1
|
Brun A, Denis P, Rambeau M, Rigaudière JP, Jouve C, Mazurak V, Capel F. Polyunsaturated fatty acids prevent myosteatosis and lipotoxicity. J Nutr Biochem 2024; 134:109722. [PMID: 39142445 DOI: 10.1016/j.jnutbio.2024.109722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
Myosteatosis occurs in response to excess circulating fatty acids and is associated with muscle dysfunction. This study aimed to characterize the sequence of events of lipid-induced toxicity within muscle cells and the role of polyunsaturated fatty acids (PUFA) as potential preventive factors. Myosteatosis was induced in C2C12 myotubes exposed to palmitic acid (PAL 500µM). Furthermore, cells were co-incubated with PUFA (α-linolenic acid = ALA, Eicosapentaenoic acid = EPA, Docosahexaenoic acid = DHA; Arachidonic acid = ARA) over a period of 48 h. Cell viability, morphology, and measures of lipid and protein metabolism were assessed at 6, 12, 24, and 48 h. We observed that myotube integrity was rapidly and progressively disrupted by PAL treatment after 12 h, ultimately leading to cell death (41.7% cell survival at 48 h, p < .05). Cell death did not occur in cells exposed to PAL+ARA and PAL+DHA. After 6 h of PAL treatment, an accumulation of large lipid droplets was observed within the cell (6 folds, p < .05). This was associated with an increase in ceramides (CER x3 fold change) and diacylglycerol (DAG x150 fold change) contents (p < .05). At the same time, insulin was no longer able to stimulate protein synthesis (p < .05) nor leverage autophagic flux (p < .05). DHA and ARA were able to completely reverse the defect in protein synthesis and partially modulate the accumulation of CER and DAG. These findings present new and intriguing research avenues in the field of muscle metabolism and nutrition, particularly in the context of aging, chronic muscle disorders, and insulin resistance.
Collapse
Affiliation(s)
- Aurélien Brun
- UMR1019 Unité de Nutrition Humaine, Université Clermont Auvergne, INRAE, CRNH Auvergne, Clermont-Ferrand, France
| | - Philippe Denis
- UMR1019 Unité de Nutrition Humaine, Université Clermont Auvergne, INRAE, CRNH Auvergne, Clermont-Ferrand, France
| | - Mathieu Rambeau
- UMR1019 Unité de Nutrition Humaine, Université Clermont Auvergne, INRAE, CRNH Auvergne, Clermont-Ferrand, France
| | - Jean-Paul Rigaudière
- UMR1019 Unité de Nutrition Humaine, Université Clermont Auvergne, INRAE, CRNH Auvergne, Clermont-Ferrand, France
| | - Chrystèle Jouve
- UMR1019 Unité de Nutrition Humaine, Université Clermont Auvergne, INRAE, CRNH Auvergne, Clermont-Ferrand, France
| | - Vera Mazurak
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Frédéric Capel
- UMR1019 Unité de Nutrition Humaine, Université Clermont Auvergne, INRAE, CRNH Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
2
|
Masuzawa R, Rosa Flete HK, Shimizu J, Kawano F. Age-related histone H3.3 accumulation associates with a repressive chromatin in mouse tibialis anterior muscle. J Physiol Sci 2024; 74:41. [PMID: 39277714 PMCID: PMC11401410 DOI: 10.1186/s12576-024-00935-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/25/2024] [Indexed: 09/17/2024]
Abstract
The present study aimed to investigate age-related changes in histone variant H3.3 and its role in the aging process of mouse tibialis anterior muscle. H3.3 level significantly increased with age and correlated with H3K27me3 level. Acute exercise successfully upregulated the target gene expression in 8-wk-old mice, whereas no upregulation was noted in 53-wk-old mice. H3K27me3 level was increased at these loci in response to acute exercise in 8-wk-old mice. However, in 53-wk-old mice, H3.3 and H3K27me3 levels were increased at rest and were not affected by acute exercise. Furthermore, forced H3.3 expression in the skeletal muscle of 8-wk-old mice led to a gradual improvement in motor function. The results suggest that age-related H3.3 accumulation induces the formation of repressive chromatin in the mouse tibialis anterior muscle. However, H3.3 accumulation also appears to play a positive role in enhancing skeletal muscle function.
Collapse
Affiliation(s)
- Ryo Masuzawa
- Graduate School of Health Science, Matsumoto University, 2095-1 Niimura, Matsumoto, Nagano, 390-1295, Japan
| | - Hemilce Karina Rosa Flete
- Graduate School of Health Science, Matsumoto University, 2095-1 Niimura, Matsumoto, Nagano, 390-1295, Japan
| | - Junya Shimizu
- Graduate School of Health Science, Matsumoto University, 2095-1 Niimura, Matsumoto, Nagano, 390-1295, Japan
| | - Fuminori Kawano
- Graduate School of Health Science, Matsumoto University, 2095-1 Niimura, Matsumoto, Nagano, 390-1295, Japan.
| |
Collapse
|
3
|
Turner TC, Pittman FS, Zhang H, Hymel LA, Zheng T, Behara M, Anderson SE, Harrer JA, Link KA, Ahammed MA, Maner-Smith K, Liu X, Yin X, Lim HS, Spite M, Qiu P, García AJ, Mortensen LJ, Jang YC, Willett NJ, Botchwey EA. Improving Functional Muscle Regeneration in Volumetric Muscle Loss Injuries by Shifting the Balance of Inflammatory and Pro-Resolving Lipid Mediators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611741. [PMID: 39314313 PMCID: PMC11418947 DOI: 10.1101/2024.09.06.611741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Severe tissue loss resulting from extremity trauma, such as volumetric muscle loss (VML), poses significant clinical challenges for both general and military populations. VML disrupts the endogenous tissue repair mechanisms, resulting in acute and unresolved chronic inflammation and immune cell presence, impaired muscle healing, scar tissue formation, persistent pain, and permanent functional deficits. The aberrant healing response is preceded by acute inflammation and immune cell infiltration which does not resolve. We analyzed the biosynthesis of inflammatory and specialized pro-resolving lipid mediators (SPMs) after VML injury in two different models; muscle with critical-sized defects had a decreased capacity to biosynthesize SPMs, leading to dysregulated and persistent inflammation. We developed a modular poly(ethylene glycol)-maleimide hydrogel platform to locally release a stable isomer of Resolvin D1 (AT-RvD1) and promote endogenous pathways of inflammation resolution in the two muscle models. The local delivery of AT-RvD1 enhanced muscle regeneration, improved muscle function, and reduced pain sensitivity after VML by promoting molecular and cellular resolution of inflammation. These findings provide new insights into the pathogenesis of VML and establish a pro-resolving hydrogel therapeutic as a promising strategy for promoting functional muscle regeneration after traumatic injury.
Collapse
|
4
|
Livshits G, Kalinkovich A. Restoration of epigenetic impairment in the skeletal muscle and chronic inflammation resolution as a therapeutic approach in sarcopenia. Ageing Res Rev 2024; 96:102267. [PMID: 38462046 DOI: 10.1016/j.arr.2024.102267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/17/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Sarcopenia is an age-associated loss of skeletal muscle mass, strength, and function, accompanied by severe adverse health outcomes, such as falls and fractures, functional decline, high health costs, and mortality. Hence, its prevention and treatment have become increasingly urgent. However, despite the wide prevalence and extensive research on sarcopenia, no FDA-approved disease-modifying drugs exist. This is probably due to a poor understanding of the mechanisms underlying its pathophysiology. Recent evidence demonstrate that sarcopenia development is characterized by two key elements: (i) epigenetic dysregulation of multiple molecular pathways associated with sarcopenia pathogenesis, such as protein remodeling, insulin resistance, mitochondria impairments, and (ii) the creation of a systemic, chronic, low-grade inflammation (SCLGI). In this review, we focus on the epigenetic regulators that have been implicated in skeletal muscle deterioration, their individual roles, and possible crosstalk. We also discuss epidrugs, which are the pharmaceuticals with the potential to restore the epigenetic mechanisms deregulated in sarcopenia. In addition, we discuss the mechanisms underlying failed SCLGI resolution in sarcopenia and the potential application of pro-resolving molecules, comprising specialized pro-resolving mediators (SPMs) and their stable mimetics and receptor agonists. These compounds, as well as epidrugs, reveal beneficial effects in preclinical studies related to sarcopenia. Based on these encouraging observations, we propose the combination of epidrugs with SCLI-resolving agents as a new therapeutic approach for sarcopenia that can effectively attenuate of its manifestations.
Collapse
Affiliation(s)
- Gregory Livshits
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel.
