1
|
Ostrom EL, Stuppard R, Mattson-Hughes A, Marcinek DJ. Inducible and reversible SOD2 knockdown in mouse skeletal muscle drives impaired pyruvate oxidation and reduced metabolic flexibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614547. [PMID: 39386714 PMCID: PMC11463494 DOI: 10.1101/2024.09.23.614547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Introduction Skeletal muscle mitochondrial dysfunction is a key characteristic of aging muscle and contributes to age related diseases such as sarcopenia, frailty, and type 2 diabetes. Mitochondrial oxidative distress has been implicated as a driving factor in these age-related diseases, however whether it is a cause, or a consequence of mitochondrial dysfunction remains to be determined. The development of more flexible genetic models is an important tool to test the mechanistic role of mitochondrial oxidative stress on skeletal muscle metabolic dysfunction. We characterize a new model of inducible and reversible mitochondrial redox stress using a tetracycline controlled skeletal muscle specific short hairpin RNA targeted to superoxide dismutase 2 (iSOD2). Methods iSOD2 KD and control (CON) animals were administered doxycycline for 3- or 12- weeks and followed for up to 24 weeks and mitochondrial respiration and muscle contraction were measured to define the time course of SOD2 KD and muscle functional changes and recovery. Results Maximum knockdown of SOD2 protein occurred by 6 weeks and recovered by 24 weeks after DOX treatment. Mitochondrial aconitase activity and maximum mitochondrial respiration declined in KD muscle by 12 weeks and recovered by 24 weeks. There were minimal changes in gene expression between KD and CON muscle. Twelve-week KD showed a small, but significant decrease in muscle fatigue resistance. The primary phenotype was reduced metabolic flexibility characterized by impaired pyruvate driven respiration when other substrates are present. The pyruvate dehydrogenase kinase inhibitor dichloroacetate partially restored pyruvate driven respiration, while the thiol reductant DTT did not. Conclusion We use a model of inducible and reversible skeletal muscle SOD2 knockdown to demonstrate that elevated matrix superoxide reversibly impairs mitochondrial substrate flexibility characterized by impaired pyruvate oxidation. Despite the bioenergetic effect, the limited change in gene expression suggests that the elevated redox stress in this model is confined to the mitochondrial matrix.
Collapse
Affiliation(s)
- Ethan L Ostrom
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Rudy Stuppard
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Aurora Mattson-Hughes
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - David J Marcinek
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
2
|
Chambers TL, Dimet-Wiley A, Keeble AR, Haghani A, Lo WJ, Kang G, Brooke R, Horvath S, Fry CS, Watowich SJ, Wen Y, Murach KA. Methylome-proteome integration after late-life voluntary exercise training reveals regulation and target information for improved skeletal muscle health. J Physiol 2024. [PMID: 39058663 DOI: 10.1113/jp286681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Exercise is a potent stimulus for combatting skeletal muscle ageing. To study the effects of exercise on muscle in a preclinical setting, we developed a combined endurance-resistance training stimulus for mice called progressive weighted wheel running (PoWeR). PoWeR improves molecular, biochemical, cellular and functional characteristics of skeletal muscle and promotes aspects of partial epigenetic reprogramming when performed late in life (22-24 months of age). In this investigation, we leveraged pan-mammalian DNA methylome arrays and tandem mass-spectrometry proteomics in skeletal muscle to provide detailed information on late-life PoWeR adaptations in female mice relative to age-matched sedentary controls (n = 7-10 per group). Differential CpG methylation at conserved promoter sites was related to transcriptional regulation genes as well as Nr4a3, Hes1 and Hox genes after PoWeR. Using a holistic method of -omics integration called binding and expression target analysis (BETA), methylome changes were associated with upregulated proteins related to global and mitochondrial translation after PoWeR (P = 0.03). Specifically, BETA implicated methylation control of ribosomal, mitoribosomal, and mitochondrial complex I protein abundance after training. DNA methylation may also influence LACTB, MIB1 and UBR4 protein induction with exercise - all are mechanistically linked to muscle health. Computational cistrome analysis predicted several transcription factors including MYC as regulators of the exercise trained methylome-proteome landscape, corroborating prior late-life PoWeR transcriptome data. Correlating the proteome to muscle mass and fatigue resistance revealed positive relationships with VPS13A and NPL levels, respectively. Our findings expose differential epigenetic and proteomic adaptations associated with translational regulation after PoWeR that could influence skeletal muscle mass and function in aged mice. KEY POINTS: Late-life combined endurance-resistance exercise training from 22-24 months of age in mice is shown to improve molecular, biochemical, cellular and in vivo functional characteristics of skeletal muscle and promote aspects of partial epigenetic reprogramming and epigenetic age mitigation. Integration of DNA CpG 36k methylation arrays using conserved sites (which also contain methylation ageing clock sites) with exploratory proteomics in skeletal muscle extends our prior work and reveals coordinated and widespread regulation of ribosomal, translation initiation, mitochondrial ribosomal (mitoribosomal) and complex I proteins after combined voluntary exercise training in a sizeable cohort of female mice (n = 7-10 per group and analysis). Multi-omics integration predicted epigenetic regulation of serine β-lactamase-like protein (LACTB - linked to tumour resistance in muscle), mind bomb 1 (MIB1 - linked to satellite cell and type 2 fibre maintenance) and ubiquitin protein ligase E3 component N-recognin 4 (UBR4 - linked to muscle protein quality control) after training. Computational cistrome analysis identified MYC as a regulator of the late-life training proteome, in agreement with prior transcriptional analyses. Vacuolar protein sorting 13 homolog A (VPS13A) was positively correlated to muscle mass, and the glycoprotein/glycolipid associated sialylation enzyme N-acetylneuraminate pyruvate lyase (NPL) was associated to in vivo muscle fatigue resistance.
Collapse
Affiliation(s)
- Toby L Chambers
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA
| | | | - Alexander R Keeble
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Amin Haghani
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Wen-Juo Lo
- Department of Educational Statistics and Research Methods, University of Arkansas, Fayetteville, AR, USA
| | - Gyumin Kang
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Robert Brooke
- Epigenetic Clock Development Foundation, Los Angeles, CA, USA
| | - Steve Horvath
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
- Epigenetic Clock Development Foundation, Los Angeles, CA, USA
| | - Christopher S Fry
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Stanley J Watowich
- Ridgeline Therapeutics, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yuan Wen
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Kevin A Murach
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
3
|
González JT, Thrush K, Meer M, Levine ME, Higgins-Chen AT. Age-Invariant Genes: Multi-Tissue Identification and Characterization of Murine Reference Genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588721. [PMID: 38645168 PMCID: PMC11030416 DOI: 10.1101/2024.04.09.588721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Studies of the aging transcriptome focus on genes that change with age. But what can we learn from age-invariant genes-those that remain unchanged throughout the aging process? These genes also have a practical application: they serve as reference genes (often called housekeeping genes) in expression studies. Reference genes have mostly been identified and validated in young organisms, and no systematic investigation has been done across the lifespan. Here, we build upon a common pipeline for identifying reference genes in RNA-seq datasets to identify age-invariant genes across seventeen C57BL/6 mouse tissues (brain, lung, bone marrow, muscle, white blood cells, heart, small intestine, kidney, liver, pancreas, skin, brown, gonadal, marrow, and subcutaneous adipose tissue) spanning 1 to 21+ months of age. We identify 9 pan-tissue age-invariant genes and many tissue-specific age-invariant genes. These genes are stable across the lifespan and are validated in independent bulk RNA-seq datasets and RT-qPCR. We find age-invariant genes have shorter transcripts on average and are enriched for CpG islands. Interestingly, pathway enrichment analysis for age-invariant genes identifies an overrepresentation of molecular functions associated with some, but not all, hallmarks of aging. Thus, though hallmarks of aging typically involve changes in cell maintenance mechanisms, select genes associated with these hallmarks resist fluctuations in expression with age. Finally, our analysis concludes no classical reference gene is appropriate for aging studies in all tissues. Instead, we provide tissue-specific and pan-tissue genes for assays utilizing reference gene normalization (i.e., RT-qPCR) that can be applied to animals across the lifespan.
Collapse
Affiliation(s)
- John T. González
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Kyra Thrush
- Altos Labs, San Diego Institute of Sciences, San Diego, CA, USA
| | - Margarita Meer
- Altos Labs, San Diego Institute of Sciences, San Diego, CA, USA
| | - Morgan E. Levine
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Altos Labs, San Diego Institute of Sciences, San Diego, CA, USA
| | - Albert T. Higgins-Chen
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven CT, USA
| |
Collapse
|
4
|
Marzetti E, Calvani R, Coelho-Júnior HJ, Landi F, Picca A. Mitochondrial Quantity and Quality in Age-Related Sarcopenia. Int J Mol Sci 2024; 25:2052. [PMID: 38396729 PMCID: PMC10889427 DOI: 10.3390/ijms25042052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Sarcopenia, the age-associated decline in skeletal muscle mass and strength, is a condition with a complex pathophysiology. Among the factors underlying the development of sarcopenia are the progressive demise of motor neurons, the transition from fast to slow myosin isoform (type II to type I fiber switch), and the decrease in satellite cell number and function. Mitochondrial dysfunction has been indicated as a key contributor to skeletal myocyte decline and loss of physical performance with aging. Several systems have been implicated in the regulation of muscle plasticity and trophism such as the fine-tuned and complex regulation between the stimulator of protein synthesis, mechanistic target of rapamycin (mTOR), and the inhibitor of mTOR, AMP-activated protein kinase (AMPK), that promotes muscle catabolism. Here, we provide an overview of the molecular mechanisms linking mitochondrial signaling and quality with muscle homeostasis and performance and discuss the main pathways elicited by their imbalance during age-related muscle wasting. We also discuss lifestyle interventions (i.e., physical exercise and nutrition) that may be exploited to preserve mitochondrial function in the aged muscle. Finally, we illustrate the emerging possibility of rescuing muscle tissue homeostasis through mitochondrial transplantation.
Collapse
Affiliation(s)
- Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (R.C.); (F.L.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy;
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (R.C.); (F.L.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy;
| | - Hélio José Coelho-Júnior
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy;
| | - Francesco Landi
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (R.C.); (F.L.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy;
| | - Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (R.C.); (F.L.)
- Department of Medicine and Surgery, LUM University, SS100 km 18, 70010 Casamassima, Italy
| |
Collapse
|
5
|
Mishra E, Thakur MK. Vitamin B 12-folic acid supplementation improves memory by altering mitochondrial dynamics, dendritic arborization, and neurodegeneration in old and amnesic male mice. J Nutr Biochem 2024; 124:109536. [PMID: 37981108 DOI: 10.1016/j.jnutbio.2023.109536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/28/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
Memory impairment during aging and amnesia is attributed to compromised mitochondrial dynamics and mitophagy and other mitochondrial quality control mechanisms. Mitochondrial dynamics involves the continuous process of fission and fusion of mitochondria within a cell and is a fundamental mechanism for regulating mitochondrial quality and function. An extensive range of potential nutritional supplements has been shown to improve mitochondrial health, synaptic plasticity, and cognitive functions. Previous findings revealed that supplementation of vitamin B12-folic acid reduces locomotor deficits and mitochondrial abnormalities but enhances mitochondrial and neuronal health. The present study aims to explore the impact of combined vitamin B12-folic acid supplementation on mitochondrial dynamics, neuronal health, and memory decline in old age and scopolamine-induced amnesia, which remains elusive. The results demonstrated that supplementation led to a noteworthy increase in recognition and spatial memory and expression of memory-related protein BDNF in old and amnesic mice. Moreover, the decrease in the fragmented mitochondrial number was validated by the downregulation of mitochondrial fission p-Drp1 (S616) protein and the increase in elongated mitochondria by the upregulation of mitochondrial fusion Mfn2 protein. The increased spine density and dendritic arborization in old and amnesic mice upon supplementation were confirmed by the enhanced expression level of PSD95 and synaptophysin. Furthermore, supplementation reduced ROS production, inhibited Caspase-3 activation, mitigated neurodegeneration, and enhanced mitochondrial membrane potential, ATP production, Vdac1 expression, myelination, in old and amnesic mice. Collectively, our findings imply that combined supplementation of vitamin B12-folic acid improves mitochondrial dynamics and neuronal health, and leads to recovery of memory during old age and amnesia.
Collapse
Affiliation(s)
- Ela Mishra
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi, India.
| | - Mahendra Kumar Thakur
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
6
|
Campbell MD, Djukovic D, Raftery D, Marcinek DJ. Age-related changes of skeletal muscle metabolic response to contraction are also sex-dependent. J Physiol 2023:10.1113/JP285124. [PMID: 37742081 PMCID: PMC10959763 DOI: 10.1113/jp285124] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023] Open
Abstract
Mitochondria adapt to increased energy demands during muscle contraction by acutely altering metabolite fluxes and substrate oxidation. With age, an impaired mitochondrial metabolic response may contribute to reduced exercise tolerance and decreased skeletal muscle mass, specific force, increased overall fatty depositions in the skeletal muscle, frailty and depressed energy maintenance. We hypothesized that elevated energy stress in mitochondria with age alters the capacity of mitochondria to utilize different substrates following muscle contraction. To test this hypothesis, we used in vivo electrical stimulation to simulate high-intensity intervals (HII) or low intensity steady-state (LISS) exercise in young (5-7 months) and aged (27-29 months) male and female mice to characterize effects of age and sex on mitochondrial substrate utilization in skeletal muscle following contraction. Mitochondrial respiration using glutamate decreased in aged males following HII and glutamate oxidation was inhibited following HII in both the contracted and non-stimulated muscle of aged female muscle. Analyses of the muscle metabolome of female mice indicated that changes in metabolic pathways induced by HII and LISS contractions in young muscle are absent in aged muscle. To test improved mitochondrial function on substrate utilization following HII, we treated aged females with elamipretide (ELAM), a mitochondrially-targeted peptide shown to improve mitochondrial bioenergetics and restore redox status in aged muscle. ELAM removed inhibition of glutamate oxidation and showed increased metabolic pathway changes following HII, suggesting rescuing redox status and improving bioenergetic function in mitochondria from aged muscle increases glutamate utilization and enhances the metabolic response to muscle contraction in aged muscle. KEY POINTS: Acute local contraction of gastrocnemius can systemically alter mitochondrial respiration in non-stimulated muscle. Age-related changes in mitochondrial respiration using glutamate or palmitoyl carnitine following contraction are sex-dependent. Respiration using glutamate after high-intensity contraction is inhibited in aged female muscle. Metabolite level and pathway changes following muscle contraction decrease with age in female mice. Treatment with the mitochondrially-targeted peptide elamipretide can partially rescue metabolite response to muscle contraction.
