy leading to proteinuria and glomerular scarring. Currently, no targeted treatment of FSGS is available. This lack of therapeutic strategies is explained by a limited understanding of the defects in podocyte cell biology leading to FSGS. To date, most studies in the field have focused on protein-coding genes and their gene products. However, more than 80% of all transcripts produced by mammalian cells are actually non-coding. Here, long non-coding RNAs (lncRNAs) are a relatively novel class of transcripts and have not been systematically studied in FSGS to date. The appropriate tools to facilitate lncRNA research for the renal scientific community are urgently required due to a row of challenges compared to classical analysis pipelines optimized for coding RNA expression analysis. Here, we present the bioinformatic pipeline CALINCA as a solution for this problem. CALINCA automatically analyzes datasets from murine FSGS models and quantifies both annotated and de novo assembled lncRNAs. In addition, the tool provides in-depth information on podocyte specificity of these lncRNAs, as well as evolutionary conservation and expression in human datasets making this pipeline a crucial basis to lncRNA studies in FSGS.
Collapse
Affiliation(s)
- Sweta Talyan
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany;
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology and Department of Internal Medicine III, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany;
| | - Samantha Filipów
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany; (S.F.); (M.I.); (H.C.); (L.K.); (L.B.); (K.J.R.H.-A.); (F.C.K.); (P.B.); (B.S.); (T.B.); (M.K.)
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Michael Ignarski
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany; (S.F.); (M.I.); (H.C.); (L.K.); (L.B.); (K.J.R.H.-A.); (F.C.K.); (P.B.); (B.S.); (T.B.); (M.K.)
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Magdalena Smieszek
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology and Department of Internal Medicine III, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany;
| | - He Chen
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany; (S.F.); (M.I.); (H.C.); (L.K.); (L.B.); (K.J.R.H.-A.); (F.C.K.); (P.B.); (B.S.); (T.B.); (M.K.)
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Lucas Kühne
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany; (S.F.); (M.I.); (H.C.); (L.K.); (L.B.); (K.J.R.H.-A.); (F.C.K.); (P.B.); (B.S.); (T.B.); (M.K.)
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Linus Butt
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany; (S.F.); (M.I.); (H.C.); (L.K.); (L.B.); (K.J.R.H.-A.); (F.C.K.); (P.B.); (B.S.); (T.B.); (M.K.)
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Heike Göbel
- Institute for Pathology, Diagnostic and Experimental Nephropathology Unit, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany;
| | - K. Johanna R. Hoyer-Allo
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany; (S.F.); (M.I.); (H.C.); (L.K.); (L.B.); (K.J.R.H.-A.); (F.C.K.); (P.B.); (B.S.); (T.B.); (M.K.)
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Felix C. Koehler
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany; (S.F.); (M.I.); (H.C.); (L.K.); (L.B.); (K.J.R.H.-A.); (F.C.K.); (P.B.); (B.S.); (T.B.); (M.K.)
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany;
| | - Paul Brinkkötter
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany; (S.F.); (M.I.); (H.C.); (L.K.); (L.B.); (K.J.R.H.-A.); (F.C.K.); (P.B.); (B.S.); (T.B.); (M.K.)
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany; (S.F.); (M.I.); (H.C.); (L.K.); (L.B.); (K.J.R.H.-A.); (F.C.K.); (P.B.); (B.S.); (T.B.); (M.K.)
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany; (S.F.); (M.I.); (H.C.); (L.K.); (L.B.); (K.J.R.H.-A.); (F.C.K.); (P.B.); (B.S.); (T.B.); (M.K.)
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Martin Kann
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany; (S.F.); (M.I.); (H.C.); (L.K.); (L.B.); (K.J.R.H.-A.); (F.C.K.); (P.B.); (B.S.); (T.B.); (M.K.)
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany; (S.F.); (M.I.); (H.C.); (L.K.); (L.B.); (K.J.R.H.-A.); (F.C.K.); (P.B.); (B.S.); (T.B.); (M.K.)
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Christoph Dieterich
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany;
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology and Department of Internal Medicine III, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany;
| |
Collapse
|
35
|
Wang S, Ke S, Wu Y, Zhang D, Liu B, He YH, Liu W, Mu H, Song X. Functional Network of the Long Non-coding RNA Growth Arrest-Specific Transcript 5 and Its Interacting Proteins in Senescence. Front Genet 2021; 12:615340. [PMID: 33777096 PMCID: PMC7987947 DOI: 10.3389/fgene.2021.615340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/01/2021] [Indexed: 11/24/2022] Open
Abstract
Increasing studies show that long non-coding RNAs (lncRNAs) play essential roles in various fundamental biological processes. Long non-coding RNA growth arrest-specific transcript 5 (GAS5) showed differential expressions between young and old mouse brains in our previous RNA-Seq data, suggesting its potential role in senescence and brain aging. Examination using quantitative reverse transcription-polymerase chain reaction revealed that GAS5 had a significantly higher expression level in the old mouse brain hippocampus region than the young one. Cellular fractionation using hippocampus-derived HT22 cell line confirmed its nucleoplasm and cytoplasm subcellular localization. Overexpression or knockdown of GAS5 in HT22 cell line revealed that GAS5 inhibits cell cycle progression and promotes cell apoptosis. RNA-Seq analysis of GAS5-knockdown HT22 cells identified differentially expressed genes related to cell proliferation (e.g., DNA replication and nucleosome assembly biological processes). RNA pull-down assay using mouse brain hippocampus tissues showed that potential GAS5 interacting proteins could be enriched into several Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and some of them are involved in senescence-associated diseases such as Parkinson’s and Alzheimer’s diseases. These results contribute to understand better the underlying functional network of GAS5 and its interacting proteins in senescence at brain tissue and brain-derived cell line levels. Our study may also provide a reference for developing diagnostic and clinic biomarkers of GAS5 in senescence and brain aging.