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel
| |
Collapse
|
5
|
Groenen AG, Lipscomb M, Bossardi Ramos R, Sadhu S, Bazioti V, Fredman G, Westerterp M. Resolvin D1 suppresses macrophage senescence and splenic fibrosis in aged mice. Prostaglandins Leukot Essent Fatty Acids 2024; 202:102634. [PMID: 39167848 DOI: 10.1016/j.plefa.2024.102634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/19/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
Aging is associated with systemic, non-resolving inflammation and the accumulation of senescent cells. The resolution of inflammation (or inflammation-resolution) is in part mediated by the balance between specialized pro-resolving mediators (SPMs) and pro-inflammatory leukotrienes (LTs). Aged mice (i.e. 2 years of age) exhibit a significant decrease in the SPM:LT ratio in specific organs including the spleen, which suggests that this organ may exhibit heightened inflammation and may be particularly amenable to SPM therapy. Previous studies have shown that resolvin D1 (RvD1) is decreased in spleens of aged mice compared with young controls. Therefore, we asked whether treatment of RvD1 in aged mice would impact markers of cellular senescence in splenic macrophages, and downstream effects on splenic fibrosis, a hallmark of splenic aging. We found that in aged mice, both zymosan-elicited and splenic macrophages showed an increase in mRNA expression of inflammatory and eicosanoid biosynthesis genes and a dysregulation of genes involved in the cell cycle. Injections with RvD1 reversed these changes. Importantly, RvD1 also decreased splenic fibrosis, a hallmark of splenic aging. Our findings suggest that RvD1 treatment may limit several features of aging, including senescence and fibrosis in spleens from aged mice. Summary Aging is associated with systemic, low grade, non-resolving inflammation. The resolution of inflammation is in part mediated by the balance between specialized pro-resolving mediators (SPMs) and pro-inflammatory lipid mediators, like leukotrienes (LTs). A hallmark of aging is the accumulation of senescent cells that promote low grade inflammation by secreting pro-inflammatory cytokines and lipid mediators. Splenic macrophages contribute to systemic aging, and spleens of aged mice demonstrate decreased levels of the SPM called resolvin D1 (RvD1). Whether addition of RvD1 is protective in spleens of aged mice is unknown and is focus of this study. RvD1 treatment to aged mice led to decreased mRNA expression of markers of cellular senescence and inflammation in splenic macrophages compared with age-matched vehicle controls. Moreover, RvD1 decreased splenic fibrosis, which occurs due to persistent low-grade inflammation in aging. Promoting inflammation resolution with RvD1 thus limits macrophage senescence, pro-inflammatory signals and established splenic fibrosis in aging.
Collapse
Affiliation(s)
- Anouk G Groenen
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Masharh Lipscomb
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, NY, USA
| | - Ramon Bossardi Ramos
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, NY, USA
| | - Sudeshna Sadhu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, NY, USA
| | - Venetia Bazioti
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Gabrielle Fredman
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, NY, USA.
| | - Marit Westerterp
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
6
|
Singh J, Jackson KL, Tang FS, Fu T, Nowell C, Salimova E, Kiriazis H, Ritchie RH, Head GA, Woodman OL, Qin CX. The pro-resolving mediator, annexin A1 regulates blood pressure, and age-associated changes in cardiovascular function and remodeling. FASEB J 2024; 38:e23457. [PMID: 38318648 DOI: 10.1096/fj.202301802r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/21/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Abstract
Aging is associated with chronic, low-level inflammation which may contribute to cardiovascular pathologies such as hypertension and atherosclerosis. This chronic inflammation may be opposed by endogenous mechanisms to limit inflammation, for example, by the actions of annexin A1 (ANXA1), an endogenous glucocorticoid-regulated protein that has anti-inflammatory and pro-resolving activity. We hypothesized the pro-resolving mediator ANXA1 protects against age-induced changes in blood pressure (BP), cardiovascular structure and function, and cardiac senescence. BP was measured monthly in conscious mature (4-month) and middle-aged (12-month) ANXA1-deficient (ANXA1-/- ) and wild-type C57BL/6 mice. Body composition was measured using EchoMRI, and both cardiac and vascular function using ultrasound imaging. Cardiac hypertrophy, fibrosis and senescence, vascular fibrosis, elastin, and calcification were assessed histologically. Gene expression relevant to structural remodeling, inflammation, and cardiomyocyte senescence were also quantified. In C57BL/6 mice, progression from 4 to 12 months of age did not affect the majority of cardiovascular parameters measured, with the exception of mild cardiac hypertrophy, vascular calcium, and collagen deposition. Interestingly, ANXA1-/- mice exhibited higher BP, regardless of age. Additionally, age progression had a marked impact in ANXA1-/- mice, with markedly augmented vascular remodeling, impaired vascular distensibility, and body composition. Consistent with vascular dysfunction, cardiac dysfunction, and hypertrophy were also evident, together with markers of senescence and inflammation. These findings suggest that endogenous ANXA1 plays a critical role in regulating BP, cardiovascular function, and remodeling and delays cardiac senescence. Our findings support the development of novel ANXA1-based therapies to prevent age-related cardiovascular pathologies.
Collapse
Affiliation(s)
- Jaideep Singh
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Kristy L Jackson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Feng Shii Tang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Ting Fu
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Cameron Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Ekaterina Salimova
- Monash Biomedical Imaging, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Helen Kiriazis
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Rebecca H Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Geoffrey A Head
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Owen L Woodman
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Cheng Xue Qin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- Department of Pharmacology, School of Pharmaceutical Sciences, Qilu College of Medicine, Shandong University, Jinan, China
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
7
|
Gu S, Wen C, Xiao Z, Huang Q, Jiang Z, Liu H, Gao J, Li J, Sun C, Yang N. MyoV: a deep learning-based tool for the automated quantification of muscle fibers. Brief Bioinform 2024; 25:bbad528. [PMID: 38271484 PMCID: PMC10810329 DOI: 10.1093/bib/bbad528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Accurate approaches for quantifying muscle fibers are essential in biomedical research and meat production. In this study, we address the limitations of existing approaches for hematoxylin and eosin-stained muscle fibers by manually and semiautomatically labeling over 660 000 muscle fibers to create a large dataset. Subsequently, an automated image segmentation and quantification tool named MyoV is designed using mask regions with convolutional neural networks and a residual network and feature pyramid network as the backbone network. This design enables the tool to allow muscle fiber processing with different sizes and ages. MyoV, which achieves impressive detection rates of 0.93-0.96 and precision levels of 0.91-0.97, exhibits a superior performance in quantification, surpassing both manual methods and commonly employed algorithms and software, particularly for whole slide images (WSIs). Moreover, MyoV is proven as a powerful and suitable tool for various species with different muscle development, including mice, which are a crucial model for muscle disease diagnosis, and agricultural animals, which are a significant meat source for humans. Finally, we integrate this tool into visualization software with functions, such as segmentation, area determination and automatic labeling, allowing seamless processing for over 400 000 muscle fibers within a WSI, eliminating the model adjustment and providing researchers with an easy-to-use visual interface to browse functional options and realize muscle fiber quantification from WSIs.
Collapse
Affiliation(s)
- Shuang Gu
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chaoliang Wen
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Hainan 572025, China
| | - Zhen Xiao
- School of Computer and Information, Hefei University of Technology, Anhui 230009, China
| | - Qiang Huang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zheyi Jiang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Honghong Liu
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jia Gao
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Junying Li
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Hainan 572025, China
| | - Congjiao Sun
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Hainan 572025, China
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Hainan 572025, China
| |
Collapse
|
8
|
Castor-Macias JA, Larouche JA, Wallace EC, Spence BD, Eames A, Duran P, Yang BA, Fraczek PM, Davis CA, Brooks SV, Maddipati KR, Markworth JF, Aguilar CA. Maresin 1 repletion improves muscle regeneration after volumetric muscle loss. eLife 2023; 12:e86437. [PMID: 38131691 PMCID: PMC10807862 DOI: 10.7554/elife.86437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023] Open
Abstract
The acute traumatic or surgical loss of skeletal muscle, known as volumetric muscle loss (VML), is a devastating type of injury that results in exacerbated and persistent inflammation followed by fibrosis. The mechanisms that mediate the magnitude and duration of the inflammatory response and ensuing fibrosis after VML remain understudied, and as such, the development of regenerative therapies has been limited. To address this need, we profiled how lipid mediators, which are potent regulators of the immune response after injury, varied with VML injuries that heal or result in fibrosis. We observed that non-healing VML injuries displayed increased pro-inflammatory eicosanoids and a lack of pro-resolving lipid mediators. Treatment of VML with a pro-resolving lipid mediator synthesized from docosahexaenoic acid, called Maresin 1, ameliorated fibrosis through reduction of neutrophils and macrophages and enhanced recovery of muscle strength. These results expand our knowledge of the dysregulated immune response that develops after VML and identify a novel immuno-regenerative therapeutic modality in Maresin 1.