Collapse
Affiliation(s)
| | - Danijel Djukovic
- Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
| | - Daniel Raftery
- Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
| | | |
Collapse
|
7
|
Miller MJ, Marcotte GR, Basisty N, Wehrfritz C, Ryan ZC, Strub MD, McKeen AT, Stern JI, Nath KA, Rasmussen BB, Judge AR, Schilling B, Ebert SM, Adams CM. The transcription regulator ATF4 is a mediator of skeletal muscle aging. GeroScience 2023; 45:2525-2543. [PMID: 37014538 PMCID: PMC10071239 DOI: 10.1007/s11357-023-00772-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/10/2023] [Indexed: 04/05/2023] Open
Abstract
Aging slowly erodes skeletal muscle strength and mass, eventually leading to profound functional deficits and muscle atrophy. The molecular mechanisms of skeletal muscle aging are not well understood. To better understand mechanisms of muscle aging, we investigated the potential role of ATF4, a transcription regulatory protein that can rapidly promote skeletal muscle atrophy in young animals deprived of adequate nutrition or activity. To test the hypothesis that ATF4 may be involved in skeletal muscle aging, we studied fed and active muscle-specific ATF4 knockout mice (ATF4 mKO mice) at 6 months of age, when wild-type mice have achieved peak muscle mass and function, and at 22 months of age, when wild-type mice have begun to manifest age-related muscle atrophy and weakness. We found that 6-month-old ATF4 mKO mice develop normally and are phenotypically indistinguishable from 6-month-old littermate control mice. However, as ATF4 mKO mice become older, they exhibit significant protection from age-related declines in strength, muscle quality, exercise capacity, and muscle mass. Furthermore, ATF4 mKO muscles are protected from some of the transcriptional changes characteristic of normal muscle aging (repression of certain anabolic mRNAs and induction of certain senescence-associated mRNAs), and ATF4 mKO muscles exhibit altered turnover of several proteins with important roles in skeletal muscle structure and metabolism. Collectively, these data suggest ATF4 as an essential mediator of skeletal muscle aging and provide new insight into a degenerative process that impairs the health and quality of life of many older adults.
Collapse
Affiliation(s)
- Matthew J Miller
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Departments of Medicine and Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- University of Iowa, Iowa City, IA, USA
| | - George R Marcotte
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Departments of Medicine and Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- University of Iowa, Iowa City, IA, USA
| | - Nathan Basisty
- Buck Institute for Research on Aging, Novato, CA, USA
- National Institute on Aging, NIH, Baltimore, MD, USA
| | | | - Zachary C Ryan
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Departments of Medicine and Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Matthew D Strub
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Departments of Medicine and Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | | | - Jennifer I Stern
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Departments of Medicine and Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Karl A Nath
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Departments of Medicine and Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Blake B Rasmussen
- University of Texas Medical Branch, Galveston, TX, USA
- Emmyon, Inc., Rochester, MN, USA
| | - Andrew R Judge
- University of Florida, Gainesville, FL, USA
- Emmyon, Inc., Rochester, MN, USA
| | | | - Scott M Ebert
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Departments of Medicine and Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Emmyon, Inc., Rochester, MN, USA.
| | - Christopher M Adams
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Departments of Medicine and Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Emmyon, Inc., Rochester, MN, USA.
- Iowa City Veterans Affairs Medical Center, Iowa City, IA, USA.
| |
Collapse
|
8
|
Pharaoh G, Ostrom EL, Stuppard R, Campbell M, Borghardt JM, Franti M, Filareto A, Marcinek DJ. A novel mitochondrial complex I ROS inhibitor partially improves muscle regeneration in adult but not old mice. Redox Biol 2023; 64:102770. [PMID: 37295159 PMCID: PMC10267642 DOI: 10.1016/j.redox.2023.102770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
It is unclear whether mitochondrial dysfunction and redox stress contribute to impaired age-related muscle regenerative capacity. Here we characterized a novel compound, BI4500, that inhibits the release of reactive oxygen species (ROS) from the quinone site in mitochondrial complex I (site IQ). We tested the hypothesis that ROS release from site IQ contributes to impaired regenerative capacity in aging muscle. Electron transfer system site-specific ROS production was measured in adult and aged mouse isolated muscle mitochondria and permeabilized gastrocnemius fibers. BI4500 inhibited ROS production from site IQ in a concentration-dependent manner (IC50 = ∼985 nM) by inhibiting ROS release without impairing complex I-linked respiration. In vivo BI4500 treatment decreased ROS production from site IQ. Muscle injury and sham injury were induced using barium chloride or vehicle injection to the tibialis anterior (TA) muscle in adult and aged male mice. On the same day as injury, mice began a daily gavage of 30 mg/kg BI4500 (BI) or placebo (PLA). Muscle regeneration (H&E, Sirius Red, Pax7) was measured at 5 and 35 days after injury. Muscle injury increased centrally nucleated fibers (CNFs) and fibrosis with no treatment or age effect. There was a significant age by treatment interaction for CNFs at 5- and 35-days post injury with significantly more CNFs in BI adults compared to PLA adults. Muscle fiber cross-sectional area (CSA) recovered significantly more in adult BI mice (-89 ± 365 μm2) compared to old PLA (-599 ± 153 μm2) and old BI (-535 ± 222 μm2, mean ± SD). In situ TA force recovery was measured 35 days after injury and was not significantly different by age or treatment. Inhibition of site IQ ROS partially improves muscle regeneration in adult but not old muscle demonstrating a role for CI ROS in the response to muscle injury. Site IQ ROS does not contribute to impaired regenerative capacity in aging.
Collapse
Affiliation(s)
- Gavin Pharaoh
- Department of Radiology, University of Washington School of Medicine, USA
| | - Ethan L Ostrom
- Department of Radiology, University of Washington School of Medicine, USA
| | - Rudy Stuppard
- Department of Radiology, University of Washington School of Medicine, USA
| | - Matthew Campbell
- Department of Radiology, University of Washington School of Medicine, USA
| | - Jens Markus Borghardt
- Research DMPK, Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Michael Franti
- Research Beyond Borders, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Antonio Filareto
- Research Beyond Borders, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - David J Marcinek
- Department of Radiology, University of Washington School of Medicine, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, USA.
| |
Collapse
|
9
|
Musci RV, Andrie KM, Walsh MA, Valenti ZJ, Linden MA, Afzali MF, Bork S, Campbell M, Johnson T, Kail TE, Martinez R, Nguyen T, Sanford J, Wist S, Murrell MD, McCord JM, Hybertson BM, Zhang Q, Javors MA, Santangelo KS, Hamilton KL. Phytochemical compound PB125 attenuates skeletal muscle mitochondrial dysfunction and impaired proteostasis in a model of musculoskeletal decline. J Physiol 2023; 601:2189-2216. [PMID: 35924591 PMCID: PMC9898472 DOI: 10.1113/jp282273] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 07/28/2022] [Indexed: 02/06/2023] Open
Abstract
Impaired mitochondrial function and disrupted proteostasis contribute to musculoskeletal dysfunction. However, few interventions simultaneously target these two drivers to prevent musculoskeletal decline. Nuclear factor erythroid 2-related factor 2 (Nrf2) activates a transcriptional programme promoting cytoprotection, metabolism, and proteostasis. We hypothesized daily treatment with a purported Nrf2 activator, PB125, in Hartley guinea pigs, a model of musculoskeletal decline, would attenuate the progression of skeletal muscle mitochondrial dysfunction and impaired proteostasis and preserve musculoskeletal function. We treated 2- and 5-month-old male and female Hartley guinea pigs for 3 and 10 months, respectively, with the phytochemical compound PB125. Longitudinal assessments of voluntary mobility were measured using Any-MazeTM open-field enclosure monitoring. Cumulative skeletal muscle protein synthesis rates were measured using deuterium oxide over the final 30 days of treatment. Mitochondrial oxygen consumption in soleus muscles was measured using high resolution respirometry. In both sexes, PB125 (1) increased electron transfer system capacity; (2) attenuated the disease/age-related decline in coupled and uncoupled mitochondrial respiration; and (3) attenuated declines in protein synthesis in the myofibrillar, mitochondrial and cytosolic subfractions of the soleus. These effects were not associated with statistically significant prolonged maintenance of voluntary mobility in guinea pigs. Collectively, treatment with PB125 contributed to maintenance of skeletal muscle mitochondrial respiration and proteostasis in a pre-clinical model of musculoskeletal decline. Further investigation is necessary to determine if these documented effects of PB125 are also accompanied by slowed progression of other aspects of musculoskeletal dysfunction. KEY POINTS: Aside from exercise, there are no effective interventions for musculoskeletal decline, which begins in the fifth decade of life and contributes to disability and cardiometabolic diseases. Targeting both mitochondrial dysfunction and impaired protein homeostasis (proteostasis), which contribute to the age and disease process, may mitigate the progressive decline in overall musculoskeletal function (e.g. gait, strength). A potential intervention to target disease drivers is to stimulate nuclear factor erythroid 2-related factor 2 (Nrf2) activation, which leads to the transcription of genes responsible for redox homeostasis, proteome maintenance and mitochondrial energetics. Here, we tested a purported phytochemical Nrf2 activator, PB125, to improve mitochondrial function and proteostasis in male and female Hartley guinea pigs, which are a model for musculoskeletal ageing. PB125 improved mitochondrial respiration and attenuated disease- and age-related declines in skeletal muscle protein synthesis, a component of proteostasis, in both male and female Hartley guinea pigs.
Collapse
Affiliation(s)
- Robert V. Musci
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Kendra M. Andrie
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Maureen A. Walsh
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Zackary J. Valenti
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Melissa A. Linden
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Maryam F. Afzali
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Sydney Bork
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Margaret Campbell
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Taylor Johnson
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Thomas E. Kail
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Richard Martinez
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Tessa Nguyen
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Joseph Sanford
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Sara Wist
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | | | - Joe M. McCord
- Pathways Bioscience, Aurora, CO
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Brooks M. Hybertson
- Pathways Bioscience, Aurora, CO
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Qian Zhang
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | | | - Kelly S. Santangelo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Karyn L. Hamilton
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
- Columbine Health Systems Center for Healthy Aging, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
10
|
Schäfer JA, Sutandy FXR, Münch C. Omics-based approaches for the systematic profiling of mitochondrial biology. Mol Cell 2023; 83:911-926. [PMID: 36931258 DOI: 10.1016/j.molcel.2023.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 03/18/2023]
Abstract
Mitochondria are essential for cellular functions such as metabolism and apoptosis. They dynamically adapt to the changing environmental demands by adjusting their protein, nucleic acid, metabolite, and lipid contents. In addition, the mitochondrial components are modulated on different levels in response to changes, including abundance, activity, and interaction. A wide range of omics-based approaches has been developed to be able to explore mitochondrial adaptation and how mitochondrial function is compromised in disease contexts. Here, we provide an overview of the omics methods that allow us to systematically investigate the different aspects of mitochondrial biology. In addition, we show examples of how these methods have provided new biological insights. The emerging use of these toolboxes provides a more comprehensive understanding of the processes underlying mitochondrial function.
Collapse
Affiliation(s)
- Jasmin Adriana Schäfer
- Institute of Biochemistry II, Goethe University Frankfurt, Theodor-Stern-Kai 7, Haus 75, 60590 Frankfurt am Main, Germany
| | - F X Reymond Sutandy
- Institute of Biochemistry II, Goethe University Frankfurt, Theodor-Stern-Kai 7, Haus 75, 60590 Frankfurt am Main, Germany
| | - Christian Münch
- Institute of Biochemistry II, Goethe University Frankfurt, Theodor-Stern-Kai 7, Haus 75, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
11
|
Bakhtina AA, Pharaoh GA, Campbell MD, Keller A, Stuppard RS, Marcinek DJ, Bruce JE. Skeletal muscle mitochondrial interactome remodeling is linked to functional decline in aged female mice. NATURE AGING 2023; 3:313-326. [PMID: 37118428 PMCID: PMC10154043 DOI: 10.1038/s43587-023-00366-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 01/10/2023] [Indexed: 04/30/2023]
Abstract
Genomic, transcriptomic and proteomic approaches have been used to gain insight into molecular underpinnings of aging in laboratory animals and in humans. However, protein function in biological systems is under complex regulation and includes factors besides abundance levels, such as modifications, localization, conformation and protein-protein interactions. By making use of quantitative chemical cross-linking technologies, we show that changes in the muscle mitochondrial interactome contribute to mitochondrial functional decline in aging in female mice. Specifically, we identify age-related changes in protein cross-links relating to assembly of electron transport system complexes I and IV, activity of glutamate dehydrogenase, and coenzyme-A binding in fatty acid β-oxidation and tricarboxylic acid cycle enzymes. These changes show a remarkable correlation with complex I respiration differences within the same young-old animal pairs. Each observed cross-link can serve as a protein conformational or protein-protein interaction probe in future studies, which will provide further molecular insights into commonly observed age-related phenotypic differences. Therefore, this data set could become a valuable resource for additional in-depth molecular studies that are needed to better understand complex age-related molecular changes.
Collapse
Affiliation(s)
- Anna A Bakhtina
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Gavin A Pharaoh
- Department of Radiology, University of Washington, Seattle, WA, USA
| | | | - Andrew Keller
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, WA, USA.
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
12
|
Goh J, Wong E, Soh J, Maier AB, Kennedy BK. Targeting the molecular & cellular pillars of human aging with exercise. FEBS J 2023; 290:649-668. [PMID: 34968001 DOI: 10.1111/febs.16337] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 10/29/2021] [Accepted: 12/29/2021] [Indexed: 02/04/2023]
Abstract
Biological aging is the main driver of age-associated chronic diseases. In 2014, the United States National Institute of Aging (NIA) sponsored a meeting between several investigators in the field of aging biology, who identified seven biological pillars of aging and a consensus review, "Geroscience: Linking Aging to Chronic Disease," was published. The pillars of aging demonstrated the conservation of aging pathways in diverse model organisms and thus represent a useful framework with which to study human aging. In this present review, we revisit the seven pillars of aging from the perspective of exercise and discuss how regular physical exercise can modulate these pillars to stave off age-related chronic diseases and maintain functional capacity.