Collapse
Affiliation(s)
- Siqi Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Shengwei Ke
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yueming Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Duo Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China
| | - Baowei Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yao-Hui He
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Wen Liu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Huawei Mu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xiaoyuan Song
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
36
|
Tsitsipatis D, Grammatikakis I, Driscoll RK, Yang X, Abdelmohsen K, Harris SC, Yang JH, Herman AB, Chang MW, Munk R, Martindale JL, Mazan-Mamczarz K, De S, Lal A, Gorospe M. AUF1 ligand circPCNX reduces cell proliferation by competing with p21 mRNA to increase p21 production. Nucleic Acids Res 2021; 49:1631-1646. [PMID: 33444453 PMCID: PMC7897478 DOI: 10.1093/nar/gkaa1246] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/28/2020] [Accepted: 12/11/2020] [Indexed: 01/06/2023] Open
Abstract
Mammalian circRNAs can influence different cellular processes by interacting with proteins and other nucleic acids. Here, we used ribonucleoprotein immunoprecipitation (RIP) analysis to identify systematically the circRNAs associated with the cancer-related protein AUF1. Among the circRNAs interacting with AUF1 in HeLa (human cervical carcinoma) cells, we focused on hsa_circ_0032434 (circPCNX), an abundant target of AUF1. Overexpression of circPCNX specifically interfered with the binding of AUF1 to p21 (CDKN1A) mRNA, thereby promoting p21 mRNA stability and elevating the production of p21, a major inhibitor of cell proliferation. Conversely, silencing circPCNX increased AUF1 binding to p21 mRNA, reducing p21 production and promoting cell division. Importantly, eliminating the AUF1-binding region of circPCNX abrogated the rise in p21 levels and rescued proliferation. Therefore, we propose that the interaction of circPCNX with AUF1 selectively prevents AUF1 binding to p21 mRNA, leading to enhanced p21 mRNA stability and p21 protein production, thereby suppressing cell growth.
Collapse
Affiliation(s)
- Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Ioannis Grammatikakis
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute IRP, NIH, Bethesda, MD, USA
| | - Riley K Driscoll
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Xiaoling Yang
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Sophia C Harris
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Jen-Hao Yang
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Allison B Herman
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Ming-Wen Chang
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Ashish Lal
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute IRP, NIH, Bethesda, MD, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| |
Collapse
|
37
|
Zhuang Y, Li T, Xiao H, Wu J, Su S, Dong X, Hu X, Hua Q, Liu J, Shang W, Ju J, Sun F, Pan Z, Lu Y, Zhang M. LncRNA-H19 Drives Cardiomyocyte Senescence by Targeting miR-19a/socs1/p53 Axis. Front Pharmacol 2021; 12:631835. [PMID: 33664669 PMCID: PMC7921730 DOI: 10.3389/fphar.2021.631835] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/14/2021] [Indexed: 12/20/2022] Open
Abstract
Purpose: Cardiomyocyte senescence is associated with a progressive decline in cardiac physiological function and the risk of cardiovascular events. lncRNA H19 (H19), a well-known long noncoding RNA (lncRNA), is involved in the pathophysiological process of multiple cardiovascular disease such as heart failure, cardiac ischemia and fibrosis. However, the role of H19 in cardiomyocyte senescence remains to be further explored. Methods: Senescence-associated β-galactosidases (SA-β-gal) staining was used to detect cardiomyocyte senescence. Western blot, qRT-PCR and luciferase reporter assay were employed to evaluate the role of H19 in cardiomyocyte senescence and its underling molecular mechanism. Results: H19 level was significantly increased in high glucose-induced senescence cardiomyocytes and aged mouse hearts. Overexpression of H19 enhanced the number of SA-β-gal-positive cells, and the expression of senescence-related proteins p53 and p21, whereas H19 knockdown exerted the opposite effects. Mechanistically, H19 was demonstrated as a competing endogenous RNA (ceRNA) for microRNA-19a (miR-19a): H19 overexpression downregulated miR-19a level, while H19 knockdown upregulated miR-19a. The expression of SOSC1 was dramatically increased in senescence cardiomyocytes and aged mouse hearts. Further experiments identified SOCS1 as a downstream target of miR-19a. H19 upregulated SOCS1 expression and activated the p53/p21 pathway by targeting miR-19a, thus promoting the cardiomyocytes senescence. Conclusion: Our results show that H19 is a pro-senescence lncRNA in cardiomyocytes acting as a ceRNA to target the miR-19a/SOCS1/p53/p21 pathway. Our research reveals a molecular mechanism of cardiomyocyte senescence regulation and provides a novel target of the therapy for senescence-associated cardiac diseases.