Collapse
Affiliation(s)
- Jesus A Castor-Macias
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Jacqueline A Larouche
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Emily C Wallace
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
| | - Bonnie D Spence
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
| | - Alec Eames
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
| | - Pamela Duran
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Benjamin A Yang
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Paula M Fraczek
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Carol A Davis
- Department of Molecular & Integrative Physiology, University of MichiganAnn ArborUnited States
| | - Susan V Brooks
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Department of Molecular & Integrative Physiology, University of MichiganAnn ArborUnited States
| | - Krishna Rao Maddipati
- Department of Pathology, Lipidomics Core Facility, Wayne State UniversityDetroitUnited States
| | - James F Markworth
- Department of Animal Sciences, Purdue UniversityWest Lafayette, IndianaUnited States
| | - Carlos A Aguilar
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
- Program in Cellular and Molecular Biology, University of MichiganAnn ArborUnited States
| |
Collapse
|
9
|
Fitzgerald H, Bonin JL, Khan S, Eid M, Sadhu S, Rahtes A, Lipscomb M, Biswas N, Decker C, Nabage M, Ramos RB, Duarte GA, Marinello M, Chen A, Aydin HB, Mena HA, Gilliard K, Spite M, DiPersio CM, Adam AP, MacNamara KC, Fredman G. Resolvin D2-G-Protein Coupled Receptor 18 Enhances Bone Marrow Function and Limits Steatosis and Hepatic Collagen Accumulation in Aging. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1953-1968. [PMID: 37717941 PMCID: PMC10699127 DOI: 10.1016/j.ajpath.2023.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/20/2023] [Accepted: 08/08/2023] [Indexed: 09/19/2023]
Abstract
Aging is associated with nonresolving inflammation and tissue dysfunction. Resolvin D2 (RvD2) is a proresolving ligand that acts through the G-protein-coupled receptor called GPR18. Unbiased RNA sequencing revealed increased Gpr18 expression in macrophages from old mice, and in livers from elderly humans, which was associated with increased steatosis and fibrosis in middle-aged (MA) and old mice. MA mice that lacked GPR18 on myeloid cells had exacerbated steatosis and hepatic fibrosis, which was associated with a decline in Mac2+ macrophages. Treatment of MA mice with RvD2 reduced steatosis and decreased hepatic fibrosis, correlating with increased Mac2+ macrophages, increased monocyte-derived macrophages, and elevated numbers of monocytes in the liver, blood, and bone marrow. RvD2 acted directly on the bone marrow to increase monocyte-macrophage progenitors. A transplantation assay further demonstrated that bone marrow from old mice facilitated hepatic collagen accumulation in young mice. Transient RvD2 treatment to mice transplanted with bone marrow from old mice prevented hepatic collagen accumulation. Together, this study demonstrates that RvD2-GPR18 signaling controls steatosis and fibrosis and provides a mechanistic-based therapy for promoting liver repair in aging.
Collapse
Affiliation(s)
- Hannah Fitzgerald
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Jesse L Bonin
- The Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York
| | - Sayeed Khan
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Maya Eid
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Sudeshna Sadhu
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Allison Rahtes
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Masharh Lipscomb
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Nirupam Biswas
- The Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York
| | - Christa Decker
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Melisande Nabage
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Ramon Bossardi Ramos
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Giesse Albeche Duarte
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Michael Marinello
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Anne Chen
- Department of Pathology, Albany Medical College, Albany, New York
| | | | - Hebe Agustina Mena
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kurrim Gilliard
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Matthew Spite
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - C Michael DiPersio
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York; Department of Surgery, Albany Medical College, Albany, New York
| | - Alejandro P Adam
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Katherine C MacNamara
- The Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York.
| | - Gabrielle Fredman
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York.
| |
Collapse
|
10
|
Centanni D, Henricks PAJ, Engels F. The therapeutic potential of resolvins in pulmonary diseases. Eur J Pharmacol 2023; 958:176047. [PMID: 37742814 DOI: 10.1016/j.ejphar.2023.176047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023]
Abstract
Uncontrolled inflammation leads to nonspecific destruction and remodeling of tissues and can contribute to many human pathologies, including pulmonary diseases. Stimulation of inflammatory resolution is considered an important process that protects against the progression of chronic inflammatory diseases. Resolvins generated from essential omega-3 polyunsaturated fatty acids have been demonstrated to be signaling molecules in inflammation with important pro-resolving and anti-inflammatory capabilities. By binding to specific receptors, resolvins can modulate inflammatory processes such as neutrophil migration, macrophage phagocytosis and the presence of pro-inflammatory mediators to reduce inflammatory pathologies. The discovery of these pro-resolving mediators has led to a shift in drug research from suppressing pro-inflammatory molecules to investigating compounds that promote resolution to treat inflammation. The exploration of inflammatory resolution also provided the opportunity to further understand the pathophysiology of pulmonary diseases. Alterations of resolution are now linked to both the development and exacerbation of diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, acute respiratory distress syndrome, cancer and COVID-19. These findings have resulted in the rise of novel design and testing of innovative resolution-based therapeutics to treat diseases. Hence, this paper reviews the generation and mechanistic actions of resolvins and investigates their role and therapeutic potential in several pulmonary diseases that may benefit from resolution-based pharmaceuticals.
Collapse
Affiliation(s)
- Daniel Centanni
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, the Netherlands
| | - Paul A J Henricks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, the Netherlands
| | - Ferdi Engels
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, the Netherlands.
| |
Collapse
|
11
|
Miyoshi M, Usami M, Nishiyama Y, Kai M, Suzuki A, Maeshige N, Yamaguchi A, Ma X, Shinohara M. Soleus muscle contains a higher concentration of lipid metabolites than extensor digitorum longus in rats with lipopolysaccharide-induced acute muscle atrophy. Clin Nutr ESPEN 2023; 57:48-57. [PMID: 37739695 DOI: 10.1016/j.clnesp.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND & AIMS Muscle atrophy is one of the most important and frequent problems for critically ill patients. The purpose of this study was to evaluate the effect of lipid mediators on acute muscle atrophy. Skeletal muscle fiber-specific analysis of lipid mediators in endotoxemic rats was therefore performed. METHODS Male Wistar rats were intraperitoneally injected with lipopolysaccharide (LPS). Slow-twitch soleus muscle and fast-twitch extensor digitorum longus (EDL) muscle were harvested 0, 6, and 24 h after LPS injection. Lipid mediators were profiled using liquid chromatography-tandem mass spectrometry, and free fatty acid (FFA) concentrations were measured using gas chromatography-mass spectrometry. Muscles were weighed and their cross-sectional areas were evaluated. Expression levels of mRNAs encoding inflammatory cytokines, autophagy-related transcription factors, and members of the ubiquitin-proteasome system were measured using real-time PCR. RESULTS Before LPS injection, the concentrations of all FFAs, including arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid, and all measured lipid mediators were higher in soleus muscle than in EDL muscle, especially those of pro-inflammatory prostaglandin E2 (PGE2) and leukotriene B4. LPS injection, increased PGE2 and D2 and decreased FFAs in soleus muscle but did not change in EDL muscle. The concentrations of specialized pro-resolving mediators E-series hydroxy-eicosapentaenoic acid and D-series hydroxy-docosahexaenoic acid were higher in soleus muscle. Muscle cross-sectional area decreased and the expression level of atrogin-1 was upregulated in EDL muscle, but both were unchanged in soleus muscle. After LPS injection, a discrepancy involving an increased PGE2 concentration and decreased muscle atrophy was identified in this acute muscle atrophy model of critical illness. CONCLUSION Concentrations of FFAs and lipid mediators were higher in soleus muscle than in EDL muscle, and LPS injection rapidly increased concentrations of pro-inflammatory lipid mediators. However, muscle atrophy with upregulation of autophagy-related transcription factors was observed in EDL muscle but not in soleus muscle.
Collapse
Affiliation(s)
- Makoto Miyoshi
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan.
| | - Makoto Usami
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan; Faculty of Clinical Nutrition and Dietetics, Konan Women's University, Kobe, Japan
| | - Yuya Nishiyama
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Motoki Kai
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Ayumi Suzuki
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Noriaki Maeshige
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Atomu Yamaguchi
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Xiaoqi Ma
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Masakazu Shinohara
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Epidemiology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
12
|
Dort J, Orfi Z, Fiscaletti M, Campeau PM, Dumont NA. Gpr18 agonist dampens inflammation, enhances myogenesis, and restores muscle function in models of Duchenne muscular dystrophy. Front Cell Dev Biol 2023; 11:1187253. [PMID: 37645248 PMCID: PMC10461444 DOI: 10.3389/fcell.2023.1187253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023] Open
Abstract
Introduction: Muscle wasting in Duchenne Muscular Dystrophy is caused by myofiber fragility and poor regeneration that lead to chronic inflammation and muscle replacement by fibrofatty tissue. Our recent findings demonstrated that Resolvin-D2, a bioactive lipid derived from omega-3 fatty acids, has the capacity to dampen inflammation and stimulate muscle regeneration to alleviate disease progression. This therapeutic avenue has many advantages compared to glucocorticoids, the current gold-standard treatment for Duchenne Muscular Dystrophy. However, the use of bioactive lipids as therapeutic drugs also faces many technical challenges such as their instability and poor oral bioavailability. Methods: Here, we explored the potential of PSB-KD107, a synthetic agonist of the resolvin-D2 receptor Gpr18, as a therapeutic alternative for Duchenne Muscular Dystrophy. Results and discussion: We showed that PSB-KD107 can stimulate the myogenic capacity of patient iPSC-derived myoblasts in vitro. RNAseq analysis revealed an enrichment in biological processes related to fatty acid metabolism, lipid biosynthesis, small molecule biosynthesis, and steroid-related processes in PSB-KD107-treated mdx myoblasts, as well as signaling pathways such as Peroxisome proliferator-activated receptors, AMP-activated protein kinase, mammalian target of rapamycin, and sphingolipid signaling pathways. In vivo, the treatment of dystrophic mdx mice with PSB-KD107 resulted in reduced inflammation, enhanced myogenesis, and improved muscle function. The positive impact of PSB-KD107 on muscle function is similar to the one of Resolvin-D2. Overall, our findings provide a proof-of concept that synthetic analogs of bioactive lipid receptors hold therapeutic potential for the treatment of Duchenne Muscular Dystrophy.
