1
|
Richardson RS, Kryszak LA, Vendruscolo JCM, Koob GF, Leggio L, Vendruscolo LF. Evidence for independent actions of the CRF and ghrelin systems in binge-like alcohol drinking in mice. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111341. [PMID: 40139339 DOI: 10.1016/j.pnpbp.2025.111341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/16/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Alcohol use disorder (AUD) and binge drinking are highly prevalent public health issues. Both ghrelin and corticotrophin-releasing factor (CRF) drive stress responses and alcohol drinking. Despite evidence of a relationship between the ghrelin and CRF systems, their potential interaction in modulating alcohol drinking is unclear. We tested the effect of a brain-penetrant CRF1 receptor antagonist (R121919) and a peripherally restricted nonselective CRF receptor antagonist (astressin) on plasma ghrelin levels. We also tested effects of R121919 and astressin alone and combined with the growth hormone secretagogue receptor (GHSR; the ghrelin receptor) antagonist JMV2959 and GHSR antagonist/inverse agonist PF-5190457 in a model of binge-like alcohol drinking in male and female C57BL/6 J mice. The intraperitoneal administration of R121919 but not astressin increased plasma ghrelin levels. R121919 but not astressin reduced binge-like alcohol drinking. CRF receptor antagonism had no effect on the ability of GHSR blockers to reduce alcohol drinking. No sex × drug treatment interactions were observed. These findings suggest that while both CRF receptor antagonism and GHSR antagonism reduce alcohol drinking, these two pharmacological approaches may not interact to mediate binge-like alcohol drinking in mice. Additionally, these results provide evidence that GHSR but not peripheral endogenous ghrelin may be key in driving binge-like alcohol drinking.
Collapse
Affiliation(s)
- Rani S Richardson
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse, Intramural Research Program, and National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA; Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA; Stress and Addiction Neuroscience Unit, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, and National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA; University of North Carolina School of Medicine MD/PhD Program, University of North Carolina, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Lindsay A Kryszak
- Translational Analytical Core, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Janaina C M Vendruscolo
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - George F Koob
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse, Intramural Research Program, and National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA; Translational Analytical Core, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA; Department of Behavioral and Social Sciences, Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA; Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA..
| | - Leandro F Vendruscolo
- Stress and Addiction Neuroscience Unit, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, and National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
2
|
Pearl AJ, Maddern XJ, Pinares-Garcia P, Ursich LT, Anversa RG, Shesham A, Brown RM, Reed FM, Giardino WJ, Lawrence AJ, Walker LC. Midbrain ghrelin receptor signalling regulates binge drinking in a sex specific manner. Nat Commun 2025; 16:2568. [PMID: 40089486 PMCID: PMC11910522 DOI: 10.1038/s41467-025-57880-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 03/03/2025] [Indexed: 03/17/2025] Open
Abstract
Risky drinking rates are rising, particularly in women, yet sex as a biological variable has only recently gained traction. The centrally projecting Edinger-Westphal (EWcp) nucleus has emerged as a key regulator of alcohol consumption. Here we found that EWcppeptidergic cells reduce binge drinking specifically in female mice. We show this effect is mediated by the ghrelin receptor (GHSR), with EWcppeptidergic inhibition blocking ghrelin-induced drinking and Ghsr knockdown in EWcppeptidergic, but not EWcpglutamatergic or ventral tegmental area cells, reducing binge drinking in females, independent of circulating sex hormones. Female mice showed higher EWcp Ghsr expression, and EWcppeptidergic neurons were more sensitive to ghrelin. Moreover, intra-EWcp delivery of GHSR inverse agonist and antagonist reduced binge drinking, suggesting direct actions of ghrelin. These findings highlight the EWcp as a critical mediator of excessive alcohol consumption via GHSR in female mice, offering insights into the ghrelin system's role in alcohol consumption.
Collapse
Affiliation(s)
- Amy J Pearl
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
| | - Xavier J Maddern
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Paulo Pinares-Garcia
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
| | - Lauren T Ursich
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Roberta G Anversa
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Arnav Shesham
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Robyn M Brown
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Felicia M Reed
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, Australia
| | - William J Giardino
- Dept. of Psychiatry and Behavioural Sciences, Stanford University School of Medicine, Stanford, CA, 94305-5453, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, 94305-5453, USA
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Leigh C Walker
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia.