Collapse
Affiliation(s)
- Yuting Zhuang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Tingting Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Hongwen Xiao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiaxu Wu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Shuang Su
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xue Dong
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiaoxi Hu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Qi Hua
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Junwu Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Wendi Shang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiaming Ju
- China Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Fei Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhenwei Pan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yanjie Lu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.,China Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Mingyu Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
38
|
Yuan D, Liu Y, Li M, Zhou H, Cao L, Zhang X, Li Y. Senescence associated long non-coding RNA 1 regulates cigarette smoke-induced senescence of type II alveolar epithelial cells through sirtuin-1 signaling. J Int Med Res 2021; 49:300060520986049. [PMID: 33535826 PMCID: PMC7869169 DOI: 10.1177/0300060520986049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE The primary aim of our study was to explore the mechanisms through which long non-coding RNA (lncRNA)-mediated sirtuin-1 (SIRT1) signaling regulates type II alveolar epithelial cell (AECII) senescence induced by a cigarette smoke-media suspension (CSM). METHODS Pharmacological SIRT1 activation was induced using SRT2104 and senescence-associated lncRNA 1 (SAL-RNA1) was overexpressed. The expression of SIRT1, FOXO3a, p53, p21, MMP-9, and TIMP-1 in different groups was detected by qRT-PCR and Western blotting; the activity of SA-β gal was detected by staining; the binding of SIRT1 to FOXO3a and p53 gene transcription promoters was detected by Chip. RESULTS We found that CSM increased AECII senescence, while SAL-RNA1 overexpression and SIRT1 activation significantly decreased levels of AECII senescence induced by CSM. Using chromatin immunoprecipitation, we found that SIRT1 bound differentially to transcriptional complexes on the FOXO3a and p53 promoters. CONCLUSION Our results suggested that lncRNA-SAL1-mediated SIRT1 signaling reduces senescence of AECIIs induced by CSM. These findings suggest a new therapeutic target to limit the irreversible apoptosis of lung epithelial cells in COPD patients.
Collapse
Affiliation(s)
- Dong Yuan
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College Hangzhou, Zhejiang, P.R. China.,Graduate Department, Bengbu Medical College, Bengbu, Anhui, P. R. China
| | - Yuanshun Liu
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College Hangzhou, Zhejiang, P.R. China
| | - Mengyu Li
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College Hangzhou, Zhejiang, P.R. China.,Graduate Department, Bengbu Medical College, Bengbu, Anhui, P. R. China
| | - Hongbin Zhou
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College Hangzhou, Zhejiang, P.R. China
| | - Liming Cao
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College Hangzhou, Zhejiang, P.R. China
| | - Xiaoqin Zhang
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College Hangzhou, Zhejiang, P.R. China
| | - Yaqing Li
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College Hangzhou, Zhejiang, P.R. China.,Department of Internal Medicine, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, P. R. China
| |
Collapse
|
39
|
Lee JW, Chun YL, Kim AY, Lloyd LT, Ko S, Yoon JH, Min KW. Accumulation of Mitochondrial RPPH1 RNA Is Associated with Cellular Senescence. Int J Mol Sci 2021; 22:ijms22020782. [PMID: 33466722 PMCID: PMC7828772 DOI: 10.3390/ijms22020782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 01/11/2021] [Indexed: 12/17/2022] Open
Abstract
Post-transcriptional gene regulation is an important step in the regulation of eukaryotic gene expression. Subcellular compartmentalization of RNA species plays a crucial role in the control of mRNA turnover, spatial restriction of protein synthesis, and the formation of macromolecular complexes. Although long noncoding RNAs (lncRNAs) are one of the key regulators of post-transcriptional gene expression, it is not heavily studied whether localization of lncRNAs in subcellular organelles has functional consequences. Here, we report on mitochondrial lncRNAs whose expression fluctuates in the process of cellular senescence. One of the mitochondrial lncRNAs, RPPH1 RNA, is overexpressed and accumulates in mitochondria of senescent fibroblasts, possibly modulated by the RNA-binding protein AUF1. In addition, RPPH1 RNA overexpression promotes spontaneous replicative cellular senescence in proliferating fibroblasts. Using MS2 aptamer-based RNA affinity purification strategy, we identified putative target mRNAs of RPPH1 RNA and revealed that partial complementarity of RPPH1 RNA to its target mRNAs prevents those mRNAs decay in proliferating fibroblasts. Altogether, our results demonstrate the role of mitochondrial noncoding RNA in the regulation of mRNA stability and cellular senescence.
Collapse
Affiliation(s)
- Ji Won Lee
- Department of Biology, College of Natural Sciences, Gangneung-Wonju National University, Gangneung 25457, Korea; (J.W.L.); (A.Y.K.)
| | - Yoo Lim Chun
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (Y.L.C.); (L.T.L.); (S.K.); (J.-H.Y.)
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Ah Young Kim
- Department of Biology, College of Natural Sciences, Gangneung-Wonju National University, Gangneung 25457, Korea; (J.W.L.); (A.Y.K.)
| | - Lawson T. Lloyd
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (Y.L.C.); (L.T.L.); (S.K.); (J.-H.Y.)
| | - Seungbeom Ko
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (Y.L.C.); (L.T.L.); (S.K.); (J.-H.Y.)
| | - Je-Hyun Yoon
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (Y.L.C.); (L.T.L.); (S.K.); (J.-H.Y.)
| | - Kyung-Won Min
- Department of Biology, College of Natural Sciences, Gangneung-Wonju National University, Gangneung 25457, Korea; (J.W.L.); (A.Y.K.)
