1
|
Viswanathan MC, Dutta D, Kronert WA, Chitre K, Padrón R, Craig R, Bernstein SI, Cammarato A. Dominant myosin storage myopathy mutations disrupt striated muscles in Drosophila and the myosin tail-tail interactome of human cardiac thick filaments. Genetics 2025; 229:1-34. [PMID: 39485824 PMCID: PMC11708916 DOI: 10.1093/genetics/iyae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Abstract
Myosin storage myopathy (MSM) is a rare skeletal muscle disorder caused by mutations in the slow muscle/β-cardiac myosin heavy chain (MHC) gene. MSM missense mutations frequently disrupt the tail's stabilizing heptad repeat motif. Disease hallmarks include subsarcolemmal hyaline-like β-MHC aggregates, muscle weakness, and, occasionally, cardiomyopathy. We generated transgenic, heterozygous Drosophila to examine the dominant physiological and structural effects of the L1793P, R1845W, and E1883K MHC MSM mutations on diverse muscles. The MHC variants reduced lifespan and flight and jump abilities. Moreover, confocal and electron microscopy revealed that they provoked indirect flight muscle breaks and myofibrillar disarray/degeneration with filamentous inclusions. Incorporation of GFP-myosin enabled in situ determination of thick filament lengths, which were significantly reduced in all mutants. Semiautomated heartbeat analysis uncovered aberrant cardiac function, which worsened with age. Thus, our fly models phenocopied traits observed among MSM patients. We additionally mapped the mutations onto a recently determined, 6 Å resolution, cryo-EM structure of the human cardiac thick filament. The R1845W mutation replaces a basic arginine with a polar-neutral, bulkier tryptophan, while E1883K reverses charge at critical filament loci. Both would be expected to disrupt the core and the outer shell of the backbone structure. Replacing L1793 with a proline, a potent breaker of α-helices, could disturb the coiled-coil of the myosin rod and alter the tail-tail interactome. Hence, all mutations likely destabilize and weaken the filament backbone. This may trigger disease in humans, while potentially analogous perturbations are likely to yield the observed thick filament and muscle disruption in our fly models.
Collapse
Affiliation(s)
- Meera C Viswanathan
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA
- Department of Biology, Molecular Biology Institute and Heart Institute San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Debabrata Dutta
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Chan Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - William A Kronert
- Department of Biology, Molecular Biology Institute and Heart Institute San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Kripa Chitre
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Raúl Padrón
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Chan Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Roger Craig
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Chan Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Sanford I Bernstein
- Department of Biology, Molecular Biology Institute and Heart Institute San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Anthony Cammarato
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA
| |
Collapse
|
2
|
Dos Santos E, Cochemé HM. How does a fly die? Insights into ageing from the pathophysiology of Drosophila mortality. GeroScience 2024; 46:4003-4015. [PMID: 38642259 PMCID: PMC11336040 DOI: 10.1007/s11357-024-01158-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/22/2024] Open
Abstract
The fruit fly Drosophila melanogaster is a common animal model in ageing research. Large populations of flies are used to study the impact of genetic, nutritional and pharmacological interventions on survival. However, the processes through which flies die and their relative prevalence in Drosophila populations are still comparatively unknown. Understanding the causes of death in an animal model is essential to dissect the lifespan-extending interventions that are organism- or disease-specific from those broadly applicable to ageing. Here, we review the pathophysiological processes that can lead to fly death and discuss their relation to ageing.
Collapse
Affiliation(s)
- Eliano Dos Santos
- MRC Laboratory of Medical Sciences (LMS), Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
- Institute of Clinical Sciences, Hammersmith Hospital Campus, Imperial College London, Du Cane Road, London, W12 0HS, UK
| | - Helena M Cochemé
- MRC Laboratory of Medical Sciences (LMS), Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK.
- Institute of Clinical Sciences, Hammersmith Hospital Campus, Imperial College London, Du Cane Road, London, W12 0HS, UK.
| |
Collapse
|
3
|
Neal CL, Kronert WA, Camillo JRT, Suggs JA, Huxford T, Bernstein SI. Aging-affiliated post-translational modifications of skeletal muscle myosin affect biochemical properties, myofibril structure, muscle function, and proteostasis. Aging Cell 2024; 23:e14134. [PMID: 38506610 PMCID: PMC11296117 DOI: 10.1111/acel.14134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/18/2023] [Accepted: 02/12/2024] [Indexed: 03/21/2024] Open
Abstract
The molecular motor myosin is post-translationally modified in its globular head, its S2 hinge, and its thick filament domain during human skeletal muscle aging. To determine the importance of such modifications, we performed an integrative analysis of transgenic Drosophila melanogaster expressing myosin containing post-translational modification mimic mutations. We determined effects on muscle function, myofibril structure, and myosin biochemistry. Modifications in the homozygous state decreased jump muscle function by a third at 3 weeks of age and reduced indirect flight muscle function to negligible levels in young flies, with severe effects on flight muscle myofibril assembly and/or maintenance. Expression of mimic mutations in the heterozygous state or in a wild-type background yielded significant, but less severe, age-dependent effects upon flight muscle structure and function. Modification of the residue in the globular head disabled ATPase activity and in vitro actin filament motility, whereas the S2 hinge mutation reduced actin-activated ATPase activity by 30%. The rod modification diminished filament formation in vitro. The latter mutation also reduced proteostasis, as demonstrated by enhanced accumulation of polyubiquitinated proteins. Overall, we find that mutation of amino acids at sites that are chemically modified during human skeletal muscle aging can disrupt myosin ATPase, myosin filament formation, and/or proteostasis, providing a mechanistic basis for the observed muscle defects. We conclude that age-specific post-translational modifications present in human skeletal muscle are likely to act in a dominant fashion to affect muscle structure and function and may therefore be implicated in degeneration and dysfunction associated with sarcopenia.
Collapse
Affiliation(s)
- Clara L. Neal
- Department of Biology, Molecular Biology Institute, Heart InstituteSan Diego State UniversitySan DiegoCaliforniaUSA
| | - William A. Kronert
- Department of Biology, Molecular Biology Institute, Heart InstituteSan Diego State UniversitySan DiegoCaliforniaUSA
| | - Jared Rafael T. Camillo
- Department of Biology, Molecular Biology Institute, Heart InstituteSan Diego State UniversitySan DiegoCaliforniaUSA
| | - Jennifer A. Suggs
- Department of Biology, Molecular Biology Institute, Heart InstituteSan Diego State UniversitySan DiegoCaliforniaUSA
| | - Tom Huxford
- Department of Chemistry and BiochemistrySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Sanford I. Bernstein
- Department of Biology, Molecular Biology Institute, Heart InstituteSan Diego State UniversitySan DiegoCaliforniaUSA
| |
Collapse
|
4
|
Wen D, Chen Y, Tian X, Hou W. Physical exercise improves the premature muscle aging and lifespan reduction induced by high-salt intake and muscle CG2196(salt) overexpression in Drosophila. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
5
|
Abdellatif M, Rainer PP, Sedej S, Kroemer G. Hallmarks of cardiovascular ageing. Nat Rev Cardiol 2023; 20:754-777. [PMID: 37193857 DOI: 10.1038/s41569-023-00881-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/18/2023]
Abstract
Normal circulatory function is a key determinant of disease-free life expectancy (healthspan). Indeed, pathologies affecting the cardiovascular system, which are growing in prevalence, are the leading cause of global morbidity, disability and mortality, whereas the maintenance of cardiovascular health is necessary to promote both organismal healthspan and lifespan. Therefore, cardiovascular ageing might precede or even underlie body-wide, age-related health deterioration. In this Review, we posit that eight molecular hallmarks are common denominators in cardiovascular ageing, namely disabled macroautophagy, loss of proteostasis, genomic instability (in particular, clonal haematopoiesis of indeterminate potential), epigenetic alterations, mitochondrial dysfunction, cell senescence, dysregulated neurohormonal signalling and inflammation. We also propose a hierarchical order that distinguishes primary (upstream) from antagonistic and integrative (downstream) hallmarks of cardiovascular ageing. Finally, we discuss how targeting each of the eight hallmarks might be therapeutically exploited to attenuate residual cardiovascular risk in older individuals.