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
3
|
Richardson RS, Kryszak LA, Vendruscolo JCM, Koob GF, Vendruscolo LF, Leggio L. GHSR blockade, but not reduction of peripherally circulating ghrelin via β 1-adrenergic receptor antagonism, decreases binge-like alcohol drinking in mice. Mol Psychiatry 2025; 30:1047-1056. [PMID: 39232198 PMCID: PMC11835741 DOI: 10.1038/s41380-024-02713-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024]
Abstract
Alcohol use disorder (AUD) and binge drinking are highly prevalent public health issues. The stomach-derived peptide ghrelin, and its receptor, the growth hormone secretagogue receptor (GHSR), both of which are expressed in the brain and periphery, are implicated in alcohol-related outcomes. We previously found that systemic and central administration of GHSR antagonists reduced binge-like alcohol drinking, whereas a ghrelin vaccine did not. Thus, we hypothesized that central GHSR drives binge-like alcohol drinking independently of peripheral ghrelin. To investigate this hypothesis, we antagonized β1-adrenergic receptors (β1ARs), which are required for peripheral ghrelin release, and combined them with GHSR blockers. We found that both systemic β1AR antagonism with atenolol (peripherally restricted) and metoprolol (brain permeable) robustly decreased plasma ghrelin levels. Also, ICV administration of atenolol had no effect on peripheral endogenous ghrelin levels. However, only metoprolol, but not atenolol, decreased binge-like alcohol drinking. The β1AR antagonism also did not prevent the effects of the GHSR blockers JMV2959 and PF-5190457 in decreasing binge-like alcohol drinking. These results suggest that the GHSR rather than peripheral endogenous ghrelin is involved in binge-like alcohol drinking. Thus, GHSRs and β1ARs represent possible targets for therapeutic intervention for AUD, including the potential combination of drugs that target these two systems.
Collapse
Affiliation(s)
- Rani S Richardson
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD, USA
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
- University of North Carolina School of Medicine MD/PhD Program, University of North Carolina, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
- Stress and Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
| | - Lindsay A Kryszak
- National Institute on Drug Abuse Intramural Research Program Translational Analytical Core, National Institutes of Health, Baltimore, MD, USA
| | - Janaina C M Vendruscolo
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
- Stress and Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
| | - George F Koob
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Leandro F Vendruscolo
- Stress and Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA.
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD, USA.
- National Institute on Drug Abuse Intramural Research Program Translational Analytical Core, National Institutes of Health, Baltimore, MD, USA.
- Department of Behavioral and Social Sciences, Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA.
- Medication Development Program, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA.
- Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
4
|
Tufvesson-Alm M, Aranäs C, Blid Sköldheden S, Vestlund J, Edvardsson CE, Jerlhag E. LEAP2, a ghrelin receptor inverse agonist, and its effect on alcohol-related responses in rodents. Transl Psychiatry 2024; 14:401. [PMID: 39358354 PMCID: PMC11446955 DOI: 10.1038/s41398-024-03136-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
The underlying neurobiology of alcohol use disorder (AUD) is complex and needs further unraveling, with one of the key mechanisms being the gut-brain peptide ghrelin and its receptor (GHSR). However, additional substrates of the ghrelin pathway, such as liver-expressed antimicrobial peptide 2 (LEAP2), an endogenous GHSR inverse agonist, may contribute to this neurobiological framework. While LEAP2 modulates feeding and reward through central mechanisms, its effects on alcohol responses are unknown. The aim of the present study was therefore to identify the impact of central LEAP2 on the ability of alcohol to activate the mesolimbic dopamine system and to define its ability to control alcohol intake. These experiments revealed that central LEAP2 (i.e. into the third ventricle) prevented the ability of alcohol to cause locomotor stimulation in male mice, suppressed the memory of alcohol reward and attenuated the dopamine release in the nucleus accumbens caused by alcohol. Moreover, central LEAP2 reduced alcohol consumption in both male and female rats exposed to alcohol for 6 weeks before treatment. However, the serum levels of LEAP2 were similar between high- and low- alcohol-consuming (male) rats. Furthermore, central LEAP2 lowered the food intake in the alcohol-consuming male rats and reduced the body weight in the females. Collectively, the present study revealed that central LEAP2 mitigates alcohol-related responses in rodents, contributing to our understanding of the ghrelin pathway's role in alcohol effects.