Collapse
Affiliation(s)
- Jorming Goh
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Centre for Healthy Longevity, National University Health System (NUHS), Singapore
| | - Esther Wong
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Centre for Healthy Longevity, National University Health System (NUHS), Singapore
| | - Janjira Soh
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| | - Andrea Britta Maier
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Centre for Healthy Longevity, National University Health System (NUHS), Singapore.,Department of Medicine, National University of Singapore, Singapore.,Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia.,Department of Human Movement Sciences, @AgeAmsterdam, Amsterdam Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Brian Keith Kennedy
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Centre for Healthy Longevity, National University Health System (NUHS), Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| |
Collapse
|
13
|
Xie Y, Zhang Y, Sun A, Peng Y, Hou W, Xiang C, Zhang G, Lai B, Hou X, Zheng F, Wang F, Liu G. The coupling of mitoproteolysis and oxidative phosphorylation enables tracking of an active mitochondrial state through MitoTimer fluorescence. Redox Biol 2022; 56:102447. [PMID: 36027677 PMCID: PMC9425061 DOI: 10.1016/j.redox.2022.102447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/29/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
The regulation of mitochondria function and health is a central node in tissue maintenance, ageing as well as the pathogenesis of various diseases. However, the maintenance of an active mitochondrial functional state and its quality control mechanisms remain incompletely understood. By studying mice with a mitochondria-targeted reporter that shifts its fluorescence from "green" to "red" with time (MitoTimer), we found MitoTimer fluorescence spectrum was heavily dependent on the oxidative metabolic state in the skeletal muscle fibers. The mitoproteolytic activity was enhanced in an energy dependent manner, and accelerated the turnover of MitoTimer protein and respiratory chain substrate, responsible for a green predominant MitoTimer fluorescence spectrum under the oxidative conditions. PGC1α, as well as anti-ageing regents promoted enhanced mitoproteolysis. In addition, cells with the green predominant mitochondria exhibited lower levels of MitoSox and protein carbonylation, indicating a favorable redox state. Thus, we identified MitoTimer as a probe for mitoproteolytic activity in vivo and found a heightened control of mitoproteolysis in the oxidative metabolic state, providing a framework for understanding the maintenance of active oxidative metabolism while limiting oxidative damages.
Collapse
Affiliation(s)
- Yinyin Xie
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animals for Disease Study and Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, 12 Xuefu Road, Pukou High-Tec District, Nanjing, JiangSu Province, 210061, China
| | - Yannan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animals for Disease Study and Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, 12 Xuefu Road, Pukou High-Tec District, Nanjing, JiangSu Province, 210061, China
| | - Aina Sun
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animals for Disease Study and Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, 12 Xuefu Road, Pukou High-Tec District, Nanjing, JiangSu Province, 210061, China
| | - Yamei Peng
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animals for Disease Study and Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, 12 Xuefu Road, Pukou High-Tec District, Nanjing, JiangSu Province, 210061, China
| | - Weikang Hou
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animals for Disease Study and Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, 12 Xuefu Road, Pukou High-Tec District, Nanjing, JiangSu Province, 210061, China
| | - Cong Xiang
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animals for Disease Study and Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, 12 Xuefu Road, Pukou High-Tec District, Nanjing, JiangSu Province, 210061, China
| | - Guoxin Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animals for Disease Study and Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, 12 Xuefu Road, Pukou High-Tec District, Nanjing, JiangSu Province, 210061, China
| | - Beibei Lai
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animals for Disease Study and Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, 12 Xuefu Road, Pukou High-Tec District, Nanjing, JiangSu Province, 210061, China
| | - Xiaoshuang Hou
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animals for Disease Study and Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, 12 Xuefu Road, Pukou High-Tec District, Nanjing, JiangSu Province, 210061, China
| | - Fangfang Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animals for Disease Study and Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, 12 Xuefu Road, Pukou High-Tec District, Nanjing, JiangSu Province, 210061, China
| | - Fan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animals for Disease Study and Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, 12 Xuefu Road, Pukou High-Tec District, Nanjing, JiangSu Province, 210061, China
| | - Geng Liu
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animals for Disease Study and Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, 12 Xuefu Road, Pukou High-Tec District, Nanjing, JiangSu Province, 210061, China.
| |
Collapse
|
14
|
Kluever V, Russo B, Mandad S, Kumar NH, Alevra M, Ori A, Rizzoli SO, Urlaub H, Schneider A, Fornasiero EF. Protein lifetimes in aged brains reveal a proteostatic adaptation linking physiological aging to neurodegeneration. SCIENCE ADVANCES 2022; 8:eabn4437. [PMID: 35594347 PMCID: PMC9122331 DOI: 10.1126/sciadv.abn4437] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/07/2022] [Indexed: 05/27/2023]
Abstract
Aging is a prominent risk factor for neurodegenerative disorders (NDDs); however, the molecular mechanisms rendering the aged brain particularly susceptible to neurodegeneration remain unclear. Here, we aim to determine the link between physiological aging and NDDs by exploring protein turnover using metabolic labeling and quantitative pulse-SILAC proteomics. By comparing protein lifetimes between physiologically aged and young adult mice, we found that in aged brains protein lifetimes are increased by ~20% and that aging affects distinct pathways linked to NDDs. Specifically, a set of neuroprotective proteins are longer-lived in aged brains, while some mitochondrial proteins linked to neurodegeneration are shorter-lived. Strikingly, we observed a previously unknown alteration in proteostasis that correlates to parsimonious turnover of proteins with high biosynthetic costs, revealing an overall metabolic adaptation that preludes neurodegeneration. Our findings suggest that future therapeutic paradigms, aimed at addressing these metabolic adaptations, might be able to delay NDD onset.
Collapse
Affiliation(s)
- Verena Kluever
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Belisa Russo
- German Center for Neurodegenerative Diseases, DZNE Bonn, Venusberg Campus 1, 53127 Bonn, Germany
| | - Sunit Mandad
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, 37077 Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Nisha Hemandhar Kumar
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Mihai Alevra
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Silvio O. Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Henning Urlaub
- Department of Clinical Chemistry, University Medical Center Göttingen, 37077 Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases, DZNE Bonn, Venusberg Campus 1, 53127 Bonn, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
| | - Eugenio F. Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
15
|
Williams EG, Pfister N, Roy S, Statzer C, Haverty J, Ingels J, Bohl C, Hasan M, Čuklina J, Bühlmann P, Zamboni N, Lu L, Ewald CY, Williams RW, Aebersold R. Multiomic profiling of the liver across diets and age in a diverse mouse population. Cell Syst 2022; 13:43-57.e6. [PMID: 34666007 PMCID: PMC8776606 DOI: 10.1016/j.cels.2021.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/12/2021] [Accepted: 09/14/2021] [Indexed: 01/21/2023]
Abstract
We profiled the liver transcriptome, proteome, and metabolome in 347 individuals from 58 isogenic strains of the BXD mouse population across age (7 to 24 months) and diet (low or high fat) to link molecular variations to metabolic traits. Several hundred genes are affected by diet and/or age at the transcript and protein levels. Orthologs of two aging-associated genes, St7 and Ctsd, were knocked down in C. elegans, reducing longevity in wild-type and mutant long-lived strains. The multiomics data were analyzed as segregating gene networks according to each independent variable, providing causal insight into dietary and aging effects. Candidates were cross-examined in an independent diversity outbred mouse liver dataset segregating for similar diets, with ∼80%-90% of diet-related candidate genes found in common across datasets. Together, we have developed a large multiomics resource for multivariate analysis of complex traits and demonstrate a methodology for moving from observational associations to causal connections.
Collapse
Affiliation(s)
- Evan G Williams
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - Niklas Pfister
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Suheeta Roy
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Cyril Statzer
- Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Jack Haverty
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jesse Ingels
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Casey Bohl
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Moaraj Hasan
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland
| | - Jelena Čuklina
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland
| | - Peter Bühlmann
- Department of Mathematics, Seminar for Statistics, ETH Zürich, Zurich, Switzerland
| | - Nicola Zamboni
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Collin Y Ewald
- Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland; Faculty of Science, University of Zürich, Zurich, Switzerland
| |
Collapse
|
16
|
Cespiati A, Meroni M, Lombardi R, Oberti G, Dongiovanni P, Fracanzani AL. Impact of Sarcopenia and Myosteatosis in Non-Cirrhotic Stages of Liver Diseases: Similarities and Differences across Aetiologies and Possible Therapeutic Strategies. Biomedicines 2022; 10:biomedicines10010182. [PMID: 35052859 PMCID: PMC8773740 DOI: 10.3390/biomedicines10010182] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/15/2022] Open
Abstract
Sarcopenia is defined as a loss of muscle strength, mass and function and it is a predictor of mortality. Sarcopenia is not only a geriatric disease, but it is related to several chronic conditions, including liver diseases in both its early and advanced stages. Despite the increasing number of studies exploring the role of sarcopenia in the early stages of chronic liver disease (CLD), its prevalence and the relationship between these two clinical entities are still controversial. Myosteatosis is characterized by fat accumulation in the muscles and it is related to advanced liver disease, although its role in the early stages is still under researched. Therefore, in this narrative review, we firstly aimed to evaluate the prevalence and the pathogenetic mechanisms underlying sarcopenia and myosteatosis in the early stage of CLD across different aetiologies (mainly non-alcoholic fatty liver disease, alcohol-related liver disease and viral hepatitis). Secondly, due to the increasing prevalence of sarcopenia worldwide, we aimed to revise the current and the future therapeutic approaches for the management of sarcopenia in CLD.
Collapse
Affiliation(s)
- Annalisa Cespiati
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (A.C.); (M.M.); (G.O.); (P.D.); (A.L.F.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (A.C.); (M.M.); (G.O.); (P.D.); (A.L.F.)
| | - Rosa Lombardi
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (A.C.); (M.M.); (G.O.); (P.D.); (A.L.F.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
- Correspondence: ; Tel.: +39-02-5503-4192; Fax: +39-02-5503-3509
| | - Giovanna Oberti
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (A.C.); (M.M.); (G.O.); (P.D.); (A.L.F.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (A.C.); (M.M.); (G.O.); (P.D.); (A.L.F.)
| | - Anna Ludovica Fracanzani
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (A.C.); (M.M.); (G.O.); (P.D.); (A.L.F.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|
17
|
Blackwell JEM, Gharahdaghi N, Brook MS, Watanabe S, Boereboom CL, Doleman B, Lund JN, Wilkinson DJ, Smith K, Atherton PJ, Williams JP, Phillips BE. The physiological impact of high-intensity interval training in octogenarians with comorbidities. J Cachexia Sarcopenia Muscle 2021; 12:866-879. [PMID: 34060253 PMCID: PMC8350218 DOI: 10.1002/jcsm.12724] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/22/2021] [Accepted: 05/07/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Declines in cardiorespiratory fitness (CRF) and fat-free mass (FFM) with age are linked to mortality, morbidity and poor quality of life. High-intensity interval training (HIIT) has been shown to improve CRF and FFM in many groups, but its efficacy in the very old, in whom comorbidities are present is undefined. We aimed to assess the efficacy of and physiological/metabolic responses to HIIT, in a cohort of octogenarians with comorbidities (e.g. hypertension and osteoarthritis). METHODS Twenty-eight volunteers (18 men, 10 women, 81.2 ± 0.6 years, 27.1 ± 0.6 kg·m-2 ) with American Society of Anaesthesiology (ASA) Grade 2-3 status each completed 4 weeks (12 sessions) HIIT after a control period of equal duration. Before and after each 4 week period, subjects underwent body composition assessments and cardiopulmonary exercise testing. Quadriceps muscle biopsies (m. vastus lateralis) were taken to quantify anabolic signalling, mitochondrial oxidative phosphorylation, and cumulative muscle protein synthesis (MPS) over 4-weeks. RESULTS In comorbid octogenarians, HIIT elicited improvements in CRF (anaerobic threshold: +1.2 ± 0.4 ml·kg-1 ·min-1 , P = 0.001). HIIT also augmented total FFM (47.2 ± 1.4 to 47.6 ± 1.3 kg, P = 0.04), while decreasing total fat mass (24.8 ± 1.3 to 24 ± 1.2 kg, P = 0.0002) and body fat percentage (33.1 ± 1.5 to 32.1 ± 1.4%, P = 0.0008). Mechanistically, mitochondrial oxidative phosphorylation capacity increased after HIIT (i.e. citrate synthase activity: 52.4 ± 4 to 67.9 ± 5.1 nmol·min-1 ·mg-1 , P = 0.005; membrane protein complexes (C): C-II, 1.4-fold increase, P = 0.002; C-III, 1.2-fold increase, P = 0.03), as did rates of MPS (1.3 ± 0.1 to 1.5 ± 0.1%·day-1 , P = 0.03). The increase in MPS was supported by up-regulated phosphorylation of anabolic signalling proteins (e.g. AKT, p70S6K, and 4E-BP1; all P < 0.05). There were no changes in any of these parameters during the control period. No adverse events were reported throughout the study. CONCLUSIONS The HIIT enhances skeletal muscle mass and CRF in octogenarians with disease, with up-regulation of MPS and mitochondrial capacity likely underlying these improvements. HIIT can be safely delivered to octogenarians with disease and is an effective, time-efficient intervention to improve muscle mass and physical function in a short time frame.