Collapse
Affiliation(s)
- Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, Graz, Austria.
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- BioTechMed Graz, Graz, Austria.
| | - Peter P Rainer
- Department of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
6
|
Maiese K. Innovative therapeutic strategies for cardiovascular disease. EXCLI JOURNAL 2023; 22:690-715. [PMID: 37593239 PMCID: PMC10427777 DOI: 10.17179/excli2023-6306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023]
Abstract
As a significant non-communicable disease, cardiovascular disease is the leading cause of death for both men and women, comprises almost twenty percent of deaths in most racial and ethnic groups, can affect greater than twenty-five million individuals worldwide over the age of twenty, and impacts global economies with far-reaching financial challenges. Multiple factors can affect the onset of cardiovascular disease that include high serum cholesterol levels, elevated blood pressure, tobacco consumption and secondhand smoke exposure, poor nutrition, physical inactivity, obesity, and concurrent diabetes mellitus. Yet, addressing any of these factors cannot completely eliminate the onset or progression of cardiovascular disorders. Novel strategies are necessary to target underlying cardiovascular disease mechanisms. The silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), a histone deacetylase, can limit cardiovascular injury, assist with stem cell development, oversee metabolic homeostasis through nicotinamide adenine dinucleotide (NAD+) pathways, foster trophic factor protection, and control cell senescence through the modulation of telomere function. Intimately tied to SIRT1 pathways are mammalian forkhead transcription factors (FoxOs) which can modulate cardiac disease to reduce oxidative stress, repair microcirculation disturbances, and reduce atherogenesis through pathways of autophagy, apoptosis, and ferroptosis. AMP activated protein kinase (AMPK) also is critical among these pathways for the oversight of cardiac cellular metabolism, insulin sensitivity, mitochondrial function, inflammation, and the susceptibility to viral infections such as severe acute respiratory syndrome coronavirus that can impact cardiovascular disease. Yet, the relationship among these pathways is both intricate and complex and requires detailed insight to successfully translate these pathways into clinical care for cardiovascular disorders.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
7
|
Wen DT, Gao YH, Wang J, Wang S, Zhong Q, Hou WQ. Role of muscle FOXO gene in exercise against the skeletal muscle and cardiac age-related defects and mortality caused by high-salt intake in Drosophila. GENES & NUTRITION 2023; 18:6. [PMID: 36997839 PMCID: PMC10064743 DOI: 10.1186/s12263-023-00725-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/24/2023] [Indexed: 04/01/2023]
Abstract
FOXO has long been associated with aging, exercise, and tissue homeostasis, but it remains unclear what the role is of the muscle FOXO gene in E against high-salt intake(HSI)-induced age-related defects of the skeletal muscle, heart, and mortality. In this research, overexpression and RNAi of the FOXO gene in the skeletal and heart muscle of Drosophila were constructed by building Mhc-GAL4/FOXO-UAS-overexpression and Mhc-GAL4/FOXO-UAS-RNAi system. The skeletal muscle and heart function, the balance of oxidation and antioxidant, and mitochondrial homeostasis were measured. The results showed that exercise reversed the age-related decline in climbing ability and downregulation of muscle FOXO expression induced by HSI. Muscle-specific FOXO-RNAi (FOXO-RNAi) and -overexpression (FOXO-OE) promoted or slowed the age-related decline in climbing ability, heart function, and skeletal muscle and heart structure damage, which was accompanied by the inhibition or activation of FOXO/PGC-1α/SDH and FOXO/SOD pathway activity, and oxidative stress (ROS) increased or decreased in both skeletal muscle and heart. The protective effect of exercise on the skeletal muscle and heart was blocked by FOXO-RNAi in aged HSI flies. FOXO-OE prolonged its lifespan, but it did not resist the HSI-induced lifespan shortening. Exercise did not improve HSI-induced lifespan shortening in FOXO-RNAi flies. Therefore, current results confirmed that the muscle FOXO gene played a vital role in exercise against age-related defects of the skeletal muscle and heart induced by HSI because it determined the activity of muscle FOXO/SOD and FOXO/PGC-1α/SDH pathways. The muscle FOXO gene also played an important role in exercise against HSI-induced mortality in aging flies.
Collapse
Affiliation(s)
- Deng-Tai Wen
- Ludong University, Shandong Province, City Yantai, 264025, China.
| | - Ying-Hui Gao
- Ludong University, Shandong Province, City Yantai, 264025, China
| | - Jingfeng Wang
- Ludong University, Shandong Province, City Yantai, 264025, China
| | - Shijie Wang
- Ludong University, Shandong Province, City Yantai, 264025, China
| | - Qi Zhong
- Ludong University, Shandong Province, City Yantai, 264025, China
| | - Wen-Qi Hou
- Ludong University, Shandong Province, City Yantai, 264025, China
| |
Collapse
|
8
|
Pacinella G, Ciaccio AM, Tuttolomondo A. Endothelial Dysfunction and Chronic Inflammation: The Cornerstones of Vascular Alterations in Age-Related Diseases. Int J Mol Sci 2022; 23:15722. [PMID: 36555364 PMCID: PMC9779461 DOI: 10.3390/ijms232415722] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Vascular diseases of the elderly are a topic of enormous interest in clinical practice, as they have great epidemiological significance and lead to ever-increasing healthcare expenditures. The mechanisms underlying these pathologies have been increasingly characterized over the years. It has emerged that endothelial dysfunction and chronic inflammation play a diriment role among the most relevant pathophysiological mechanisms. As one can easily imagine, various processes occur during aging, and several pathways undergo irreversible alterations that can promote the decline and aberrations that trigger the diseases above. Endothelial dysfunction and aging of circulating and resident cells are the main characteristics of the aged organism; they represent the framework within which an enormous array of molecular abnormalities occur and contribute to accelerating and perpetuating the decline of organs and tissues. Recognizing and detailing each of these dysfunctional pathways is helpful for therapeutic purposes, as it allows one to hypothesize the possibility of tailoring interventions to the damaged mechanism and hypothetically limiting the cascade of events that drive the onset of these diseases. With this paper, we have reviewed the scientific literature, analysing the pathophysiological basis of the vascular diseases of the elderly and pausing to reflect on attempts to interrupt the vicious cycle that connotes the diseases of aging, laying the groundwork for therapeutic reasoning and expanding the field of scientific research by moving from a solid foundation.