Collapse
Affiliation(s)
- Maximilian Tufvesson-Alm
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Cajsa Aranäs
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Sebastian Blid Sköldheden
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Jesper Vestlund
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Christian E Edvardsson
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
5
|
Jerlhag E. Ghrelin system and GLP-1 as potential treatment targets for alcohol use disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 178:401-432. [PMID: 39523062 DOI: 10.1016/bs.irn.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Peptides of the gut-brain axis have gained recent attention as potential treatment targets for addiction. While the number of gut-brain peptides is vast, ghrelin and glucagon-like peptide-1 (GLP-1) have been suggested as important players. Ghrelin is traditionally considered an orexigenic peptide, but recent studies found that it increases alcohol intake in rodents and craving for alcohol in humans. Additionally, suppression of the ghrelin receptor attenuates alcohol-related responses in animal models reflecting alcohol use disorder (AUD). For instance, a lower alcohol intake, suppressed motivation to consume alcohol, and attenuated reward from alcohol is observed after ghrelin receptor antagonism treatment. On a similar note, a partial ghrelin receptor agonist prevents hangover symptoms in humans. When it comes to the anorexigenic peptide GLP-1, agonists of its receptor are approved to treat diabetes type 2 and obesity. Extensive preclinical studies have revealed that these GLP-1 receptor agonists reduce alcohol intake, suppress the motivation to consume alcohol, and prevent relapse drink, with effects tentatively associated with a reduced alcohol-induced reward. These preclinical findings have to some extent been varied in humans, as GLP-1 receptor agonists decrease alcohol intake in overweight patients with AUD. Furthermore, genetic variations in either the genes encoding for pre-pro-ghrelin, GHSR, GLP-1, or its receptor, are associated with AUD and heavy alcohol drinking. While central mechanisms appear to modulate the ability of either ghrelin or GLP-1 to regulate alcohol-related responses the exact mechanisms have not been defined. Taken together these preclinical and clinical data imply that gut-brain peptides participate in the addiction process and should be considered as potential targets for AUD treatment.
Collapse
Affiliation(s)
- Elisabet Jerlhag
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
6
|
White B, Sirohi S. A Complex Interplay between Nutrition and Alcohol use Disorder: Implications for Breaking the Vicious Cycle. Curr Pharm Des 2024; 30:1822-1837. [PMID: 38797900 DOI: 10.2174/0113816128292367240510111746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024]
Abstract
Approximately 16.5% of the United States population met the diagnostic criteria for substance use disorder (SUD) in 2021, including 29.5 million individuals with alcohol use disorder (AUD). Individuals with AUD are at increased risk for malnutrition, and impairments in nutritional status in chronic alcohol users can be detrimental to physical and emotional well-being. Furthermore, these nutritional deficiencies could contribute to the never-ending cycle of alcoholism and related pathologies, thereby jeopardizing the prospects of recovery and treatment outcomes. Improving nutritional status in AUD patients may not only compensate for general malnutrition but could also reduce adverse symptoms during recovery, thereby promoting abstinence and successful treatment of AUD. In this review, we briefly summarize alterations in the nutritional status of people with addictive disorders, in addition to the underlying neurobiological mechanisms and clinical implications regarding the role of nutritional intervention in recovery from alcohol use disorder.
Collapse
Affiliation(s)
- Brooke White
- Laboratory of Endocrine and Neuropsychiatric Disorders, Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Sunil Sirohi
- Laboratory of Endocrine and Neuropsychiatric Disorders, Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA
| |
Collapse
|
7
|
Richardson RS, Sulima A, Rice KC, Kucharczk JA, Janda KD, Nisbett KE, Koob GF, Vendruscolo LF, Leggio L. Pharmacological GHSR (ghrelin receptor) blockade reduces alcohol binge-like drinking in male and female mice. Neuropharmacology 2023; 238:109643. [PMID: 37369277 PMCID: PMC10513123 DOI: 10.1016/j.neuropharm.2023.109643] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
Ghrelin is a peptide that is produced by endocrine cells that are primarily localized in the stomach. Ghrelin receptors (GHSR) are expressed in the brain and periphery. Preclinical and clinical studies support a role for ghrelin in alcohol drinking and seeking. The GHSR has been suggested to be a potential pharmacotherapeutic target for alcohol use disorder (AUD). However, the role of the ghrelin system and its potential modulation by biological sex on binge-like drinking has not been comprehensively investigated. The present study tested six GHSR antagonists in an alcohol binge-like drinking procedure in male and female mice. Systemic administration of the GHSR antagonists JMV2959, PF-5190457, PF-6870961, and HM-04 reduced alcohol intake in both male and female mice. YIL-781 decreased intake in males, and LEAP2 (likely peripherally restricted) did not reduce intake in mice of either sex. We also administered LEAP2 and JMV2959 intracerebroventricularly to investigate whether the effects of GHSR blockade on alcohol intake are mediated by central receptors. The central administration of LEAP2 and JMV2959 decreased alcohol intake, particularly in high-drinking animals. Finally, in a preliminary experiment, an anti-ghrelin vaccine was examined for its potential effect on binge-like drinking and had no effect. In all experiments, there was a lack of meaningful sex differences. These findings suggest that central GHSR mediates binge-like alcohol intake. These data reveal novel pharmacological compounds with translational potential in the treatment of AUD and provide further evidence of the GHSR as a potential treatment target for AUD.