Collapse
Affiliation(s)
- Junio Dort
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Zakaria Orfi
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Melissa Fiscaletti
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Philippe M. Campeau
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Nicolas A. Dumont
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
13
|
Perazza LR, Gower AC, Brown-Borg HM, Pajevic PD, Thompson LV. Protectin DX as a therapeutic strategy against frailty in mice. GeroScience 2023; 45:2601-2627. [PMID: 37059838 PMCID: PMC10651819 DOI: 10.1007/s11357-023-00789-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/31/2023] [Indexed: 04/16/2023] Open
Abstract
Frailty in aging is driven by the dysregulation of multiple biological pathways. Protectin DX (PDX) is a docosahexaenoic acid (DHA)-derived molecule that alleviates many chronic inflammatory disorders, but its potential effects on frailty remain unknown. Our goal is to identify age-related impairments in metabolic systems and to evaluate the therapeutic potential of PDX on frailty, physical performance, and health parameters. A set of 22-month-old C57BL/6 male and female mice were assigned to vehicle (Old) or PDX daily gavage treatment for 9 weeks, whereas 6-month-old (Adult) mice received only vehicle. Forelimb and hindlimb strength, endurance, voluntary wheel activity and walking speed determined physical performance and were combined with a frailty index score and body weight loss to determine frailty status. Our data shows that old vehicle-treated mice from both sexes had body weight loss paralleling visceromegaly, and Old females also had impaired insulin clearance as compared to the Adult group. Aging was associated with physical performance decline together with higher odds of frailty development. There was also age-driven mesangial expansion and glomerular hypertrophy as well as bone mineral density loss. All of the in vivo and in vitro impairments observed with aging co-occurred with upregulation of inflammatory pathways and Myc signaling as well as downregulation of genes related to adipogenesis and oxidative phosphorylation in liver. PDX attenuated the age-driven physical performance (strength, exhaustion, walking speed) decline, promoted robustness, prevented bone losses and partially reversed changes in hepatic expression of Myc targets and metabolic genes. In conclusion, our data provides evidence of the beneficial therapeutic effect of PDX against features of frailty in mice. Further studies are warranted to investigate the mechanisms of action and the potential for human translation.
Collapse
Affiliation(s)
- Laís R Perazza
- Department of Physical Therapy, Boston University, Boston, MA, USA.
| | - Adam C Gower
- Clinical and Translational Science Institute, Boston University, Boston, MA, USA
| | - Holly M Brown-Borg
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Paola Divieti Pajevic
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| | | |
Collapse
|
14
|
Broos JY, Loonstra FC, de Ruiter LRJ, Gouda M, Fung WH, Schoonheim MM, Heijink M, Strijbis EMM, Teunissen C, Killestein J, de Vries HE, Giera M, Uitdehaag BMJ, Kooij G. Association of Arachidonic Acid-Derived Lipid Mediators With Disease Severity in Patients With Relapsing and Progressive Multiple Sclerosis. Neurology 2023; 101:e533-e545. [PMID: 37290971 PMCID: PMC10401685 DOI: 10.1212/wnl.0000000000207459] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/13/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Excessive activation of certain lipid mediator (LM) pathways plays a role in the complex pathogenesis of multiple sclerosis (MS). However, the relationship between bioactive LMs and different aspects of CNS-related pathophysiologic processes remains largely unknown. Therefore, in this study, we assessed the association of bioactive LMs belonging to the ω-3/ω-6 lipid classes with clinical and biochemical (serum neurofilament light [sNfL] and serum glial fibrillary acidic protein [sGFAP]) parameters and MRI-based brain volumes in patients with MS (PwMS) and healthy controls (HCs). METHODS A targeted high-performance liquid chromatography-tandem mass spectrometry approach was used on plasma samples of PwMS and HCs of the Project Y cohort, a cross-sectional population-based cohort that contains PwMS all born in 1966 in the Netherlands and age-matched HCs. LMs were compared between PwMS and HCs and were correlated with levels of sNfL, sGFAP, disability (Expanded Disability Status Scale [EDSS]), and brain volumes. Finally, significant correlates were included in a backward multivariate regression model to identify which LMs best related to disability. RESULTS The study sample consisted of 170 patients with relapsing remitting MS (RRMS), 115 patients with progressive MS (PMS), and 125 HCs. LM profiles of patients with PMS significantly differed from those of patients with RRMS and HCs, particularly patients with PMS showed elevated levels of several arachidonic acid (AA) derivatives. In particular, 15-hydroxyeicosatetraenoic acid (HETE) (r = 0.24, p < 0.001) correlated (average r = 0.2, p < 0.05) with clinical and biochemical parameters such as EDSS and sNfL. In addition, higher 15-HETE levels were related to lower total brain (r = -0.24, p = 0.04) and deep gray matter volumes (r = -0.27, p = 0.02) in patients with PMS and higher lesion volume (r = 0.15, p = 0.03) in all PwMS. DISCUSSION In PwMS of the same birth year, we show that ω-3 and ω-6 LMs are associated with disability, biochemical parameters (sNfL, GFAP), and MRI measures. Furthermore, our findings indicate that, particularly, in patients with PMS, elevated levels of specific products of the AA pathway, such as 15-HETE, associate with neurodegenerative processes. Our findings highlight the potential relevance of ω-6 LMs in the pathogenesis of MS.