Collapse
Affiliation(s)
- James E M Blackwell
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital Centre, University of Nottingham, Derby, UK.,Department of Surgery & Anaesthetics, Royal Derby Hospital, Derby, UK
| | - Nima Gharahdaghi
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital Centre, University of Nottingham, Derby, UK.,National Institute of Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), Nottingham, UK
| | - Matthew S Brook
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital Centre, University of Nottingham, Derby, UK.,National Institute of Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), Nottingham, UK
| | - Shinya Watanabe
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital Centre, University of Nottingham, Derby, UK
| | - Catherine L Boereboom
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital Centre, University of Nottingham, Derby, UK
| | - Brett Doleman
- Department of Surgery & Anaesthetics, Royal Derby Hospital, Derby, UK
| | - Jonathan N Lund
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital Centre, University of Nottingham, Derby, UK.,Department of Surgery & Anaesthetics, Royal Derby Hospital, Derby, UK
| | - Daniel J Wilkinson
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital Centre, University of Nottingham, Derby, UK.,National Institute of Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), Nottingham, UK
| | - Kenneth Smith
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital Centre, University of Nottingham, Derby, UK.,National Institute of Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), Nottingham, UK
| | - Philip J Atherton
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital Centre, University of Nottingham, Derby, UK.,National Institute of Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), Nottingham, UK
| | - John P Williams
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital Centre, University of Nottingham, Derby, UK.,Department of Surgery & Anaesthetics, Royal Derby Hospital, Derby, UK
| | - Bethan E Phillips
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital Centre, University of Nottingham, Derby, UK.,National Institute of Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), Nottingham, UK
| |
Collapse
|
18
|
Davinelli S, Corbi G, Scapagnini G. Frailty syndrome: A target for functional nutrients? Mech Ageing Dev 2021; 195:111441. [PMID: 33539905 DOI: 10.1016/j.mad.2021.111441] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/20/2022]
Abstract
Frailty is a late life phenotype characterized by a decline in physiological reserve across several organ systems, resulting in the increased susceptibility to endogenous and/or exogenous stressors. Although the etiology of frailty remains poorly understood, an interconnected network of putative mechanisms linked to the ageing process has been proposed. However, frailty is a dynamic process that may be prevented, delayed, or even reversed. The syndromic nature of frailty requires a multidomain approach, such as proper nutrition, as part of modifiable environmental factors, and represents one of the most promising and least costly ways to prevent and reduce frailty among older adults. Nutrient deficiencies have been consistently associated with frailty; however, mounting evidence also supports the hypothesis that beyond the traditional nutritional value, specific dietary components may exert function-enhancing effects and mitigate the extent of frailty. Thus, further mechanistic studies, along with large clinical trials, are imperative to establish the exact role of functional nutrients in the clinical management of frailty. Here, we provide a contemporary discussion of how emerging functional nutrients may contribute to modify the trajectory of the frailty syndrome.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy.
| | - Graziamaria Corbi
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
19
|
Hesketh SJ, Stansfield BN, Stead CA, Burniston JG. The application of proteomics in muscle exercise physiology. Expert Rev Proteomics 2021; 17:813-825. [PMID: 33470862 DOI: 10.1080/14789450.2020.1879647] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Exercise offers protection from non-communicable diseases and extends healthspan by offsetting natural physiological declines that occur in older age. Striated muscle is the largest bodily organ; it underpins the capacity for physical work, and the responses of muscle to exercise convey the health benefits of a physically active lifestyle. Proteomic surveys of muscle provide a means to study the protective effects of exercise and this review summaries some key findings from literature listed in PubMed during the last 10 years that have led to new insight in muscle exercise physiology. AREAS COVERED 'Bottom-up' analyses involving liquid-chromatography tandem mass spectrometry (LC-MS/MS) of peptide digests have become the mainstay of proteomic studies and have been applied to muscle mitochondrial fractions. Enrichment techniques for post-translational modifications, including phosphorylation, acetylation and ubiquitination, have evolved and the analysis of site-specific modifications has become a major area of interest in exercise proteomics. Finally, we consider emergent techniques for dynamic analysis of muscle proteomes that offer new insight to protein turnover and the contributions of synthesis and degradation to changes in protein abundance in response to exercise training. EXPERT OPINION Burgeoning methods for dynamic proteome profiling offer new opportunities to study the mechanisms of muscle adaptation.
Collapse
Affiliation(s)
- Stuart J Hesketh
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University , Liverpool, UK
| | - Ben N Stansfield
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University , Liverpool, UK
| | - Connor A Stead
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University , Liverpool, UK
| | - Jatin G Burniston
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University , Liverpool, UK
| |
Collapse
|
20
|
Szczepanowska K, Trifunovic A. Tune instead of destroy: How proteolysis keeps OXPHOS in shape. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148365. [PMID: 33417924 DOI: 10.1016/j.bbabio.2020.148365] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria are highly dynamic and stress-responsive organelles that are renewed, maintained and removed by a number of different mechanisms. Recent findings bring more evidence for the focused, defined, and regulatory function of the intramitochondrial proteases extending far beyond the traditional concepts of damage control and stress responses. Until recently, the macrodegradation processes, such as mitophagy, were promoted as the major regulator of OXPHOS remodelling and turnover. However, the spatiotemporal dynamics of the OXPHOS system can be greatly modulated by the intrinsic mitochondrial mechanisms acting apart from changes in the global mitochondrial dynamics. This, in turn, may substantially contribute to the shaping of the metabolic status of the cell.
Collapse
Affiliation(s)
- Karolina Szczepanowska
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), and Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne D-50931 Cologne, Germany; Institute for Mitochondrial Diseases and Ageing, Medical Faculty and Center for Molecular Medicine Cologne (CMMC), D-50931 Cologne, Germany.
| | - Aleksandra Trifunovic
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), and Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne D-50931 Cologne, Germany; Institute for Mitochondrial Diseases and Ageing, Medical Faculty and Center for Molecular Medicine Cologne (CMMC), D-50931 Cologne, Germany.
| |
Collapse
|
21
|
Barberio MD, Dohm GL, Pories WJ, Gadaleta NA, Houmard JA, Nadler EP, Hubal MJ. Type 2 Diabetes Modifies Skeletal Muscle Gene Expression Response to Gastric Bypass Surgery. Front Endocrinol (Lausanne) 2021; 12:728593. [PMID: 34690929 PMCID: PMC8526857 DOI: 10.3389/fendo.2021.728593] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/13/2021] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Roux-en-Y gastric bypass (RYGB) is an effective treatment for type 2 diabetes mellitus (T2DM) that can result in remission of clinical symptoms, yet mechanisms for improved skeletal muscle health are poorly understood. We sought to define the impact of existing T2DM on RYGB-induced muscle transcriptome changes. METHODS Vastus lateralis biopsy transcriptomes were generated pre- and 1-year post-RYGB in black adult females with (T2D; n = 5, age = 51 ± 6 years, BMI = 53.0 ± 5.8 kg/m2) and without (CON; n = 7, 43 ± 6 years, 51.0 ± 9.2 kg/m2) T2DM. Insulin, glucose, and HOMA-IR were measured in blood at the same time points. ANCOVA detected differentially expressed genes (p < 0.01, fold change < |1.2|), which were used to identify enriched biological pathways. RESULTS Pre-RYGB, 95 probes were downregulated with T2D including subunits of mitochondrial complex I. Post-RYGB, the T2D group had normalized gene expression when compared to their non-diabetic counterparts with only three probes remaining significantly different. In the T2D, we identified 52 probes upregulated from pre- to post-RYGB, including NDFUB7 and NDFUA1. CONCLUSION Black females with T2DM show extensive downregulation of genes across aerobic metabolism pathways prior to RYGB, which resolves 1 year post-RYGB and is related to improvements in clinical markers. These data support efficacy of RYGB for improving skeletal muscle health, especially in patients with T2DM.
Collapse
Affiliation(s)
- Matthew D. Barberio
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC, United States
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, George Washington University, Washington, DC, United States
| | - G. Lynis Dohm
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Walter J. Pories
- Department of Surgery, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Natalie A. Gadaleta
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, George Washington University, Washington, DC, United States
| | - Joseph A. Houmard
- Human Performance Laboratory, Department of Kinesiology, College of Health and Human Performance, East Carolina University, Greenville, NC, United States
| | - Evan P. Nadler
- Division of Pediatric Surgery, Children’s National Hospital, Washington, DC, United States
| | - Monica J. Hubal
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC, United States
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States
- *Correspondence: Monica J. Hubal,
| |
Collapse
|
22
|
Stansfield BN, Brown AD, Stewart CE, Burniston JG. Dynamic Profiling of Protein Mole Synthesis Rates during C2C12 Myoblast Differentiation. Proteomics 2020; 21:e2000071. [PMID: 33068326 DOI: 10.1002/pmic.202000071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/17/2020] [Indexed: 11/05/2022]
Abstract
Mole (MSR) and fractional (FSR) synthesis rates of proteins during C2C12 myoblast differentiation are investigated. Myoblast cultures supplemented with D2 O during 0-24 h or 72-96 h of differentiation are analyzed by LC-MS/MS to calculate protein FSR and MSR after samples are spiked with yeast alcohol dehydrogenase (ADH1). Profiling of 153 proteins detected 70 significant (p ≤ 0.05, FDR ≤ 1%) differences in abundance between cell states. Early differentiation is enriched by clusters of ribosomal and heat shock proteins, whereas later differentiation is associated with actin filament binding. The median (first-third quartile) FSR (%/h) during early differentiation 4.1 (2.7-5.3) is approximately twofold greater than later differentiation 1.7 (1.0-2.2), equating to MSR of 0.64 (0.38-1.2) and 0.28 (0.1-0.5) fmol h-1 µg-1 total protein, respectively. MSR corresponds more closely with abundance data and highlights proteins associated with glycolytic processes and intermediate filament protein binding that are not evident among FSR data. Similarly, MSR during early differentiation accounts for 78% of the variation in protein abundance during later differentiation, whereas FSR accounts for 4%. Conclusively, the interpretation of protein synthesis data differs when reported in mole or fractional terms, which has consequences when studying the allocation of cellular resources.
Collapse
Affiliation(s)
- Ben N Stansfield
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool, L3 3AF, UK
| | - Alexander D Brown
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool, L3 3AF, UK
| | - Claire E Stewart
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool, L3 3AF, UK
| | - Jatin G Burniston
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool, L3 3AF, UK
| |
Collapse
|
23
|
Urbina-Varela R, Castillo N, Videla LA, del Campo A. Impact of Mitophagy and Mitochondrial Unfolded Protein Response as New Adaptive Mechanisms Underlying Old Pathologies: Sarcopenia and Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2020; 21:E7704. [PMID: 33081022 PMCID: PMC7589512 DOI: 10.3390/ijms21207704] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are the first-line defense of the cell in the presence of stressing processes that can induce mitochondrial dysfunction. Under these conditions, the activation of two axes is accomplished, namely, (i) the mitochondrial unfolded protein response (UPRmt) to promote cell recovery and survival of the mitochondrial network; (ii) the mitophagy process to eliminate altered or dysfunctional mitochondria. For these purposes, the former response induces the expression of chaperones, proteases, antioxidant components and protein import and assembly factors, whereas the latter is signaled through the activation of the PINK1/Parkin and BNIP3/NIX pathways. These adaptive mechanisms may be compromised during aging, leading to the development of several pathologies including sarcopenia, defined as the loss of skeletal muscle mass and performance; and non-alcoholic fatty liver disease (NAFLD). These age-associated diseases are characterized by the progressive loss of organ function due to the accumulation of reactive oxygen species (ROS)-induced damage to biomolecules, since the ability to counteract the continuous and large generation of ROS becomes increasingly inefficient with aging, resulting in mitochondrial dysfunction as a central pathogenic mechanism. Nevertheless, the role of the integrated stress response (ISR) involving UPRmt and mitophagy in the development and progression of these illnesses is still a matter of debate, considering that some studies indicate that the prolonged exposure to low levels of stress may trigger these mechanisms to maintain mitohormesis, whereas others sustain that chronic activation of them could lead to cell death. In this review, we discuss the available research that contributes to unveil the role of the mitochondrial UPR in the development of sarcopenia, in an attempt to describe changes prior to the manifestation of severe symptoms; and in NAFLD, in order to prevent or reverse fat accumulation and its progression by means of suitable protocols to be addressed in future studies.
Collapse
Affiliation(s)
- Rodrigo Urbina-Varela
- Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile; (R.U.-V.); (N.C.)
| | - Nataly Castillo
- Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile; (R.U.-V.); (N.C.)
| | - Luis A. Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile;
| | - Andrea del Campo
- Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile; (R.U.-V.); (N.C.)
| |
Collapse
|
24
|
Stead CA, Hesketh SJ, Bennett S, Sutherland H, Jarvis JC, Lisboa PJ, Burniston JG. Fractional Synthesis Rates of Individual Proteins in Rat Soleus and Plantaris Muscles. Proteomes 2020; 8:proteomes8020010. [PMID: 32403418 PMCID: PMC7356555 DOI: 10.3390/proteomes8020010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/14/2022] Open
Abstract
Differences in the protein composition of fast- and slow-twitch muscle may be maintained by different rates of protein turnover. We investigated protein turnover rates in slow-twitch soleus and fast-twitch plantaris of male Wistar rats (body weight 412 ± 69 g). Animals were assigned to four groups (n = 3, in each), including a control group (0 d) and three groups that received deuterium oxide (D2O) for either 10 days, 20 days or 30 days. D2O administration was initiated by an intraperitoneal injection of 20 μL of 99% D2O-saline per g body weight, and maintained by provision of 4% (v/v) D2O in the drinking water available ad libitum. Soluble proteins from harvested muscles were analysed by liquid chromatography–tandem mass spectrometry and identified against the SwissProt database. The enrichment of D2O and rate constant (k) of protein synthesis was calculated from the abundance of peptide mass isotopomers. The fractional synthesis rate (FSR) of 44 proteins in soleus and 34 proteins in plantaris spanned from 0.58%/day (CO1A1: Collagen alpha-1 chain) to 5.40%/day NDRG2 (N-myc downstream-regulated gene 2 protein). Eight out of 18 proteins identified in both muscles had a different FSR in soleus than in plantaris (p < 0.05).
Collapse
Affiliation(s)
- Connor A. Stead
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (C.A.S.); (S.J.H.); (S.B.); (H.S.); (J.C.J.)
| | - Stuart J. Hesketh
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (C.A.S.); (S.J.H.); (S.B.); (H.S.); (J.C.J.)
| | - Samuel Bennett
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (C.A.S.); (S.J.H.); (S.B.); (H.S.); (J.C.J.)
| | - Hazel Sutherland
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (C.A.S.); (S.J.H.); (S.B.); (H.S.); (J.C.J.)
| | - Jonathan C. Jarvis
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (C.A.S.); (S.J.H.); (S.B.); (H.S.); (J.C.J.)
| | - Paulo J. Lisboa
- Department of Applied Mathematics, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Jatin G. Burniston
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (C.A.S.); (S.J.H.); (S.B.); (H.S.); (J.C.J.)