Collapse
Affiliation(s)
- Rani S Richardson
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA; Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA; Stress & Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA; University of North Carolina School of Medicine MD/PhD Program, University of North Carolina, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Agnieszka Sulima
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Kenner C Rice
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Jed A Kucharczk
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Kim D Janda
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, WIRM Institute for Research and Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Khalin E Nisbett
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA; Stress & Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA; Graduate Program in Neuroscience, Graduate College, University of Illinois Chicago, Chicago, IL, USA
| | - George F Koob
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Leandro F Vendruscolo
- Stress & Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA.
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA; Department of Behavioral and Social Sciences, Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA; Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
8
|
Jerlhag E. Animal studies reveal that the ghrelin pathway regulates alcohol-mediated responses. Front Psychiatry 2023; 14:1050973. [PMID: 36970276 PMCID: PMC10030715 DOI: 10.3389/fpsyt.2023.1050973] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/21/2023] [Indexed: 03/29/2023] Open
Abstract
Alcohol use disorder (AUD) is often described as repeated phases of binge drinking, compulsive alcohol-taking, craving for alcohol during withdrawal, and drinking with an aim to a reduce the negative consequences. Although multifaceted, alcohol-induced reward is one aspect influencing the former three of these. The neurobiological mechanisms regulating AUD processes are complex and one of these systems is the gut-brain peptide ghrelin. The vast physiological properties of ghrelin are mediated via growth hormone secretagogue receptor (GHSR, ghrelin receptor). Ghrelin is well known for its ability to control feeding, hunger, and metabolism. Moreover, ghrelin signaling appears central for alcohol-mediated responses; findings reviewed herein. In male rodents GHSR antagonism reduces alcohol consumption, prevents relapse drinking, and attenuates the motivation to consume alcohol. On the other hand, ghrelin increases the consumption of alcohol. This ghrelin-alcohol interaction is also verified to some extent in humans with high alcohol consumption. In addition, either pharmacological or genetic suppression of GHSR decreases several alcohol-related effects (behavioral or neurochemical). Indeed, this suppression blocks the alcohol-induced hyperlocomotion and dopamine release in nucleus accumbens as well as ablates the alcohol reward in the conditioned place preference model. Although not fully elucidated, this interaction appears to involve areas central for reward, such as the ventral tegmental area (VTA) and brain nodes targeted by VTA projections. As reviewed briefly, the ghrelin pathway does not only modulate alcohol-mediated effects, it regulates reward-related behaviors induced by addictive drugs. Although personality traits like impulsivity and risk-taking behaviors are common in patients with AUD, the role of the ghrelin pathway thereof is unknown and remains to be studied. In summary, the ghrelin pathway regulates addiction processes like AUD and therefore the possibility that GHSR antagonism reduces alcohol or drug-taking should be explored in randomized clinical trials.
Collapse
|
9
|
Abdel Aziz K, Al-Mugaddam F, Sugathan S, Saseedharan P, Jouini T, Elamin ME, Moselhy H, Aly El-Gabry D, Arnone D, Karam SM. Decreased acylated and total ghrelin levels in bipolar disorder patients recovering from a manic episode. BMC Psychiatry 2022; 22:209. [PMID: 35313855 PMCID: PMC8935687 DOI: 10.1186/s12888-022-03842-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND To date, only few studies have investigated ghrelin levels in bipolar disorders, and all have exclusively measured acylated ghrelin, with none investigating total ghrelin (acylated and des-acylated). We aimed to investigate peripheral levels of acylated and total ghrelin in subjects experiencing a manic episode of bipolar disorder. METHODS Peripheral levels of acylated and total ghrelin were measured in hospitalised medicated individuals recovering from a manic episode. Enzyme-linked immunosorbent assays (ELISA) were used to measure ghrelin levels in patients and compared with healthy controls. The relationship between ghrelin levels in bipolar disorder, self-reported hunger measures, demographic and clinical parameters was investigated with correlational analyses. RESULTS Twenty-four subjects (15 males, 9 females) recovering from mania and 27 matched healthy controls (13 males, 14 females) were recruited for the study. Mean values of both acylated (187 vs.520 pg/mL) and total ghrelin (396 vs. 648 pg/mL) were significantly reduced in bipolar disorder (p = 0.001). Ghrelin levels correlated positively with markers of illness severity and negatively with prescribed mood stabilizers, second-generation antipsychotics, weight and body mass index. CONCLUSION Peripheral measurements of acylated and total ghrelin were both reduced in bipolar disorder patients compared to healthy controls. Whilst illness severity promotes higher ghrelin levels, pharmacological treatment and weight gain exercise the opposite effect.
