1
|
Soós R, Bakó C, Gyebrovszki Á, Gordos M, Csala D, Ádám Z, Wilhelm M. Nutritional Habits of Hungarian Older Adults. Nutrients 2024; 16:1203. [PMID: 38674893 PMCID: PMC11053580 DOI: 10.3390/nu16081203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
There are many nutritional changes that come with aging, mostly as consequences of health regression. Malnutrition and overweight often start with inadequate food consumption, followed by alterations in biochemical indices and body composition. In our study, we aimed to analyze the feeding habits and energy and nutrient intake of a Hungarian elderly population, focusing on macronutrient, water, fruit, and vegetable consumption while searching for possible nutritional factors leading to NCD and many other chronic diseases in this population. Two questionnaires were used. These were the Mini Nutritional Assessment (MNA) and one asking about nutritional habits, and a 3-day feeding diary was also filled. Subjects (n = 179, 111; females (F), 68 males (M), older than 50 years were recruited. Based on MNA results, 78 adults (43.57% of the studied population) were malnourished or at risk of malnutrition, although, according to BMI categories, 69% were overweight and 7.3% were obese among M, while 42.3% were overweight among F. The average daily meal number was diverse. The amount of people consuming fruit (11.7%) and vegetables (8.93%) several times a day was extremely low (15.3% of F and 4.4% of M). Daily fruit consumption in the whole sample was 79.3%. Overall, 36.3% consumed 1 L of liquid and 0.5 L of consumption was found in 15.1% of participants. A significant gender difference was found in water consumption, with F drinking more than M (p ≤ 0.01). In our sample, 27.93% of the respondents took dietary supplements. Further analysis and research are needed to explore the specific health implications of and reasons behind these findings.
Collapse
Affiliation(s)
- Rita Soós
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary;
| | - Csilla Bakó
- Institute of Sport Sciences and Physical Education, Faculty of Sciences, University of Pécs, 7624 Pécs, Hungary;
| | - Ádám Gyebrovszki
- Doctoral School of Biology and Sportbiology, Faculty of Sciences, University of Pécs, 7624 Pécs, Hungary; (Á.G.); (D.C.)
| | - Mónika Gordos
- Doctoral School of Biology and Sportbiology, Faculty of Sciences, University of Pécs, 7624 Pécs, Hungary; (Á.G.); (D.C.)
| | - Dávid Csala
- Doctoral School of Biology and Sportbiology, Faculty of Sciences, University of Pécs, 7624 Pécs, Hungary; (Á.G.); (D.C.)
| | - Zoltán Ádám
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary;
- Wnt-Signaling Research Group, Szentagothai Research Center, University of Pécs, 7624 Pécs, Hungary
| | - Márta Wilhelm
- Institute of Sport Sciences and Physical Education, Faculty of Sciences, University of Pécs, 7624 Pécs, Hungary;
| |
Collapse
|
2
|
Das SK, Silver RE, Senior A, Gilhooly CH, Bhapkar M, Le Couteur D. Diet composition, adherence to calorie restriction, and cardiometabolic disease risk modification. Aging Cell 2023; 22:e14018. [PMID: 37873687 PMCID: PMC10726801 DOI: 10.1111/acel.14018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/25/2023] Open
Abstract
Calorie restriction (CR) is a promising approach for attenuating the risk of age-related disease. However, the role of diet composition on adherence to CR and the effects of CR on cardiometabolic markers of healthspan remains unknown. We used the Geometric Framework for Nutrition approach to examine the association between macronutrient composition and CR adherence during the 2-year CALERIE trial. Adult participants without obesity were randomized to a 25% CR intervention or an ad libitum intake control. Correlations of cardiometabolic risk factors with macronutrient composition and standard dietary pattern indices [Alternate Mediterranean Diet Index (aMED), Dietary Inflammatory Index (DII), and Healthy Eating Index (HEI)] were also evaluated by Spearman's correlation at each time point. The mean age was 38.1 ± 7.2 years at baseline and the mean BMI was 25.1 ± 1.7. The study population was 70% female. The CR group, but not the control, consumed a higher percentage reported energy intake from protein and carbohydrate and lower fat at 12 months compared to baseline; comparable results were observed at 24 months. Protein in the background of higher carbohydrate intake was associated with greater adherence at 24 months. There was no correlation between macronutrient composition and cardiometabolic risk factors in the CR group. However, statistically significant correlations were observed for the DII and HEI. These findings suggest that individual self-selected macronutrients have an interactive but not independent role in CR adherence. Additional research is required to examine the impact of varying macronutrient compositions on adherence to CR and resultant modification to cardiometabolic risk factors.
Collapse
Affiliation(s)
- Sai Krupa Das
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts UniversityBostonMassachusettsUSA
| | - Rachel E. Silver
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts UniversityBostonMassachusettsUSA
| | - Alistair Senior
- Charles Perkins CentreUniversity of SydneySydneyNew South WalesAustralia
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
- Sydney Precision Data Science CentreUniversity of SydneySydneyNew South WalesAustralia
| | - Cheryl H. Gilhooly
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts UniversityBostonMassachusettsUSA
| | - Manjushri Bhapkar
- Duke Clinical Research InstituteDuke University School of MedicineDurhamNorth CarolinaUSA
| | - David Le Couteur
- Charles Perkins CentreUniversity of SydneySydneyNew South WalesAustralia
- Centre for Education and Research on AgeingConcord RG HospitalConcordNew South WalesAustralia
- ANZAC Research InstituteSydneyNew South WalesAustralia
| |
Collapse
|
3
|
Wang M, Shen Y, Tan Z, Yasen A, Fan B, Shen X. Metabolomics analysis of dietary restriction results in a longer lifespan due to alters of amino acid levels in larval hemolymph of Bombyx mori. Sci Rep 2023; 13:6828. [PMID: 37100857 PMCID: PMC10133320 DOI: 10.1038/s41598-023-34132-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/25/2023] [Indexed: 04/28/2023] Open
Abstract
Dietary restriction (DR) has been a very important discovery in modern aging biology research. Its remarkable anti-aging effect has been proved in a variety of organisms, including members of Lepidoptera, but mechanisms by which DR increases longevity are not fully understood. By using the silkworm (Bombyx mori), a model of lepidopteran insect, we established a DR model, isolated hemolymph from fifth instar larvae and employed LC-MS/MS metabolomics to analyze the effect of DR on the endogenous metabolites of silkworm, and tried to clarify the mechanism of DR to prolong lifespan. We identified the potential biomarkers by analyzing the metabolites of the DR and control groups. Then, we constructed relevant metabolic pathways and networks with MetaboAnalyst. DR significantly prolonged the lifespan of silkworm. The differential metabolites between the DR and control groups were mainly organic acids (including amino acid), and amines. These metabolites are involved in metabolic pathways such as amino acid metabolism. Further analysis showed that, the levels of 17 amino acids were significantly changed in the DR group, indicating that the prolonged lifespan was mainly due to changes in amino acid metabolism. Furthermore, we identified 41 and 28 unique differential metabolites in males and females, respectively, demonstrating sex differences in biological responses to DR. The DR group showed higher antioxidant capacity and lower lipid peroxidation and inflammatory precursors, with differences between the sexes. These results provide evidence for various DR anti-aging mechanisms at the metabolic level and novel reference for the future development of DR-simulating drugs or foods.
Collapse
Affiliation(s)
- Meixian Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, Jiangsu, China
| | - Yichen Shen
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | - Zhicheng Tan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China
| | - Ayinuer Yasen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, Jiangsu, China
| | - Bingyan Fan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, Jiangsu, China
| | - Xingjia Shen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China.
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, Jiangsu, China.
| |
Collapse
|
4
|
Bresilla D, Habisch H, Pritišanac I, Zarse K, Parichatikanond W, Ristow M, Madl T, Madreiter-Sokolowski CT. The sex-specific metabolic signature of C57BL/6NRj mice during aging. Sci Rep 2022; 12:21050. [PMID: 36473898 PMCID: PMC9726821 DOI: 10.1038/s41598-022-25396-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Due to intact reactive oxygen species homeostasis and glucose metabolism, C57BL/6NRj mice are especially suitable to study cellular alterations in metabolism. We applied Nuclear Magnetic resonance spectroscopy to analyze five different tissues of this mouse strain during aging and included female and male mice aged 3, 6, 12, and 24 months. Metabolite signatures allowed separation between the age groups in all tissues, and we identified the most prominently changing metabolites in female and male tissues. A refined analysis of individual metabolite levels during aging revealed an early onset of age-related changes at 6 months, sex-specific differences in the liver, and a biphasic pattern for various metabolites in the brain, heart, liver, and lung. In contrast, a linear decrease of amino acids was apparent in muscle tissues. Based on these results, we assume that age-related metabolic alterations happen at a comparably early aging state and are potentially associated with a metabolic switch. Moreover, identified differences between female and male tissues stress the importance of distinguishing between sexes when studying age-related changes and developing new treatment approaches. Besides, metabolomic features seem to be highly dependent on the genetic background of mouse strains.