- Correspondence: ; Tel.: +44-(0)-151-904-6265
| |
Collapse
|
25
|
Kallabis S, Abraham L, Müller S, Dzialas V, Türk C, Wiederstein JL, Bock T, Nolte H, Nogara L, Blaauw B, Braun T, Krüger M. High-throughput proteomics fiber typing (ProFiT) for comprehensive characterization of single skeletal muscle fibers. Skelet Muscle 2020; 10:7. [PMID: 32293536 PMCID: PMC7087369 DOI: 10.1186/s13395-020-00226-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/04/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Skeletal muscles are composed of a heterogeneous collection of fiber types with different physiological adaption in response to a stimulus and disease-related conditions. Each fiber has a specific molecular expression of myosin heavy chain molecules (MyHC). So far, MyHCs are currently the best marker proteins for characterization of individual fiber types, and several proteome profiling studies have helped to dissect the molecular signature of whole muscles and individual fibers. METHODS Herein, we describe a mass spectrometric workflow to measure skeletal muscle fiber type-specific proteomes. To bypass the limited quantities of protein in single fibers, we developed a Proteomics high-throughput fiber typing (ProFiT) approach enabling profiling of MyHC in single fibers. Aliquots of protein extracts from separated muscle fibers were subjected to capillary LC-MS gradients to profile MyHC isoforms in a 96-well format. Muscle fibers with the same MyHC protein expression were pooled and subjected to proteomic, pulsed-SILAC, and phosphoproteomic analysis. RESULTS Our fiber type-specific quantitative proteome analysis confirmed the distribution of fiber types in the soleus muscle, substantiates metabolic adaptions in oxidative and glycolytic fibers, and highlighted significant differences between the proteomes of type IIb fibers from different muscle groups, including a differential expression of desmin and actinin-3. A detailed map of the Lys-6 incorporation rates in muscle fibers showed an increased turnover of slow fibers compared to fast fibers. In addition, labeling of mitochondrial respiratory chain complexes revealed a broad range of Lys-6 incorporation rates, depending on the localization of the subunits within distinct complexes. CONCLUSION Overall, the ProFiT approach provides a versatile tool to rapidly characterize muscle fibers and obtain fiber-specific proteomes for different muscle groups.
Collapse
Affiliation(s)
- Sebastian Kallabis
- CECAD Research Center, Institute for Genetics, University of Cologne, 50931, Cologne, Germany
| | - Lena Abraham
- CECAD Research Center, Institute for Genetics, University of Cologne, 50931, Cologne, Germany
| | - Stefan Müller
- CECAD Research Center, Institute for Genetics, University of Cologne, 50931, Cologne, Germany
| | - Verena Dzialas
- CECAD Research Center, Institute for Genetics, University of Cologne, 50931, Cologne, Germany
| | - Clara Türk
- CECAD Research Center, Institute for Genetics, University of Cologne, 50931, Cologne, Germany
| | - Janica Lea Wiederstein
- CECAD Research Center, Institute for Genetics, University of Cologne, 50931, Cologne, Germany
| | - Theresa Bock
- CECAD Research Center, Institute for Genetics, University of Cologne, 50931, Cologne, Germany
| | - Hendrik Nolte
- Max Planck Institute for the Biology of Aging, 50931, Cologne, Germany
| | - Leonardo Nogara
- Venetian Institute of Molecular Medicine (VIMM), Via Orus 2, 35129, Padova, Italy
| | - Bert Blaauw
- Venetian Institute of Molecular Medicine (VIMM), Via Orus 2, 35129, Padova, Italy
| | - Thomas Braun
- Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Marcus Krüger
- CECAD Research Center, Institute for Genetics, University of Cologne, 50931, Cologne, Germany. .,Center for Molecular Medicine (CMMC), University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
26
|
Basisty N, Holtz A, Schilling B. Accumulation of "Old Proteins" and the Critical Need for MS-based Protein Turnover Measurements in Aging and Longevity. Proteomics 2020; 20:e1800403. [PMID: 31408259 PMCID: PMC7015777 DOI: 10.1002/pmic.201800403] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/31/2019] [Indexed: 12/31/2022]
Abstract
Aging and age-related diseases are accompanied by proteome remodeling and progressive declines in cellular machinery required to maintain protein homeostasis (proteostasis), such as autophagy, ubiquitin-mediated degradation, and protein synthesis. While many studies have focused on capturing changes in proteostasis, the identification of proteins that evade these cellular processes has recently emerged as an approach to studying the aging proteome. With advances in proteomic technology, it is possible to monitor protein half-lives and protein turnover at the level of individual proteins in vivo. For large-scale studies, these technologies typically include the use of stable isotope labeling coupled with MS and comprehensive assessment of protein turnover rates. Protein turnover studies have revealed groups of highly relevant long-lived proteins (LLPs), such as the nuclear pore complexes, extracellular matrix proteins, and protein aggregates. Here, the role of LLPs during aging and age-related diseases and the methods used to identify and quantify their changes are reviewed. The methods available to conduct studies of protein turnover, used in combination with traditional proteomic methods, will enable the field to perform studies in a systems biology context, as changes in proteostasis may not be revealed in studies that solely measure differential protein abundances.
Collapse
Affiliation(s)
| | - Anja Holtz
- The Buck Institute for Research on AgingNovatoCAUSA
| | | |
Collapse
|
27
|
Anisimova AS, Alexandrov AI, Makarova NE, Gladyshev VN, Dmitriev SE. Protein synthesis and quality control in aging. Aging (Albany NY) 2019; 10:4269-4288. [PMID: 30562164 PMCID: PMC6326689 DOI: 10.18632/aging.101721] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022]
Abstract
Aging is characterized by the accumulation of damage and other deleterious changes, leading to the loss of functionality and fitness. Age-related changes occur at most levels of organization of a living organism (molecular, organellar, cellular, tissue and organ). However, protein synthesis is a major biological process, and thus understanding how it changes with age is of paramount importance. Here, we discuss the relationships between lifespan, aging, protein synthesis and translational control, and expand this analysis to the various aspects of proteome behavior in organisms with age. Characterizing the consequences of changes in protein synthesis and translation fidelity, and determining whether altered translation is pathological or adaptive is necessary for understanding the aging process, as well as for developing approaches to target dysfunction in translation as a strategy for extending lifespan.
Collapse
Affiliation(s)
- Aleksandra S Anisimova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,School of Bioengineering and Bioinformatics Lomonosov Moscow State University, Moscow 119234, Russia
| | - Alexander I Alexandrov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,Bach Institute of Biochemistry of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Nadezhda E Makarova
- School of Bioengineering and Bioinformatics Lomonosov Moscow State University, Moscow 119234, Russia
| | - Vadim N Gladyshev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,School of Bioengineering and Bioinformatics Lomonosov Moscow State University, Moscow 119234, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
28
|
Paradis S, Charles AL, Georg I, Goupilleau F, Meyer A, Kindo M, Laverny G, Metzger D, Geny B. Aging Exacerbates Ischemia-Reperfusion-Induced Mitochondrial Respiration Impairment in Skeletal Muscle. Antioxidants (Basel) 2019; 8:antiox8060168. [PMID: 31181751 PMCID: PMC6616544 DOI: 10.3390/antiox8060168] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022] Open
Abstract
Cycles of ischemia-reperfusion (IR) that occur during peripheral arterial disease (PAD) are associated with significant morbi-mortality, and aging is an irreversible risk factor of PAD. However, the effects of advanced age on IR-induced skeletal muscle mitochondrial dysfunction are not well known. Young and aged mice were therefore submitted to hindlimb IR (2 h ischemia followed by 2 h reperfusion). Skeletal muscle mitochondrial respiration, calcium retention capacity (CRC) and reactive oxygen species (ROS) production were determined using high resolution respirometry, spectrofluorometry and electronic paramagnetic resonance. IR-induced impairment in mitochondrial respiration was enhanced in old animals (VADP; from 33.0 ± 2.4 to 18.4 ± 3.8 and 32.8 ± 1.3 to 5.9 ± 2.7 pmol/s/mg wet weight; −44.2 ± 11.4% vs. −82.0 ± 8.1%, in young and aged mice, respectively). Baseline CRC was lower in old animals and IR similarly decreased the CRC in both groups (from 11.8 ± 0.9 to 4.6 ± 0.9 and 5.5 ± 0.9 to 2.1 ± 0.3 µmol/mg dry weight; −60.9 ± 7.3 and −60.9 ± 4.6%, in young and aged mice, respectively). Further, IR-induced ROS production tended to be higher in aged mice. In conclusion, aging exacerbated the deleterious effects of IR on skeletal muscle mitochondrial respiration, potentially in relation to an increased oxidative stress.
Collapse
Affiliation(s)
- Stéphanie Paradis
- Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Université de Strasbourg, 67000 Strasbourg, France.
- Service de Physiologie et d'Explorations Fonctionnelles, Pôle de Pathologie Thoracique, Nouvel Hôpital Civil, CHRU de Strasbourg, 67000 Strasbourg, France.
| | - Anne-Laure Charles
- Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Université de Strasbourg, 67000 Strasbourg, France.
- Service de Physiologie et d'Explorations Fonctionnelles, Pôle de Pathologie Thoracique, Nouvel Hôpital Civil, CHRU de Strasbourg, 67000 Strasbourg, France.
| | - Isabelle Georg
- Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Université de Strasbourg, 67000 Strasbourg, France.
- Service de Physiologie et d'Explorations Fonctionnelles, Pôle de Pathologie Thoracique, Nouvel Hôpital Civil, CHRU de Strasbourg, 67000 Strasbourg, France.
| | - Fabienne Goupilleau
- Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Université de Strasbourg, 67000 Strasbourg, France.
- Service de Physiologie et d'Explorations Fonctionnelles, Pôle de Pathologie Thoracique, Nouvel Hôpital Civil, CHRU de Strasbourg, 67000 Strasbourg, France.
| | - Alain Meyer
- Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Université de Strasbourg, 67000 Strasbourg, France.
- Service de Physiologie et d'Explorations Fonctionnelles, Pôle de Pathologie Thoracique, Nouvel Hôpital Civil, CHRU de Strasbourg, 67000 Strasbourg, France.
| | - Michel Kindo
- Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Université de Strasbourg, 67000 Strasbourg, France.
- Service de Chirurgie Cardiaque, Pôle de Pathologie Cardiaque, Nouvel Hôpital Civil, CHRU de Strasbourg, 67000 Strasbourg, France.
| | - Gilles Laverny
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France.
| | - Daniel Metzger
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France.
| | - Bernard Geny
- Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Université de Strasbourg, 67000 Strasbourg, France.
- Service de Physiologie et d'Explorations Fonctionnelles, Pôle de Pathologie Thoracique, Nouvel Hôpital Civil, CHRU de Strasbourg, 67000 Strasbourg, France.
| |
Collapse
|
29
|
Kokubun T, Saitoh SI, Miura S, Ishida T, Takeishi Y. Telomerase Plays a Pivotal Role in Collateral Growth Under Ischemia by Suppressing Age-Induced Oxidative Stress, Expression of p53, and Pro-Apoptotic Proteins. Int Heart J 2019; 60:736-745. [PMID: 31105157 DOI: 10.1536/ihj.18-564] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aging is not only a major risk factor for impaired collateral growth under ischemia but also shortens the telomere length, which is regulated by telomerase. We examined the role of telomerase activity during impaired collateral growth during aging in ischemic skeletal muscle. Unilateral hind limb ischemia was generated in old, young, and old mice chronically administered a telomerase activator. In old mice, blood flow recovery and capillary density development in ischemic hind limbs were reduced compared to those in young mice, and these changes were restored to equal levels by administration of TA-65, a telomerase activator. During the early phase of ischemic muscle changes in old mice, telomerase reverse transcriptase expression and telomerase activity were both low compared to those in young mice and old mice treated with TA-65. Levels of reactive oxygen species (ROS), DNA double-strand breaks, and expression of p53, p16, and Bax/Bcl-2 were all elevated in ischemic muscles of old mice compared to those in the muscles of young mice and old mice treated with TA-65 treatment; these factors were maintained at low levels equivalent to those seen in young mice during the experiment. Expression of HIF1α/vascular endothelial growth factor (VEGF) and PGC1α were decreased in old mice compared to those in young mice and old mice treated with TA-65. Collateral growth under ischemic conditions is impaired in aged animals due to low telomerase activity, increased ROS, resultant DNA damage, and expression of tumor suppressor and pro-apoptotic proteins. These data suggest that telomerase activation enhances collateral growth and rescues ischemic tissue in old individuals.
Collapse
Affiliation(s)
- Tomoki Kokubun
- Department of Cardiovascular Medicine, Fukushima Medical University
| | - Shu-Ichi Saitoh
- Department of Cardiovascular Medicine, Ohara General Hospital
| | - Shunsuke Miura
- Department of Cardiovascular Medicine, Fukushima Medical University
| | - Takafumi Ishida
- Department of Cardiovascular Medicine, Fukushima Medical University
| | | |
Collapse
|
30
|
Campbell MD, Duan J, Samuelson AT, Gaffrey MJ, Merrihew GE, Egertson JD, Wang L, Bammler TK, Moore RJ, White CC, Kavanagh TJ, Voss JG, Szeto HH, Rabinovitch PS, MacCoss MJ, Qian WJ, Marcinek DJ. Improving mitochondrial function with SS-31 reverses age-related redox stress and improves exercise tolerance in aged mice. Free Radic Biol Med 2019; 134:268-281. [PMID: 30597195 PMCID: PMC6588449 DOI: 10.1016/j.freeradbiomed.2018.12.031] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 12/11/2022]
Abstract
Sarcopenia and exercise intolerance are major contributors to reduced quality of life in the elderly for which there are few effective treatments. We tested whether enhancing mitochondrial function and reducing mitochondrial oxidant production with SS-31 (elamipretide) could restore redox balance and improve skeletal muscle function in aged mice. Young (5 mo) and aged (26 mo) female C57BL/6Nia mice were treated for 8-weeks with 3 mg/kg/day SS-31. Mitochondrial function was assessed in vivo using 31P and optical spectroscopy. SS-31 reversed age-related decline in maximum mitochondrial ATP production (ATPmax) and coupling of oxidative phosphorylation (P/O). Despite the increased in vivo mitochondrial capacity, mitochondrial protein expression was either unchanged or reduced in the treated aged mice and respiration in permeabilized gastrocnemius (GAS) fibers was not different between the aged and aged+SS-31 mice. Treatment with SS-31 also restored redox homeostasis in the aged skeletal muscle. The glutathione redox status was more reduced and thiol redox proteomics indicated a robust reversal of cysteine S-glutathionylation post-translational modifications across the skeletal muscle proteome. The gastrocnemius in the age+SS-31 mice was more fatigue resistant with significantly greater mass compared to aged controls. This contributed to a significant increase in treadmill endurance compared to both pretreatment and untreated control values. These results demonstrate that the shift of redox homeostasis due to mitochondrial oxidant production in aged muscle is a key factor in energetic defects and exercise intolerance. Treatment with SS-31 restores redox homeostasis, improves mitochondrial quality, and increases exercise tolerance without an increase in mitochondrial content. Since elamipretide is currently in clinical trials these results indicate it may have direct translational value for improving exercise tolerance and quality of life in the elderly.
Collapse
Affiliation(s)
| | - Jicheng Duan
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | | | - Matthew J Gaffrey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | | | - Jarrett D Egertson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Lu Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA.
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA.