- Correspondence:
| |
Collapse
|
40
|
Roupakia E, Markopoulos GS, Kolettas E. Genes and pathways involved in senescence bypass identified by functional genetic screens. Mech Ageing Dev 2021; 194:111432. [PMID: 33422562 DOI: 10.1016/j.mad.2021.111432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 12/30/2020] [Accepted: 01/01/2021] [Indexed: 10/22/2022]
Abstract
Cellular senescence is a state of stable and irreversible cell cycle arrest with active metabolism, that normal cells undergo after a finite number of divisions (Hayflick limit). Senescence can be triggered by intrinsic and/or extrinsic stimuli including telomere shortening at the end of a cell's lifespan (telomere-initiated senescence) and in response to oxidative, genotoxic or oncogenic stresses (stress-induced premature senescence). Several effector mechanisms have been proposed to explain senescence programmes in diploid cells, including the induction of DNA damage responses, a senescence-associated secretory phenotype and epigenetic changes. Senescent cells display senescence-associated-β-galactosidase activity and undergo chromatin remodeling resulting in heterochromatinisation. Senescence is established by the pRb and p53 tumour suppressor networks. Senescence has been detected in in vitro cellular settings and in premalignant, but not malignant lesions in mice and humans expressing mutant oncogenes. Despite oncogene-induced senescence, which is believed to be a cancer initiating barrier and other tumour suppressive mechanisms, benign cancers may still develop into malignancies by bypassing senescence. Here, we summarise the functional genetic screens that have identified genes, uncovered pathways and characterised mechanisms involved in senescence evasion. These include cell cycle regulators and tumour suppressor pathways, DNA damage response pathways, epigenetic regulators, SASP components and noncoding RNAs.
Collapse
Affiliation(s)
- Eugenia Roupakia
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, University of Ioannina, Ioannina, 45100, Greece; Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Ioannina, 45110, Greece
| | - Georgios S Markopoulos
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, University of Ioannina, Ioannina, 45100, Greece; Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Ioannina, 45110, Greece
| | - Evangelos Kolettas
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, University of Ioannina, Ioannina, 45100, Greece; Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Ioannina, 45110, Greece.
| |
Collapse
|
41
|
KarakÜlah G, Yandim C. Signature changes in the expressions of protein-coding genes, lncRNAs, and repeat elements in early and late cellular senescence. ACTA ACUST UNITED AC 2021; 44:356-370. [PMID: 33402863 PMCID: PMC7759191 DOI: 10.3906/biy-2005-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022]
Abstract
Replicative cellular senescence is the main cause of aging. It is important to note that early senescence is linked to tissue regeneration, whereas late senescence is known to trigger a chronically inflammatory phenotype. Despite the presence of various genome-wide studies, there is a lack of information on distinguishing early and late senescent phenotypes at the transcriptome level. Particularly, the changes in the noncoding RNA portion of the aging cell have not been fully elucidated. By utilising RNA sequencing data of fibroblasts, hereby, we are not only reporting changes in gene expression profiles and relevant biological processes in the early and late senescent phenotypes but also presenting significant differences in the expressions of many unravelled long noncoding RNAs (lncRNAs) and transcripts arisen from repetitive DNA. Our results indicate that, in addition to previously reported L1 elements, various LTR and DNA transposons, as well as members of the classical satellites including HSAT5 and α-satellites (ALR/Alpha), are expressed at higher levels in late senescence. Moreover, we revealed finer links between the expression levels of repeats with the genes located near them and known to be involved in cell cycle and senescence. Noncoding elements reported here provide a new perspective to be explored in further experimental studies.
Collapse
Affiliation(s)
- Gökhan KarakÜlah
- İzmir Biomedicine and Genome Center, İzmir Turkey.,İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, İzmir Turkey
| | - Cihangir Yandim
- İzmir Biomedicine and Genome Center, İzmir Turkey.,Department of Genetics and Bioengineering, Faculty of Engineering, İzmir University of Economics, İzmir Turkey
| |
Collapse
|
42
|
Qi Z, Yalikong A, Zhang J, Cai S, Li B, Di S, Lv Z, Xu E, Zhong Y, Zhou P. HDAC2 promotes the EMT of colorectal cancer cells and via the modular scaffold function of ENSG00000274093.1. J Cell Mol Med 2021; 25:1190-1197. [PMID: 33325150 PMCID: PMC7812252 DOI: 10.1111/jcmm.16186] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 09/26/2020] [Accepted: 11/22/2020] [Indexed: 12/17/2022] Open
Abstract
Histone deacetylase 2 (HDAC2), a member of the Histone deacetylase family, plays a vital role in various carcinomas. In this study, we identified that HDAC2 expression levels are associated with liver metastasis, higher T stages and poor prognosis in colorectal cancer. HDAC2 down-regulation via lentivirus-mediated expression of HDAC2-targeting shRNA reduced the in vitro migration and invasion ability of HCT116 cell as well as their liver metastasis in nude mouse xenografts. Mechanistically, HDAC2 promotes epithelial-mesenchymal transition (EMT) in colorectal cancer cells by combining HDAC1 with EZH2 (a key histone methyltransferase), possibly through the modular scaffold function of a new lncRNA, ENSG00000274093.1. HDAC2 thus appears to promote CRC cell migration and invasion through binding HDAC1 and EZH2 via ENSG00000274093.1.