Collapse
Affiliation(s)
- Karim Abdel Aziz
- Department of Psychiatry and Behavioural Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Fadwa Al-Mugaddam
- Department of Psychiatry and Behavioural Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Subi Sugathan
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Prashanth Saseedharan
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Dept of Chemical Engineering and Biotechnology, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Tarek Jouini
- Behavioural Science Institute, Al-Ain Hospital, Al-Ain, United Arab Emirates
| | | | - Hamdy Moselhy
- American Center for Psychiatry and Neurology (ACPN), Dubai, United Arab Emirates
| | - Dina Aly El-Gabry
- Okasha Institute of Psychiatry, Neuropsychiatry Department, Ain Shams University, Cairo, Egypt
| | - Danilo Arnone
- Department of Psychiatry and Behavioural Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
- Institute of Psychiatry, Psychology and Neuroscience, Centre for Affective Disorders, Kings' College London, London, UK.
| | - Sherif M Karam
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
10
|
Gupta S, Mukhopadhyay S, Mitra A. Therapeutic potential of GHSR-1A antagonism in alcohol dependence, a review. Life Sci 2022; 291:120316. [PMID: 35016882 DOI: 10.1016/j.lfs.2022.120316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/28/2022]
Abstract
Growth hormone secretagogue receptor type 1A (GHSR-1A) is a functional receptor of orexigenic peptide ghrelin and is highly expressed in mesolimbic dopaminergic systems that regulate incentive value of artificial reward in substance abuse. Interestingly, GHSR-1A has also shown ligand-independent constitutive activity. Alcohol use disorder (AUD) is one of the growing concerns worldwide as it involves complex neuro-psycho-endocrinological interactions. Positive correlation of acylated ghrelin and alcohol-induced human brain response in the right and left ventral striatum are evident. In the last decade, the beneficial effects of ghrelin receptor (GHSR-1A) antagonism to suppress artificial reward circuitries and induce self-control for alcohol consumption have drawn significant attention from researchers. In this updated review, we summarize the available recent preclinical, clinical, and experimental data to discuss functional, molecular actions of central ghrelin-GHSR-1A signaling in different craving levels for alcohol as well as to promote "GHSR-1A antagonism" as one of the potential therapies in early abstinence.
Collapse
Affiliation(s)
- Shreyasi Gupta
- Department of Zoology, Triveni Devi Bhalotia College, Raniganj, Paschim Bardhaman 713 347, West Bengal, India
| | - Sanchari Mukhopadhyay
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Hombegowda Nagar, Bengaluru 560029, India
| | - Arkadeep Mitra
- Department of Zoology, City College, 102/1, Raja Rammohan Sarani, Kolkata 700 009, West Bengal, India.
| |
Collapse
|
11
|
Tufvesson-Alm M, Shevchouk OT, Jerlhag E. Insight into the role of the gut-brain axis in alcohol-related responses: Emphasis on GLP-1, amylin, and ghrelin. Front Psychiatry 2022; 13:1092828. [PMID: 36699502 PMCID: PMC9868418 DOI: 10.3389/fpsyt.2022.1092828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Alcohol use disorder (AUD) contributes substantially to global morbidity and mortality. Given the heterogenicity of this brain disease, available pharmacological treatments only display efficacy in sub-set of individuals. The need for additional treatment options is thus substantial and is the goal of preclinical studies unraveling neurobiological mechanisms underlying AUD. Although these neurobiological processes are complex and numerous, one system gaining recent attention is the gut-brain axis. Peptides of the gut-brain axis include anorexigenic peptide like glucagon-like peptide-1 (GLP-1) and amylin as well as the orexigenic peptide ghrelin. In animal models, agonists of the GLP-1 or amylin receptor and ghrelin receptor (GHSR) antagonists reduce alcohol drinking, relapse drinking, and alcohol-seeking. Moreover, these three gut-brain peptides modulate alcohol-related responses (behavioral and neurochemical) in rodents, suggesting that the alcohol reduction may involve a suppression of alcohol's rewarding properties. Brain areas participating in the ability of these gut-brain peptides to reduce alcohol-mediated behaviors/neurochemistry involve those important for reward. Human studies support these preclinical studies as polymorphisms of the genes encoding for GLP-1 receptor or the ghrelin pathway are associated with AUD. Moreover, a GLP-1 receptor agonist decreases alcohol drinking in overweight patients with AUD and an inverse GHSR agonist reduces alcohol craving. Although preclinical and clinical studies reveal an interaction between the gut-brain axis and AUD, additional studies should explore this in more detail.