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Collin C White
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA.
| | - Terrance J Kavanagh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA.
| | - Joachim G Voss
- School of Nursing, University of Washington, Seattle, WA, USA.
| | | | | | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Wei-Jun Qian
- School of Nursing, University of Washington, Seattle, WA, USA.
| | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
31
|
Vincow ES, Thomas RE, Merrihew GE, Shulman NJ, Bammler TK, MacDonald JW, MacCoss MJ, Pallanck LJ. Autophagy accounts for approximately one-third of mitochondrial protein turnover and is protein selective. Autophagy 2019; 15:1592-1605. [PMID: 30865561 DOI: 10.1080/15548627.2019.1586258] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The destruction of mitochondria through macroautophagy (autophagy) has been recognised as a major route of mitochondrial protein degradation since its discovery more than 50 years ago, but fundamental questions remain unanswered. First, how much mitochondrial protein turnover occurs through auto-phagy? Mitochondrial proteins are also degraded by nonautophagic mechanisms, and the proportion of mitochondrial protein turnover that occurs through autophagy is still unknown. Second, does auto-phagy degrade mitochondrial proteins uniformly or selectively? Autophagy was originally thought to degrade all mitochondrial proteins at the same rate, but recent work suggests that mitochondrial autophagy may be protein selective. To investigate these questions, we used a proteomics-based approach in the fruit fly Drosophila melanogaster, comparing mitochondrial protein turnover rates in autophagy-deficient Atg7 mutants and controls. We found that ~35% of mitochondrial protein turnover occurred via autophagy. Similar analyses using parkin mutants revealed that parkin-dependent mitophagy accounted for ~25% of mitochondrial protein turnover, suggesting that most mitochondrial autophagy specifically eliminates dysfunctional mitochondria. We also found that our results were incompatible with uniform autophagic turnover of mitochondrial proteins and consistent with protein-selective autophagy. In particular, the autophagic turnover rates of individual mitochondrial proteins varied widely, and only a small amount of the variation could be attributed to tissue differences in mitochondrial composition and autophagy rate. Furthermore, analyses comparing autophagy-deficient and control human fibroblasts revealed diverse autophagy-dependent turnover rates even in homogeneous cells. In summary, our work indicates that autophagy acts selectively on mitochondrial proteins, and that most mitochondrial protein turnover occurs through non-autophagic processes. Abbreviations: Atg5: Autophagy-related 5 (Drosophila); ATG5: autophagy related 5 (human); Atg7: Autophagy-related 7 (Drosophila); ATG7: autophagy related 7 (human); DNA: deoxyribonucleic acid; ER: endoplasmic reticulum; GFP: green fluorescent protein; MS: mass spectrometry; park: parkin (Drosophila); Pink1: PTEN-induced putative kinase 1 (Drosophila); PINK1: PTEN-induced kinase 1 (human); PRKN: parkin RBR E3 ubiquitin protein ligase (human); RNA: ribonucleic acid; SD: standard deviation; Ub: ubiquitin/ubiquitinated; WT: wild-type; YME1L: YME1 like ATPase (Drosophila); YME1L1: YME1 like 1 ATPase (human).
Collapse
Affiliation(s)
- Evelyn S Vincow
- a Department of Genome Sciences, University of Washington , Seattle , WA , USA
| | - Ruth E Thomas
- a Department of Genome Sciences, University of Washington , Seattle , WA , USA
| | - Gennifer E Merrihew
- a Department of Genome Sciences, University of Washington , Seattle , WA , USA
| | - Nicholas J Shulman
- a Department of Genome Sciences, University of Washington , Seattle , WA , USA
| | - Theo K Bammler
- b Department of Environmental and Occupational Health Sciences, University of Washington , Seattle , WA , USA
| | - James W MacDonald
- b Department of Environmental and Occupational Health Sciences, University of Washington , Seattle , WA , USA
| | - Michael J MacCoss
- a Department of Genome Sciences, University of Washington , Seattle , WA , USA
| | - Leo J Pallanck
- a Department of Genome Sciences, University of Washington , Seattle , WA , USA
| |
Collapse
|
32
|
Cobley JN, Sakellariou GK, Husi H, McDonagh B. Proteomic strategies to unravel age-related redox signalling defects in skeletal muscle. Free Radic Biol Med 2019; 132:24-32. [PMID: 30219702 DOI: 10.1016/j.freeradbiomed.2018.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/22/2018] [Accepted: 09/12/2018] [Indexed: 01/06/2023]
Abstract
Increased oxidative damage and disrupted redox signalling are consistently associated with age-related loss of skeletal muscle mass and function. Redox signalling can directly regulate biogenesis and degradation pathways and indirectly via activation of key transcription factors. Contracting skeletal muscle fibres endogenously generate free radicals (e.g. superoxide) and non-radical derivatives (e.g. hydrogen peroxide). Exercise induced redox signalling can promote beneficial adaptive responses that are disrupted by age-related redox changes. Identifying and quantifying the redox signalling pathways responsible for successful adaptation to exercise makes skeletal muscle an attractive physiological model for redox proteomic approaches. Site specific identification of the redox modification and quantification of site occupancy in the context of protein abundance remains a crucial concept for redox proteomics approaches. Notwithstanding, the technical limitations associated with skeletal muscle for proteomic analysis, we discuss current approaches for the identification and quantification of transient and stable redox modifications that have been employed to date in ageing research. We also discuss recent developments in proteomic approaches in skeletal muscle and potential implications and opportunities for investigating disrupted redox signalling in skeletal muscle ageing.
Collapse
Affiliation(s)
- James N Cobley
- Free Radical Laboratory, Departments of Diabetes and Cardiovascular Sciences, Centre for Health Sciences, University of the Highlands and Islands, Inverness IV2 3JH, UK
| | | | - Holger Husi
- Free Radical Laboratory, Departments of Diabetes and Cardiovascular Sciences, Centre for Health Sciences, University of the Highlands and Islands, Inverness IV2 3JH, UK
| | - Brian McDonagh
- Discipline of Physiology, School of Medicine, NUI Galway, Ireland.
| |
Collapse
|
33
|
Crupi AN, Nunnelee JS, Taylor DJ, Thomas A, Vit JP, Riera CE, Gottlieb RA, Goodridge HS. Oxidative muscles have better mitochondrial homeostasis than glycolytic muscles throughout life and maintain mitochondrial function during aging. Aging (Albany NY) 2018; 10:3327-3352. [PMID: 30449736 PMCID: PMC6286850 DOI: 10.18632/aging.101643] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/05/2018] [Indexed: 01/05/2023]
Abstract
Preservation of mitochondrial function, which is dependent on mitochondrial homeostasis (biogenesis, dynamics, disposal/recycling), is critical for maintenance of skeletal muscle function. Skeletal muscle performance declines upon aging (sarcopenia) and is accompanied by decreased mitochondrial function in fast-glycolytic muscles. Oxidative metabolism promotes mitochondrial homeostasis, so we investigated whether mitochondrial function is preserved in oxidative muscles. We compared tibialis anterior (predominantly glycolytic) and soleus (oxidative) muscles from young (3 mo) and old (28-29 mo) C57BL/6J mice. Throughout life, the soleus remained more oxidative than the tibialis anterior and expressed higher levels of markers of mitochondrial biogenesis, fission/fusion and autophagy. The respiratory capacity of mitochondria isolated from the tibialis anterior, but not the soleus, declined upon aging. The soleus and tibialis anterior exhibited similar aging-associated changes in mitochondrial biogenesis, fission/fusion, disposal and autophagy marker expression, but opposite changes in fiber composition: the most oxidative fibers declined in the tibialis anterior, while the more glycolytic fibers declined in the soleus. In conclusion, oxidative muscles are protected from mitochondrial aging, probably due to better mitochondrial homeostasis ab initio and aging-associated changes in fiber composition. Exercise training aimed at enriching oxidative fibers may be valuable in preventing mitochondria-related aging and its contribution to sarcopenia.
Collapse
Affiliation(s)
- Annunziata N. Crupi
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jordan S. Nunnelee
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - David J. Taylor
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Smidt Heart Institute and Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Amandine Thomas
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Smidt Heart Institute and Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jean-Philippe Vit
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Biobehavioral Research Core, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Celine E. Riera
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Roberta A. Gottlieb
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Smidt Heart Institute and Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Equal contribution
| | - Helen S. Goodridge
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Equal contribution
| |
Collapse
|
34
|
Chen CCW, Erlich AT, Crilly MJ, Hood DA. Parkin is required for exercise-induced mitophagy in muscle: impact of aging. Am J Physiol Endocrinol Metab 2018; 315:E404-E415. [PMID: 29812989 DOI: 10.1152/ajpendo.00391.2017] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The maintenance of muscle health with advancing age is dependent on mitochondrial homeostasis. While reductions in mitochondrial biogenesis have been observed with age, less is known regarding organelle degradation. Parkin is an E3 ubiquitin ligase implicated in mitophagy, but few studies have examined Parkin's contribution to mitochondrial turnover in muscle. Wild-type (WT) and Parkin knockout (KO) mice were used to delineate a role for Parkin-mediated mitochondrial degradation in aged muscle, in concurrence with exercise. Aged animals exhibited declines in muscle mass and mitochondrial content, paralleled by a nuclear environment endorsing the transcriptional repression of mitochondrial biogenesis. Mitophagic signaling was enhanced following acute endurance exercise in young WT mice but was abolished in the absence of Parkin. Basal mitophagy flux of the autophagosomal protein lipidated microtubule-associated protein 1A/1B-light chain 3 was augmented in aged animals but did not increase additionally with exercise when compared with young animals. In the absence of Parkin, exercise increased the nuclear localization of Parkin-interacting substrate, corresponding to a decrease in nuclear peroxisome proliferator gamma coactivator-1α. Remarkably, exercise enhanced mitochondrial ubiquitination in both young WT and KO animals. This suggested compensation of alternative ubiquitin ligases that were, however, unable to restore the diminished exercise-induced mitophagy in KO mice. Under basal conditions, we demonstrated that Parkin was required for mitochondrial mitofusin-2 ubiquitination. We also observed an abrogation of exercise-induced mitophagy in aged muscle. Our results demonstrate that acute exercise-induced mitophagy is dependent on Parkin and attenuated with age, which likely contributes to changes in mitochondrial content and quality in aging muscle.
Collapse
Affiliation(s)
- Chris Chin Wah Chen
- School of Kinesiology and Health Science, York University , Toronto, ON , Canada
- Muscle Health Research Centre, York University , Toronto, ON , Canada
| | - Avigail T Erlich
- School of Kinesiology and Health Science, York University , Toronto, ON , Canada
- Muscle Health Research Centre, York University , Toronto, ON , Canada
| | - Matthew J Crilly
- School of Kinesiology and Health Science, York University , Toronto, ON , Canada
- Muscle Health Research Centre, York University , Toronto, ON , Canada
| | - David A Hood
- School of Kinesiology and Health Science, York University , Toronto, ON , Canada
- Muscle Health Research Centre, York University , Toronto, ON , Canada
| |
Collapse
|
35
|
Lima SDC, Porta LDC, Lima ÁDC, Campeiro JD, Meurer Y, Teixeira NB, Duarte T, Oliveira EB, Picolo G, Godinho RO, Silva RH, Hayashi MAF. Pharmacological characterization of crotamine effects on mice hind limb paralysis employing both ex vivo and in vivo assays: Insights into the involvement of voltage-gated ion channels in the crotamine action on skeletal muscles. PLoS Negl Trop Dis 2018; 12:e0006700. [PMID: 30080908 PMCID: PMC6095621 DOI: 10.1371/journal.pntd.0006700] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/16/2018] [Accepted: 07/19/2018] [Indexed: 11/20/2022] Open
Abstract
The high medical importance of Crotalus snakes is unquestionable, as this genus is the second in frequency of ophidian accidents in many countries, including Brazil. With a relative less complex composition compared to other genera venoms, as those from the Bothrops genus, the Crotalus genus venom from South America is composed basically by the neurotoxin crotoxin (a phospholipase A2), the thrombin-like gyroxin (a serinoprotease), a very potent aggregating protein convulxin, and a myotoxic polypeptide named crotamine. Interestingly not all Crotalus snakes express crotamine, which was first described in early 50s due to its ability to immobilize animal hind limbs, contributing therefore to the physical immobilization of preys and representing an important advantage for the envenoming efficacy, and consequently, for the feeding and survival of these snakes in nature. Representing about 10–25% of the dry weight of the crude venom of crotamine-positive rattlesnakes, the polypeptide crotamine is also suggested to be of importance for antivenom therapy, although the contribution of this toxin to the main symptoms of envenoming process remains far unknown until now. Herein, we concomitantly performed in vitro and in vivo assays to show for the first time the dose-dependent response of crotamine-triggered hind limbs paralysis syndrome, up to now believed to be observable only at high (sub-lethal) concentrations of crotamine. In addition, ex vivo assay performed with isolated skeletal muscles allowed us to suggest here that compounds active on voltage-sensitive sodium and/or potassium ion channels could both affect the positive inotropic effect elicited by crotamine in isolated diaphragm, besides also affecting the hind limbs paralysis syndrome imposed by crotamine in vivo. By identifying the potential molecular targets of this toxin, our data may contribute to open new roads for translational studies aiming to improve the snakebite envenoming treatment in human. Interestingly, we also demonstrate that the intraplantal or intraperitoneal (ip) injections of crotamine in mice do not promote pain. Therefore, this work may also suggest the profitable utility of non-toxic analogs of crotamine as a potential tool for targeting voltage-gated ion channels in skeletal muscles, aiming its potential use in the therapy of neuromuscular dysfunctions and envenoming therapy. Representing more than 10% of the dry weight of the crude venom of crotamine-positive rattlesnakes, crotamine may act as toxin mainly by imposing the physical immobilization of preys. Its presence was described to be important for antivenom therapy, although the knowledge on the effective contribution of crotamine to the main symptoms of envenoming process remains elusive and limited. Herein, we show for the first time the dose-dependent response for the hind limbs paralysis syndrome promoted by crotamine. We also report herein that compounds active on voltage-sensitive sodium and/or potassium ion channels can affect the positive inotropic effect elicited by crotamine in vitro in isolated diaphragm and also in the hind limbs paralysis syndrome triggered by crotamine in vivo. This potential targeting of voltage-sensitive sodium and/or potassium ion channels suggested here for crotamine may contribute to open new roads for translational studies aiming to improve the snakebite envenoming treatment in human. More importantly, nociceptive threshold evaluation demonstrated that crotamine does not trigger pain, and therefore, we also suggest crotamine as a potential tool for targeting voltage-gated ion channels present in skeletal muscles, with potential to be used as a lead compound to develop drugs for neuromuscular dysfunctions therapy.