Collapse
Affiliation(s)
- Zhi‐Peng Qi
- Endoscopy CenterZhongshan Hospital of Fudan UniversityShanghaiChina
- Endoscopy Research Institute of Fudan UniversityShanghaiChina
| | - Ayimukedisi Yalikong
- Endoscopy CenterZhongshan Hospital of Fudan UniversityShanghaiChina
- Endoscopy Research Institute of Fudan UniversityShanghaiChina
| | - Jia‐Wei Zhang
- Department of internal medicine of Xuhui HospitalAffiliated Zhongshan HospitalFudan UniversityShanghaiChina
| | - Shi‐Lun Cai
- Endoscopy CenterZhongshan Hospital of Fudan UniversityShanghaiChina
- Endoscopy Research Institute of Fudan UniversityShanghaiChina
| | - Bing Li
- Endoscopy CenterZhongshan Hospital of Fudan UniversityShanghaiChina
- Endoscopy Research Institute of Fudan UniversityShanghaiChina
| | - Sun Di
- Endoscopy CenterZhongshan Hospital of Fudan UniversityShanghaiChina
- Endoscopy Research Institute of Fudan UniversityShanghaiChina
| | - Zhen‑Tao Lv
- Endoscopy CenterZhongshan Hospital of Fudan UniversityShanghaiChina
- Endoscopy Research Institute of Fudan UniversityShanghaiChina
| | - En‐Pan Xu
- Endoscopy CenterZhongshan Hospital of Fudan UniversityShanghaiChina
- Endoscopy Research Institute of Fudan UniversityShanghaiChina
| | - Yun‐Shi Zhong
- Endoscopy CenterZhongshan Hospital of Fudan UniversityShanghaiChina
- Endoscopy Research Institute of Fudan UniversityShanghaiChina
| | - Ping‐Hong Zhou
- Endoscopy CenterZhongshan Hospital of Fudan UniversityShanghaiChina
- Endoscopy Research Institute of Fudan UniversityShanghaiChina
| |
Collapse
|
43
|
Omote N, Sauler M. Non-coding RNAs as Regulators of Cellular Senescence in Idiopathic Pulmonary Fibrosis and Chronic Obstructive Pulmonary Disease. Front Med (Lausanne) 2020; 7:603047. [PMID: 33425948 PMCID: PMC7785852 DOI: 10.3389/fmed.2020.603047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
Cellular senescence is a cell fate implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD). Cellular senescence occurs in response to cellular stressors such as oxidative stress, DNA damage, telomere shortening, and mitochondrial dysfunction. Whether these stresses induce cellular senescence or an alternative cell fate depends on the type and magnitude of cellular stress, but also on intrinsic factors regulating the cellular stress response. Non-coding RNAs, including both microRNAs and long non-coding RNAs, are key regulators of cellular stress responses and susceptibility to cellular senescence. In this review, we will discuss cellular mechanisms that contribute to senescence in IPF and COPD and highlight recent advances in our understanding of how these processes are influenced by non-coding RNAs. We will also discuss the potential therapeutic role for targeting non-coding RNAs to treat these chronic lung diseases.
Collapse
Affiliation(s)
- Norihito Omote
- Pulmonary, Critical Care and Sleep Medicine Section, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Maor Sauler
- Pulmonary, Critical Care and Sleep Medicine Section, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
44
|
Rivero-Segura NA, Bello-Chavolla OY, Barrera-Vázquez OS, Gutierrez-Robledo LM, Gomez-Verjan JC. Promising biomarkers of human aging: In search of a multi-omics panel to understand the aging process from a multidimensional perspective. Ageing Res Rev 2020; 64:101164. [PMID: 32977058 DOI: 10.1016/j.arr.2020.101164] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022]
Abstract
The aging process has been linked to the occurrence of chronic diseases and functional impairments, including cancer, sarcopenia, frailty, metabolic, cardiovascular, and neurodegenerative diseases. Nonetheless, aging is highly variable and heterogeneous and represents a challenge for its characterization. In this sense, intrinsic capacity (IC) stands as a novel perspective by the World Health Organization, which integrates the individual wellbeing, environment, and risk factors to understand aging. However, there is a lack of quantitative and qualitative attributes to define it objectively. Therefore, in this review we attempt to summarize the most relevant and promising biomarkers described in clinical studies at date over different molecular levels, including epigenomics, transcriptomics, proteomics, metabolomics, and the microbiome. To aid gerontologists, geriatricians, and biomedical researchers to understand the aging process through the IC. Aging biomarkers reflect the physiological state of individuals and the underlying mechanisms related to homeostatic changes throughout an individual lifespan; they demonstrated that aging could be measured independently of time (that may explain its heterogeneity) and to be helpful to predict age-related syndromes and mortality. In summary, we highlight the areas of opportunity and gaps of knowledge that must be addressed to fully integrate biomedical findings into clinically useful tools and interventions.