Collapse
Affiliation(s)
| | | | - Antonino Tuttolomondo
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialized Medicine (PROMISE) G. D’Alessandro, University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy
| |
Collapse
|
9
|
Papanagnou E, Gumeni S, Sklirou AD, Rafeletou A, Terpos E, Keklikoglou K, Kastritis E, Stamatelopoulos K, Sykiotis GP, Dimopoulos MA, Trougakos IP. Autophagy activation can partially rescue proteasome dysfunction-mediated cardiac toxicity. Aging Cell 2022; 21:e13715. [PMID: 36259256 PMCID: PMC9649605 DOI: 10.1111/acel.13715] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/01/2022] [Accepted: 08/31/2022] [Indexed: 01/25/2023] Open
Abstract
The ubiquitin-proteasome pathway and its functional interplay with other proteostatic and/or mitostatic modules are crucial for cell viability, especially in post-mitotic cells like cardiomyocytes, which are constantly exposed to proteotoxic, metabolic, and mechanical stress. Consistently, treatment of multiple myeloma patients with therapeutic proteasome inhibitors may induce cardiac failure; yet the effects promoted by heart-targeted proteasome dysfunction are not completely understood. We report here that heart-targeted proteasome knockdown in the fly experimental model results in increased proteome instability and defective mitostasis, leading to disrupted cardiac activity, systemic toxicity, and reduced longevity. These phenotypes were partially rescued by either heart targeted- or by dietary restriction-mediated activation of autophagy. Supportively, activation of autophagy by Rapamycin or Metformin administration in flies treated with proteasome inhibitors reduced proteome instability, partially restored mitochondrial function, mitigated cardiotoxicity, and improved flies' longevity. These findings suggest that autophagic inducers represent a novel promising intervention against proteasome inhibitor-induced cardiovascular complications.
Collapse
Affiliation(s)
- Eleni‐Dimitra Papanagnou
- Department of Cell Biology and Biophysics, Faculty of BiologyNational and Kapodistrian University of AthensAthensGreece
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of BiologyNational and Kapodistrian University of AthensAthensGreece
| | - Aimilia D. Sklirou
- Department of Cell Biology and Biophysics, Faculty of BiologyNational and Kapodistrian University of AthensAthensGreece
| | - Alexandra Rafeletou
- Department of Cell Biology and Biophysics, Faculty of BiologyNational and Kapodistrian University of AthensAthensGreece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Kleoniki Keklikoglou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research (HCMR)CreteGreece,Biology DepartmentUniversity of CreteHeraklionGreece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, School of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Gerasimos P. Sykiotis
- Service of Endocrinology, Diabetology and MetabolismLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Meletios A. Dimopoulos
- Department of Clinical Therapeutics, School of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of BiologyNational and Kapodistrian University of AthensAthensGreece
| |
Collapse
|
10
|
Wen DT, Zheng L, Lu K, Hou WQ. Physical exercise prevents age-related heart dysfunction induced by high-salt intake and heart salt-specific overexpression in Drosophila. Aging (Albany NY) 2021; 13:19542-19560. [PMID: 34383711 PMCID: PMC8386524 DOI: 10.18632/aging.203364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/17/2021] [Indexed: 12/21/2022]
Abstract
A long-term high-salt intake (HSI) seems to accelerate cardiac aging and age-related diseases, but the molecular mechanism is still not entirely clear. Exercise is an effective way to delay cardiac aging. However, it remains unclear whether long-term exercise (LTE) can protect heart from aging induced by high-salt stress. In this study, heart CG2196(salt) specific overexpression (HSSO) and RNAi (HSSR) was constructed by using the UAS/hand-Gal4 system in Drosophila. Flies were given exercise and a high-salt diet intervention from 1 to 5 weeks of age. Results showed that HSSR and LTE remarkably prevented heart from accelerated age-related defects caused by HSI and HSSO, and these defects included a marked increase in heart period, arrhythmia index, malondialdehyde (MDA) level, salt expression, and dTOR expression, and a marked decrease in fractional shortening, SOD activity level, dFOXO expression, PGC-1α expression, and the number of mitochondria and myofibrils. The combination of HSSR and LTE could better protect the aging heart from the damage of HSI. Therefore, current evidences suggested that LTE resisted HSI-induced heart presenility via blocking CG2196(salt)/TOR/oxidative stress and activating dFOXO/PGC-1α. LTE also reversed heart presenility induced by cardiac-salt overexpression via activating dFOXO/PGC-1α and blocking TOR/oxidative stress.
Collapse
Affiliation(s)
- Deng-Tai Wen
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, Hunan Province, China.,Ludong University, Yantai 264025, Shandong Province, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, Hunan Province, China
| | - Kai Lu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, Hunan Province, China
| | - Wen-Qi Hou
- Ludong University, Yantai 264025, Shandong Province, China
| |
Collapse
|
11
|
Role of FoxO transcription factors in aging-associated cardiovascular diseases. VITAMINS AND HORMONES 2021; 115:449-475. [PMID: 33706958 DOI: 10.1016/bs.vh.2020.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aging constitutes a major risk factor toward the development of cardiovascular diseases (CVDs). The aging heart undergoes several changes at the molecular, cellular and physiological levels, which diminishes its contractile function and weakens stress tolerance. Further, old age increases the exposure to risk factors such as hypertension, diabetes and hypercholesterolemia. Notably, research in the past decades have identified FoxO subfamily of the forkhead transcription factors as key players in regulating diverse cellular processes linked to cardiac aging and diseases. In the present chapter, we discuss the important role of FoxO in the development of various aging-associated cardiovascular complications such as cardiac hypertrophy, cardiac fibrosis, heart failure, vascular dysfunction, atherosclerosis, hypertension and myocardial ischemia. Besides, we will also discuss the role of FoxO in cardiometabolic alterations, autophagy and proteasomal degradation, which are implicated in aging-associated cardiac dysfunction.
Collapse
|
12
|
Marguerite NT, Bernard J, Harrison DA, Harris D, Cooper RL. Effect of Temperature on Heart Rate for Phaenicia sericata and Drosophila melanogaster with Altered Expression of the TrpA1 Receptors. INSECTS 2021; 12:38. [PMID: 33418937 PMCID: PMC7825143 DOI: 10.3390/insects12010038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/24/2020] [Accepted: 01/02/2021] [Indexed: 11/29/2022]
Abstract
The transient receptor potential (TrpA-ankyrin) receptor has been linked to pathological conditions in cardiac function in mammals. To better understand the function of the TrpA1 in regulation of the heart, a Drosophila melanogaster model was used to express TrpA1 in heart and body wall muscles. Heartbeat of in intact larvae as well as hearts in situ, devoid of hormonal and neural input, indicate that strong over-expression of TrpA1 in larvae at 30 or 37 °C stopped the heart from beating, but in a diastolic state. Cardiac function recovered upon cooling after short exposure to high temperature. Parental control larvae (UAS-TrpA1) increased heart rate transiently at 30 and 37 °C but slowed at 37 °C within 3 min for in-situ preparations, while in-vivo larvae maintained a constant heart rate. The in-situ preparations maintained an elevated rate at 30 °C. The heartbeat in the TrpA1-expressing strains could not be revived at 37 °C with serotonin. Thus, TrpA1 activation may have allowed enough Ca2+ influx to activate K(Ca) channels into a form of diastolic stasis. TrpA1 activation in body wall muscle confirmed a depolarization of membrane. In contrast, blowfly Phaenicia sericata larvae increased heartbeat at 30 and 37 °C, demonstrating greater cardiac thermotolerance.