Collapse
Affiliation(s)
- Doruntina Bresilla
- grid.11598.340000 0000 8988 2476Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/VI, 8010 Graz, Austria
| | - Hansjoerg Habisch
- grid.11598.340000 0000 8988 2476Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/VI, 8010 Graz, Austria
| | - Iva Pritišanac
- grid.11598.340000 0000 8988 2476Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/VI, 8010 Graz, Austria
| | - Kim Zarse
- grid.5801.c0000 0001 2156 2780Laboratory of Energy Metabolism, Department of Health Sciences and Technology, Institute of Translational Medicine, ETH Zurich, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland
| | - Warisara Parichatikanond
- grid.10223.320000 0004 1937 0490Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400 Thailand ,grid.10223.320000 0004 1937 0490Faculty of Pharmacy, Center of Biopharmaceutical Science for Healthy Ageing (BSHA), Mahidol University, Bangkok, 10400 Thailand
| | - Michael Ristow
- grid.5801.c0000 0001 2156 2780Laboratory of Energy Metabolism, Department of Health Sciences and Technology, Institute of Translational Medicine, ETH Zurich, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland
| | - Tobias Madl
- grid.11598.340000 0000 8988 2476Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/VI, 8010 Graz, Austria ,grid.452216.6BioTechMed-Graz, Graz, Austria
| | - Corina T. Madreiter-Sokolowski
- grid.11598.340000 0000 8988 2476Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/VI, 8010 Graz, Austria ,grid.452216.6BioTechMed-Graz, Graz, Austria
| |
Collapse
|
5
|
Lee H, Lee SJV. Recent Progress in Regulation of Aging by Insulin/IGF-1 Signaling in Caenorhabditis elegans. Mol Cells 2022; 45:763-770. [PMID: 36380728 PMCID: PMC9676989 DOI: 10.14348/molcells.2022.0097] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/18/2022] Open
Abstract
Caenorhabditis elegans has been used as a major model organism to identify genetic factors that regulate organismal aging and longevity. Insulin/insulin-like growth factor 1 (IGF- 1) signaling (IIS) regulates aging in many species, ranging from nematodes to humans. C. elegans is a nonpathogenic genetic nematode model, which has been extensively utilized to identify molecular and cellular components that function in organismal aging and longevity. Here, we review the recent progress in the role of IIS in aging and longevity, which involves direct regulation of protein and RNA homeostasis, stress resistance, metabolism and the activities of the endocrine system. We also discuss recently identified genetic factors that interact with canonical IIS components to regulate aging and health span in C. elegans. We expect this review to provide valuable insights into understanding animal aging, which could eventually help develop anti-aging drugs for humans.
Collapse
Affiliation(s)
- Hanseul Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Seung-Jae V. Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
6
|
Deshpande RH, Kumar A, Katare M, Sakhare SD, Inamdar AA. Effect of grinding techniques and supplementation of quinoa on the carbohydrate profile of tortillas. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:3600-3608. [PMID: 35875227 PMCID: PMC9304538 DOI: 10.1007/s13197-022-05365-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/15/2021] [Accepted: 01/10/2022] [Indexed: 06/15/2023]
Abstract
With an aim of studying the implication of the milling interventions and supplementation of non-wheat grains on the effect of the carbohydrate digestive profile of wheat flour the present study was conducted. Quinoa grain was selected for the study due its higher protein content and better amino acid profile than that of cereal grains. Milling of grains to produce atta (whole wheat flour) was carried out using traditional method of stone chakki mill and the other method of separation and recombination of different stream using roller mill. The atta flour was then supplemented with the quinoa flour in different combinations and the physico-chemical, rheological and product making characteristics were studied. The milling technique has an impact on the damaged starch with the difference of around 6% across the flour samples which further impacted the water absorption capacity and the gelatinization temperature of the flour. Carbohydrate digestive profile of the prepared tortillas have shown significant difference when the atta from roller mill substituted with quinoa flour upto 15%. Starch digestibility index of stone chakki atta was higher SDI (78.71) than that of roller milled quiooa supplemented flours (38.52 and 36.74). The rapidly digestible sugar decreased and the slow digestible sugar increased as compared to stone chakki atta tortillas which combinedly is responsible for lower glycaemic index. In the commercial point of view this will open a new avenue for food manufacturer to produce value added and healthy products from quinoa. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05365-9.
Collapse
Affiliation(s)
- Rohan H Deshpande
- Flour Milling, Baking and Confectionery Technology Department, CSIR-Central Food Technological Research Institute, Mysore, 570020 India
| | - Ashwin Kumar
- Flour Milling, Baking and Confectionery Technology Department, CSIR-Central Food Technological Research Institute, Mysore, 570020 India
| | - Manish Katare
- Flour Milling, Baking and Confectionery Technology Department, CSIR-Central Food Technological Research Institute, Mysore, 570020 India
| | - Suresh D Sakhare
- Flour Milling, Baking and Confectionery Technology Department, CSIR-Central Food Technological Research Institute, Mysore, 570020 India
| | - Aashitosh A Inamdar
- Flour Milling, Baking and Confectionery Technology Department, CSIR-Central Food Technological Research Institute, Mysore, 570020 India
| |
Collapse
|
7
|
Nguyen LNT, Nguyen LN, Zhao J, Schank M, Dang X, Cao D, Khanal S, Wu XY, Zhang Y, Zhang J, Ning S, Wang L, El Gazzar M, Moorman JP, Yao ZQ. TRF2 inhibition rather than telomerase disruption drives CD4T cell dysfunction during chronic viral infection. J Cell Sci 2022; 135:275609. [PMID: 35660868 PMCID: PMC9377711 DOI: 10.1242/jcs.259481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/24/2022] [Indexed: 11/20/2022] Open
Abstract
We investigated the role of telomerase and telomere repeat-binding factor 2 (TRF2 or TERF2) in T-cell dysfunction in chronic viral infection. We found that the expression and activity of telomerase in CD4+ T (CD4T) cells from patients with hepatitis C virus (HCV) infections or people living with HIV (PLWH) were intact, but TRF2 expression was significantly inhibited at the post-transcriptional level, suggesting that TRF2 inhibition is responsible for the CD4T cell dysfunction observed during chronic viral infection. Silencing TRF2 expression in CD4T cells derived from healthy subjects induced telomeric DNA damage and CD4T cell dysfunction without affecting telomerase activity or translocation - similar to what we observed in CD4T cells from HCV patients and PLWH. These findings indicate that premature T-cell aging and dysfunction during chronic HCV or HIV infection are primarily caused by chronic immune stimulation and T-cell overactivation and/or proliferation that induce telomeric DNA damage due to TRF2 inhibition, rather than telomerase disruption. This study suggests that restoring TRF2 presents a novel approach to prevent telomeric DNA damage and premature T-cell aging, thus rejuvenating T-cell functions during chronic viral infection.
Collapse
Affiliation(s)
- Lam Ngoc Thao Nguyen
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Lam Nhat Nguyen
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Juan Zhao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Madison Schank
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Xindi Dang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Dechao Cao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Sushant Khanal
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Xiao Y Wu
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Yi Zhang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Jinyu Zhang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Shunbin Ning
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Ling Wang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Mohamed El Gazzar
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Jonathan P Moorman
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.,Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN 37684, USA
| | - Zhi Q Yao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.,Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN 37684, USA
| |
Collapse
|
8
|
Feng S, Xu X, Tao S, Chen T, Zhou L, Huang Y, Yang H, Yuan M, Ding C. Comprehensive evaluation of chemical composition and health-promoting effects with chemometrics analysis of plant derived edible oils. Food Chem X 2022; 14:100341. [PMID: 35634224 PMCID: PMC9133763 DOI: 10.1016/j.fochx.2022.100341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/14/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022] Open
Abstract
22 edible oils can be discriminated based on tocopherol and phytosterol contents. In vitro antioxidant activity is correlated to polyphenol, tocopherol, and squalene. Oxidative and heat stress resistance is correlated to tocopherol and phytosterol. In vivo antioxidant activity is correlated to polyphenol, squalene, MUFA and PUFA.
In the last decade, with a growing emphasis on healthy diets, functional edible oils with high nutritional quality are becoming increasingly popular around the world. This study systematically compared the chemical composition and protective effect of 22 vegetable oils using multivariate chemometric tools. The results showed that the fatty acid composition and minor compounds were extremely variable among tested oils. Hierarchical cluster and principal component analysis discriminated these oils according to the tocopherol and phytosterol contents. The Pearson’s correlation analysis indicated that in vitro radical scavenging capacity was significantly correlated to polyphenol, tocopherol, and squalene. Additionally, the ameliorate effects on the heat and oxidative stress, ROS contents, and antioxidant enzyme activities were measured in Caenorhabditis elegans. The results showed that the antioxidant activity and stress resistance were positively correlated to polyphenol, tocopherol, phytosterol, MUFA, and PUFA, respectively. This study may offer an insight into oil discrimination and functional oil exploitation.
Collapse
Affiliation(s)
- Shiling Feng
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Xiaoyan Xu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Shengyong Tao
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Tao Chen
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Lijun Zhou
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Yan Huang
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Hongyu Yang
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Chunbang Ding
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, PR China
| |
Collapse
|
9
|
Zhu D, Li X, Tian Y. Mitochondrial-to-nuclear communication in aging: an epigenetic perspective. Trends Biochem Sci 2022; 47:645-659. [DOI: 10.1016/j.tibs.2022.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 03/02/2022] [Accepted: 03/11/2022] [Indexed: 02/08/2023]
|
10
|
Keller A, Temple T, Sayanjali B, Mihaylova MM. Metabolic Regulation of Stem Cells in Aging. CURRENT STEM CELL REPORTS 2021; 7:72-84. [PMID: 35251892 PMCID: PMC8893351 DOI: 10.1007/s40778-021-00186-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW From invertebrates to vertebrates, the ability to sense nutrient availability is critical for survival. Complex organisms have evolved numerous signaling pathways to sense nutrients and dietary fluctuations, which influence many cellular processes. Although both overabundance and extreme depletion of nutrients can lead to deleterious effects, dietary restriction without malnutrition can increase lifespan and promote overall health in many model organisms. In this review, we focus on age-dependent changes in stem cell metabolism and dietary interventions used to modulate stem cell function in aging. RECENT FINDINGS Over the last half-century, seminal studies have illustrated that dietary restriction confers beneficial effects on longevity in many model organisms. Many researchers have now turned to dissecting the molecular mechanisms by which these diets affect aging at the cellular level. One subpopulation of cells of particular interest are adult stem cells, the most regenerative cells of the body. It is generally accepted that the regenerative capacity of stem cells declines with age, and while the metabolic requirements of each vary across tissues, the ability of dietary interventions to influence stem cell function is striking. SUMMARY In this review, we will focus primarily on how metabolism plays a role in adult stem cell homeostasis with respect to aging, with particular emphasis on intestinal stem cells while also touching on hematopoietic, skeletal muscle, and neural stem cells. We will also discuss key metabolic signaling pathways influenced by both dietary restriction and the aging process, and will examine their role in improving tissue homeostasis and lifespan. Understanding the mechanisms behind the metabolic needs of stem cells will help bridge the divide between a basic science interpretation of stem cell function and a whole-organism view of nutrition, thereby providing insight into potential dietary or therapeutic interventions.