Collapse
Affiliation(s)
- Sunamita de Carvalho Lima
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Lucas de Carvalho Porta
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Álvaro da Costa Lima
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Joana D'Arc Campeiro
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Ywlliane Meurer
- Departamento de Fisiologia, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil
| | | | - Thiago Duarte
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Eduardo Brandt Oliveira
- Departamento de Bioquímica e Imunologia, Universidade de São Paulo (USP-RP), Ribeirão Preto, Brazil
| | - Gisele Picolo
- Laboratório Especial de Dor e Sinalização, Instituto Butantan, São Paulo, Brazil
| | - Rosely Oliveira Godinho
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Regina Helena Silva
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Mirian Akemi Furuie Hayashi
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
36
|
Eremina L, Pashintseva N, Kovalev L, Kovaleva M, Shishkin S. Proteomics of mammalian mitochondria in health and malignancy: From protein identification to function. Anal Biochem 2018; 552:4-18. [DOI: 10.1016/j.ab.2017.03.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/07/2017] [Accepted: 03/23/2017] [Indexed: 12/28/2022]
|
37
|
Basisty NB, Liu Y, Reynolds J, Karunadharma PP, Dai DF, Fredrickson J, Beyer RP, MacCoss MJ, Rabinovitch PS. Stable Isotope Labeling Reveals Novel Insights Into Ubiquitin-Mediated Protein Aggregation With Age, Calorie Restriction, and Rapamycin Treatment. J Gerontol A Biol Sci Med Sci 2018; 73:561-570. [PMID: 28958078 PMCID: PMC6380815 DOI: 10.1093/gerona/glx047] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 08/16/2017] [Indexed: 12/30/2022] Open
Abstract
Accumulation of protein aggregates with age was first described in aged human tissue over 150 years ago and has since been described in virtually every human tissue. Ubiquitin modifications are a canonical marker of insoluble protein aggregates; however, the composition of most age-related inclusions remains relatively unknown. To examine the landscape of age-related protein aggregation in vivo, we performed an antibody-based pulldown of ubiquitinated proteins coupled with metabolic labeling and mass spectrometry on young and old mice on calorie restriction (CR), rapamycin (RP)-supplemented, and control diets. We show increased abundance of many ubiquitinated proteins in old mice and greater retention of preexisting (unlabeled) ubiquitinated proteins relative to their unmodified counterparts-fitting the expected profile of age-increased accumulation of long-lived aggregating proteins. Both CR and RP profoundly affected ubiquitinome composition, half-live, and the insolubility of proteins, consistent with their ability to mobilize these age-associated accumulations. Finally, confocal microscopy confirmed the aggregation of two of the top predicted aggregating proteins, keratins 8/18 and catalase, as well as their attenuation by CR and RP. Stable-isotope labeling is a powerful tool to gain novel insights into proteostasis mechanisms, including protein aggregation, and could be used to identify novel therapeutic targets in aging and protein aggregation diseases.
Collapse
Affiliation(s)
- Nathan B Basisty
- Department of Pathology, University of Washington, Seattle
- Buck Institute for Research on Aging, Novato, California
| | - Yuxin Liu
- Department of Medicine, SUNY Upstate Medical University, Syracuse, New York
| | - Jason Reynolds
- Department of Medicine, University of Washington, Seattle
| | | | - Dao-Fu Dai
- Department of Pathology, University of Washington, Seattle
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City
| | | | - Richard P Beyer
- Department of Environmental Health, University of Washington, Seattle
| | | | | |
Collapse
|
38
|
Smith NT, Soriano-Arroquia A, Goljanek-Whysall K, Jackson MJ, McDonagh B. Redox responses are preserved across muscle fibres with differential susceptibility to aging. J Proteomics 2018; 177:112-123. [PMID: 29438851 PMCID: PMC5884322 DOI: 10.1016/j.jprot.2018.02.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/21/2017] [Accepted: 02/08/2018] [Indexed: 12/19/2022]
Abstract
Age-related loss of muscle mass and function is associated with increased frailty and loss of independence. The mechanisms underlying the susceptibility of different muscle types to age-related atrophy are not fully understood. Reactive oxygen species (ROS) are recognised as important signalling molecules in healthy muscle and redox sensitive proteins can respond to intracellular changes in ROS concentrations modifying reactive thiol groups on Cysteine (Cys) residues. Conserved Cys residues tend to occur in functionally important locations and can have a direct impact on protein function through modifications at the active site or determining protein conformation. The aim of this work was to determine age-related changes in the redox proteome of two metabolically distinct murine skeletal muscles, the quadriceps a predominantly glycolytic muscle and the soleus which contains a higher proportion of mitochondria. To examine the effects of aging on the global proteome and the oxidation state of individual redox sensitive Cys residues, we employed a label free proteomics approach including a differential labelling of reduced and reversibly oxidised Cys residues. Our results indicate the proteomic response to aging is dependent on muscle type but redox changes that occur primarily in metabolic and cytoskeletal proteins are generally preserved between metabolically distinct tissues. BIOLOGICAL SIGNIFICANCE Skeletal muscle containing fast twitch glycolytic fibres are more susceptible to age related atrophy compared to muscles with higher proportions of oxidative slow twitch fibres. Contracting skeletal muscle generates reactive oxygen species that are required for correct signalling and adaptation to exercise and it is also known that the intracellular redox environment changes with age. To identify potential mechanisms for the distinct response to age, this article combines a global proteomic approach and a differential labelling of reduced and reversibly oxidised Cysteine residues in two metabolically distinct skeletal muscles, quadriceps and soleus, from adult and old mice. Our results indicate that the global proteomic changes with age in skeletal muscles are dependent on fibre type. However, redox specific changes are preserved across muscle types and accompanied with a reduction in the number of redox sensitive Cysteine residues.
Collapse
Affiliation(s)
- Neil T Smith
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Ana Soriano-Arroquia
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Katarzyna Goljanek-Whysall
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Malcolm J Jackson
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Brian McDonagh
- Discipline of Physiology, School of Medicine, National University of Ireland Galway, Ireland.
| |
Collapse
|
39
|
Abstract
Changes in mitochondrial capacity and quality play a critical role in skeletal and cardiac muscle dysfunction. In vivo measurements of mitochondrial capacity provide a clear link between physical activity and mitochondrial function in aging and heart failure, although the cause and effect relationship remains unclear. Age-related decline in mitochondrial quality leads to mitochondrial defects that affect redox, calcium, and energy-sensitive signaling by altering the cellular environment that can result in skeletal muscle dysfunction independent of reduced mitochondrial capacity. This reduced mitochondrial quality with age is also likely to sensitize skeletal muscle mitochondria to elevated angiotensin or beta-adrenergic signaling associated with heart failure. This synergy between aging and heart failure could further disrupt cell energy and redox homeostasis and contribute to exercise intolerance in this patient population. Therefore, the interaction between aging and heart failure, particularly with respect to mitochondrial dysfunction, should be a consideration when developing strategies to improve quality of life in heart failure patients. Given the central role of the mitochondria in skeletal and cardiac muscle dysfunction, mitochondrial quality may provide a common link for targeted interventions in these populations.
Collapse
Affiliation(s)
- Sophia Z Liu
- Department of Radiology, University of Washington, Box 358050, Seattle, WA, 98109, USA
| | - David J Marcinek
- Department of Radiology, University of Washington, Box 358050, Seattle, WA, 98109, USA. .,Department of Pathology, University of Washington, Seattle, WA, 98109, USA. .,Department of Bioengineering, University of Washington, Seattle, WA, 98109, USA.
| |
Collapse
|
40
|
Abstract
Progressive loss of proteostasis is a hallmark of aging that is marked by declines in various components of proteostasis machinery, including: autophagy, ubiquitin-mediated degradation, protein synthesis, and others. While declines in proteostasis have historically been observed as changes in these processes, or as bulk changes in the proteome, recent advances in proteomic methodologies have enabled the comprehensive measurement of turnover directly at the level of individual proteins in vivo. These methods, which utilize a combination of stable-isotope labeling, mass spectrometry, and specialized software analysis, have now been applied to various studies of aging and longevity. Here we review the role of proteostasis in aging and longevity, with a focus on the proteomic methods available to conduct protein turnover in aging models and the insights these studies have provided thus far.
Collapse
|
41
|
Popa-Wagner A, Sandu RE, Cristin C, Uzoni A, Welle KA, Hryhorenko JR, Ghaemmaghami S. Increased Degradation Rates in the Components of the Mitochondrial Oxidative Phosphorylation Chain in the Cerebellum of Old Mice. Front Aging Neurosci 2018; 10:32. [PMID: 29503614 PMCID: PMC5820363 DOI: 10.3389/fnagi.2018.00032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/26/2018] [Indexed: 12/11/2022] Open
Abstract
Brain structures differ in the magnitude of age-related neuron loss with the cerebellum being more affected. An underlying cause could be an age-related decline in mitochondrial bioenergetics. Successful aging of mitochondria reflects a balanced turnover of proteins involved in mitochondrial biogenesis and mitophagy. Thus, an imbalance in mitochondrial turnover can contribute to the diminution of cellular function seen during aging. Mitochondrial biogenesis and mitophagy are mediated by a set of proteins including MFN1, MFN2, OPA1, DRP1, FIS1 as well as DMN1l and DNM1, all of which are required for mitochondrial fission. Using N15 labeling, we report that the turnover rates for DMN1l and FIS1 go in opposite directions in the cerebellum of 22-month-old C57BL6j mice as compared to 3-month-old mice. Previous studies have reported decreased turnover rates for the mitochondrial respiratory complexes of aged rodents. In contrast, we found increased turnover rates for mitochondrial proteins of the oxidative phosphorylation chain in the aged mice as compared to young mice. Furthermore, the turnover rate of the components that are most affected by aging –complex III components (ubiquinol cytochrome C oxidoreductase) and complex IV components (cytochrome C oxidase)– was significantly increased in the senescent cerebellum. However, the turnover rates of proteins involved in mitophagy (i.e., the proteasomal and lysosomal degradation of damaged mitochondria) were not significantly altered with age. Overall, our results suggest that an age-related imbalance in the turnover rates of proteins involved in mitochondrial biogenesis and mitophagy (DMN1l, FIS1) in conjunction with an age-related imbalance in the turnover rates of proteins of the complexes III and IV of the electron transfer chain, might impair cerebellar mitochondrial bioenergetics in old mice.
Collapse
Affiliation(s)
- Aurel Popa-Wagner
- Department of Neurology, Chair of Vascular Neurology and Dementia, Essen University Hospital, Essen, Germany.,Neurobiology of Aging Group, University of Medicine and Pharmacy Craiova, Craiova, Romania.,School of Medicine, Griffith University, Southport, QLD, Australia
| | - Raluca E Sandu
- Neurobiology of Aging Group, University of Medicine and Pharmacy Craiova, Craiova, Romania
| | - Coman Cristin
- Institutul Naţional de Cercetare şi Dezvoltare pentru Microbiologie şi Imunologie (Cantacuzino), Bucharest, Romania
| | - Adriana Uzoni
- Department of Psychiatry, University of Medicine Rostock, Rostock, Germany
| | - Kevin A Welle
- Department of Biology, University of Rochester, Rochester, NY, United States
| | | | - Sina Ghaemmaghami
- Department of Biology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
42
|
Musci RV, Hamilton KL, Miller BF. Targeting mitochondrial function and proteostasis to mitigate dynapenia. Eur J Appl Physiol 2018; 118:1-9. [PMID: 28986697 PMCID: PMC5756099 DOI: 10.1007/s00421-017-3730-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/30/2017] [Indexed: 12/25/2022]
Abstract
Traditionally, interventions to treat skeletal muscle aging have largely targeted sarcopenia-the age-related loss of skeletal muscle mass. Dynapenia refers to the age-related loss in skeletal muscle function due to factors outside of muscle mass, which helps to inform treatment strategies for aging skeletal muscle. There is evidence that mechanisms to maintain protein homeostasis and proteostasis, deteriorate with age. One key mechanism to maintain proteostasis is protein turnover, which is an energetically costly process. When there is a mismatch between cellular energy demands and energy provision, inelastic processes related to metabolism are maintained, but there is competition for the remaining energy between the elastic processes of somatic maintenance and growth. With aging, mitochondrial dysfunction reduces ATP generation capacity, constraining the instantaneous supply of energy, thus compromising growth and somatic maintenance processes. Further, with age the need for somatic maintenance increases because of the accumulation of protein damage. In this review, we highlight the significant role mitochondria have in maintaining skeletal muscle proteostasis through increased energy provision, protein turnover, and substrate flux. In addition, we provide evidence that improving mitochondrial function could promote a cellular environment that is conducive to somatic maintenance, and consequently for mitigating dynapenia. Finally, we highlight interventions, such as aerobic exercise, that could be used to improve mitochondrial function and improve outcomes related to dynapenia.
Collapse
Affiliation(s)
- Robert V Musci
- Translational Research on Aging and Chronic Disease Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523-1582, USA
| | - Karyn L Hamilton
- Translational Research on Aging and Chronic Disease Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523-1582, USA
| | - Benjamin F Miller
- Translational Research on Aging and Chronic Disease Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523-1582, USA.
| |
Collapse
|
43
|
Gao Y, Zhang J, Liu Y, Zhang S, Wang Y, Liu B, Liu H, Li R, Lv C, Song X. Regulation of TERRA on telomeric and mitochondrial functions in IPF pathogenesis. BMC Pulm Med 2017; 17:163. [PMID: 29197377 PMCID: PMC5712138 DOI: 10.1186/s12890-017-0516-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 11/21/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Aging is a known risk factor of idiopathic pulmonary fibrosis (IPF). However, the pathogenic mechanisms underlying the effects of advanced aging remain largely unknown. Telomeric repeat-containing RNA (TERRA) represents a type of long noncoding RNA. In this study, the regulatory roles of TERRA on human telomeres and mitochondria and IPF epithelial injury model were identified. METHODS Blood samples were collected from patients with IPF (n = 24) and matched control individuals (n = 24). The significance of clinical research on the TERRA expression correlated with pulmonary fibrosis was assessed. The expression levels of TERRA in vivo and in vitro were determined through quantitative real-time polymerase chain reaction analysis. Telomerase activity was observed using a fluorescent quantitative TRAP assay kit. The functions of telomeres, mitochondria, and associated genes were analyzed through RNA interference on TERRA. RESULTS TERRA expression levels significantly increased in the peripheral blood mononuclear cells of IPF patients. The expression levels also exhibited a direct and significantly inverse correlation with the percentage of predicted force vital capacity, which is a physiological indicator of fibrogenesis during IPF progression. This finding was confirmed in the epithelial injury model of IPF in vitro. RNA interference on TERRA expression can ameliorate the functions of telomeres; mitochondria; associated genes; components associated with telomeres, such as telomerase reverse transcriptase, telomerase, and cell nuclear antigen, cyclin D1; and mitochondria-associated cyclin E genes, including the MMP and Bcl-2 family. The RNA interference on TERRA expression can also improve the functions of oxidative-stress-associated genes, such as reactive oxygen species, superoxide dismutase, and catalase, and apoptosis-related genes, such as cytochrome c, caspase-9, and caspase-3. CONCLUSIONS In this study, the regulation of TERRA expression on telomeres and mitochondria during IPF pathogenesis was identified for the first time. The results may provide valuable insights for the discovery of a novel biomarker or therapeutic approach for IPF treatment.