Collapse
Affiliation(s)
- Jelle Y Broos
- From the MS Center Amsterdam (J.Y.B., W.H.F., H.E.d.V., G.K.), Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc; Leiden University Medical Centre (LUMC) (J.Y.B., M.H., M.A.G.), Center of Proteomics and Metabolomics; MS Center Amsterdam (F.C.L., L.R.J.d.R., W.H.F., E.M.M.S., J.K., B.M.J.U.), Neurology, Vrije Universiteit Amsterdam, MS Center Amsterdam (M.M.T.E.E.G., C.T.), Neurochemistry Laboratory, Department of Clinical Chemistry, and MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
| | - Floor C Loonstra
- From the MS Center Amsterdam (J.Y.B., W.H.F., H.E.d.V., G.K.), Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc; Leiden University Medical Centre (LUMC) (J.Y.B., M.H., M.A.G.), Center of Proteomics and Metabolomics; MS Center Amsterdam (F.C.L., L.R.J.d.R., W.H.F., E.M.M.S., J.K., B.M.J.U.), Neurology, Vrije Universiteit Amsterdam, MS Center Amsterdam (M.M.T.E.E.G., C.T.), Neurochemistry Laboratory, Department of Clinical Chemistry, and MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
| | - Lodewijk R J de Ruiter
- From the MS Center Amsterdam (J.Y.B., W.H.F., H.E.d.V., G.K.), Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc; Leiden University Medical Centre (LUMC) (J.Y.B., M.H., M.A.G.), Center of Proteomics and Metabolomics; MS Center Amsterdam (F.C.L., L.R.J.d.R., W.H.F., E.M.M.S., J.K., B.M.J.U.), Neurology, Vrije Universiteit Amsterdam, MS Center Amsterdam (M.M.T.E.E.G., C.T.), Neurochemistry Laboratory, Department of Clinical Chemistry, and MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
| | - Mariam Gouda
- From the MS Center Amsterdam (J.Y.B., W.H.F., H.E.d.V., G.K.), Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc; Leiden University Medical Centre (LUMC) (J.Y.B., M.H., M.A.G.), Center of Proteomics and Metabolomics; MS Center Amsterdam (F.C.L., L.R.J.d.R., W.H.F., E.M.M.S., J.K., B.M.J.U.), Neurology, Vrije Universiteit Amsterdam, MS Center Amsterdam (M.M.T.E.E.G., C.T.), Neurochemistry Laboratory, Department of Clinical Chemistry, and MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
| | - Wing Hee Fung
- From the MS Center Amsterdam (J.Y.B., W.H.F., H.E.d.V., G.K.), Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc; Leiden University Medical Centre (LUMC) (J.Y.B., M.H., M.A.G.), Center of Proteomics and Metabolomics; MS Center Amsterdam (F.C.L., L.R.J.d.R., W.H.F., E.M.M.S., J.K., B.M.J.U.), Neurology, Vrije Universiteit Amsterdam, MS Center Amsterdam (M.M.T.E.E.G., C.T.), Neurochemistry Laboratory, Department of Clinical Chemistry, and MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
| | - Menno M Schoonheim
- From the MS Center Amsterdam (J.Y.B., W.H.F., H.E.d.V., G.K.), Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc; Leiden University Medical Centre (LUMC) (J.Y.B., M.H., M.A.G.), Center of Proteomics and Metabolomics; MS Center Amsterdam (F.C.L., L.R.J.d.R., W.H.F., E.M.M.S., J.K., B.M.J.U.), Neurology, Vrije Universiteit Amsterdam, MS Center Amsterdam (M.M.T.E.E.G., C.T.), Neurochemistry Laboratory, Department of Clinical Chemistry, and MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
| | - Marieke Heijink
- From the MS Center Amsterdam (J.Y.B., W.H.F., H.E.d.V., G.K.), Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc; Leiden University Medical Centre (LUMC) (J.Y.B., M.H., M.A.G.), Center of Proteomics and Metabolomics; MS Center Amsterdam (F.C.L., L.R.J.d.R., W.H.F., E.M.M.S., J.K., B.M.J.U.), Neurology, Vrije Universiteit Amsterdam, MS Center Amsterdam (M.M.T.E.E.G., C.T.), Neurochemistry Laboratory, Department of Clinical Chemistry, and MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
| | - Eva M M Strijbis
- From the MS Center Amsterdam (J.Y.B., W.H.F., H.E.d.V., G.K.), Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc; Leiden University Medical Centre (LUMC) (J.Y.B., M.H., M.A.G.), Center of Proteomics and Metabolomics; MS Center Amsterdam (F.C.L., L.R.J.d.R., W.H.F., E.M.M.S., J.K., B.M.J.U.), Neurology, Vrije Universiteit Amsterdam, MS Center Amsterdam (M.M.T.E.E.G., C.T.), Neurochemistry Laboratory, Department of Clinical Chemistry, and MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
| | - Charlotte Teunissen
- From the MS Center Amsterdam (J.Y.B., W.H.F., H.E.d.V., G.K.), Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc; Leiden University Medical Centre (LUMC) (J.Y.B., M.H., M.A.G.), Center of Proteomics and Metabolomics; MS Center Amsterdam (F.C.L., L.R.J.d.R., W.H.F., E.M.M.S., J.K., B.M.J.U.), Neurology, Vrije Universiteit Amsterdam, MS Center Amsterdam (M.M.T.E.E.G., C.T.), Neurochemistry Laboratory, Department of Clinical Chemistry, and MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
| | - Joep Killestein
- From the MS Center Amsterdam (J.Y.B., W.H.F., H.E.d.V., G.K.), Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc; Leiden University Medical Centre (LUMC) (J.Y.B., M.H., M.A.G.), Center of Proteomics and Metabolomics; MS Center Amsterdam (F.C.L., L.R.J.d.R., W.H.F., E.M.M.S., J.K., B.M.J.U.), Neurology, Vrije Universiteit Amsterdam, MS Center Amsterdam (M.M.T.E.E.G., C.T.), Neurochemistry Laboratory, Department of Clinical Chemistry, and MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
| | - Helga E de Vries
- From the MS Center Amsterdam (J.Y.B., W.H.F., H.E.d.V., G.K.), Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc; Leiden University Medical Centre (LUMC) (J.Y.B., M.H., M.A.G.), Center of Proteomics and Metabolomics; MS Center Amsterdam (F.C.L., L.R.J.d.R., W.H.F., E.M.M.S., J.K., B.M.J.U.), Neurology, Vrije Universiteit Amsterdam, MS Center Amsterdam (M.M.T.E.E.G., C.T.), Neurochemistry Laboratory, Department of Clinical Chemistry, and MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
| | - Martin Giera
- From the MS Center Amsterdam (J.Y.B., W.H.F., H.E.d.V., G.K.), Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc; Leiden University Medical Centre (LUMC) (J.Y.B., M.H., M.A.G.), Center of Proteomics and Metabolomics; MS Center Amsterdam (F.C.L., L.R.J.d.R., W.H.F., E.M.M.S., J.K., B.M.J.U.), Neurology, Vrije Universiteit Amsterdam, MS Center Amsterdam (M.M.T.E.E.G., C.T.), Neurochemistry Laboratory, Department of Clinical Chemistry, and MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
| | - Bernard M J Uitdehaag
- From the MS Center Amsterdam (J.Y.B., W.H.F., H.E.d.V., G.K.), Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc; Leiden University Medical Centre (LUMC) (J.Y.B., M.H., M.A.G.), Center of Proteomics and Metabolomics; MS Center Amsterdam (F.C.L., L.R.J.d.R., W.H.F., E.M.M.S., J.K., B.M.J.U.), Neurology, Vrije Universiteit Amsterdam, MS Center Amsterdam (M.M.T.E.E.G., C.T.), Neurochemistry Laboratory, Department of Clinical Chemistry, and MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
| | - Gijs Kooij
- From the MS Center Amsterdam (J.Y.B., W.H.F., H.E.d.V., G.K.), Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc; Leiden University Medical Centre (LUMC) (J.Y.B., M.H., M.A.G.), Center of Proteomics and Metabolomics; MS Center Amsterdam (F.C.L., L.R.J.d.R., W.H.F., E.M.M.S., J.K., B.M.J.U.), Neurology, Vrije Universiteit Amsterdam, MS Center Amsterdam (M.M.T.E.E.G., C.T.), Neurochemistry Laboratory, Department of Clinical Chemistry, and MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands.
| |
Collapse
|
15
|
Nieman DC, Sakaguchi CA, Omar AM, Davis KL, Shaffner CE, Strauch RC, Lila MA, Zhang Q. Blueberry intake elevates post-exercise anti-inflammatory oxylipins: a randomized trial. Sci Rep 2023; 13:11976. [PMID: 37488250 PMCID: PMC10366094 DOI: 10.1038/s41598-023-39269-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/22/2023] [Indexed: 07/26/2023] Open
Abstract
This study determined if 18 days of supplementation with blueberries (BL) compared to placebo (PL) could mitigate muscle soreness and damage and improve inflammation resolution in untrained adults (n = 49, ages 18-50 years) after engaging in a 90-min bout of "weekend warrior" eccentric exercise. The BL freeze dried supplement provided 1 cup of fresh blueberries per day equivalent with 805 mg/day total phenolics and 280 mg/day anthocyanins. Urine levels of eight BL gut-derived phenolics increased after 14- and 18-days supplementation with 83% higher concentrations in BL vs. PL (p < 0.001). The 90-min exercise bout caused significant muscle soreness and damage during 4d of recovery and a decrease in exercise performance with no significant differences between PL and BL. Plasma oxylipins were identified (n = 76) and grouped by fatty acid substrates and enzyme systems. Linoleic acid (LA) oxylipins generated from cytochrome P450 (CYP) (9,10-, 12,13-dihydroxy-9Z-octadecenoic acids) (diHOMEs) were lower in BL vs. PL (treatment effect, p = 0.051). A compositive variable of 9 plasma hydroxydocosahexaenoic acids (HDoHEs) generated from docosahexaenoic acid (DHA, 22:6) and lipoxygenase (LOX) was significantly higher in BL vs. PL (treatment effect, p = 0.008). The composite variable of plasma 14-HDoHE, 17-HDoHE, and the eicosapentaenoic acid (EPA)-derived oxylipin 18-hydroxyeicosapentaenoic acid (18-HEPE) (specialized pro-resolving lipid mediators, SPM, intermediates) was significantly higher in BL vs PL (treatment effect, p = 0.014). Pearson correlations showed positive relationships between post-exercise DHA-LOX HDoHEs and SPM intermediates with urine blueberry gut-derived phenolics (r = 0.324, p = 0.023, and r = 0.349, p = 0.015, respectively). These data indicate that 18d intake of 1 cup/day blueberries compared to PL was linked to a reduction in pro-inflammatory diHOMES and sustained elevations in DHA- and EPA-derived anti-inflammatory oxylipins in response to a 90-min bout of unaccustomed exercise by untrained adults.