Collapse
Affiliation(s)
- Andrea Keller
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, Wexner Medical Center, Arthur G. James Cancer Hospital, The Ohio State University, Columbus, OH, USA
| | - Tyus Temple
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, Wexner Medical Center, Arthur G. James Cancer Hospital, The Ohio State University, Columbus, OH, USA
| | - Behnam Sayanjali
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Maria M. Mihaylova
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, Wexner Medical Center, Arthur G. James Cancer Hospital, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
11
|
Galvin AE, Friedman DB, Hébert JR. Focus on disability-free life expectancy: implications for health-related quality of life. Qual Life Res 2021; 30:2187-2195. [PMID: 33733432 PMCID: PMC7970769 DOI: 10.1007/s11136-021-02809-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 10/31/2022]
Abstract
BACKGROUND Since the end of the industrial revolution, advances in public health and clinical medicine have contributed to dramatic decreases in infant and childhood mortality, improvements in health-related quality of life (HRQoL), increases in overall life expectancy (LE), and rectangularization of survival curves. OBJECTIVES In this article, we focus on disability that has occurred with the overall lengthening of LE in many populations and the implications this has for decreased HRQoL. METHODS We utilize the concept of rectangularization of population survival to depict the rising prevalence of disability associated with increased LE, especially among racial and ethnic minorities and people of low socioeconomic status (SES) and relate this to HRQoL. RESULTS Disability-free life expectancy (DFLE) and healthy life expectancy (HLE) are defined in terms of HRQoL. Specific attention is focused on disability experienced by disparate populations around the globe. By focusing on disparities in DFLE, and the need to expand LE to include HLE as a central component of HRQoL, this work provides an important counterpoint to the attention that has been paid to LE disparities according to race, gender, ethnicity, education, and SES. DISCUSSION By calling attention to those factors that appear to be the most important drivers of the differences in quality and length of DFLE between different groups (i.e., the components of the social gradient, exposure to chronic stress, systemic inflammation, and the psychological and biological mechanisms associated with the gut-brain axis) and, by logical extension, HRQoL, we hope to promote research in this arena with the ultimate goal of improving DFLE, HLE, and overall HRQoL, especially in disparate populations around the globe.
Collapse
Affiliation(s)
- Ashley E Galvin
- Statewide Cancer Prevention and Control Program, Arnold School of Public Health, University of South Carolina, 915 Greene Street, Suite 241-2, Columbia, SC, 29208, USA.,Pediatric Hematology-Oncology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02215, USA
| | - Daniela B Friedman
- Statewide Cancer Prevention and Control Program, Arnold School of Public Health, University of South Carolina, 915 Greene Street, Suite 241-2, Columbia, SC, 29208, USA.,Department of Health Promotion, Education, and Behavior, Arnold School of Public Health, University of South Carolina, 915 Greene Street, Columbia, SC, 29208, USA.,Office for the Study of Aging, Arnold School of Public Health, University of South Carolina, 915 Greene Street, Columbia, SC, 29208, USA
| | - James R Hébert
- Statewide Cancer Prevention and Control Program, Arnold School of Public Health, University of South Carolina, 915 Greene Street, Suite 241-2, Columbia, SC, 29208, USA. .,Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene St, Columbia, SC, 29208, USA.
| |
Collapse
|
12
|
Mohamed Ahmed IA, Al Juhaimi F, Özcan MM. Insights into the nutritional value and bioactive properties of quinoa (
Chenopodium quinoa
): past, present and future prospective. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Isam A. Mohamed Ahmed
- Department of Food Science and Nutrition College of Food and Agricultural Sciences King Saud University Riyadh Saudi Arabia
| | - Fahad Al Juhaimi
- Department of Food Science and Nutrition College of Food and Agricultural Sciences King Saud University Riyadh Saudi Arabia
| | - Mehmet Musa Özcan
- Department of Food Engineering Faculty of Agriculture Selcuk University Konya42031Turkey
| |
Collapse
|
13
|
Abstract
Dietary intervention has received considerable attention as an approach to extend lifespan and improve aging. However, questions remain regarding optimal dietary regimes and underlying mechanisms of lifespan extension. Here, we asked how an increase of glucose in a chemically defined diet extends the lifespan of adult Drosophila melanogaster We showed that glucose-dependent lifespan extension is not a result of diminished caloric intake, or changes to systemic insulin activity, two commonly studied mechanisms of lifespan extension. Instead, we found that flies raised on glucose-supplemented food increased the expression of cell-adhesion genes, delaying age-dependent loss of intestinal barrier integrity. Furthermore, we showed that chemical disruption of the gut barrier negated the lifespan extension associated with glucose treatment, suggesting that glucose-supplemented food prolongs adult viability by enhancing the intestinal barrier. We believe our data contribute to understanding intestinal homeostasis, and may assist efforts to develop preventative measures that limit effects of aging on health.
Collapse
Affiliation(s)
- Anthony Galenza
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2S2, Canada.,Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Edan Foley
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2S2, Canada
| |
Collapse
|
14
|
Du G, Liu Z, Yu Z, Zhuo Z, Zhu Y, Zhou J, Li Y, Chen H. Taurine represses age-associated gut hyperplasia in Drosophila via counteracting endoplasmic reticulum stress. Aging Cell 2021; 20:e13319. [PMID: 33559276 PMCID: PMC7963329 DOI: 10.1111/acel.13319] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/16/2020] [Accepted: 01/12/2021] [Indexed: 02/05/2023] Open
Abstract
As they age, adult stem cells become more prone to functional decline, which is responsible for aging‐associated tissue degeneration and diseases. One goal of aging research is to identify drugs that can repair age‐associated tissue degeneration. Multiple organ development‐related signaling pathways have recently been demonstrated to have functions in tissue homeostasis and aging process. Therefore, in this study, we tested several chemicals that are essential for organ development to assess their ability to delay intestinal stem cell (ISC) aging and promote gut function in adult Drosophila. We found that taurine, a free amino acid that supports neurological development and tissue metabolism in humans, represses ISC hyperproliferation and restrains the intestinal functional decline seen in aged animals. We found that taurine represses age‐associated ISC hyperproliferation through a mechanism that eliminated endoplasmic reticulum (ER) stress by upregulation of the target genes of unfolded protein response in the ER (UPRER) and inhibiting the c‐Jun N‐terminal kinase (JNK) signaling. Our findings show that taurine plays a critical role in delaying the aging process in stem cells and suggest that it may be used as a natural compound for the treatment of age‐associated, or damage‐induced intestinal dysfunction in humans.
Collapse
Affiliation(s)
- Gang Du
- Laboratory for Stem Cell and anti‐Aging Research National Clinical Research Center for Geriatrics West China HospitalSichuan University Chengdu China
| | - Zhiming Liu
- Laboratory for Stem Cell and anti‐Aging Research National Clinical Research Center for Geriatrics West China HospitalSichuan University Chengdu China
| | - Zihua Yu
- Key Laboratory of Gene Engineering of the Ministry of Education State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐sen University Guangzhou China
| | - Zhangpeng Zhuo
- Key Laboratory of Gene Engineering of the Ministry of Education State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐sen University Guangzhou China
| | - Yuedan Zhu
- Key Laboratory of Gene Engineering of the Ministry of Education State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐sen University Guangzhou China
| | - Juanyu Zhou
- Laboratory for Stem Cell and anti‐Aging Research National Clinical Research Center for Geriatrics West China HospitalSichuan University Chengdu China
| | - Yang Li
- Key Laboratory of Gene Engineering of the Ministry of Education State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐sen University Guangzhou China
| | - Haiyang Chen
- Laboratory for Stem Cell and anti‐Aging Research National Clinical Research Center for Geriatrics West China HospitalSichuan University Chengdu China
| |
Collapse
|
15
|
Catalani E, Silvestri F, Bongiorni S, Taddei AR, Fanelli G, Rinalducci S, De Palma C, Perrotta C, Prantera G, Cervia D. Retinal damage in a new model of hyperglycemia induced by high-sucrose diets. Pharmacol Res 2021; 166:105488. [PMID: 33582248 DOI: 10.1016/j.phrs.2021.105488] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022]
Abstract
Loss of retinal neurons may precede clinical signs of diabetic retinopathy (DR). We studied for the first time the effects of hyperglycemia on the visual system of the fruit fly Drosophila melanogaster to characterize a model for glucose-induced retinal neurodegeneration, thus complementing more traditional vertebrate systems. Adult flies were fed with increased high-sucrose regimens which did not modify the locomotion ability, muscle phenotype and mobility after 10 days. The increased availability of dietary sucrose induced hyperglycemia and phosphorylation of Akt in fat tissue, without significant effects on adult growth and viability, consistent with the early phase of insulin signaling and a low impact on the overall metabolic profile of flies at short term. Noteworthy, high-sucrose diets significantly decreased Drosophila responsiveness to the light as a consequence of vision defects. Hyperglycemia did not alter the gross anatomical architecture of the external eye phenotype although a progressive damage of photosensitive units was observed. Appreciable levels of cleaved caspase 3 and nitrotyrosine were detected in the internal retina network as well as punctate staining of Light-Chain 3 and p62, and accumulated autophagosomes, indicating apoptotic features, peroxynitrite formation and autophagy turnover defects. In summary, our results in Drosophila support the view that hyperglycemia induced by high-sucrose diets lead to eye defects, apoptosis/autophagy dysregulation, oxidative stress, and visual dysfunctions which are evolutionarily conserved, thus offering a meaningful opportunity of using a simple in vivo model to study the pathophysiology of neuroretinal alterations that develop in patients at the early stages of DR.