Collapse
Affiliation(s)
| | - O Y Bello-Chavolla
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico; Department of Physiology, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - O S Barrera-Vázquez
- Departamento de Famacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - J C Gomez-Verjan
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico.
| |
Collapse
|
45
|
Zhou L, Zhang Y, Jin J, Gu X. Correlation between lncRNA SNHG16 gene polymorphism and its interaction with environmental factors and susceptibility to colorectal cancer. Medicine (Baltimore) 2020; 99:e23372. [PMID: 33235108 PMCID: PMC7710222 DOI: 10.1097/md.0000000000023372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To study the relationship between long-chain non-coding RNA small nucleolar RNA host gene 16 (lncRNA SNHG16) polymorphisms and its interaction with environmental factors and susceptibility to colorectal cancer (CRC). METHODS Sanger sequencing was used to analyze genotypes of lncRNA SNHG16 gene rs7353, rs8038, and rs15278 sites. Multifactor dimensionality reduction was used to analyze interactions between lncRNA SNHG16 gene rs7353, rs8038, rs15278 sites, and environmental factors. Haploview 4.1 software was used to analyze linkage disequilibrium of lncRNA SNHG16 gene rs7353, rs8038, and rs15278 sites. Quantitative real-time polymerase chain reaction was used to analyze plasma lncRNA SNHG16 levels of CRC patients and control subjects. RESULTS Variation of the lncRNA SNHG16 gene rs7353 site A>G variation was associated with decreased CRC susceptibility (Odds ratio [OR] = 0.50, 95% confidence interval [CI]: 0.40-0.62, P < .01). The rs8038 site G>A and rs15278 site A>G variation were associated with increased CRC susceptibility (OR = 1.87, 95% CI: 1.47-2.36, P < .01). The rs15278 site G>A variation was associated with increased CRC susceptibility (OR = 2.24, 95% CI: 1.61-3.11, P < .01). Interaction combinations featuring age, rs7353, rs8038, and rs15278 single nucleotide polymorphism are 13.53 times more susceptible to CRC than other interactions (95% CI: 9.43-19.41, P < .01). The rs15278, rs8038, and rs7353 site AGA haplotypes were significantly associated with a decreased CRC risk (OR = 0.65, 95% CI: 0.48-0.88, P = .01), AAG haplotypes were significantly associated with an increased CRC risk (OR = 2.00, 95% CI: 1.27-3.17, P < .01). High lncRNA SNHG16 expression was associated with tumor progression in CRC patients (χ = 8.85, P = .03). The rs7353 site A>G variation caused a significant decrease in plasma lncRNA SNHG16 level (P < .01), while the rs8038 site G>A variation and rs15278 site A>G variation resulted in increased plasma lncRNA SNHG16 levels. CONCLUSION Polymorphisms of lncRNA SNHG16 gene rs7353, rs8038, rs15278 loci and their interaction with age are significantly associated with CRC susceptibility.
Collapse
Affiliation(s)
- Li Zhou
- Department of Medical Oncology, First People's Hospital of Yuhang District, Hangzhou
| | - Yuefeng Zhang
- Department of Hematology, First People's Hospital of Yuhang District, Hangzhou
| | - Jianjiang Jin
- Department of Medical Oncology, First People's Hospital of Yuhang District, Hangzhou
| | - Xuewei Gu
- Department of Gastroenterology, Zhuji People's Hospital of Zhejiang Province (Zhuji Affiliated Hospital of Shaoxing University), Shaoxing, Zhejiang Province, China
| |
Collapse
|
46
|
Dong J, Liu J, Wen Y, Tobin SW, Zhang C, Zheng H, Huang Z, Feng Y, Zhang D, Liu S, Zhang Z, Li J. Down-Regulation of Lnc-CYP7A1-1 Rejuvenates Aged Human Mesenchymal Stem Cells to Improve Their Efficacy for Heart Repair Through SYNE1. Front Cell Dev Biol 2020; 8:600304. [PMID: 33330489 PMCID: PMC7710953 DOI: 10.3389/fcell.2020.600304] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/21/2020] [Indexed: 01/08/2023] Open
Abstract
Background Several long non-coding RNAs (lncRNAs) have been associated with cell senescence, termed senescence-associated lncRNAs (SAL-RNAs). However, the mechanisms involved for SAL-RNAs in aging are not fully elucidated. In the present study, we investigated the effects of SAL-RNAs on aged human bone marrow-derived mesenchymal stem cells (hBM-MSCs), and the possible means to counteract such effects to improve the regenerative capacity of aged hBM-MSCs. Methods By comparing the lncRNAs expression of hBM-MSCs derived from young and old individuals, lnc-CYP7A1-1 was identified as being significantly increased with age. Using predictive software, the expression of Spectrin Repeat Containing Nuclear Envelope Protein 1 (SYNE1), was found to be decreased with age. Next, through lentiviral constructs, we downregulated the expression of lnc-CYP7A1-1 or SYNE1 in hBM-MSCs separately. Additionally, hBM-MSCs proliferation, survival, migration, and senescence were investigated in vitro. In vivo, lnc-CYP7A1-1 downregulated aged hBM-MSCs were implanted into infarcted mouse hearts after myocardial infarction (MI), and cardiac function was measured. Through lentivirus-mediated downregulation of lnc-CYP7A1-1 in aged hBM-MSCs, we revealed that cell senescence was decreased, whereas cell proliferation, migration, and survival were increased. On the other hand, downregulation of SYNE1, the target gene of lnc-CYP7A1-1, in young hBM-MSCs increased cell senescence, yet decreased cell proliferation, migration, and survival. Downregulation of lnc-CYP7A1-1 in aged hBM-MSCs induced cell rejuvenation, yet this effect was attenuated by repression of SYNE1. In vivo, transplantation of lnc-CYP7A1-1 downregulated old hBM-MSCs improved cardiac function after MI. Conclusion Down-regulation of lnc-CYP7A1-1 rejuvenated aged hBM-MSCs and improved cardiac function when implanted into the infarcted mouse hearts, possibly through its target gene SYNE1.