Collapse
Affiliation(s)
- David C Nieman
- Human Performance Laboratory, Biology Department, Appalachian State University, North Carolina Research Campus, Kannapolis, NC, USA.
| | - Camila A Sakaguchi
- Human Performance Laboratory, Biology Department, Appalachian State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Ashraf M Omar
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| | - Kierstin L Davis
- Human Performance Laboratory, Biology Department, Appalachian State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Cameron E Shaffner
- Human Performance Laboratory, Biology Department, Appalachian State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Renee C Strauch
- Food Bioprocessing and Nutrition Sciences Department, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Mary Ann Lila
- Food Bioprocessing and Nutrition Sciences Department, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Qibin Zhang
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| |
Collapse
|
16
|
Liu WC, Yang YH, Wang YC, Chang WM, Wang CW. Maresin: Macrophage Mediator for Resolving Inflammation and Bridging Tissue Regeneration-A System-Based Preclinical Systematic Review. Int J Mol Sci 2023; 24:11012. [PMID: 37446190 DOI: 10.3390/ijms241311012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Maresins are lipid mediators derived from omega-3 fatty acids with anti-inflammatory and pro-resolving properties, capable of promoting tissue regeneration and potentially serving as a therapeutic agent for chronic inflammatory diseases. The aim of this review was to systematically investigate preclinical and clinical studies on maresin to inform translational research. Two independent reviewers performed comprehensive searches with the term "Maresin (NOT) Review" on PubMed. A total of 137 studies were included and categorized into 11 human organ systems. Data pertinent to clinical translation were specifically extracted, including delivery methods, optimal dose response, and specific functional efficacy. Maresins generally exhibit efficacy in treating inflammatory diseases, attenuating inflammation, protecting organs, and promoting tissue regeneration, mostly in rodent preclinical models. The nervous system has the highest number of original studies (n = 25), followed by the cardiovascular system, digestive system, and respiratory system, each having the second highest number of studies (n = 18) in the field. Most studies considered systemic delivery with an optimal dose response for mouse animal models ranging from 4 to 25 μg/kg or 2 to 200 ng via intraperitoneal or intravenous injection respectively, whereas human in vitro studies ranged between 1 and 10 nM. Although there has been no human interventional clinical trial yet, the levels of MaR1 in human tissue fluid can potentially serve as biomarkers, including salivary samples for predicting the occurrence of cardiovascular diseases and periodontal diseases; plasma and synovial fluid levels of MaR1 can be associated with treatment response and defining pathotypes of rheumatoid arthritis. Maresins exhibit great potency in resolving disease inflammation and bridging tissue regeneration in preclinical models, and future translational development is warranted.
Collapse
Affiliation(s)
- Wen-Chun Liu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 110310, Taiwan
| | - Yu-Hsin Yang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 110310, Taiwan
| | - Yu-Chin Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 110310, Taiwan
| | - Wei-Ming Chang
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Chin-Wei Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 110310, Taiwan
- Division of Periodontics, Department of Dentistry, Taipei Medical University Hospital, Taipei 110301, Taiwan
| |
Collapse
|
17
|
Bonanni R, Gino Grillo S, Cariati I, Tranquillo L, Iundusi R, Gasbarra E, Tancredi V, Tarantino U. Osteosarcopenia and Pain: Do We Have a Way Out? Biomedicines 2023; 11:biomedicines11051285. [PMID: 37238956 DOI: 10.3390/biomedicines11051285] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Osteosarcopenia (OSP) is a geriatric syndrome characterized by the coexistence of osteoporosis and sarcopenia and associated with an increased risk of fragility fractures, disability, and mortality. For patients with this syndrome, musculoskeletal pain represents the most significant challenge since, in addition to limiting the individual's functionality and promoting disability, it has a huge psychological burden involving anxiety, depression, and social withdrawal. Unfortunately, the molecular mechanisms involved in the development and persistence of pain in OSP have not yet been fully elucidated, although immune cells are known to play a key role in these processes. Indeed, they release several molecules that promote persistent inflammation and nociceptive stimulation, resulting in the gating of ion channels responsible for the generation and propagation of the noxious stimulus. The adoption of countermeasures to counteract the OSP progression and reduce the algic component appears to be necessary, providing patients with a better quality of life and greater adherence to treatment. In addition, the development of multimodal therapies, based on an interdisciplinary approach, appears to be crucial, combining the use of anti-osteoporotic drugs with an educational programme, regular physical activity, and proper nutrition to eliminate risk factors. Based on this evidence, we conducted a narrative review using the PubMed and Google Scholar search engines to summarize the current knowledge on the molecular mechanisms involved in the pain development in OSP and the potential countermeasures to be taken. The lack of studies addressing this topic highlights the need to conduct new research into the resolution of an ever-expanding social problem.
Collapse
Affiliation(s)
- Roberto Bonanni
- Department of Clinical Sciences and Translational Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Sonia Gino Grillo
- Department of Orthopaedics and Traumatology, "Policlinico Tor Vergata" Foundation, Viale Oxford 81, 00133 Rome, Italy
| | - Ida Cariati
- Department of Clinical Sciences and Translational Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Lucia Tranquillo
- Department of Orthopaedics and Traumatology, "Policlinico Tor Vergata" Foundation, Viale Oxford 81, 00133 Rome, Italy
| | - Riccardo Iundusi
- Department of Orthopaedics and Traumatology, "Policlinico Tor Vergata" Foundation, Viale Oxford 81, 00133 Rome, Italy
| | - Elena Gasbarra
- Department of Orthopaedics and Traumatology, "Policlinico Tor Vergata" Foundation, Viale Oxford 81, 00133 Rome, Italy
| | - Virginia Tancredi
- Department of Systems Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Centre of Space Bio-Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Umberto Tarantino
- Department of Clinical Sciences and Translational Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Department of Orthopaedics and Traumatology, "Policlinico Tor Vergata" Foundation, Viale Oxford 81, 00133 Rome, Italy
- Centre of Space Bio-Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
18
|
A cross-talk between sestrins, chronic inflammation and cellular senescence governs the development of age-associated sarcopenia and obesity. Ageing Res Rev 2023; 86:101852. [PMID: 36642190 DOI: 10.1016/j.arr.2023.101852] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
The rapid increase in both the lifespan and proportion of older adults is accompanied by the unprecedented rise in age-associated chronic diseases, including sarcopenia and obesity. Aging is also manifested by increased susceptibility to multiple endogenous and exogenous stresses enabling such chronic conditions to develop. Among the main physiological regulators of cellular adaption to various stress stimuli, such as DNA damage, hypoxia, and oxidative stress, are sestrins (Sesns), a family of three evolutionarily conserved proteins, Sesn1, 2, and 3. Age-associated sarcopenia and obesity are characterized by two key processes: (i) accumulation of senescent cells in the skeletal muscle and adipose tissue and (ii) creation of a systemic, chronic, low-grade inflammation (SCLGI). Presumably, failed SCLGI resolution governs the development of these chronic conditions. Noteworthy, Sesns activate senolytics, which are agents that selectively eliminate senescent cells, as well as specialized pro-resolving mediators, which are factors that physiologically provide inflammation resolution. Sesns reveal clear beneficial effects in pre-clinical models of sarcopenia and obesity. Based on these observations, we propose a novel treatment strategy for age-associated sarcopenia and obesity, complementary to the conventional therapeutic modalities: Sesn activation, SCLGI resolution, and senescent cell elimination.
Collapse
|
19
|
Dobrev D, Heijman J, Hiram R, Li N, Nattel S. Inflammatory signalling in atrial cardiomyocytes: a novel unifying principle in atrial fibrillation pathophysiology. Nat Rev Cardiol 2023; 20:145-167. [PMID: 36109633 PMCID: PMC9477170 DOI: 10.1038/s41569-022-00759-w] [Citation(s) in RCA: 93] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 02/08/2023]
Abstract
Inflammation has been implicated in atrial fibrillation (AF), a very common and clinically significant cardiac rhythm disturbance, but its precise role remains poorly understood. Work performed over the past 5 years suggests that atrial cardiomyocytes have inflammatory signalling machinery - in particular, components of the NLRP3 (NACHT-, LRR- and pyrin domain-containing 3) inflammasome - that is activated in animal models and patients with AF. Furthermore, work in animal models suggests that NLRP3 inflammasome activation in atrial cardiomyocytes might be a sufficient and necessary condition for AF occurrence. In this Review, we evaluate the evidence for the role and pathophysiological significance of cardiomyocyte NLRP3 signalling in AF. We first summarize the evidence for a role of inflammation in AF and review the biochemical properties of the NLRP3 inflammasome, as defined primarily in studies of classic inflammation. We then briefly consider the broader evidence for a role of inflammatory signalling in heart disease, particularly conditions that predispose individuals to develop AF. We provide a detailed discussion of the available information about atrial cardiomyocyte NLRP3 inflammasome signalling in AF and related conditions and evaluate the possibility that similar signalling might be important in non-myocyte cardiac cells. We then review the evidence on the role of active resolution of inflammation and its potential importance in suppressing AF-related inflammatory signalling. Finally, we consider the therapeutic potential and broader implications of this new knowledge and highlight crucial questions to be addressed in future research.