Collapse
Affiliation(s)
- Elisabetta Catalani
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Federica Silvestri
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Silvia Bongiorni
- Department of Ecological and Biological Sciences (DEB), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Anna Rita Taddei
- Section of Electron Microscopy, Great Equipment Center, Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Giuseppina Fanelli
- Department of Ecological and Biological Sciences (DEB), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences (DEB), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Clara De Palma
- Department of Medical Biotechnology and Translational Medicine (BioMeTra), Università degli Studi di Milano, via L. Vanvitelli 32, 20129 Milano, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milano, Italy
| | - Giorgio Prantera
- Department of Ecological and Biological Sciences (DEB), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Davide Cervia
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy.
| |
Collapse
|
16
|
Yashin AI, Wu D, Arbeev K, Yashkin AP, Akushevich I, Bagley O, Duan M, Ukraintseva S. Roles of interacting stress-related genes in lifespan regulation: insights for translating experimental findings to humans. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2021; 5:357-379. [PMID: 34825130 PMCID: PMC8612394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
AIM Experimental studies provided numerous evidence that caloric/dietary restriction may improve health and increase the lifespan of laboratory animals, and that the interplay among molecules that sense cellular stress signals and those regulating cell survival can play a crucial role in cell response to nutritional stressors. However, it is unclear whether the interplay among corresponding genes also plays a role in human health and lifespan. METHODS Literature about roles of cellular stressors have been reviewed, such as amino acid deprivation, and the integrated stress response (ISR) pathway in health and aging. Single nucleotide polymorphisms (SNPs) in two candidate genes (GCN2/EIF2AK4 and CHOP/DDIT3) that are closely involved in the cellular stress response to amino acid starvation, have been selected using information from experimental studies. Associations of these SNPs and their interactions with human survival in the Health and Retirement Study data have been estimated. The impact of collective associations of multiple interacting SNP pairs on survival has been evaluated, using a recently developed composite index: the SNP-specific Interaction Polygenic Risk Score (SIPRS). RESULTS Significant interactions have been found between SNPs from GCN2/EIF2AK4 and CHOP/DDI3T genes that were associated with survival 85+ compared to survival between ages 75 and 85 in the total sample (males and females combined) and in females only. This may reflect sex differences in genetic regulation of the human lifespan. Highly statistically significant associations of SIPRS [constructed for the rs16970024 (GCN2/EIF2AK4) and rs697221 (CHOP/DDIT3)] with survival in both sexes also been found in this study. CONCLUSION Identifying associations of the genetic interactions with human survival is an important step in translating the knowledge from experimental to human aging research. Significant associations of multiple SNPxSNP interactions in ISR genes with survival to the oldest old age that have been found in this study, can help uncover mechanisms of multifactorial regulation of human lifespan and its heterogeneity.
Collapse
|
17
|
Bajracharya R, Bustamante S, O Ballard JW. Stearic Acid Supplementation in High Protein to Carbohydrate (P:C) Ratio Diet Improves Physiological and Mitochondrial Functions of Drosophila melanogaster parkin Null Mutants. J Gerontol A Biol Sci Med Sci 2020; 74:1564-1572. [PMID: 29236963 DOI: 10.1093/gerona/glx246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/11/2017] [Indexed: 12/31/2022] Open
Abstract
Optimizing dietary macronutrients benefits the prevention and management of many human diseases but there is conflicting dietary advice for Parkinson's disease (PD), and no single strategy is universally recommended. Recently, it was shown that dietary stearic acid (C18:0) improves survival and mitochondrial functions in the parkin null Drosophila model of PD. Here, we incorporate stearic acid into high protein and high carbohydrate diets and study survival, climbing ability, mitochondrial membrane potential, respiration, basal reactive oxygen species, and conduct lipidomics assays. We observed that parkin null flies showed improvement in all assays tested when stearic acid was added to the high protein diet but not to the high carbohydrate diet. When lipid proportion was examined, we observed higher levels in flies fed the high protein diet with stearic acid diet and the high carbohydrate diet. Unexpectedly, free levels of fatty acids exhibited opposite trend. Combined, these data suggest that dietary Protein: Carbohydrate ratio and stearic acid influences levels of bound fatty acids. The mechanisms that influence free and bound fatty-acid levels remain to be explored, but one possible explanation is that breakdown products can bind to membranes and improve the mitochondrial functions of parkin null flies.
Collapse
Affiliation(s)
- Rijan Bajracharya
- School of Biotechnology and Biomolecular Sciences, Sydney, Australia
| | - Sonia Bustamante
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Center, University of New South Wales, Sydney, Australia
| | | |
Collapse
|
18
|
Kuraszkiewicz B, Goszczyńska H, Podsiadły-Marczykowska T, Piotrkiewicz M, Andersen P, Gromicho M, Grosskreutz J, Kuźma-Kozakiewicz M, Petri S, Stubbendorf B, Szacka K, Uysal H, de Carvalho M. Potential Preventive Strategies for Amyotrophic Lateral Sclerosis. Front Neurosci 2020; 14:428. [PMID: 32528241 PMCID: PMC7264408 DOI: 10.3389/fnins.2020.00428] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
It may seem useless to propose preventive measures for a disease without established pathogenesis and successful therapy, such as amyotrophic lateral sclerosis (ALS). However, we will show that ALS shares essential molecular mechanisms with aging and that established anti-aging strategies, such as healthy diet or individually adjusted exercise, may be successfully applied to ameliorate the condition of ALS patients. These strategies might be applied for prevention if persons at ALS risk could be identified early enough. Recent research advances indicate that this may happen soon.
Collapse
Affiliation(s)
- B Kuraszkiewicz
- Department of Methods of Brain Imaging and Functional Research of Nervous System, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - H Goszczyńska
- Department of Methods of Brain Imaging and Functional Research of Nervous System, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - T Podsiadły-Marczykowska
- Department of Methods of Brain Imaging and Functional Research of Nervous System, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - M Piotrkiewicz
- Department of Methods of Brain Imaging and Functional Research of Nervous System, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - P Andersen
- Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - M Gromicho
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - J Grosskreutz
- Department of Neurology, University Hospital Jena, Jena, Germany.,Jena Centre for Healthy Aging, University Hospital Jena, Jena, Germany
| | | | - S Petri
- Clinic for Neurology, Hannover Medical School, Hanover, Germany
| | - B Stubbendorf
- Department of Neurology, University Hospital Jena, Jena, Germany
| | - K Szacka
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - H Uysal
- Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - M de Carvalho
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
19
|
Li Y, Romey-Glüsing R, Tahan Zadeh N, von Frieling J, Hoffmann J, Huebbe P, Bruchhaus I, Rimbach G, Fink C, Roeder T. Furbellow (Brown Algae) Extract Increases Lifespan in Drosophila by Interfering with TOR-Signaling. Nutrients 2020; 12:E1172. [PMID: 32331413 PMCID: PMC7230866 DOI: 10.3390/nu12041172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/30/2022] Open
Abstract
Algal products are well known for their health promoting effects. Nonetheless, an in depth understanding of the underlying molecular mechanisms is still only fragmentary. Here, we show that aqueous furbelow extracts (brown algae, Saccorhiza polyschides) lengthen the life of both sexes of the fruit fly Drosophila melanogaster substantially, if used as nutritional additives to conventional food. This life prolonging effect became even more pronounced in the presence of stressors, such as high-fat dieting of living under drought conditions. Application of the extracts did not change food intake, excretion, or other major physiological parameters. Nevertheless, effects on the intestinal microbiota were observed, leading to an increased species richness, which is usually associated with healthy conditions. Lifespan extension was not observed in target of rapamycin (TOR)-deficient animals, implying that functional TOR signaling is necessary to unfold the positive effects of brown algae extract (BAE) on this important trait. The lack of life lengthening in animals with deregulated TOR signaling exclusively targeted to body fat showed that this major energy storage organ is instrumental for transmitting these effects. In addition, expression of Imaginal morphogenesis protein-Late 2 (Imp-L2), an effective inhibitor of insulin signaling implies that BAE exerts their positive effects through interaction with the tightly interwoven TOR- and insulin-signaling systems, although insulin levels were not directly affected by this intervention.
Collapse
Affiliation(s)
- Yang Li
- Department of Molecular Physiology, Kiel University, D-24098 Kiel, Germany; (Y.L.); (R.R.-G.); (N.T.Z.); (J.v.F.); (J.H.); (C.F.)
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Renja Romey-Glüsing
- Department of Molecular Physiology, Kiel University, D-24098 Kiel, Germany; (Y.L.); (R.R.-G.); (N.T.Z.); (J.v.F.); (J.H.); (C.F.)
| | - Navid Tahan Zadeh
- Department of Molecular Physiology, Kiel University, D-24098 Kiel, Germany; (Y.L.); (R.R.-G.); (N.T.Z.); (J.v.F.); (J.H.); (C.F.)
| | - Jakob von Frieling
- Department of Molecular Physiology, Kiel University, D-24098 Kiel, Germany; (Y.L.); (R.R.-G.); (N.T.Z.); (J.v.F.); (J.H.); (C.F.)
| | - Julia Hoffmann
- Department of Molecular Physiology, Kiel University, D-24098 Kiel, Germany; (Y.L.); (R.R.-G.); (N.T.Z.); (J.v.F.); (J.H.); (C.F.)
| | - Patricia Huebbe
- Department of Food Sciences, Kiel University, 24098 Kiel, Germany; (P.H.); (G.R.)
| | - Iris Bruchhaus
- Bernhard-Nocht-Institute for Tropical Medicine, D-20359 Hamburg, Germany;
| | - Gerald Rimbach
- Department of Food Sciences, Kiel University, 24098 Kiel, Germany; (P.H.); (G.R.)
| | - Christine Fink
- Department of Molecular Physiology, Kiel University, D-24098 Kiel, Germany; (Y.L.); (R.R.-G.); (N.T.Z.); (J.v.F.); (J.H.); (C.F.)