Collapse
Affiliation(s)
- Maximilian Tufvesson-Alm
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Olesya T Shevchouk
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
12
|
Shevchouk OT, Tufvesson-Alm M, Jerlhag E. An Overview of Appetite-Regulatory Peptides in Addiction Processes; From Bench to Bed Side. Front Neurosci 2021; 15:774050. [PMID: 34955726 PMCID: PMC8695496 DOI: 10.3389/fnins.2021.774050] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022] Open
Abstract
There is a substantial need for new pharmacological treatments of addiction, and appetite-regulatory peptides are implied as possible candidates. Appetite regulation is complex and involves anorexigenic hormones such as glucagon-like peptide-1 (GLP-1) and amylin, and orexigenic peptides like ghrelin and all are well-known for their effects on feeding behaviors. This overview will summarize more recent physiological aspects of these peptides, demonstrating that they modulate various aspects of addiction processes. Findings from preclinical, genetic, and experimental clinical studies exploring the association between appetite-regulatory peptides and the acute or chronic effects of addictive drugs will be introduced. Short or long-acting GLP-1 receptor agonists independently attenuate the acute rewarding properties of addictive drugs or reduce the chronic aspects of drugs. Genetic variation of the GLP-1 system is associated with alcohol use disorder. Also, the amylin pathway modulates the acute and chronic behavioral responses to addictive drugs. Ghrelin has been shown to activate reward-related behaviors. Moreover, ghrelin enhances, whereas pharmacological or genetic suppression of the ghrelin receptor attenuates the responses to various addictive drugs. Genetic studies and experimental clinical studies further support the associations between ghrelin and addiction processes. Further studies should explore the mechanisms modulating the ability of appetite-regulatory peptides to reduce addiction, and the effects of combination therapies or different diets on substance use are warranted. In summary, these studies provide evidence that appetite-regulatory peptides modulate reward and addiction processes, and deserve to be investigated as potential treatment target for addiction.
Collapse
Affiliation(s)
- Olesya T Shevchouk
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Maximilian Tufvesson-Alm
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
13
|
Brown RM, Guerrero-Hreins E, Brown WA, le Roux CW, Sumithran P. Potential gut-brain mechanisms behind adverse mental health outcomes of bariatric surgery. Nat Rev Endocrinol 2021; 17:549-559. [PMID: 34262156 DOI: 10.1038/s41574-021-00520-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/03/2021] [Indexed: 02/06/2023]
Abstract
Bariatric surgery induces sustained weight loss and metabolic benefits via notable effects on the gut-brain axis that lead to alterations in the neuroendocrine regulation of appetite and glycaemia. However, in a subset of patients, bariatric surgery is associated with adverse effects on mental health, including increased risk of suicide or self-harm as well as the emergence of depression and substance use disorders. The contributing factors behind these adverse effects are not well understood. Accumulating evidence indicates that there are important links between gut-derived hormones, microbial and bile acid profiles, and disorders of mood and substance use, which warrant further exploration in the context of changes in gut-brain signalling after bariatric surgery. Understanding the basis of these adverse effects is essential in order to optimize the health and well-being of people undergoing treatment for obesity.
Collapse
Affiliation(s)
- Robyn M Brown
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Eva Guerrero-Hreins
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Wendy A Brown
- Department of Surgery, Central Clinical School, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - Carel W le Roux
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College, Dublin, Ireland
| | - Priya Sumithran
- Department of Medicine (St Vincent's), University of Melbourne, Melbourne, Victoria, Australia.