Collapse
Affiliation(s)
- Jun Dong
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Sunnybrook Research Institute, Toronto, ON, Canada
| | - Jianwei Liu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yueqiang Wen
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Stephanie W Tobin
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Chongyu Zhang
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Huiling Zheng
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zehan Huang
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yongtao Feng
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Cardiovascular Surgery, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Dongcheng Zhang
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Cardiovascular Surgery, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shiming Liu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhenhui Zhang
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiao Li
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
47
|
Lu S, Liang Q, Huang Y, Meng F, Liu J. Definition and review on a category of long non-coding RNA: Atherosclerosis-associated circulating lncRNA (ASCLncRNA). PeerJ 2020; 8:e10001. [PMID: 33240586 PMCID: PMC7666546 DOI: 10.7717/peerj.10001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/29/2020] [Indexed: 12/18/2022] Open
Abstract
Atherosclerosis (AS) is one of the most common cardiovascular system diseases which seriously affects public health in modern society. Finding potential biomarkers in the complicated pathological progression of AS is of great significance for the prevention and treatment of AS. Studies have shown that long noncoding RNAs (lncRNAs) can be widely involved in the regulation of many physiological processes, and have important roles in different stages of AS formation. LncRNAs can be secreted into the circulatory system through exosomes, microvesicles, and apoptotic bodies. Recently, increasing studies have been focused on the relationships between circulating lncRNAs and AS development. The lncRNAs in circulating blood are expected to be new non-invasive diagnostic markers for monitoring the progression of AS. We briefly reviewed the previously reported lncRNA transcripts which related to AS development and detectable in circulating blood, including ANRIL, SENCR, CoroMarker, LIPCAR, HIF1α-AS1, LncRNA H19, APPAT, KCNQ1OT1, LncPPARδ, LincRNA-p21, MALAT1, MIAT, and UCA1. Further researches and a definition of atherosclerosis-associated circulating lncRNA (ASCLncRNA) were also discussed.
Collapse
Affiliation(s)
- Shanshan Lu
- Department of Histology and Embryology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Qin Liang
- Department of Histology and Embryology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Yanqing Huang
- Department of Histology and Embryology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Fanming Meng
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Junwen Liu
- Department of Histology and Embryology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China.,China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
48
|
Xu A, Li R, Ren A, Jian H, Huang Z, Zeng Q, Wang B, Zheng J, Chen X, Zheng N, Zheng R, Tian Y, Liu M, Mao Z, Ji A, Yuan Y. Regulatory coupling between long noncoding RNAs and senescence in irradiated microglia. J Neuroinflammation 2020; 17:321. [PMID: 33109221 PMCID: PMC7592596 DOI: 10.1186/s12974-020-02001-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 10/16/2020] [Indexed: 12/24/2022] Open
Abstract
Background Microglia have been implicated in the pathogenesis of radiation-induced brain injury (RIBI), which severely influences the quality of life during long-term survival. Recently, irradiated microglia were speculated to present an aging-like phenotype. Long noncoding RNAs (lncRNAs) have been recognized to regulate a wide spectrum of biological processes, including senescence; however, their potential role in irradiated microglia remains largely uncharacterized. Methods We used bioinformatics and experimental methods to identify and analyze the senescence phenotype of irradiated microglia. Western blotting, enzyme-linked immunosorbent assays, immunofluorescence, and quantitative real-time reverse transcription-polymerase chain reaction were performed to clarify the relationship between the radiation-induced differentially expressed lncRNAs (RILs) and the distinctive molecular features of senescence in irradiated microglia. Results We found that the senescence of microglia could be induced using ionizing radiation (IR). A mutual regulation mode existed between RILs and three main features of the senescence phenotype in irradiated microglia: inflammation, the DNA damage response (DDR), and metabolism. Specifically, for inflammation, the expression of two selected RILs (ENSMUST00000190863 and ENSMUST00000130679) was dependent on the major inflammatory signaling pathways of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK). The two RILs modulated the activation of NF-κB/MAPK signaling and subsequent inflammatory cytokine secretion. For the DDR, differential severity of DNA damage altered the expression profiles of RILs. The selected RIL, ENSMUST00000130679, promoted the DDR. For metabolism, blockade of sterol regulatory element-binding protein-mediated lipogenesis attenuated the fold-change of several RILs induced by IR. Conclusions Our findings revealed that certain RILs interacted with senescence in irradiated microglia. RILs actively participated in the regulation of senescence features, suggesting that RILs could be promising intervention targets to treat RIBI. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-020-02001-1.