- DZL, German Center for Lung Research, ARCN, D-24098 Kiel, Germany
| | - Thomas Roeder
- Department of Molecular Physiology, Kiel University, D-24098 Kiel, Germany; (Y.L.); (R.R.-G.); (N.T.Z.); (J.v.F.); (J.H.); (C.F.)
- DZL, German Center for Lung Research, ARCN, D-24098 Kiel, Germany
| |
Collapse
|
20
|
Pelton R. Postbiotic Metabolites: How Probiotics Regulate Health. Integr Med (Encinitas) 2020; 19:25-30. [PMID: 32549861 PMCID: PMC7238912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
|
21
|
Jędrusek-Golińska A, Górecka D, Buchowski M, Wieczorowska-Tobis K, Gramza-Michałowska A, Szymandera-Buszka K. Recent progress in the use of functional foods for older adults: A narrative review. Compr Rev Food Sci Food Saf 2020; 19:835-856. [PMID: 33325174 DOI: 10.1111/1541-4337.12530] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/11/2022]
Abstract
The number and proportion of older adults are increasing globally, and it is predicted that in 2020, there will be 723 million people worldwide aged 66 and older. In recent decades, numerous studies showed that healthy eating is positively associated with better nutritional status and quality of life, and the decreased incidence of noncommunicable diseases. As older adults become health conscious, the demand for foods and beverages rich in nutrients and bioactive compounds has increased. The increased demand for healthy food stimulated a recent rapid increase in designing, producing, and marketing functional foods to prevent or correct nutrient deficiencies and to improve the nutritional status of older adults. These functional products contain and/or are enriched with dietary fiber; omega-3 polyunsaturated fatty acids; phytoestrogens; polyphenols; carotenoids such as alpha- and beta-carotene; lutein and zeaxanthin; pre-, pro-, and synbiotics; and plant sterols and stanols. A limited number of publications have thoroughly addressed the effect of functional foods on the nutritional status of older adults. The goal of this review was to review existing recent research on the role of functional foods in healthy and active aging.
Collapse
Affiliation(s)
- Anna Jędrusek-Golińska
- Department of Gastronomy Science and Functional Foods, Poznań University of Life Sciences, Poznań, Poland
| | - Danuta Górecka
- Department of Gastronomy Science and Functional Foods, Poznań University of Life Sciences, Poznań, Poland
| | - Maciej Buchowski
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Katarzyna Wieczorowska-Tobis
- Institute of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poland and Laboratory for Geriatric Medicine, Department of Palliative Care, University of Medical Science, Poznań, Poland
| | - Anna Gramza-Michałowska
- Department of Gastronomy Science and Functional Foods, Poznań University of Life Sciences, Poznań, Poland
| | - Krystyna Szymandera-Buszka
- Department of Gastronomy Science and Functional Foods, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
22
|
von Frieling J, Roeder T. Factors that affect the translation of dietary restriction into a longer life. IUBMB Life 2019; 72:814-824. [PMID: 31889425 DOI: 10.1002/iub.2224] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023]
Abstract
Nutritional interventions, such as dietary or calorie restriction, are known to have a variety of health-promoting effects. The most impressive are the direct effects on life expectancy, which have been reproduced in many animal models. A variety of dietary restriction protocols have been described, which differ either in their macronutrient composition or in the time window for consumption. Mechanistically, the effects of dietary restriction are mediated mainly through signaling pathways that have central roles in the maintenance of cellular energy balance. Among these, target of rapamycin and insulin signaling appear to be the most important. Such nutritional interventions can have their effects in two different ways: either by direct interaction with the metabolism of the host organism, or by modulating the composition and performance of its endogenous microbiome. Various dietary restriction regimens have been identified that significantly alter the microbiome and thus profoundly modulate host metabolism. This review aims to discuss the mechanisms by which dietary restriction can affect life expectancy, and in particular the role of the microbiome.
Collapse
Affiliation(s)
- Jakob von Frieling
- Department of Zoology, Molecular Physiology, Kiel University, Kiel, Germany
| | - Thomas Roeder
- Department of Zoology, Molecular Physiology, Kiel University, Kiel, Germany.,DZL, German Center for Lung Research, ARCN, Kiel, Germany
| |
Collapse
|
23
|
Mautz BS, Rode NO, Bonduriansky R, Rundle HD. Comparing ageing and the effects of diet supplementation in wild vs. captive antler flies,
Protopiophila litigata. J Anim Ecol 2019; 88:1913-1924. [DOI: 10.1111/1365-2656.13079] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Brian S. Mautz
- Department of Biology University of Ottawa Ottawa ON Canada
| | | | - Russell Bonduriansky
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences University of New South Wales Sydney NSW Australia
| | | |
Collapse
|
24
|
Alahmary SA, Alduhaylib SA, Alkawii HA, Olwani MM, Shablan RA, Ayoub HM, Purayidathil TS, Abuzaid OI, Khattab RY. Relationship Between Added Sugar Intake and Sleep Quality Among University Students: A Cross-sectional Study. Am J Lifestyle Med 2019; 16:122-129. [DOI: 10.1177/1559827619870476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/21/2019] [Accepted: 07/29/2019] [Indexed: 01/07/2023] Open
Abstract
Eating foods high in added sugar has recently increased among people of all ages. This is expected to negatively affect health and life quality. This study was conducted to investigate the relationship between added sugar intake and sleep quality among university students. A total of 100 randomly selected female students (19-25 years old) from Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia, participated in the study after applying exclusion criteria. Sample size was calculated with expected correlation of −0.4 between sugar intake and sleep quality, a power of 90%, and a type 1 error of 5%. Participants completed the Food Frequency Questionnaire (FFQ), sleep quality questionnaire, and 24-hour dietary recall. Data were analyzed using IBM SPSS Statistics 25, and the χ2test was used for measuring the association between added sugar intake and sleep quality, where P <.05 was considered statistically significant. Results showed that only 17% of participants had good sleep. Data of the 24-hour dietary recall showed a significant association (P = .014) between consumption of added sugars and sleep quality. This is the first study to directly report on the effect of higher intake of added sugars on sleep quality. The study concluded that poor sleep quality was significantly related to higher added sugar intake.
Collapse
Affiliation(s)
- Sarah A. Alahmary
- Clinical Nutrition Department, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Sakinah A. Alduhaylib
- Clinical Nutrition Department, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hibah A. Alkawii
- Clinical Nutrition Department, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mashail M. Olwani
- Clinical Nutrition Department, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Reem A. Shablan
- Clinical Nutrition Department, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hala M. Ayoub
- Clinical Nutrition Department, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Tunny S. Purayidathil
- Clinical Nutrition Department, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Omar I. Abuzaid
- Clinical Nutrition Department, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Rabie Y. Khattab
- Clinical Nutrition Department, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
25
|
Rusu ME, Simedrea R, Gheldiu AM, Mocan A, Vlase L, Popa DS, Ferreira IC. Benefits of tree nut consumption on aging and age-related diseases: Mechanisms of actions. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
26
|
Evangelakou Z, Manola M, Gumeni S, Trougakos IP. Nutrigenomics as a tool to study the impact of diet on aging and age-related diseases: the Drosophila approach. GENES & NUTRITION 2019; 14:12. [PMID: 31073342 PMCID: PMC6498619 DOI: 10.1186/s12263-019-0638-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023]
Abstract
Aging is a complex phenomenon caused by the time-dependent loss of cellular homeodynamics and consequently of physiological organismal functions. This process is affected by both genetic and environmental (e.g., diet) factors, as well as by their constant interaction. Consistently, deregulation of nutrient sensing and signaling pathways is considered a hallmark of aging. Nutrigenomics is an emerging scientific discipline that studies changes induced by diet on the genome and thus it considers the intersection of three topics, namely health, diet, and genomics. Model organisms, such as the fruit fly Drosophila melanogaster, have been successfully used for in vivo modeling of higher metazoans aging and for nutrigenomic studies. Drosophila is a well-studied organism with sophisticated genetics and a fully annotated sequenced genome, in which ~ 75% of human disease-related genes have functional orthologs. Also, flies have organs/tissues that perform the equivalent functions of most mammalian organs, while discrete clusters of cells maintain insect carbohydrate homeostasis in a way similar to pancreatic cells. Herein, we discuss the mechanistic connections between nutrition and aging in Drosophila, and how this model organism can be used to study the effect of different diets (including natural products and/or their derivatives) on higher metazoans longevity.
Collapse
Affiliation(s)
- Zoi Evangelakou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Maria Manola
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| |
Collapse
|
27
|
Sasikumar AN, Killilea DW, Kennedy BK, Brem RB. Potassium restriction boosts vacuolar acidity and extends lifespan in yeast. Exp Gerontol 2019; 120:101-106. [PMID: 30742903 DOI: 10.1016/j.exger.2019.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/15/2019] [Accepted: 02/01/2019] [Indexed: 12/23/2022]
Abstract
Lysosome function is compromised during aging and in many disease states. Interventions that promote lysosomal activity and acidification are thus of prime interest as treatments for longevity and health. Intracellular pH can be controlled by the exchange of protons for inorganic ions, and in cells from microbes to man, when potassium is restricted in the growth medium, the cytoplasm becomes acidified. Here we use a yeast model to show that potassium limited-cells exhibit hallmarks of increased acidity in the vacuole, the analog of the lysosome, and live long by a mechanism that requires the vacuolar machinery. The emerging picture is one in which potassium restriction shores up vacuolar acidity and function, conferring health benefits early in life and extending viability into old age. Against the backdrop of well-studied protein and carbohydrate restrictions that extend lifespan and healthspan, our work establishes a novel pro-longevity paradigm of inorganic nutrient limitation.