Collapse
Affiliation(s)
- Nicole T. Marguerite
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA; (N.T.M.); (J.B.); (D.A.H.)
| | - Jate Bernard
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA; (N.T.M.); (J.B.); (D.A.H.)
| | - Douglas A. Harrison
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA; (N.T.M.); (J.B.); (D.A.H.)
| | | | - Robin L. Cooper
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA; (N.T.M.); (J.B.); (D.A.H.)
| |
Collapse
|
13
|
Liberale L, Kraler S, Camici GG, Lüscher TF. Ageing and longevity genes in cardiovascular diseases. Basic Clin Pharmacol Toxicol 2020; 127:120-131. [DOI: 10.1111/bcpt.13426] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Luca Liberale
- Center for Molecular Cardiology University of Zürich Schlieren Switzerland
- Department of Internal Medicine First Clinic of Internal Medicine University of Genoa Genoa Italy
| | - Simon Kraler
- Center for Molecular Cardiology University of Zürich Schlieren Switzerland
| | - Giovanni G. Camici
- Center for Molecular Cardiology University of Zürich Schlieren Switzerland
- Department of Cardiology University Heart Center University Hospital Zurich Zurich Switzerland
- Department of Research and Education University Hospital Zurich Zurich Switzerland
| | - Thomas F. Lüscher
- Center for Molecular Cardiology University of Zürich Schlieren Switzerland
- Heart Division Royal Brompton and Harefield Hospitals and National Heart and Lung Institute Imperial College London UK
| |
Collapse
|
14
|
Viswanathan MC, Schmidt W, Franz P, Rynkiewicz MJ, Newhard CS, Madan A, Lehman W, Swank DM, Preller M, Cammarato A. A role for actin flexibility in thin filament-mediated contractile regulation and myopathy. Nat Commun 2020; 11:2417. [PMID: 32415060 PMCID: PMC7229152 DOI: 10.1038/s41467-020-15922-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/30/2020] [Indexed: 12/20/2022] Open
Abstract
Striated muscle contraction is regulated by the translocation of troponin-tropomyosin strands over the thin filament surface. Relaxation relies partly on highly-favorable, conformation-dependent electrostatic contacts between actin and tropomyosin, which position tropomyosin such that it impedes actomyosin associations. Impaired relaxation and hypercontractile properties are hallmarks of various muscle disorders. The α-cardiac actin M305L hypertrophic cardiomyopathy-causing mutation lies near residues that help confine tropomyosin to an inhibitory position along thin filaments. Here, we investigate M305L actin in vivo, in vitro, and in silico to resolve emergent pathological properties and disease mechanisms. Our data suggest the mutation reduces actin flexibility and distorts the actin-tropomyosin electrostatic energy landscape that, in muscle, result in aberrant contractile inhibition and excessive force. Thus, actin flexibility may be required to establish and maintain interfacial contacts with tropomyosin as well as facilitate its movement over distinct actin surface features and is, therefore, likely necessary for proper regulation of contraction. The α-cardiac actin M305L hypertrophic cardiomyopathy-causing mutation is located near residues that help confine tropomyosin to an inhibitory position along thin filaments. Here the authors assessed M305L actin in vivo, in vitro, and in silico to characterize emergent pathological properties and define the mechanistic basis of disease.
Collapse
Affiliation(s)
- Meera C Viswanathan
- Department of Medicine, Division of Cardiology, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - William Schmidt
- Department of Medicine, Division of Cardiology, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - Peter Franz
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Michael J Rynkiewicz
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street St, Boston, MA, 02118, USA
| | - Christopher S Newhard
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180-3590, USA
| | - Aditi Madan
- Department of Medicine, Division of Cardiology, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - William Lehman
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street St, Boston, MA, 02118, USA
| | - Douglas M Swank
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180-3590, USA
| | - Matthias Preller
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| | - Anthony Cammarato
- Department of Medicine, Division of Cardiology, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD, 21205, USA. .,Department of Physiology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA.
| |
Collapse
|
15
|
Protein and Mitochondria Quality Control Mechanisms and Cardiac Aging. Cells 2020; 9:cells9040933. [PMID: 32290135 PMCID: PMC7226975 DOI: 10.3390/cells9040933] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/31/2022] Open
Abstract
Cardiovascular disease (CVD) is the number one cause of death in the United States. Advancing age is a primary risk factor for developing CVD. Estimates indicate that 20% of the US population will be ≥65 years old by 2030. Direct expenditures for treating CVD in the older population combined with indirect costs, secondary to lost wages, are predicted to reach $1.1 trillion by 2035. Therefore, there is an eminent need to discover novel therapeutic targets and identify new interventions to delay, lessen the severity, or prevent cardiovascular complications associated with advanced age. Protein and organelle quality control pathways including autophagy/lysosomal and the ubiquitin-proteasome systems, are emerging contributors of age-associated myocardial dysfunction. In general, two findings have sparked this interest. First, strong evidence indicates that cardiac protein degradation pathways are altered in the heart with aging. Second, it is well accepted that damaged and misfolded protein aggregates and dysfunctional mitochondria accumulate in the heart with age. In this review, we will: (i) define the different protein and mitochondria quality control mechanisms in the heart; (ii) provide evidence that each quality control pathway becomes dysfunctional during cardiac aging; and (iii) discuss current advances in targeting these pathways to maintain cardiac function with age.
Collapse
|
16
|
Chen H, Xia W, Hou M. LncRNA-NEAT1 from the competing endogenous RNA network promotes cardioprotective efficacy of mesenchymal stem cell-derived exosomes induced by macrophage migration inhibitory factor via the miR-142-3p/FOXO1 signaling pathway. Stem Cell Res Ther 2020; 11:31. [PMID: 31964409 PMCID: PMC6975066 DOI: 10.1186/s13287-020-1556-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/23/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Aims Extracellular vesicles, especially exosomes, have emerged as key mediators of intercellular communication with the potential to improve cardiac function as part of cell-based therapies. We previously demonstrated that the cardioprotective factor, macrophage migration inhibitory factor (MIF), had an optimizing effect on mesenchymal stem cells (MSCs). The aim of this study was to determine the protective function of exosomes derived from MIF-pretreated MSCs in cardiomyocytes and to explore the underlying mechanisms. Methods and results Exosomes were isolated from control MSCs (exosome) and MIF-pretreated MSCs (exosomeMIF), and delivered to cardiomyocytes subjected to H2O2 in vitro. Regulatory long non-coding RNAs (lncRNAs) activated by MIF pretreatment were explored using genomics approaches. ExosomeMIF protected cardiomyocytes from H2O2-induced apoptosis. Mechanistically, we identified lncRNA-NEAT1 as a mediator of exosomeMIF by regulating the expression of miR-142-3p and activating Forkhead class O1 (FOXO1). The cardioprotective effects of exosomeMIF were consistently abrogated by depletion of lncRNA-NEAT1, by overexpression of miR-142-3p, or by FOXO1 silencing. Furthermore, exosomeMIF inhibited H2O2-induced apoptosis through modulating oxidative stress. Conclusions Exosomes obtained from MIF-pretreated MSCs have a protective effect on cardiomyocytes. The lncRNA-NEAT1 functions as an anti-apoptotic molecule via competitive endogenous RNA activity towards miR-142-3p. LncRNA-NEAT1/miR-142-3p/FOXO1 at least partially mediates the cardioprotective roles of exosomeMIF in protecting cardiomyocytes from apoptosis.
Collapse
Affiliation(s)
- Hanbin Chen
- Department of Radiation Oncology, First Affiliated Hospital, Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, 325000, People's Republic of China
| | - Wenzheng Xia
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Meng Hou
- Department of Radiation Oncology, First Affiliated Hospital, Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, 325000, People's Republic of China.
| |
Collapse
|
17
|
Abstract
Aging of the vasculature plays a central role in morbidity and mortality of older people. To develop novel treatments for amelioration of unsuccessful vascular aging and prevention of age-related vascular pathologies, it is essential to understand the cellular and functional changes that occur in the vasculature during aging. In this review, the pathophysiological roles of fundamental cellular and molecular mechanisms of aging, including oxidative stress, mitochondrial dysfunction, impaired resistance to molecular stressors, chronic low-grade inflammation, genomic instability, cellular senescence, epigenetic alterations, loss of protein homeostasis, deregulated nutrient sensing, and stem cell dysfunction in the vascular system are considered in terms of their contribution to the pathogenesis of both microvascular and macrovascular diseases associated with old age. The importance of progeronic and antigeronic circulating factors in relation to development of vascular aging phenotypes are discussed. Finally, future directions and opportunities to develop novel interventions to prevent/delay age-related vascular pathologies by targeting fundamental cellular and molecular aging processes are presented.