Collapse
Affiliation(s)
- Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Duisburg, Germany
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Canada
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Roddy Hiram
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Canada
| | - Na Li
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Section of Cardiovascular Research, Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Stanley Nattel
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Duisburg, Germany.
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Canada.
- IHU LIRYC and Fondation Bordeaux Université, Bordeaux, France.
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
20
|
Jannas-Vela S, Espinosa A, Candia AA, Flores-Opazo M, Peñailillo L, Valenzuela R. The Role of Omega-3 Polyunsaturated Fatty Acids and Their Lipid Mediators on Skeletal Muscle Regeneration: A Narrative Review. Nutrients 2023; 15:nu15040871. [PMID: 36839229 PMCID: PMC9965797 DOI: 10.3390/nu15040871] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Skeletal muscle is the largest tissue in the human body, comprising approximately 40% of body mass. After damage or injury, a healthy skeletal muscle is often fully regenerated; however, with aging and chronic diseases, the regeneration process is usually incomplete, resulting in the formation of fibrotic tissue, infiltration of intermuscular adipose tissue, and loss of muscle mass and strength, leading to a reduction in functional performance and quality of life. Accumulating evidence has shown that omega-3 (n-3) polyunsaturated fatty acids (PUFAs) and their lipid mediators (i.e., oxylipins and endocannabinoids) have the potential to enhance muscle regeneration by positively modulating the local and systemic inflammatory response to muscle injury. This review explores the process of muscle regeneration and how it is affected by acute and chronic inflammatory conditions, focusing on the potential role of n-3 PUFAs and their derivatives as positive modulators of skeletal muscle healing and regeneration.
Collapse
Affiliation(s)
- Sebastian Jannas-Vela
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2820000, Chile
| | - Alejandra Espinosa
- Escuela de Medicina, Campus San Felipe, Universidad de Valparaíso, San Felipe 2170000, Chile
| | - Alejandro A. Candia
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2820000, Chile
| | - Marcelo Flores-Opazo
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2820000, Chile
| | - Luis Peñailillo
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Las Condes, Santiago 7591538, Chile
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
- Correspondence:
| |
Collapse
|
21
|
Krishnamoorthy N, Walker KH, Brüggemann TR, Tavares LP, Smith EW, Nijmeh J, Bai Y, Ai X, Cagnina RE, Duvall MG, Lehoczky JA, Levy BD. The Maresin 1-LGR6 axis decreases respiratory syncytial virus-induced lung inflammation. Proc Natl Acad Sci U S A 2023; 120:e2206480120. [PMID: 36595677 PMCID: PMC9926266 DOI: 10.1073/pnas.2206480120] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 11/29/2022] [Indexed: 01/05/2023] Open
Abstract
The resolution of infection is an active process with specific molecular and cellular mechanisms that temper inflammation and enhance pathogen clearance. Here, the specialized pro-resolving mediator (SPM) Maresin 1 (MaR1) inhibited respiratory syncytial virus (RSV)-induced inflammation. inlerleukin-13 production from type 2 innate lymphoid cells (ILC) and CD4 T helper type 2 cells was decreased by exogenous MaR1. In addition, MaR1 increased amphiregulin production and decreased RSV viral transcripts to promote resolution. MaR1 also promoted interferon-β production in mouse lung tissues and also in pediatric lung slices. MaR1 significantly inhibited the RSV-triggered aberrant inflammatory phenotype in FoxP3-expressing Tregs. The receptor for MaR1, leucine-rich repeat-containing G protein-coupled receptor 6 (LGR6), was constitutively expressed on Tregs. Following RSV infection, mice lacking Lgr6 had exacerbated type 2 immune responses with an increased viral burden and blunted responses to MaR1. Together, these findings have uncovered a multi-pronged protective signaling axis for MaR1-Lgr6, improving Tregs's suppressive function and upregulating host antiviral genes resulting in decreased viral burden and pathogen-mediated inflammation, ultimately promoting restoration of airway mucosal homeostasis.
Collapse
Affiliation(s)
- Nandini Krishnamoorthy
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Katherine H. Walker
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Thayse R. Brüggemann
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Luciana P. Tavares
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Ethan W. Smith
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Julie Nijmeh
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Yan Bai
- Neonatology Division, Mass General Hospital for Children, Boston, MA02114
| | - Xingbin Ai
- Neonatology Division, Mass General Hospital for Children, Boston, MA02114
| | - R. Elaine Cagnina
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Melody G. Duvall
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Jessica A. Lehoczky
- Department Of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Bruce D. Levy
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| |
Collapse
|
22
|
Impaired muscle stem cell function and abnormal myogenesis in acquired myopathies. Biosci Rep 2023; 43:232343. [PMID: 36538023 PMCID: PMC9829652 DOI: 10.1042/bsr20220284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscle possesses a high plasticity and a remarkable regenerative capacity that relies mainly on muscle stem cells (MuSCs). Molecular and cellular components of the MuSC niche, such as immune cells, play key roles to coordinate MuSC function and to orchestrate muscle regeneration. An abnormal infiltration of immune cells and/or imbalance of pro- and anti-inflammatory cytokines could lead to MuSC dysfunctions that could have long lasting effects on muscle function. Different genetic variants were shown to cause muscular dystrophies that intrinsically compromise MuSC function and/or disturb their microenvironment leading to impaired muscle regeneration that contributes to disease progression. Alternatively, many acquired myopathies caused by comorbidities (e.g., cardiopulmonary or kidney diseases), chronic inflammation/infection, or side effects of different drugs can also perturb MuSC function and their microenvironment. The goal of this review is to comprehensively summarize the current knowledge on acquired myopathies and their impact on MuSC function. We further describe potential therapeutic strategies to restore MuSC regenerative capacity.
Collapse
|
23
|
Toth D, Reglodi D, Schwieters L, Tamas A. Role of endocrine PACAP in age-related diseases. Front Endocrinol (Lausanne) 2023; 14:1118927. [PMID: 36967746 PMCID: PMC10033946 DOI: 10.3389/fendo.2023.1118927] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a conserved neuropeptide, which confers diverse anti-aging endocrine and paracrine/autocrine effects, including anti-apoptotic, anti-inflammatory and antioxidant action. The results of the in vivo and in vitro experiments show that increasing emphasis is being placed on the diagnostic/prognostic biomarker potential of this neuropeptide in a wide array of age-related diseases. After the initial findings regarding the presence and alteration of PACAP in different body fluids in physiological processes, an increasing number of studies have focused on the changes of its levels in various pathological conditions associated with advanced aging. Until 2016 - when the results of previous human studies were reviewed - a vast majority of the studies had dealt with age-related neurological diseases, like cerebrovascular and neurodegenerative diseases, multiple sclerosis, as well as some other common diseases in elderly such as migraine, traumatic brain injury and post-traumatic stress disorder, chronic hepatitis and nephrotic syndrome. The aim of this review is to summarize the old and the new results and highlight those 'classical' and emerging clinical fields in which PACAP may become subject to further investigation as a diagnostic and/or prognostic biomarker in age-related diseases.