Collapse
Affiliation(s)
- Arjun N Sasikumar
- Buck Institute for Research on Aging, Novato, CA, United States of America
| | - David W Killilea
- Nutrition & Metabolism Center and Elemental Analysis Facility, Children's Hospital Oakland Research Institute, Oakland, CA, United States of America
| | - Brian K Kennedy
- Buck Institute for Research on Aging, Novato, CA, United States of America; Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Rachel B Brem
- Buck Institute for Research on Aging, Novato, CA, United States of America; Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, United States of America.
| |
Collapse
|
28
|
Dakik P, McAuley M, Chancharoen M, Mitrofanova D, Lozano Rodriguez ME, Baratang Junio JA, Lutchman V, Cortes B, Simard É, Titorenko VI. Pairwise combinations of chemical compounds that delay yeast chronological aging through different signaling pathways display synergistic effects on the extent of aging delay. Oncotarget 2019; 10:313-338. [PMID: 30719227 PMCID: PMC6349451 DOI: 10.18632/oncotarget.26553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/20/2018] [Indexed: 01/08/2023] Open
Abstract
We have recently discovered six plant extracts that delay yeast chronological aging. Most of them affect different nodes, edges and modules of an evolutionarily conserved network of longevity regulation that integrates certain signaling pathways and protein kinases; this network is also under control of such aging-delaying chemical compounds as spermidine and resveratrol. We have previously shown that, if a strain carrying an aging-delaying single-gene mutation affecting a certain node, edge or module of the network is exposed to some of the six plant extracts, the mutation and the plant extract enhance aging-delaying efficiencies of each other so that their combination has a synergistic effect on the extent of aging delay. We therefore hypothesized that a pairwise combination of two aging-delaying plant extracts or a combination of one of these plant extracts and spermidine or resveratrol may have a synergistic effect on the extent of aging delay only if each component of this combination targets a different element of the network. To test our hypothesis, we assessed longevity-extending efficiencies of all possible pairwise combinations of the six plant extracts or of one of them and spermidine or resveratrol in chronologically aging yeast. In support of our hypothesis, we show that only pairwise combinations of naturally-occurring chemical compounds that slow aging through different nodes, edges and modules of the network delay aging in a synergistic manner.
Collapse
Affiliation(s)
- Pamela Dakik
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Mélissa McAuley
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | - Darya Mitrofanova
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | | | - Vicky Lutchman
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Berly Cortes
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Éric Simard
- Idunn Technologies Inc., Rosemere, Quebec, Canada
| | | |
Collapse
|
29
|
Hegab AE, Ozaki M, Meligy FY, Kagawa S, Ishii M, Betsuyaku T. High fat diet activates adult mouse lung stem cells and accelerates several aging-induced effects. Stem Cell Res 2018; 33:25-35. [DOI: 10.1016/j.scr.2018.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/26/2018] [Accepted: 10/02/2018] [Indexed: 12/20/2022] Open
|
30
|
Garg G, Singh S, Kumar Singh A, Ibrahim Rizvi S. Whey protein concentrate supplementation protects erythrocyte membrane from aging‐induced alterations in rats. J Food Biochem 2018. [DOI: 10.1111/jfbc.12679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Geetika Garg
- Department of Biochemistry University of Allahabad Allahabad India
| | - Sandeep Singh
- Department of Biochemistry University of Allahabad Allahabad India
| | | | | |
Collapse
|
31
|
Smith RL, Soeters MR, Wüst RCI, Houtkooper RH. Metabolic Flexibility as an Adaptation to Energy Resources and Requirements in Health and Disease. Endocr Rev 2018; 39:489-517. [PMID: 29697773 PMCID: PMC6093334 DOI: 10.1210/er.2017-00211] [Citation(s) in RCA: 346] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 04/19/2018] [Indexed: 12/15/2022]
Abstract
The ability to efficiently adapt metabolism by substrate sensing, trafficking, storage, and utilization, dependent on availability and requirement, is known as metabolic flexibility. In this review, we discuss the breadth and depth of metabolic flexibility and its impact on health and disease. Metabolic flexibility is essential to maintain energy homeostasis in times of either caloric excess or caloric restriction, and in times of either low or high energy demand, such as during exercise. The liver, adipose tissue, and muscle govern systemic metabolic flexibility and manage nutrient sensing, uptake, transport, storage, and expenditure by communication via endocrine cues. At a molecular level, metabolic flexibility relies on the configuration of metabolic pathways, which are regulated by key metabolic enzymes and transcription factors, many of which interact closely with the mitochondria. Disrupted metabolic flexibility, or metabolic inflexibility, however, is associated with many pathological conditions including metabolic syndrome, type 2 diabetes mellitus, and cancer. Multiple factors such as dietary composition and feeding frequency, exercise training, and use of pharmacological compounds, influence metabolic flexibility and will be discussed here. Last, we outline important advances in metabolic flexibility research and discuss medical horizons and translational aspects.
Collapse
Affiliation(s)
- Reuben L Smith
- Laboratory of Genetic Metabolic Diseases, Academic Medical Center, AZ Amsterdam, Netherlands.,Amsterdam Gastroenterology and Metabolism, Academic Medical Center, AZ Amsterdam, Netherlands
| | - Maarten R Soeters
- Amsterdam Gastroenterology and Metabolism, Academic Medical Center, AZ Amsterdam, Netherlands.,Department of Endocrinology and Metabolism, Internal Medicine, Academic Medical Center, AZ Amsterdam, Netherlands
| | - Rob C I Wüst
- Laboratory of Genetic Metabolic Diseases, Academic Medical Center, AZ Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Academic Medical Center, AZ Amsterdam, Netherlands.,Amsterdam Movement Sciences, Academic Medical Center, AZ Amsterdam, Netherlands
| | - Riekelt H Houtkooper
- Laboratory of Genetic Metabolic Diseases, Academic Medical Center, AZ Amsterdam, Netherlands.,Amsterdam Gastroenterology and Metabolism, Academic Medical Center, AZ Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Academic Medical Center, AZ Amsterdam, Netherlands
| |
Collapse
|
32
|
Lutchman V, Dakik P, McAuley M, Cortes B, Ferraye G, Gontmacher L, Graziano D, Moukhariq FZ, Simard É, Titorenko VI. Six plant extracts delay yeast chronological aging through different signaling pathways. Oncotarget 2018; 7:50845-50863. [PMID: 27447556 PMCID: PMC5239441 DOI: 10.18632/oncotarget.10689] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/07/2016] [Indexed: 01/19/2023] Open
Abstract
Our recent study has revealed six plant extracts that slow yeast chronological aging more efficiently than any chemical compound yet described. The rate of aging in yeast is controlled by an evolutionarily conserved network of integrated signaling pathways and protein kinases. Here, we assessed how single-gene-deletion mutations eliminating each of these pathways and kinases affect the aging-delaying efficiencies of the six plant extracts. Our findings imply that these extracts slow aging in the following ways: 1) plant extract 4 decreases the efficiency with which the pro-aging TORC1 pathway inhibits the anti-aging SNF1 pathway; 2) plant extract 5 mitigates two different branches of the pro-aging PKA pathway; 3) plant extract 6 coordinates processes that are not assimilated into the network of presently known signaling pathways/protein kinases; 4) plant extract 8 diminishes the inhibitory action of PKA on SNF1; 5) plant extract 12 intensifies the anti-aging protein kinase Rim15; and 6) plant extract 21 inhibits a form of the pro-aging protein kinase Sch9 that is activated by the pro-aging PKH1/2 pathway.
Collapse
Affiliation(s)
- Vicky Lutchman
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Pamela Dakik
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Mélissa McAuley
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Berly Cortes
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - George Ferraye
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Leonid Gontmacher
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - David Graziano
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | - Éric Simard
- Idunn Technologies Inc., Rosemere, Quebec, Canada
| | | |
Collapse
|
33
|
Romey-Glüsing R, Li Y, Hoffmann J, von Frieling J, Knop M, Pfefferkorn R, Bruchhaus I, Fink C, Roeder T. Nutritional regimens with periodically recurring phases of dietary restriction extend lifespan in Drosophila. FASEB J 2018; 32:1993-2003. [PMID: 29196499 DOI: 10.1096/fj.201700934r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nutritional interventions such as caloric and dietary restriction increase lifespan in various animal models. To identify alternative and less demanding nutritional interventions that extend lifespan, we subjected fruit flies ( Drosophila melanogaster) to weekly nutritional regimens that involved alternating a conventional diet with dietary restriction. Short periods of dietary restriction (up to 2 d) followed by longer periods of a conventional diet yielded minimal increases in lifespan. We found that 3 or more days of contiguous dietary restriction (DR) was necessary to yield a lifespan extension similar to that observed with persistent DR. Female flies were more responsive to these interventions than males. Physiologic changes known to be associated with prolonged DR, such as reduced metabolic rates, showed the same time course as lifespan extension. Moreover, concurrent transcriptional changes indicative of reduced insulin signaling were identified with DR. These physiologic and transcriptional changes were sustained, as they were detectable several days after switching to conventional diets. Taken together, diets with longer periods of DR extended lifespan concurrently with physiologic and transcriptional changes that may underlie this increase in lifespan.-Romey-Glüsing, R., Li, Y., Hoffmann, J., von Frieling, J., Knop, M., Pfefferkorn, R., Bruchhaus, I., Fink, C., Roeder, T. Nutritional regimens with periodically recurring phases of dietary restriction extend lifespan in Drosophila.