Collapse
Affiliation(s)
- Zoltan Ungvari
- From the Vascular Cognitive Impairment Laboratory, Reynolds Oklahoma Center on Aging (Z.U., S.T., A.C.), University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Geriatric Medicine, Translational Geroscience Laboratory (Z.U., S.T., A.C.), University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Medical Physics and Informatics, University of Szeged, Hungary (Z.U., A.C.)
- Department of Pulmonology, Semmelweis University of Medicine, Budapest, Hungary (Z.U.)
| | - Stefano Tarantini
- From the Vascular Cognitive Impairment Laboratory, Reynolds Oklahoma Center on Aging (Z.U., S.T., A.C.), University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Geriatric Medicine, Translational Geroscience Laboratory (Z.U., S.T., A.C.), University of Oklahoma Health Sciences Center, Oklahoma City
| | - Anthony J Donato
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City (A.J.D.)
- Veterans Affairs Medical Center-Salt Lake City, Geriatrics Research Education and Clinical Center, UT (A.J.D.)
| | - Veronica Galvan
- Barshop Institute for Longevity and Aging Studies (V.G.), University of Texas Health Science Center at San Antonio
- Department of Physiology (V.G.), University of Texas Health Science Center at San Antonio
| | - Anna Csiszar
- From the Vascular Cognitive Impairment Laboratory, Reynolds Oklahoma Center on Aging (Z.U., S.T., A.C.), University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Geriatric Medicine, Translational Geroscience Laboratory (Z.U., S.T., A.C.), University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Medical Physics and Informatics, University of Szeged, Hungary (Z.U., A.C.)
| |
Collapse
|
18
|
Wen DT, Zheng L, Li JX, Lu K, Hou WQ. The activation of cardiac dSir2-related pathways mediates physical exercise resistance to heart aging in old Drosophila. Aging (Albany NY) 2019; 11:7274-7293. [PMID: 31503544 PMCID: PMC6756900 DOI: 10.18632/aging.102261] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/02/2019] [Indexed: 01/30/2023]
Abstract
Cardiac aging is majorly characterized by increased diastolic dysfunction, lipid accumulation, oxidative stress, and contractility debility. The Sir2/Sirt1 gene overexpression delays cell aging and reduces obesity and oxidative stress. Exercise improves heart function and delays heart aging. However, it remains unclear whether exercise delaying heart aging is related to cardiac Sir2/Sirt1-related pathways. In this study, cardiac dSir2 overexpression or knockdown was regulated using the UAS/hand-Gal4 system in Drosophila. Flies underwent exercise interventions from 4 weeks to 5 weeks old. Results showed that either cardiac dSir2 overexpression or exercise remarkably increased the cardiac period, systolic interval, diastolic interval, fractional shortening, SOD activity, dSIR2 protein, Foxo, dSir2, Nmnat, and bmm expression levels in the aging flies; they also notably reduced the cardiac triacylglycerol level, malonaldehyde level, and the diastolic dysfunction index. Either cardiac dSir2 knockdown or aging had almost opposite effects on the heart as those of cardiac dSir2 overexpression. Therefore, we claim that cardiac dSir2 overexpression or knockdown delayed or promoted heart aging by reducing or increasing age-related oxidative stress, lipid accumulation, diastolic dysfunction, and contractility debility. The activation of cardiac dSir2/Foxo/SOD and dSir2/Foxo/bmm pathways may be two important molecular mechanisms through which exercise works against heart aging in Drosophila.
Collapse
Affiliation(s)
- Deng-Tai Wen
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, Hunan Province, China.,Ludong University, Yantai 264025, Shan Dong Province, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, Hunan Province, China
| | - Jin-Xiu Li
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, Hunan Province, China
| | - Kai Lu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, Hunan Province, China
| | - Wen-Qi Hou
- Ludong University, Yantai 264025, Shan Dong Province, China
| |
Collapse
|
19
|
Picca A, Mankowski RT, Burman JL, Donisi L, Kim JS, Marzetti E, Leeuwenburgh C. Mitochondrial quality control mechanisms as molecular targets in cardiac ageing. Nat Rev Cardiol 2019; 15:543-554. [PMID: 30042431 DOI: 10.1038/s41569-018-0059-z] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality worldwide. Advancing age is a major risk factor for developing cardiovascular disease because of the lifelong exposure to cardiovascular risk factors and specific alterations affecting the heart and the vasculature during ageing. Indeed, the ageing heart is characterized by structural and functional changes that are caused by alterations in fundamental cardiomyocyte functions. In particular, the myocardium is heavily dependent on mitochondrial oxidative metabolism and is especially susceptible to mitochondrial dysfunction. Indeed, primary alterations in mitochondrial function, which are subsequently amplified by defective quality control mechanisms, are considered to be major contributing factors to cardiac senescence. In this Review, we discuss the mechanisms linking defective mitochondrial quality control mechanisms (that is, proteostasis, biogenesis, dynamics, and autophagy) to organelle dysfunction in the context of cardiac ageing. We also illustrate relevant molecular pathways that might be exploited for the prevention and treatment of age-related heart dysfunction.
Collapse
Affiliation(s)
- Anna Picca
- Department of Geriatrics, Neuroscience and Orthopedics, Teaching Hospital "Agostino Gemelli", Catholic University of the Sacred Heart School of Medicine, Rome, Italy
| | - Robert T Mankowski
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Jonathon L Burman
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA.,National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Luca Donisi
- Department of Geriatrics, Neuroscience and Orthopedics, Teaching Hospital "Agostino Gemelli", Catholic University of the Sacred Heart School of Medicine, Rome, Italy.,Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Jae-Sung Kim
- Department of Surgery, University of Florida, Gainesville, FL, USA
| | - Emanuele Marzetti
- Department of Geriatrics, Neuroscience and Orthopedics, Teaching Hospital "Agostino Gemelli", Catholic University of the Sacred Heart School of Medicine, Rome, Italy.
| | | |
Collapse
|
20
|
Blice-Baum AC, Guida MC, Hartley PS, Adams PD, Bodmer R, Cammarato A. As time flies by: Investigating cardiac aging in the short-lived Drosophila model. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1831-1844. [PMID: 30496794 PMCID: PMC6527462 DOI: 10.1016/j.bbadis.2018.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/05/2018] [Accepted: 11/13/2018] [Indexed: 02/06/2023]
Abstract
Aging is associated with a decline in heart function across the tissue, cellular, and molecular levels. The risk of cardiovascular disease grows significantly over time, and as developed countries continue to see an increase in lifespan, the cost of cardiovascular healthcare for the elderly will undoubtedly rise. The molecular basis for cardiac function deterioration with age is multifaceted and not entirely clear, and there is a limit to what investigations can be performed on human subjects or mammalian models. Drosophila melanogaster has emerged as a useful model organism for studying aging in a short timeframe, benefitting from a suite of molecular and genetic tools and displaying highly conserved traits of cardiac senescence. Here, we discuss recent advances in our understanding of cardiac aging and how the fruit fly has aided in these developments.
Collapse
Affiliation(s)
| | - Maria Clara Guida
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA.
| | - Paul S Hartley
- Bournemouth University, Department of Life and Environmental Science, Talbot Campus, Fern Barrow, Poole, Dorset BH12 5BB, UK.
| | - Peter D Adams
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA.