Collapse
Affiliation(s)
- Denes Toth
- Department of Forensic Medicine, University of Pécs Medical School, Pécs, Hungary
| | - Dora Reglodi
- Department of Anatomy, ELKH-PTE PACAP Research Team, Centre for Neuroscience, University of Pécs Medical School, Pécs, Hungary
| | - Lili Schwieters
- Department of Anatomy, ELKH-PTE PACAP Research Team, Centre for Neuroscience, University of Pécs Medical School, Pécs, Hungary
| | - Andrea Tamas
- Department of Anatomy, ELKH-PTE PACAP Research Team, Centre for Neuroscience, University of Pécs Medical School, Pécs, Hungary
- *Correspondence: Andrea Tamas,
| |
Collapse
|
24
|
Anand S, Azam Ansari M, Kumaraswamy Sukrutha S, Alomary MN, Anwar Khan A, Elderdery AY. Resolvins Lipid Mediators: Potential Therapeutic Targets in Alzheimer and Parkinson Disease. Neuroscience 2022; 507:139-148. [PMID: 36372297 DOI: 10.1016/j.neuroscience.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/12/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Inflammation and resolution are highly programmed processes involving a plethora of immune cells. Lipid mediators synthesized from arachidonic acid metabolism play a pivotal role in orchestrating the signaling cascades in the game of inflammation. The majority of the studies carried out so far on inflammation were aimed at inhibiting the generation of inflammatory molecules, whereas recent research has shifted more towards understanding the resolution of inflammation. Owing to chronic inflammation as evident in neuropathophysiology, the resolution of inflammation together with the class of lipid mediators actively involved in its regulation has attracted the attention of the scientific community as therapeutic targets. Both omega-three polyunsaturated fatty acids, eicosapentaenoic acid and docosahexaenoic acid, orchestrate a vital regulatory role in inflammation development. Resolvins derived from these fatty acids comprise the D-and E-series resolvins. A growing body of evidence using in vitro and in vivo models has revealed the pro-resolving and anti-inflammatory potential of resolvins. This systematic review sheds light on the synthesis, specialized receptors, and resolution of inflammation mediated by resolvins in Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Santosh Anand
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| | - Sambamurthy Kumaraswamy Sukrutha
- Department of Microbiology, Biotechnology and Food Technology, Jnana Bharathi Campus, Bangalore University, Bengaluru, Karnataka, India
| | - Mohammad N Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Anmar Anwar Khan
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abozer Y Elderdery
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Saudi Arabia
| |
Collapse
|
25
|
Kalinkovich A, Becker M, Livshits G. New Horizons in the Treatment of Age-Associated Obesity, Sarcopenia and Osteoporosis. Drugs Aging 2022; 39:673-683. [PMID: 35781216 DOI: 10.1007/s40266-022-00960-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2022] [Indexed: 11/03/2022]
Abstract
The rapid increase in both the lifespan and proportion of older adults in developed countries is accompanied by the dramatic growth of age-associated chronic diseases, including obesity, sarcopenia, and osteoporosis. Hence, prevention and treatment of age-associated chronic diseases has become increasingly urgent. The key to achieving this goal is a better understanding of the mechanisms underlying their pathophysiology, some aspects of which, despite extensive investigation, are still not fully understood. Aging, obesity, sarcopenia, and osteoporosis are characterized by the creation of a systemic, chronic, low-grade inflammation (SCLGI). The common mechanisms that govern the development of these chronic conditions include a failed resolution of inflammation. Physiologically, the process of inflammation resolution is provided mainly by specialized pro-resolving mediators (SPMs) acting via cognate G protein-coupled receptors (GPCRs). Noteworthy, SPM levels and the expression of their receptors are significantly reduced in aging and the associated chronic disorders. In preclinical studies, supplementation of SPMs or their stable, small-molecule SPM mimetics and receptor agonists reveals clear beneficial effects in inflammation-related obesity and sarcopenic and osteoporotic conditions, suggesting a translational potential. Age-associated chronic disorders are also characterized by gut dysbiosis and the accumulation of senescent cells in the adipose tissue, skeletal muscle, and bones. Based on these findings, we propose SCLGI resolution as a novel strategy for the prevention/treatment of age-associated obesity, sarcopenia, and osteoporosis. Our approach entails the enhancement of inflammation resolution by SPM mimetics and receptor agonists in concert with probiotics/prebiotics and compounds that eliminate senescent cells and their pro-inflammatory activity.
Collapse
Affiliation(s)
- Alexander Kalinkovich
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, 6905126, Tel-Aviv, Israel
| | - Maria Becker
- Adelson School of Medicine, Ariel University, 4077625, Ariel, Israel
| | - Gregory Livshits
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, 6905126, Tel-Aviv, Israel. .,Adelson School of Medicine, Ariel University, 4077625, Ariel, Israel.
| |
Collapse
|
26
|
Serhan CN, Libreros S, Nshimiyimana R. E-series resolvin metabolome, biosynthesis and critical role of stereochemistry of specialized pro-resolving mediators (SPMs) in inflammation-resolution: Preparing SPMs for long COVID-19, human clinical trials, and targeted precision nutrition. Semin Immunol 2022; 59:101597. [PMID: 35227568 PMCID: PMC8847098 DOI: 10.1016/j.smim.2022.101597] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/07/2022] [Indexed: 01/15/2023]
Abstract
The COVID-19 pandemic has raised international awareness of the importance of rigorous scientific evidence and the havoc caused by uncontrolled excessive inflammation. Here we consider the evidence on whether the specialized pro-resolving mediators (SPMs) are ready to meet this challenge as well as targeted metabololipidomics of the resolution-inflammation metabolomes. Specific stereochemical mechanisms in the biosynthesis of SPMs from omega-3 essential fatty acids give rise to unique local-acting lipid mediators. SPMs possess stereochemically defined potent bioactive structures that are high-affinity ligands for cognate G protein-coupled surface receptors that evoke the cellular responses required for efficient resolution of acute inflammation. The SPMs biosynthesized from the major omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are coined Resolvins (resolution phase interaction products; E series and D-series), Protectins and Maresins (macrophage mediators in resolving inflammation). Their biosynthesis and stereochemical assignments are established and confirmed (>1,441 resolvin publications in PubMed.gov) as well as their functional roles on innate immune cells and adaptive immune cells (both lymphocyte T-cell subsets and B-cells). The resolution of a protective acute inflammatory response is governed mainly by phagocytes that actively clear apoptotic cells, debris, blood clots and pathogens. These resolution phase functions of the acute inflammatory response are enhanced by SPMs, which together prepare the inflammatory loci for homeostasis and stimulate tissue regeneration via activating stem cells and the biosynthesis of novel cys-SPMs (e.g. MCTRs, PCTRs and RCTRs). These cys-SPMs also activate regeneration, are organ protective and stimulate resolution of local inflammation. Herein, we review the biosynthesis and functions of the E-series resolvins, namely resolvin E1 (the first n-3 resolvin identified), resolvin E2, resolvin E3 and resolvin E4 biosynthesized from their precursor eicosapentaenoic acid (EPA), and the critical role of total organic synthesis in confirming SPM complete stereochemistry, establishing their potent functions in resolution of inflammation, and novel structures. The physical properties of each biologically derived SPM, i.e., ultra-violet (UV) absorbance, chromatographic behavior, and tandem mass spectrometry (MS2) fragmentation, were matched to SPMs biosynthesized and prepared by stereospecific total organic synthesis. We briefly review this approach, also used with the endogenous D-series resolvins, protectins and maresins confirming their potent functions in resolution of inflammation, that paves the way for their rigorous evaluation in human tissues and clinical trials. The assignment of complete stereochemistry for each of the E and D series Resolvins, Protectins and Maresins was a critical and required step that enabled human clinical studies as in SPM profiling in COVID-19 infections and experimental animal disease models that also opened the promise of resolution physiology, resolution pharmacology and targeted precision nutrition as new areas for monitoring health and disease mechanisms.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Stephania Libreros
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Robert Nshimiyimana
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
27
|
Fang X, Wang H, Ye T, Fu X, Tan X, Zeng Y, Fan J, Xu Y. Low serum Maresin-1 levels are associated with non-alcoholic fatty liver disease: a cross-sectional study. Lipids Health Dis 2021; 20:96. [PMID: 34461919 PMCID: PMC8406751 DOI: 10.1186/s12944-021-01518-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023] Open
Abstract
Background Maresin-1 (MaR1) is an anti-inflammatory pro-resolving mediator and is considered a potential regulator of metabolic diseases. Non-alcoholic fatty liver disease (NAFLD) is a very common metabolic liver disease. However, little information is available on the relationship between MaR1 and NAFLD in humans. Therefore, the study explored the association between serum MaR1 levels and NAFLD. Methods A cross-sectional study was conducted in 240 Chinese people, including 116 non-NAFLD subjects and 124 NAFLD patients. Serum MaR1 levels were determined by enzyme-linked immunosorbent assay (ELISA). The association between MaR1 and NAFLD was assessed. Results Circulating MaR1 levels in NAFLD patients were markedly lower than those in non-NAFLD subjects (63.63 [59.87–73.93] vs 73.11 [65.12–84.50] pg/mL, P = 0.000). The percentages of patients with NAFLD gradually decreased with the increase of MaR1 quartiles (P < 0.001). Furthermore, serum MaR1 levels were positively associated with aspartate aminotransferase/alanine aminotransferase (AST/ALT), albumin, the albumin-globulin-ratio, and high-density lipoprotein cholesterol (HDL-C) (all P < 0.05) and negatively associated with body mass index (BMI), waist circumference, hip circumference, the waist-to-hip ratio, ALT, gamma-glutamyl transpeptidase (GGT), uric acid, triglyceride (TG), and fasting blood glucose (FBG) (all P < 0.05) after adjusting for sex and age. Binary logistic regression analysis revealed that serum MaR1 levels were significantly associated with NAFLD. Conclusions Circulating MaR1 levels were decreased in patients with NAFLD, and a negative correlation was identified between NAFLD and serum MaR1 concentrations. Decreased MaR1 might be involved in the development of NAFLD.
Collapse
Affiliation(s)
- Xia Fang
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, 646000, Sichuan, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China
| | - Hongya Wang
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, 646000, Sichuan, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China
| | - Ting Ye
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiaolan Fu
- Department of Respiratory Medicine, Yongchuan Hospital of Traditional Chinese Medicine Affiliated to Chongqing Medical University, Chongqing, 402160, China
| | - Xiaozhen Tan
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, 646000, Sichuan, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China
| | - Yan Zeng
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, 646000, Sichuan, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China
| | - Jiahao Fan
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China.
| | - Yong Xu
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China. .,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, 646000, Sichuan, China. .,Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China.
| |
Collapse
|