- Department of Endocrinology, Austin Health, Melbourne, Victoria, Australia.
| |
Collapse
|
14
|
Cornejo MP, Mustafá ER, Barrile F, Cassano D, De Francesco PN, Raingo J, Perello M. THE INTRIGUING LIGAND-DEPENDENT AND LIGAND-INDEPENDENT ACTIONS OF THE GROWTH HORMONE SECRETAGOGUE RECEPTOR ON REWARD-RELATED BEHAVIORS. Neurosci Biobehav Rev 2020; 120:401-416. [PMID: 33157147 DOI: 10.1016/j.neubiorev.2020.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
The growth hormone secretagogue receptor (GHSR) is a G-protein-coupled receptor (GPCR) highly expressed in the brain, and also in some peripheral tissues. GHSR activity is evoked by the stomach-derived peptide hormone ghrelin and abrogated by the intestine-derived liver-expressed antimicrobial peptide 2 (LEAP2). In vitro, GHSR displays ligand-independent actions, including a high constitutive activity and an allosteric modulation of other GPCRs. Beyond its neuroendocrine and metabolic effects, cumulative evidence shows that GHSR regulates the activity of the mesocorticolimbic pathway and modulates complex reward-related behaviors towards different stimuli. Here, we review current evidence indicating that ligand-dependent and ligand-independent actions of GHSR enhance reward-related behaviors towards appetitive stimuli and drugs of abuse. We discuss putative neuronal networks and molecular mechanisms that GHSR would engage to modulate such reward-related behaviors. Finally, we briefly discuss imaging studies showing that ghrelin would also regulate reward processing in humans. Overall, we conclude that GHSR is a key regulator of the mesocorticolimbic pathway that influences its activity and, consequently, modulates reward-related behaviors via ligand-dependent and ligand-independent actions.
Collapse
Affiliation(s)
- María P Cornejo
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina
| | - Emilio R Mustafá
- Laboratory of Electrophysiology of the IMBICE, 1900 La Plata, Buenos Aires, Argentina
| | - Franco Barrile
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina
| | - Daniela Cassano
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina
| | - Pablo N De Francesco
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina
| | - Jesica Raingo
- Laboratory of Electrophysiology of the IMBICE, 1900 La Plata, Buenos Aires, Argentina
| | - Mario Perello
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina.
| |
Collapse
|
15
|
Healey KL, Landin JD, Dubester K, Kibble S, Marquardt K, Brutman JN, Davis JF, Swartzwelder HS, Chandler LJ. Effects of ethanol on plasma ghrelin levels in the rat during early and late adolescence. Alcohol 2020; 85:111-118. [PMID: 31923560 DOI: 10.1016/j.alcohol.2019.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023]
Abstract
Ghrelin is an appetite-regulating peptide that is primarily secreted by endocrine cells in the stomach and is implicated in regulation of alcohol consumption and alcohol-reinforced behaviors. In the present study, adolescent Sprague-Dawley rats received intermittent ethanol (AIE) exposure by intragastric intubation (5 g/kg) or vapor inhalation, manipulations conducted between postnatal days (PD) 28-43. On the first and last day of AIE exposure, the level of intoxication was examined 1 h after ethanol gavage or upon removal from the vapor chamber. This was immediately followed by a blood draw for determination of the blood ethanol concentration (BEC) and plasma levels of acylated ghrelin (acyl-ghrelin; active). On PD29, plasma levels of acyl-ghrelin were significantly elevated in male (but not female) rats in response to acute ethanol exposure by both gastric gavage and vapor inhalation. Importantly, assessment of plasma acyl-ghrelin in response to repeated ethanol exposure revealed a complex interaction of both sex and method of AIE exposure. On PD43, vapor inhalation increased plasma acyl-ghrelin in both males and females compared to their air-control counterparts, whereas there was no change in plasma levels of acyl-ghrelin in either male or female rats in response to exposure by intragastric gavage. Assessment of plasma acyl-ghrelin following a 30-day ethanol-free period revealed AIE exposure did not produce a change in basal levels. In addition, an acute ethanol challenge in adult rats of 5 g/kg via gastric gavage had no effect on plasma ghrelin levels when assessed 1 h after initiation of exposure. Collectively, these observations suggest that acyl-ghrelin, a primary gut-brain signaling hormone, is elevated by ethanol during early adolescence independent of administration route, and in gender-dependent fashion.