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA.
| | - Anthony Cammarato
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
21
|
Bouska M, Huang K, Kang P, Bai H. Organelle aging: Lessons from model organisms. J Genet Genomics 2019; 46:171-185. [PMID: 31080045 PMCID: PMC6553499 DOI: 10.1016/j.jgg.2019.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/22/2019] [Accepted: 03/12/2019] [Indexed: 01/07/2023]
Abstract
Most cellular processes descend into failure during aging. While a large collection of longevity pathways has been identified in the past decades, the mechanism for age-related decline of cellular homeostasis and organelle function remains largely unsolved. It is known that many organelles undergo structural and functional changes during normal aging, which significantly contributes to the decline of tissue function at old ages. Since recent studies have revealed an emerging role of organelles as regulatory hubs in maintaining cellular homeostasis, understanding of organelle aging will provide important insights into the cellular basis of organismal aging. Here we review current progress on the characterization of age-dependent structural and functional alterations in the more well-studied organelles, as well as the known mechanisms governing organelle aging in model organisms, with a special focus on the fruit fly Drosophila melanogaster.
Collapse
Affiliation(s)
- Mark Bouska
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Kerui Huang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Ping Kang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
22
|
Guida MC, Birse RT, Dall'Agnese A, Toto PC, Diop SB, Mai A, Adams PD, Puri PL, Bodmer R. Intergenerational inheritance of high fat diet-induced cardiac lipotoxicity in Drosophila. Nat Commun 2019; 10:193. [PMID: 30643137 PMCID: PMC6331650 DOI: 10.1038/s41467-018-08128-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/17/2018] [Indexed: 12/26/2022] Open
Abstract
Obesity is strongly correlated with lipotoxic cardiomyopathy, heart failure and thus mortality. The incidence of obesity has reached alarming proportions worldwide, and increasing evidence suggests that the parents' nutritional status may predispose their offspring to lipotoxic cardiomyopathy. However, to date, mechanisms underlying intergenerational heart disease risks have yet to be elucidated. Here we report that cardiac dysfunction induced by high-fat-diet (HFD) persists for two subsequent generations in Drosophila and is associated with reduced expression of two key metabolic regulators, adipose triglyceride lipase (ATGL/bmm) and transcriptional cofactor PGC-1. We provide evidence that targeted expression of ATGL/bmm in the offspring of HFD-fed parents protects them, and the subsequent generation, from cardio-lipotoxicity. Furthermore, we find that intergenerational inheritance of lipotoxic cardiomyopathy correlates with elevated systemic H3K27 trimethylation. Lowering H3K27 trimethylation genetically or pharmacologically in the offspring of HFD-fed parents prevents cardiac pathology. This suggests that metabolic homeostasis is epigenetically regulated across generations.
Collapse
Affiliation(s)
- Maria Clara Guida
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Ryan Tyge Birse
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA, 92037, USA
- Biocompatibles Inc., 300 Four Falls Corporate Center, 300 Conshohocken State Road, West Conshohocken, PA, 19428-2998, USA
| | - Alessandra Dall'Agnese
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA, 92037, USA
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA, 02142, USA
| | - Paula Coutinho Toto
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Soda Balla Diop
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | | | - Peter D Adams
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Pier Lorenzo Puri
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA, 92037, USA
- IRCCS Fondazione Santa Lucia, 00142, Rome, Italy
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
23
|
Blice-Baum AC, Vogler G, Viswanathan MC, Trinh B, Limpitikul WB, Cammarato A. Quantifying Tissue-Specific Overexpression of FOXO in Drosophila via mRNA Fluorescence In Situ Hybridization Using Branched DNA Probe Technology. Methods Mol Biol 2019; 1890:171-190. [PMID: 30414154 PMCID: PMC7906431 DOI: 10.1007/978-1-4939-8900-3_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While the highly conserved FOXO transcription factors have been studied in Drosophila melanogaster for decades, the ability to accurately control and measure their tissue-specific expression is often cumbersome due to a lack of reagents and to limited, nonhomogeneous samples. The need for quantitation within a distinct cell type is particularly important because transcription factors must be expressed in specific amounts to perform their functions properly. However, the inherent heterogeneity of many samples can make evaluating cell-specific FOXO and/or FOXO load difficult. Here, we describe an extremely sensitive fluorescence in situ hybridization (FISH) approach for visualizing and quantifying multiple mRNAs with single-cell resolution in adult Drosophila cardiomyocytes. The procedure relies upon branched DNA technology, which allows several fluorescent molecules to label an individual transcript, drastically increasing the signal-to-noise ratio compared to other FISH assays. This protocol can be modified for use in various small animal models, tissue types, and for assorted nucleic acids.
Collapse
Affiliation(s)
- Anna C Blice-Baum
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Science Department, Iadarola Center for Science, Education and Technology, Cabrini University, Radnor, PA, USA.
| | - Georg Vogler
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| | - Meera C Viswanathan
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bosco Trinh
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Worawan B Limpitikul
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anthony Cammarato
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
24
|
Ren J, Zhang Y. Targeting Autophagy in Aging and Aging-Related Cardiovascular Diseases. Trends Pharmacol Sci 2018; 39:1064-1076. [PMID: 30458935 DOI: 10.1016/j.tips.2018.10.005] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/19/2018] [Accepted: 10/04/2018] [Indexed: 01/19/2023]
Abstract
Aging, an irreversible biological process, serves as an independent risk factor for chronic disease including cancer, pulmonary, neurodegenerative, and cardiovascular diseases. In particular, high morbidity and mortality have been associated with cardiovascular aging, but effective clinical therapeutic remedies are suboptimal for the ever-rising aging population. Recent evidence suggests a unique role for aberrant aggregate clearance and the protein quality control machinery - the process of autophagy - in shortened lifespan, compromised healthspan, and the onset and development of aging-associated cardiovascular diseases. Autophagy degrades and removes long-lived or damaged cellular organelles and proteins, the functions of which decline with advanced aging. Induction of autophagy using rapamycin, resveratrol, nicotinamide derivatives, metformin, urolithin A, or spermidine delays aging, prolongs lifespan, and improves cardiovascular function in aging. Given the ever-rising human lifespan and aging population as well as the prevalence of cardiovascular disease provoked by increased age, it is pertinent to understand the contribution and underlying mechanisms of autophagy and organelle-selective autophagy (e.g., mitophagy) in the regulation of lifespan, healthspan, and cardiovascular aging. Here we dissect the mechanism of action for autophagy failure in aging and discuss the potential rationale of targeting autophagy using pharmacological agents as new avenues in the combating of biological and cardiovascular aging.