Collapse
Affiliation(s)
- Renja Romey-Glüsing
- Department of Molecular Physiology, Institute of Zoology, Kiel University, Kiel, Germany
| | - Yang Li
- Department of Molecular Physiology, Institute of Zoology, Kiel University, Kiel, Germany
| | - Julia Hoffmann
- Department of Molecular Physiology, Institute of Zoology, Kiel University, Kiel, Germany
| | - Jakob von Frieling
- Department of Molecular Physiology, Institute of Zoology, Kiel University, Kiel, Germany
| | - Mirjam Knop
- Department of Molecular Physiology, Institute of Zoology, Kiel University, Kiel, Germany
| | - Roxana Pfefferkorn
- Department of Molecular Physiology, Institute of Zoology, Kiel University, Kiel, Germany
| | - Iris Bruchhaus
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christine Fink
- Department of Molecular Physiology, Institute of Zoology, Kiel University, Kiel, Germany.,German Center for Lung Research (DZL), Airway Research Center North (ARCN), Grosshansdorf, Germany
| | - Thomas Roeder
- Department of Molecular Physiology, Institute of Zoology, Kiel University, Kiel, Germany.,German Center for Lung Research (DZL), Airway Research Center North (ARCN), Grosshansdorf, Germany
| |
Collapse
|
34
|
Aluru M, McKinney T, Venero AKL, Choudhury S, Torres M. Mitogen-activated protein kinases, Fus3 and Kss1, regulate chronological lifespan in yeast. Aging (Albany NY) 2017; 9:2587-2609. [PMID: 29273704 PMCID: PMC5764394 DOI: 10.18632/aging.101350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/11/2017] [Indexed: 04/19/2023]
Abstract
Using a systems-based approach, we have identified several genes not previously evaluated for a role(s) in chronological aging. Here, we have thoroughly investigated the chronological lifespan (CLS) of three of these genes (FUS3, KSS1 and HOG1) and their protein products, each of which have well-defined cell signaling roles in young cells. The importance of FUS3 and KSS1 in CLS are largely unknown and analyzed here for the first time. Using both qualitative and quantitative CLS assays, we show that deletion of any of the three MAPK's increases yeast lifespan. Furthermore, combined deletion of any MAPK and TOR1, most prominently fus3Δ/tor1Δ, produces a two-stage CLS response ending in lifespan increase greater than that of tor1Δ. Similar effects are achieved upon endogenous expression of a non-activatable form of Fus3. We speculate that the autophagy-promoting role of FUS3, which is inherently antagonistic to the role of TOR1, may in part be responsible for the differential aging phenotype of fus3Δ/tor1Δ. Consistent with this notion we show that nitrogen starvation, which promotes autophagy by deactivating Tor1, results in decreased CLS if FUS3 is deleted. Taken together, these results reveal a previously unrealized effect of mating-specific MAPKs in the chronological lifespan of yeast.
Collapse
Affiliation(s)
- Maneesha Aluru
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA 30332, USA
| | - Tori McKinney
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA 30332, USA
| | | | - Shilpa Choudhury
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA 30332, USA
| | - Matthew Torres
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA 30332, USA
| |
Collapse
|
35
|
Biological Aging and Life Span Based on Entropy Stress via Organ and Mitochondrial Metabolic Loading. ENTROPY 2017. [DOI: 10.3390/e19100566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
36
|
Tal S, Stern F, Polyak Z, Ichelzon I, Dror Y. Moderate 'multivitamin' supplementation improved folate and vitamin B12 status in the elderly. Exp Gerontol 2016; 84:101-106. [PMID: 27620820 DOI: 10.1016/j.exger.2016.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 10/21/2022]
Abstract
The dependent elderly are widely considered to be at higher risk of nutritional problems. Suboptimal micronutrient intake might put the elderly, especially those living in nursing homes, at high risk of morbidity. So far, no public authority, except for the Israel Ministry of Health, has issued particular recommendations for micronutrient supplementation for the elderly. We hypothesized that moderate 'multivitamin' supplementation could improve the vitamin status of the dependent elderly. The study took place in two nursing homes and included 144 dependent elderly (males/females, 35/109). Demographic and clinical data as well as routine blood tests were retrieved from the patient electronic medical records. After a two-year daily 'multivitamin' supplementation, containing 120μg of folic acid, there was a small and non-significant increase of 12% in serum folate; the same 'multivitamin' preparatory, containing 2.4μg of vitamin B12, significantly increased serum vitamin B12 by 8%. Three models of evaluation clearly showed the effect of a two- year vitamin supplementation: 1. The number of subjects with the lowest baseline concentration range, decreased, with moderate concentration, increased, with no difference at the higher concentrations; 2. Above each vitamin concentration, the number of subjects was higher than at baseline; 3. The two vitamins at the two lower concentration tertiles increased, and at the highest tertile, folate was not affected, whereas vitamin B12 decreased. Therefore, very moderate 'multivitamin' supplementation, as practiced in our study, has a high probability of improving vulnerable old population health status without causing any adverse effects to others.
Collapse
Affiliation(s)
- Sari Tal
- Geriatric Medicine Department, Kaplan Medical Center, Rehovot, The Hebrew University of Jerusalem, Israel
| | - Felicia Stern
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Zeev Polyak
- The Jaques H. Asseoff Seniors Citizens Home, Rishon LeZion, Israel; Ashdod Home for the Aged, Ashdod, Israel
| | - Ina Ichelzon
- Geriatric Medicine Department, Kaplan Medical Center, Rehovot, The Hebrew University of Jerusalem, Israel
| | - Yosef Dror
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
37
|
Pascacio-Villafán C, Williams T, Birke A, Aluja M. Nutritional and non-nutritional food components modulate phenotypic variation but not physiological trade-offs in an insect. Sci Rep 2016; 6:29413. [PMID: 27406923 PMCID: PMC4996112 DOI: 10.1038/srep29413] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/16/2016] [Indexed: 12/12/2022] Open
Abstract
Our understanding of how food modulates animal phenotypes and mediate trade-offs between life-history traits has benefited greatly from the study of combinations of nutritional and non-nutritional food components, such as plant secondary metabolites. We used a fruit fly pest, Anastrepha ludens, to examine phenotypic variation across larval, pupal and adult stages as a function of larval food with varying nutrient balance and content of chlorogenic acid, a secondary metabolite. Larval insects that fed on carbohydrate-biased diets relative to protein exhibited longer larval and pupal developmental periods, were often heavier as pupae and resisted desiccation and starvation for longer periods in the adult stage than insects fed on highly protein-biased diets. Except for a potential conflict between pupal development time and adult desiccation and starvation resistance, we did not detect physiological trade-offs mediated by the nutritional balance in larval food. Chlorogenic acid affected A. ludens development in a concentration and nutrient-dependent manner. Nutrients and host plant secondary metabolites in the larval diet induced changes in A. ludens phenotype and could influence fruit fly ecological interactions. We provide a unique experimental and modelling approach useful in generating predictive models of life history traits in a variety of organisms.
Collapse
Affiliation(s)
- Carlos Pascacio-Villafán
- Instituto de Ecología, A.C., Red de Manejo Biorracional de Plagas y Vectores, Xalapa 91070, Veracruz, Mexico
| | - Trevor Williams
- Instituto de Ecología, A.C., Red de Manejo Biorracional de Plagas y Vectores, Xalapa 91070, Veracruz, Mexico
| | - Andrea Birke
- Instituto de Ecología, A.C., Red de Manejo Biorracional de Plagas y Vectores, Xalapa 91070, Veracruz, Mexico
| | - Martín Aluja
- Instituto de Ecología, A.C., Red de Manejo Biorracional de Plagas y Vectores, Xalapa 91070, Veracruz, Mexico
| |
Collapse
|
38
|
Virk B, Jia J, Maynard CA, Raimundo A, Lefebvre J, Richards SA, Chetina N, Liang Y, Helliwell N, Cipinska M, Weinkove D. Folate Acts in E. coli to Accelerate C. elegans Aging Independently of Bacterial Biosynthesis. Cell Rep 2016; 14:1611-1620. [PMID: 26876180 PMCID: PMC4767678 DOI: 10.1016/j.celrep.2016.01.051] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/18/2015] [Accepted: 01/14/2016] [Indexed: 01/09/2023] Open
Abstract
Folates are cofactors for biosynthetic enzymes in all eukaryotic and prokaryotic cells. Animals cannot synthesize folate and must acquire it from their diet or microbiota. Previously, we showed that inhibiting E. coli folate synthesis increases C. elegans lifespan. Here, we show that restriction or supplementation of C. elegans folate does not influence lifespan. Thus, folate is required in E. coli to shorten worm lifespan. Bacterial proliferation in the intestine has been proposed as a mechanism for the life-shortening influence of E. coli. However, we found no correlation between C. elegans survival and bacterial growth in a screen of 1,000+ E. coli deletion mutants. Nine mutants increased worm lifespan robustly, suggesting specific gene regulation is required for the life-shortening activity of E. coli. Disrupting the biosynthetic folate cycle did not increase lifespan. Thus, folate acts through a growth-independent route in E. coli to accelerate animal aging. Limiting folate in E. coli, not in C. elegans, increases worm lifespan An E. coli screen for worm longevity identifies folate synthesis as a target Folate synthesis influences E. coli physiology independently of growth Bacterial folate synthesis may be a sustainable target for chronic disease
Collapse
Affiliation(s)
- Bhupinder Virk
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Jie Jia
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK; Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Shanghai 200092, China; Department of Clinical Nutrition, Xin Hua Hospital affiliated to SJTU School of Medicine, Shanghai 200092, China
| | - Claire A Maynard
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Adelaide Raimundo
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Jolien Lefebvre
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK; Department HIVB, VIVES, Wilgenstraat 32, 8800 Roeselare, Belgium
| | - Shane A Richards
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Natalia Chetina
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Yen Liang
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Noel Helliwell
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Marta Cipinska
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK; Biophysical Sciences Institute, Durham University, South Road, Durham DH1 3LE, UK
| | - David Weinkove
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK; Biophysical Sciences Institute, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
39
|
Galenza A, Hutchinson J, Campbell SD, Hazes B, Foley E. Glucose modulates Drosophila longevity and immunity independent of the microbiota. Biol Open 2016; 5:165-73. [PMID: 26794610 PMCID: PMC4823985 DOI: 10.1242/bio.015016] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The acquisition of nutrients is essential for maintenance of metabolic processes in all organisms. Nutritional imbalance contributes to myriad metabolic disorders that include malnutrition, diabetes and even cancer. Recently, the importance of macronutrient ratio of food has emerged as a critical factor to determine health outcomes. Here we show that individual modifications to a completely defined diet markedly impact multiple aspects of organism wellbeing in Drosophila melanogaster. Through a longitudinal survey of several diets we demonstrate that increased levels of dietary glucose significantly improve longevity and immunity in adult Drosophila. Our metagenomic studies show that relative macronutrient levels not only influence the host, but also have a profound impact on microbiota composition. However, we found that elevated dietary glucose extended the lifespan of adult flies even when raised in a germ-free environment. Furthermore, when challenged with a chronic enteric infection, flies fed a diet with added glucose had increased survival times even in the absence of an intact microbiota. Thus, in contrast to known links between the microbiota and animal health, our findings uncover a novel microbiota-independent response to diet that impacts host wellbeing. As dietary responses are highly conserved in animals, we believe our results offer a general understanding of the association between glucose metabolism and animal health.