Collapse
Affiliation(s)
- Anan Xu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No 78, Hengzhigang Road, Yuexiu District, Guangzhou, 510095, Guangdong, People's Republic of China
| | - Rong Li
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No 78, Hengzhigang Road, Yuexiu District, Guangzhou, 510095, Guangdong, People's Republic of China
| | - Anbang Ren
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No 78, Hengzhigang Road, Yuexiu District, Guangzhou, 510095, Guangdong, People's Republic of China
| | - Haifeng Jian
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No 78, Hengzhigang Road, Yuexiu District, Guangzhou, 510095, Guangdong, People's Republic of China
| | - Zhong Huang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No 78, Hengzhigang Road, Yuexiu District, Guangzhou, 510095, Guangdong, People's Republic of China
| | - Qingxing Zeng
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No 78, Hengzhigang Road, Yuexiu District, Guangzhou, 510095, Guangdong, People's Republic of China
| | - Baiyao Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No 78, Hengzhigang Road, Yuexiu District, Guangzhou, 510095, Guangdong, People's Republic of China
| | - Jieling Zheng
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No 78, Hengzhigang Road, Yuexiu District, Guangzhou, 510095, Guangdong, People's Republic of China
| | - Xiaoyu Chen
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No 78, Hengzhigang Road, Yuexiu District, Guangzhou, 510095, Guangdong, People's Republic of China
| | - Naiying Zheng
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No 78, Hengzhigang Road, Yuexiu District, Guangzhou, 510095, Guangdong, People's Republic of China
| | - Ronghui Zheng
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No 78, Hengzhigang Road, Yuexiu District, Guangzhou, 510095, Guangdong, People's Republic of China
| | - Yunhong Tian
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No 78, Hengzhigang Road, Yuexiu District, Guangzhou, 510095, Guangdong, People's Republic of China
| | - Mengzhong Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No 78, Hengzhigang Road, Yuexiu District, Guangzhou, 510095, Guangdong, People's Republic of China.,Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Zixu Mao
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Aimin Ji
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No 78, Hengzhigang Road, Yuexiu District, Guangzhou, 510095, Guangdong, People's Republic of China.
| | - Yawei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No 78, Hengzhigang Road, Yuexiu District, Guangzhou, 510095, Guangdong, People's Republic of China.
| |
Collapse
|
49
|
Wang F, Chen HZ. Histone Deacetylase SIRT1, Smooth Muscle Cell Function, and Vascular Diseases. Front Pharmacol 2020; 11:537519. [PMID: 33117155 PMCID: PMC7573826 DOI: 10.3389/fphar.2020.537519] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs), located in the media of artery, play key roles in maintaining the normal vascular physiological functions. Abnormality in VSMCs is implicated in vascular diseases (VDs), including atherosclerosis, abdominal aortic aneurysm (AAA), aortic dissection, and hypertension by regulating the process of inflammation, phenotypic switching, and extracellular matrix degradation. Sirtuins (SIRTs), a family of proteins containing seven members (from SIRT1 to SIRT7) in mammals, function as NAD+-dependent histone deacetylases and ADP-ribosyltransferases. In recent decades, great attention has been paid to the cardiovascular protective effects of SIRTs, especially SIRT1, suggesting a new therapeutic target for the treatment of VDs. In this review, we introduce the basic functions of SIRT1 against VSMC senescence, and summarize the contribution of SIRT1 derived from VSMCs in VDs. Finally, the potential new strategies based on SIRT1 activation have also been discussed with an emphasis on SIRT1 activators and calorie restriction to improve the prognosis of VDs.
Collapse
Affiliation(s)
- Fang Wang
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Hou-Zao Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
50
|
The Role of microRNAs in Organismal and Skin Aging. Int J Mol Sci 2020; 21:ijms21155281. [PMID: 32722415 PMCID: PMC7432402 DOI: 10.3390/ijms21155281] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/11/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
The aging process starts directly after birth and lasts for the entire lifespan; it manifests itself with a decline in an organism’s ability to adapt and is linked to the development of age-related diseases that eventually lead to premature death. This review aims to explore how microRNAs (miRNAs) are involved in skin functioning and aging. Recent evidence has suggested that miRNAs regulate all aspects of cutaneous biogenesis, functionality, and aging. It has been noted that some miRNAs were down-regulated in long-lived individuals, such as let-7, miR-17, and miR-34 (known as longevity-related miRNAs). They are conserved in humans and presumably promote lifespan prolongation; conversely, they are up-regulated in age-related diseases, like cancers. The analysis of the age-associated cutaneous miRNAs revealed the increased expression of miR-130, miR-138, and miR-181a/b in keratinocytes during replicative senescence. These miRNAs affected cell proliferation pathways via targeting the p63 and Sirtuin 1 mRNAs. Notably, miR-181a was also implicated in skin immunosenescence, represented by the Langerhans cells. Dermal fibroblasts also expressed increased the levels of the biomarkers of aging that affect telomere maintenance and all phases of the cellular life cycle, such as let-7, miR-23a-3p, 34a-5p, miR-125a, miR-181a-5p, and miR-221/222-3p. Among them, the miR-34 family, stimulated by ultraviolet B irradiation, deteriorates collagen in the extracellular matrix due to the activation of the matrix metalloproteinases and thereby potentiates wrinkle formation. In addition to the pro-aging effects of miRNAs, the plausible antiaging activity of miR-146a that antagonized the UVA-induced inhibition of proliferation and suppressed aging-related genes (e.g., p21WAF-1, p16, and p53) through targeting Smad4 has also been noticed. Nevertheless, the role of miRNAs in skin aging is still not fully elucidated and needs to be further discovered and explained.
Collapse
|