Collapse
Affiliation(s)
- Jun Ren
- Department of Cardiology, Fudan University Zhongshan Hospital, Shanghai 200032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| | - Yingmei Zhang
- Department of Cardiology, Fudan University Zhongshan Hospital, Shanghai 200032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| |
Collapse
|
25
|
Hu Y, Xia W, Hou M. Macrophage migration inhibitory factor serves a pivotal role in�the regulation of radiation-induced cardiac senescencethrough rebalancing the microRNA-34a/sirtuin 1 signaling pathway. Int J Mol Med 2018; 42:2849-2858. [PMID: 30226567 DOI: 10.3892/ijmm.2018.3838] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/10/2018] [Indexed: 11/06/2022] Open
Affiliation(s)
- Yiwang Hu
- Department of Colorectal Surgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Wenzheng Xia
- Department of Neurosurgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Meng Hou
- Department of Radiation Oncology, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
26
|
Mota R, Parry TL, Yates CC, Qiang Z, Eaton SC, Mwiza JM, Tulasi D, Schisler JC, Patterson C, Zaglia T, Sandri M, Willis MS. Increasing Cardiomyocyte Atrogin-1 Reduces Aging-Associated Fibrosis and Regulates Remodeling in Vivo. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1676-1692. [PMID: 29758183 DOI: 10.1016/j.ajpath.2018.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 03/10/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
The muscle-specific ubiquitin ligase atrogin-1 (MAFbx) has been identified as a critical regulator of pathologic and physiological cardiac hypertrophy; it regulates these processes by ubiquitinating transcription factors [nuclear factor of activated T-cells and forkhead box O (FoxO) 1/3]. However, the role of atrogin-1 in regulating transcription factors in aging has not previously been described. Atrogin-1 cardiomyocyte-specific transgenic (Tg+) adult mice (α-major histocompatibility complex promoter driven) have normal cardiac function and size. Herein, we demonstrate that 18-month-old atrogin-1 Tg+ hearts exhibit significantly increased anterior wall thickness without functional impairment versus wild-type mice. Histologic analysis at 18 months revealed atrogin-1 Tg+ mice had significantly less fibrosis and significantly greater nuclei and cardiomyocyte cross-sectional analysis. Furthermore, by real-time quantitative PCR, atrogin-1 Tg+ had increased Col 6a4, 6a5, 6a6, matrix metalloproteinase 8 (Mmp8), and Mmp9 mRNA, suggesting a role for atrogin-1 in regulating collagen deposits and MMP-8 and MMP-9. Because atrogin-1 Tg+ mice exhibited significantly less collagen deposition and protein levels, enhanced Mmp8 and Mmp9 mRNA may offer one mechanism by which collagen levels are kept in check in the aged atrogin-1 Tg+ heart. In addition, atrogin-1 Tg+ hearts showed enhanced FoxO1/3 activity. The present study shows a novel link between atrogin-1-mediated regulation of FoxO1/3 activity and reduced collagen deposition and fibrosis in the aged heart. Therefore, targeting FoxO1/3 activity via the muscle-specific atrogin-1 ubiquitin ligase may offer a muscle-specific method to modulate aging-related cardiac fibrosis.
Collapse
Affiliation(s)
- Roberto Mota
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina
| | - Traci L Parry
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Cecelia C Yates
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Zhaoyan Qiang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina; Department of Pharmacology, Tianjin Medical University, Tianjin, China
| | - Samuel C Eaton
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina
| | - Jean Marie Mwiza
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Deepthi Tulasi
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina
| | - Jonathan C Schisler
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina; Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina
| | - Cam Patterson
- Presbyterian Hospital/Weill-Cornell Medical Center, New York, New York
| | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy; Venetian Institute of Molecular Medicine, Padova, Italy
| | - Marco Sandri
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Dulbecco Telethon Institute, Padova, Italy
| | - Monte S Willis
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina; Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina; Indiana Center for Musculoskeletal Health and Department of Pathology and Laboratory Medicine, University of Indiana School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
27
|
Viswanathan MC, Schmidt W, Rynkiewicz MJ, Agarwal K, Gao J, Katz J, Lehman W, Cammarato A. Distortion of the Actin A-Triad Results in Contractile Disinhibition and Cardiomyopathy. Cell Rep 2018; 20:2612-2625. [PMID: 28903042 PMCID: PMC5902318 DOI: 10.1016/j.celrep.2017.08.070] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/25/2017] [Accepted: 08/21/2017] [Indexed: 12/20/2022] Open
Abstract
Striated muscle contraction is regulated by the movement of tropomyosin over the thin filament surface, which blocks or exposes myosin binding sites on actin. Findings suggest that electrostatic contacts, particularly those between K326, K328, and R147 on actin and tropomyosin, establish an energetically favorable F-actin-tropomyosin configuration, with tropomyosin positioned in a location that impedes actomyosin associations and promotes relaxation. Here, we provide data that directly support a vital role for these actin residues, termed the A-triad, in tropomyosin positioning in intact functioning muscle. By examining the effects of an A295S α-cardiac actin hypertrophic cardiomyopathy-causing mutation, over a range of increasingly complex in silico, in vitro, and in vivo Drosophila muscle models, we propose that subtle A-triad-tropomyosin perturbation can destabilize thin filament regulation, which leads to hypercontractility and triggers disease. Our efforts increase understanding of basic thin filament biology and help unravel the mechanistic basis of a complex cardiac disorder.
Collapse
Affiliation(s)
- Meera C Viswanathan
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - William Schmidt
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael J Rynkiewicz
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Karuna Agarwal
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jian Gao
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Joseph Katz
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - William Lehman
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Anthony Cammarato
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
28
|
Yuan Y, DiCiaccio B, Li Y, Elshikha AS, Titov D, Brenner B, Seifer L, Pan H, Karic N, Akbar MA, Lu Y, Song S, Zhou L. Anti-inflammaging effects of human alpha-1 antitrypsin. Aging Cell 2018; 17:e12694. [PMID: 29045001 PMCID: PMC5770780 DOI: 10.1111/acel.12694] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2017] [Indexed: 12/21/2022] Open
Abstract
Inflammaging plays an important role in most age-related diseases. However, the mechanism of inflammaging is largely unknown, and therapeutic control of inflammaging is challenging. Human alpha-1 antitrypsin (hAAT) has immune-regulatory, anti-inflammatory, and cytoprotective properties as demonstrated in several disease models including type 1 diabetes, arthritis, lupus, osteoporosis, and stroke. To test the potential anti-inflammaging effect of hAAT, we generated transgenic Drosophila lines expressing hAAT. Surprisingly, the lifespan of hAAT-expressing lines was significantly longer than that of genetically matched controls. To understand the mechanism underlying the anti-aging effect of hAAT, we monitored the expression of aging-associated genes and found that aging-induced expressions of Relish (NF-ĸB orthologue) and Diptericin were significantly lower in hAAT lines than in control lines. RNA-seq analysis revealed that innate immunity genes regulated by NF-kB were significantly and specifically inhibited in hAAT transgenic Drosophila lines. To confirm this anti-inflammaging effect in human cells, we treated X-ray-induced senescence cells with hAAT and showed that hAAT treatment significantly decreased the expression and maturation of IL-6 and IL-8, two major factors of senescence-associated secretory phenotype. Consistent with results from Drosophila,RNA-seq analysis also showed that hAAT treatment significantly inhibited inflammation related genes and pathways. Together, our results demonstrated that hAAT significantly inhibited inflammaging in both Drosophila and human cell models. As hAAT is a FDA-approved drug with a confirmed safety profile, this novel therapeutic potential may make hAAT a promising candidate to combat aging and aging-related diseases.