Collapse
Affiliation(s)
- Yulin Gao
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, No. 346, Guanhai Road, Laishan District, Yantai City, 264003 China
| | - Jinjin Zhang
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, No. 346, Guanhai Road, Laishan District, Yantai City, 264003 China
| | - Yuxia Liu
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, No. 346, Guanhai Road, Laishan District, Yantai City, 264003 China
| | - Songzi Zhang
- School of Pharmaceutical Sciences, Taishan Medical University, Taian, 271016 China
| | - Youlei Wang
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, No. 346, Guanhai Road, Laishan District, Yantai City, 264003 China
| | - Bo Liu
- Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou, 256602 China
| | - Huizhu Liu
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, No. 346, Guanhai Road, Laishan District, Yantai City, 264003 China
| | - Rongrong Li
- Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou, 256602 China
| | - Changjun Lv
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, No. 346, Guanhai Road, Laishan District, Yantai City, 264003 China
- Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou, 256602 China
| | - Xiaodong Song
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, No. 346, Guanhai Road, Laishan District, Yantai City, 264003 China
| |
Collapse
|
44
|
Sakellariou GK, Lightfoot AP, Earl KE, Stofanko M, McDonagh B. Redox homeostasis and age-related deficits in neuromuscular integrity and function. J Cachexia Sarcopenia Muscle 2017; 8:881-906. [PMID: 28744984 PMCID: PMC5700439 DOI: 10.1002/jcsm.12223] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 04/06/2017] [Accepted: 05/22/2017] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle is a major site of metabolic activity and is the most abundant tissue in the human body. Age-related muscle atrophy (sarcopenia) and weakness, characterized by progressive loss of lean muscle mass and function, is a major contributor to morbidity and has a profound effect on the quality of life of older people. With a continuously growing older population (estimated 2 billion of people aged >60 by 2050), demand for medical and social care due to functional deficits, associated with neuromuscular ageing, will inevitably increase. Despite the importance of this 'epidemic' problem, the primary biochemical and molecular mechanisms underlying age-related deficits in neuromuscular integrity and function have not been fully determined. Skeletal muscle generates reactive oxygen and nitrogen species (RONS) from a variety of subcellular sources, and age-associated oxidative damage has been suggested to be a major factor contributing to the initiation and progression of muscle atrophy inherent with ageing. RONS can modulate a variety of intracellular signal transduction processes, and disruption of these events over time due to altered redox control has been proposed as an underlying mechanism of ageing. The role of oxidants in ageing has been extensively examined in different model organisms that have undergone genetic manipulations with inconsistent findings. Transgenic and knockout rodent studies have provided insight into the function of RONS regulatory systems in neuromuscular ageing. This review summarizes almost 30 years of research in the field of redox homeostasis and muscle ageing, providing a detailed discussion of the experimental approaches that have been undertaken in murine models to examine the role of redox regulation in age-related muscle atrophy and weakness.
Collapse
Affiliation(s)
| | - Adam P. Lightfoot
- School of Healthcare ScienceManchester Metropolitan UniversityManchesterM1 5GDUK
| | - Kate E. Earl
- MRC‐Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolL7 8TXUK
| | - Martin Stofanko
- Microvisk Technologies LtdThe Quorum7600 Oxford Business ParkOxfordOX4 2JZUK
| | - Brian McDonagh
- MRC‐Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolL7 8TXUK
- Department of Physiology, School of MedicineNational University of IrelandGalwayIreland
| |
Collapse
|
45
|
Stoll EA, Karapavlovic N, Rosa H, Woodmass M, Rygiel K, White K, Turnbull DM, Faulkes CG. Naked mole-rats maintain healthy skeletal muscle and Complex IV mitochondrial enzyme function into old age. Aging (Albany NY) 2017; 8:3468-3485. [PMID: 27997359 PMCID: PMC5270680 DOI: 10.18632/aging.101140] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 12/02/2016] [Indexed: 12/15/2022]
Abstract
The naked mole-rat (NMR) Heterocephalus glaber is an exceptionally long-lived rodent, living up to 32 years in captivity. This extended lifespan is accompanied by a phenotype of negligible senescence, a phenomenon of very slow changes in the expected physiological characteristics with age. One of the many consequences of normal aging in mammals is the devastating and progressive loss of skeletal muscle, termed sarcopenia, caused in part by respiratory enzyme dysfunction within the mitochondria of skeletal muscle fibers. Here we report that NMRs avoid sarcopenia for decades. Muscle fiber integrity and mitochondrial ultrastructure are largely maintained in aged animals. While mitochondrial Complex IV expression and activity remains stable, Complex I expression is significantly decreased. We show that aged naked mole-rat skeletal muscle tissue contains some mitochondrial DNA rearrangements, although the common mitochondrial DNA deletions associated with aging in human and other rodent skeletal muscles are not present. Interestingly, NMR skeletal muscle fibers demonstrate a significant increase in mitochondrial DNA copy number. These results have intriguing implications for the role of mitochondria in aging, suggesting Complex IV, but not Complex I, function is maintained in the long-lived naked mole rat, where sarcopenia is avoided and healthy muscle function is maintained for decades.
Collapse
Affiliation(s)
- Elizabeth A Stoll
- LLHW Centre for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Wellcome Trust Centre for Mitochondrial Research, Institute of Ageing and Health, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Institute for Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Nevena Karapavlovic
- Undergraduate Programme in Biomedical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Hannah Rosa
- LLHW Centre for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Wellcome Trust Centre for Mitochondrial Research, Institute of Ageing and Health, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Institute for Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Michael Woodmass
- Undergraduate Programme in Biomedical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Karolina Rygiel
- LLHW Centre for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Wellcome Trust Centre for Mitochondrial Research, Institute of Ageing and Health, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Institute for Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Kathryn White
- Electron Microscopy Research Services, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Douglass M Turnbull
- LLHW Centre for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Wellcome Trust Centre for Mitochondrial Research, Institute of Ageing and Health, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Institute for Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Chris G Faulkes
- School of Biological & Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| |
Collapse
|
46
|
Drake JC, Yan Z. Mitophagy in maintaining skeletal muscle mitochondrial proteostasis and metabolic health with ageing. J Physiol 2017; 595:6391-6399. [PMID: 28795394 PMCID: PMC5638883 DOI: 10.1113/jp274337] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/05/2017] [Indexed: 12/26/2022] Open
Abstract
Skeletal muscle is important for overall functionality and health. Ageing is associated with an accumulation of damage to mitochondrial DNA and proteins. In particular, damage to mitochondrial proteins in skeletal muscle, which is a loss of mitochondrial proteostasis, contributes to tissue dysfunction and negatively impacts systemic health. Therefore, understanding the mechanisms underlying the regulation of mitochondrial proteostasis and how those mechanisms change with age is important for the development of interventions to promote healthy ageing. Herein, we examine how impairment in the selective degradation of damaged/dysfunctional mitochondria through mitophagy may play a central role in the loss of mitochondrial proteostasis in skeletal muscle ageing, as well as its broader implications for systemic health. Further, we explore how stimulating mitophagy through exercise may promote healthy ageing.
Collapse
Affiliation(s)
- Joshua C. Drake
- Department of MedicineUniversity of Virginia School of MedicineCharlottesvilleVA22908USA
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research CenterUniversity of Virginia School of MedicineCharlottesvilleVA22908USA
| | - Zhen Yan
- Department of MedicineUniversity of Virginia School of MedicineCharlottesvilleVA22908USA
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research CenterUniversity of Virginia School of MedicineCharlottesvilleVA22908USA
- Department of PharmacologyUniversity of Virginia School of MedicineCharlottesvilleVA22908USA
- Department of Molecular Physiology and Biological PhysicsUniversity of Virginia School of MedicineCharlottesvilleVA22908USA
| |
Collapse
|
47
|
|
48
|
Mitochondrial-Targeted Antioxidant Maintains Blood Flow, Mitochondrial Function, and Redox Balance in Old Mice Following Prolonged Limb Ischemia. Int J Mol Sci 2017; 18:ijms18091897. [PMID: 28869535 PMCID: PMC5618546 DOI: 10.3390/ijms18091897] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/24/2017] [Accepted: 08/24/2017] [Indexed: 01/08/2023] Open
Abstract
Aging is a major factor in the decline of limb blood flow with ischemia. However, the underlying mechanism remains unclear. We investigated the role of mitochondrial reactive oxygen species (ROS) with regard to limb perfusion recovery in aging during ischemia. We performed femoral artery ligation in young and old mice with or without treatment with a scavenger of mitochondrial superoxide, MitoTEMPO (180 μg/kg/day, from pre-operative day 7 to post-operative day (POD) 21) infusion using an implanted mini-pump. The recoveries of cutaneous blood flow in the ischemic hind limb were lower in old mice than in young mice but were improved in MitoTEMPO-treated old mice. Mitochondrial DNA damage appeared in ischemic aged muscles but was eliminated by MitoTEMPO treatment. For POD 2, MitoTEMPO treatment suppressed the expression of p53 and the ratio of Bax/Bcl2 and upregulated the expression of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) in ischemic aged skeletal muscles. For POD 21, MitoTEMPO treatment preserved the expression of PGC-1α in ischemic aged skeletal muscle. The ischemic soleus of old mice showed a lower mitochondrial respiratory control ratio in POD 21 compared to young mice, which was recovered in MitoTEMPO-treated old mice. Scavenging of mitochondrial superoxide attenuated mitochondrial DNA damage and preserved the mitochondrial respiration, in addition to suppression of the expression of p53 and preservation of the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) in ischemic skeletal muscles with aging. Resolution of excessive mitochondrial superoxide could be an effective therapy to recover blood flow of skeletal muscle during ischemia in senescence.
Collapse
|
49
|
Mitochondrial-Targeted Catalase: Extended Longevity and the Roles in Various Disease Models. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 146:203-241. [PMID: 28253986 DOI: 10.1016/bs.pmbts.2016.12.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The free-radical theory of aging was proposed more than 50 years ago. As one of the most popular mechanisms explaining the aging process, it has been extensively studied in several model organisms. However, the results remain controversial. The mitochondrial version of free-radical theory of aging proposes that mitochondria are both the primary sources of reactive oxygen species (ROS) and the primary targets of ROS-induced damage. One critical ROS is hydrogen peroxide, which is naturally degraded by catalase in peroxisomes or glutathione peroxidase within mitochondria. Our laboratory developed mice-overexpressing catalase targeted to mitochondria (mCAT), peroxisomes (pCAT), or the nucleus (nCAT) in order to investigate the role of hydrogen peroxide in different subcellular compartments in aging and age-related diseases. The mCAT mice have demonstrated the largest effects on life span and healthspan extension. This chapter will discuss the mCAT phenotype and review studies using mCAT to investigate the roles of mitochondrial oxidative stresses in various disease models, including metabolic syndrome and atherosclerosis, cardiac aging, heart failure, skeletal muscle pathology, sensory defect, neurodegenerative diseases, and cancer. As ROS has been increasingly recognized as essential signaling molecules that may be beneficial in hormesis, stress response and immunity, the potential pleiotropic, or adverse effects of mCAT are also discussed. Finally, the development of small-molecule mitochondrial-targeted therapeutic approaches is reviewed.
Collapse
|
50
|
Gusdon AM, Callio J, Distefano G, O'Doherty RM, Goodpaster BH, Coen PM, Chu CT. Exercise increases mitochondrial complex I activity and DRP1 expression in the brains of aged mice. Exp Gerontol 2017; 90:1-13. [PMID: 28108329 DOI: 10.1016/j.exger.2017.01.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/10/2017] [Accepted: 01/16/2017] [Indexed: 01/06/2023]
Abstract
Exercise is known to have numerous beneficial effects. Recent studies indicate that exercise improves mitochondrial energetics not only in skeletal muscle but also in other tissues. While exercise elicits positive effects on memory, neurogenesis, and synaptic plasticity, the effects of exercise on brain mitochondrial energetics remain relatively unknown. Herein, we studied the effects of exercise training in old and young mice on brain mitochondrial energetics, in comparison to known effects on peripheral tissues that utilize fatty acid oxidation. Exercise improved the capacity for muscle and liver to oxidize palmitate in old mice, but not young mice. In the brain, exercise increased rates of respiration and reactive oxygen species (ROS) production in the old group only while utilizing complex I substrates, effects that were not seen in the young group. Coupled complex I to III enzymatic activity was significantly increased in old trained versus untrained mice with no effect on coupled II to III enzymatic activity. Mitochondrial protein content and markers of mitochondrial biogenesis (PGC-1α and TFAM) were not affected by exercise training in the brain, in contrast to the skeletal muscle of old mice. Brain levels of the autophagy marker LC3-II and protein levels of other signaling proteins that regulate metabolism or transport (BDNF, HSP60, phosphorylated mTOR, FNDC5, SIRT3) were not significantly altered. Old exercised mice showed a significant increase in DRP1 protein levels in the brain without changes in phosphorylation, while MFN2 and OPA1 protein levels were unchanged. Our results suggest that exercise training in old mice can improve brain mitochondrial function through effects on electron transport chain function and mitochondrial dynamics without increasing mitochondrial biogenesis.
Collapse
Affiliation(s)
- Aaron M Gusdon
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, United States; Department of Neurology, NewYork-Presbyterian Hospital, Weill Cornell Medical College, United States
| | - Jason Callio
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, United States
| | - Giovanna Distefano
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, United States; Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, United States
| | - Robert M O'Doherty
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, United States
| | - Bret H Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, United States; Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, United States
| | - Paul M Coen
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, United States; Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, United States.
| | - Charleen T Chu
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, United States.
| |
Collapse
|