Collapse
Affiliation(s)
- Anthony Galenza
- Department of Medical Microbiology and Immunology, Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Jaclyn Hutchinson
- Department of Medical Microbiology and Immunology, Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Shelagh D Campbell
- Department of Medical Microbiology and Immunology, Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Bart Hazes
- Department of Medical Microbiology and Immunology, Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Edan Foley
- Department of Medical Microbiology and Immunology, Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| |
Collapse
|
40
|
Lushchak OV, Gospodaryov DV, Yurkevych IS, Storey KB. OXIDIZED LIPIDS DID NOT REDUCE LIFESPAN IN THE FRUIT FLY, Drosophila melanogaster. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2016; 91:52-63. [PMID: 26446372 DOI: 10.1002/arch.21308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Aging is often associated with accumulation of oxidative damage in proteins and lipids. However, some studies do not support this view, raising the question of whether high levels of oxidative damage are associated with lifespan. In the current investigation, Drosophila melanogaster flies were kept on diets with 2 or 10% of either glucose or fructose. The lifespan, fecundity, and feeding as well as amounts of protein carbonyls (PC) and lipid peroxides (LOOH), activities of superoxide dismutase (SOD), catalase, glutathione-S-transferase (GST), and glutathione reductase activity of thioredoxin reductase (TrxR) were measured in "young" (10-day old) and "aged" (50-day old) flies. Flies maintained on diets with 10% carbohydrate lived longer than those on the 2% diets. However, neither lifespan nor fecundity was affected by the type of carbohydrate. The amount of PC was unaffected by diet and age, whereas flies fed on diets with 10% carbohydrate had about fivefold higher amounts of LOOH compared to flies maintained on the 2% carbohydrate diets. Catalase activity was significantly lower in flies fed on diets with 10% carbohydrates compared to flies on 2% carbohydrate diets. The activities of SOD, GST, and TrxR were not affected by the diet or age of the flies. The higher levels of LOOH in flies maintained on 10% carbohydrate did not reduce their lifespan, from which we infer that oxidative damage to only one class of biomolecules, particularly lipids, is not sufficient to influence lifespan.
Collapse
Affiliation(s)
- Oleh V Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Ihor S Yurkevych
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Canada
| |
Collapse
|
41
|
Rathor L, Akhoon BA, Pandey S, Srivastava S, Pandey R. Folic acid supplementation at lower doses increases oxidative stress resistance and longevity in Caenorhabditis elegans. AGE (DORDRECHT, NETHERLANDS) 2015; 37:113. [PMID: 26546011 PMCID: PMC5005867 DOI: 10.1007/s11357-015-9850-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/23/2015] [Indexed: 05/12/2023]
Abstract
Folic acid (FA) is an essential nutrient that the human body needs but cannot be synthesized on its own. Fortified foods and plant food sources such as green leafy vegetables, beans, fruits, and juices are good sources of FA to meet the daily requirements of the body. The aim was to evaluate the effect of dietary FA levels on the longevity of well-known experimental aging model Caenorhabditis elegans. Here, we show for first time that FA extends organism life span and causes a delay in aging. We observed that FA inhibits mechanistic target of rapamycin (mTOR) and insulin/insulin growth factor 1 (IGF-1) signaling pathways to control both oxidative stress levels and life span. The expression levels of stress- and life span-relevant gerontogenes, viz. daf-16, skn-1, and sir. 2.1, and oxidative enzymes, such as glutathione S-transferase 4 (GST-4) and superoxide dismutase 3 (SOD-3), were also found to be highly enhanced to attenuate the intracellular reactive oxygen species (ROS) damage and to delay the aging process. Our study promotes the use of FA to mitigate abiotic stresses and other aging-related ailments.
Collapse
Affiliation(s)
- Laxmi Rathor
- Microbial Technology and Nematology Department, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Bashir Akhlaq Akhoon
- Microbial Technology and Nematology Department, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Swapnil Pandey
- Microbial Technology and Nematology Department, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Swati Srivastava
- Microbial Technology and Nematology Department, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Rakesh Pandey
- Microbial Technology and Nematology Department, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India.
| |
Collapse
|
42
|
Dietary Restriction and Nutrient Balance in Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:4010357. [PMID: 26682004 PMCID: PMC4670908 DOI: 10.1155/2016/4010357] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/23/2015] [Accepted: 07/28/2015] [Indexed: 12/25/2022]
Abstract
Dietary regimens that favour reduced calorie intake delay aging and age-associated diseases. New evidences revealed that nutritional balance of dietary components without food restriction increases lifespan. Particular nutrients as several nitrogen sources, proteins, amino acid, and ammonium are implicated in life and healthspan regulation in different model organisms from yeast to mammals. Aging and dietary restriction interact through partially overlapping mechanisms in the activation of the conserved nutrient-signalling pathways, mainly the insulin/insulin-like growth factor (IIS) and the Target Of Rapamycin (TOR). The specific nutrients of dietary regimens, their balance, and how they interact with different genes and pathways are currently being uncovered. Taking into account that dietary regimes can largely influence overall human health and changes in risk factors such as cholesterol level and blood pressure, these new findings are of great importance to fully comprehend the interplay between diet and humans health.
Collapse
|
43
|
Medkour Y, Svistkova V, Titorenko VI. Cell-Nonautonomous Mechanisms Underlying Cellular and Organismal Aging. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 321:259-97. [PMID: 26811290 DOI: 10.1016/bs.ircmb.2015.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell-autonomous mechanisms underlying cellular and organismal aging in evolutionarily distant eukaryotes have been established; these mechanisms regulate longevity-defining processes within a single eukaryotic cell. Recent findings have provided valuable insight into cell-nonautonomous mechanisms modulating cellular and organismal aging in eukaryotes across phyla; these mechanisms involve a transmission of various longevity factors between different cells, tissues, and organisms. Herein, we review such cell-nonautonomous mechanisms of aging in eukaryotes. We discuss the following: (1) how low molecular weight transmissible longevity factors modulate aging and define longevity of cells in yeast populations cultured in liquid media or on solid surfaces, (2) how communications between proteostasis stress networks operating in neurons and nonneuronal somatic tissues define longevity of the nematode Caenorhabditis elegans by modulating the rates of aging in different tissues, and (3) how different bacterial species colonizing the gut lumen of C. elegans define nematode longevity by modulating the rate of organismal aging.
Collapse
Affiliation(s)
- Younes Medkour
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
44
|
Abstract
The second International Symposium on the Genetics of Aging and Life History was held at the campus of Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea, from May 14 to 16, 2014. Many leading scientists in the field of aging research from all over the world contributed to the symposium by attending and presenting their recent work and thoughts. The aim of the symposium was to stimulate international collaborations and interactions among scientists who work on the biology of aging. In the symposium, the most recent and exciting work on aging research was presented, covering a wide range of topics, including the genetics of aging, age-associated diseases, and cellular senescence. The work was conducted in various organisms, includingC. elegans, mice, plants, and humans. Topics covered in the symposium stimulated discussion of novel directions for future research on aging. The meeting ended with a commitment for the third International Symposium on the Genetics of Aging and Life History, which will be held in 2016.
Collapse
|
45
|
Longevity extension by phytochemicals. Molecules 2015; 20:6544-72. [PMID: 25871373 PMCID: PMC6272139 DOI: 10.3390/molecules20046544] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 12/31/2022] Open
Abstract
Phytochemicals are structurally diverse secondary metabolites synthesized by plants and also by non-pathogenic endophytic microorganisms living within plants. Phytochemicals help plants to survive environmental stresses, protect plants from microbial infections and environmental pollutants, provide them with a defense from herbivorous organisms and attract natural predators of such organisms, as well as lure pollinators and other symbiotes of these plants. In addition, many phytochemicals can extend longevity in heterotrophic organisms across phyla via evolutionarily conserved mechanisms. In this review, we discuss such mechanisms. We outline how structurally diverse phytochemicals modulate a complex network of signaling pathways that orchestrate a distinct set of longevity-defining cellular processes. This review also reflects on how the release of phytochemicals by plants into a natural ecosystem may create selective forces that drive the evolution of longevity regulation mechanisms in heterotrophic organisms inhabiting this ecosystem. We outline the most important unanswered questions and directions for future research in this vibrant and rapidly evolving field.
Collapse
|