Collapse
Affiliation(s)
- Ye Yuan
- Department of PharmaceuticsUniversity of FloridaGainesvilleFLUSA
| | - Benedetto DiCiaccio
- Department of Molecular Genetics & MicrobiologyUniversity of FloridaGainesvilleFLUSA
| | - Ying Li
- Department of Molecular Genetics & MicrobiologyUniversity of FloridaGainesvilleFLUSA
| | | | - Denis Titov
- Department of Molecular Genetics & MicrobiologyUniversity of FloridaGainesvilleFLUSA
| | - Brian Brenner
- Department of Molecular Genetics & MicrobiologyUniversity of FloridaGainesvilleFLUSA
| | - Lee Seifer
- Department of Molecular Genetics & MicrobiologyUniversity of FloridaGainesvilleFLUSA
| | - Hope Pan
- Department of Molecular Genetics & MicrobiologyUniversity of FloridaGainesvilleFLUSA
| | - Nurdina Karic
- Department of Molecular Genetics & MicrobiologyUniversity of FloridaGainesvilleFLUSA
| | | | - Yuanqing Lu
- Department of PharmaceuticsUniversity of FloridaGainesvilleFLUSA
| | - Sihong Song
- Department of PharmaceuticsUniversity of FloridaGainesvilleFLUSA
- University of Florida Genetics InstituteGainesvilleFLUSA
| | - Lei Zhou
- Department of Molecular Genetics & MicrobiologyUniversity of FloridaGainesvilleFLUSA
- University of Florida Genetics InstituteGainesvilleFLUSA
- UF Health Cancer CenterGainesvilleFLUSA
| |
Collapse
|
29
|
Auguste G, Gurha P, Lombardi R, Coarfa C, Willerson JT, Marian AJ. Suppression of Activated FOXO Transcription Factors in the Heart Prolongs Survival in a Mouse Model of Laminopathies. Circ Res 2018; 122:678-692. [PMID: 29317431 DOI: 10.1161/circresaha.117.312052] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/13/2017] [Accepted: 01/05/2018] [Indexed: 01/15/2023]
Abstract
RATIONALE Mutations in the LMNA gene, encoding nuclear inner membrane protein lamin A/C, cause distinct phenotypes, collectively referred to as laminopathies. Heart failure, conduction defects, and arrhythmias are the common causes of death in laminopathies. OBJECTIVE The objective of this study was to identify and therapeutically target the responsible mechanism(s) for cardiac phenotype in laminopathies. METHODS AND RESULTS Whole-heart RNA sequencing was performed before the onset of cardiac dysfunction in the Lmna-/- and matched control mice. Differentially expressed transcripts and their upstream regulators were identified, validated, and targeted by adeno-associated virus serotype 9-short hairpin RNA constructs. A total of 576 transcripts were upregulated and 233 were downregulated in the Lmna-/- mouse hearts (q<0.05). Forkhead box O (FOXO) transcription factors (TFs) were the most activated while E2 factors were the most suppressed transcriptional regulators. Transcript levels of FOXO targets were also upregulated in the isolated Lmna-/- cardiac myocytes and in the myocardium of human heart failure patients. Nuclear localization of FOXO1 and 3 was increased, whereas phosphorylated (inactive) FOXO1 and 3 levels were reduced in the Lmna-/- hearts. Gene set enrichment analysis and gene ontology showed activation of apoptosis and inflammation and suppression of cell cycle, adipogenesis, and oxidative phosphorylation in the Lmna-/- hearts. Adeno-associated virus serotype 9-short hairpin RNA-mediated suppression of FOXO TFs rescued selected molecular signatures, improved apoptosis, and prolonged survival by ≈2-fold. CONCLUSIONS FOXO TFs are activated and contribute to the pathogenesis of cardiac phenotype in laminopathies. Suppression of the FOXO TFs in cardiac myocytes partially rescues the phenotype and prolongs survival. The findings identify FOXO TFs as potential therapeutic targets for cardiac phenotype in laminopathies.
Collapse
Affiliation(s)
- Gaelle Auguste
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston (G.A., P.G., R.L., T.T.W., A.J.M.), Texas Heart Institute (J.T.W., A.J.M.); and Baylor College of Medicine, Houston, TX (C.C.)
| | - Priyatansh Gurha
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston (G.A., P.G., R.L., T.T.W., A.J.M.), Texas Heart Institute (J.T.W., A.J.M.); and Baylor College of Medicine, Houston, TX (C.C.)
| | - Raffaella Lombardi
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston (G.A., P.G., R.L., T.T.W., A.J.M.), Texas Heart Institute (J.T.W., A.J.M.); and Baylor College of Medicine, Houston, TX (C.C.)
| | - Cristian Coarfa
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston (G.A., P.G., R.L., T.T.W., A.J.M.), Texas Heart Institute (J.T.W., A.J.M.); and Baylor College of Medicine, Houston, TX (C.C.)
| | - James T Willerson
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston (G.A., P.G., R.L., T.T.W., A.J.M.), Texas Heart Institute (J.T.W., A.J.M.); and Baylor College of Medicine, Houston, TX (C.C.)
| | - Ali J Marian
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston (G.A., P.G., R.L., T.T.W., A.J.M.), Texas Heart Institute (J.T.W., A.J.M.); and Baylor College of Medicine, Houston, TX (C.C.).
| |
Collapse
|
30
|
Cannon L, Zambon AC, Cammarato A, Zhang Z, Vogler G, Munoz M, Taylor E, Cartry J, Bernstein SI, Melov S, Bodmer R. Expression patterns of cardiac aging in Drosophila. Aging Cell 2017; 16:82-92. [PMID: 28090760 PMCID: PMC5242310 DOI: 10.1111/acel.12559] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2016] [Indexed: 11/27/2022] Open
Abstract
Aging causes cardiac dysfunction, often leading to heart failure and death. The molecular basis of age-associated changes in cardiac structure and function is largely unknown. The fruit fly, Drosophila melanogaster, is well-suited to investigate the genetics of cardiac aging. Flies age rapidly over the course of weeks, benefit from many tools to easily manipulate their genome, and their heart has significant genetic and phenotypic similarities to the human heart. Here, we performed a cardiac-specific gene expression study on aging Drosophila and carried out a comparative meta-analysis with published rodent data. Pathway level transcriptome comparisons suggest that age-related, extra-cellular matrix remodeling and alterations in mitochondrial metabolism, protein handling, and contractile functions are conserved between Drosophila and rodent hearts. However, expression of only a few individual genes similarly changed over time between and even within species. We also examined gene expression in single fly hearts and found significant variability as has been reported in rodents. We propose that individuals may arrive at similar cardiac aging phenotypes via dissimilar transcriptional changes, including those in transcription factors and micro-RNAs. Finally, our data suggest the transcription factor Odd-skipped, which is essential for normal heart development, is also a crucial regulator of cardiac aging.
Collapse
Affiliation(s)
- Leah Cannon
- Development, Aging and Regeneration Program; Sanford-Burnham-Prebys Medical Discovery Institute; La Jolla CA USA
| | - Alexander C. Zambon
- Development, Aging and Regeneration Program; Sanford-Burnham-Prebys Medical Discovery Institute; La Jolla CA USA
- Department of Biopharmaceutical Sciences; Keck Graduate Institute; Claremont CA USA
| | - Anthony Cammarato
- Division of Cardiology; Department of Medicine; Johns Hopkins University; Baltimore MD USA
| | - Zhi Zhang
- Development, Aging and Regeneration Program; Sanford-Burnham-Prebys Medical Discovery Institute; La Jolla CA USA
| | - Georg Vogler
- Development, Aging and Regeneration Program; Sanford-Burnham-Prebys Medical Discovery Institute; La Jolla CA USA
| | - Matthew Munoz
- Department of Biopharmaceutical Sciences; Keck Graduate Institute; Claremont CA USA
| | - Erika Taylor
- Development, Aging and Regeneration Program; Sanford-Burnham-Prebys Medical Discovery Institute; La Jolla CA USA
| | - Jérôme Cartry
- Development, Aging and Regeneration Program; Sanford-Burnham-Prebys Medical Discovery Institute; La Jolla CA USA
| | - Sanford I. Bernstein
- Department of Biology, Molecular Biology Institute, and The Heart Institute; San Diego State University; San Diego CA USA
| | - Simon Melov
- Buck Institute for Research on Aging; Novato CA USA
| | - Rolf Bodmer
- Development, Aging and Regeneration Program; Sanford-Burnham-Prebys Medical Discovery Institute; La Jolla CA USA
| |
Collapse
|