Collapse
|
16
|
Villavasso S, Shaw C, Skripnikova E, Shah K, Davis JF, Sirohi S. Nutritional Contingency Reduces Alcohol Drinking by Altering Central Neurotransmitter Receptor Gene Expression in Rats. Nutrients 2019; 11:E2731. [PMID: 31717954 PMCID: PMC6893745 DOI: 10.3390/nu11112731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/25/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022] Open
Abstract
We have previously shown that 6 weeks of intermittent high-fat diet (Int-HFD) pre-exposure significantly reduced alcohol drinking in rats, providing preliminary evidence of the effectiveness of a dietary intervention in reducing alcohol intake. However, the functional framework and underlying neurobiological mechanisms of such dietary intervention are unknown. Here, we examined the impact of Int-HFD pre-exposure duration on alcohol drinking, plasma feeding peptides, and central neurotransmitter receptors gene expression. Male Long Evans rats (n = 6-7/group) received no pre-exposure, 1 or 2 weeks pre-exposure to Int-HFD and alcohol drinking (two-bottle choice) was evaluated. We observed HFD pre-exposure-dependent decrease in alcohol drinking, with a significant decrease observed following 2 weeks of Int-HFD pre-exposure. No significant between-group differences in plasma feeding peptides (i.e., ghrelin, leptin, insulin) were detected. A PCR array revealed that the expression of several neurotransmitter receptors was significantly (p < 0.05 and ≥2-fold) altered in the striatum and ventral tegmental area compared to controls. These data suggest that pre-exposure to a palatable diet is critical to reduce alcohol drinking in rats, possibly through genetic alterations in the brain reward circuitry. Importantly, the present study is a step forward in identifying the critical framework needed to evaluate the therapeutic potential of nutritional contingency in the management of alcoholism.
Collapse
Affiliation(s)
- Starr Villavasso
- Laboratory of Endocrine and Neuropsychiatric Disorders, Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA; (S.V.); (C.S.); (E.S.); (K.S.)
| | - Cemilia Shaw
- Laboratory of Endocrine and Neuropsychiatric Disorders, Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA; (S.V.); (C.S.); (E.S.); (K.S.)
| | - Elena Skripnikova
- Laboratory of Endocrine and Neuropsychiatric Disorders, Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA; (S.V.); (C.S.); (E.S.); (K.S.)
| | - Krishna Shah
- Laboratory of Endocrine and Neuropsychiatric Disorders, Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA; (S.V.); (C.S.); (E.S.); (K.S.)
| | - Jon F. Davis
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA;
| | - Sunil Sirohi
- Laboratory of Endocrine and Neuropsychiatric Disorders, Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA; (S.V.); (C.S.); (E.S.); (K.S.)
| |
Collapse
|
17
|
Cornejo MP, Castrogiovanni D, Schiöth HB, Reynaldo M, Marie J, Fehrentz JA, Perello M. Growth hormone secretagogue receptor signalling affects high-fat intake independently of plasma levels of ghrelin and LEAP2, in a 4-day binge eating model. J Neuroendocrinol 2019; 31:e12785. [PMID: 31469195 DOI: 10.1111/jne.12785] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/16/2019] [Accepted: 08/27/2019] [Indexed: 12/25/2022]
Abstract
The growth hormone secretagogue receptor (GHSR) is a G protein-coupled receptor that is highly expressed in the central nervous system. GHSR acts as a receptor for ghrelin and for liver-expressed antimicrobial peptide 2 (LEAP2), which blocks ghrelin-evoked activity. GHSR also displays ligand-independent activity, including a high constitutive activity that signals in the absence of ghrelin and is reduced by LEAP2. GHSR activity modulates a variety of food intake-related behaviours, including binge eating. Previously, we reported that GHSR-deficient mice daily and time-limited exposed to a high-fat (HF) diet display an attenuated binge-like HF intake compared to wild-type mice. In the present study, we aimed to determine whether ligand-independent GHSR activity affects binge-like HF intake in a 4-day binge-like eating protocol. We found that plasma levels of ghrelin and LEAP2 were not modified in mice exposed to this binge-like eating protocol. Moreover, systemic administration of ghrelin or LEAP2 did not alter HF intake in our experimental conditions. Interestingly, we found that central administration of LEAP2 or K-(D-1-Nal)-FwLL-NH2 , which are both blockers of constitutive GHSR activity, reduced binge-like HF intake, whereas central administration of ghrelin or the ghrelin-evoked GHSR activity blockers [D-Lys3]-GHRP-6 and JMV2959 did not modify binge-like HF intake. Taken together, current data indicate that GHSR activity in the brain affects binge-like HF intake in mice independently of plasma levels of ghrelin and LEAP2.
Collapse
Affiliation(s)
- María Paula Cornejo
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology, IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata, La Plata, Argentina
| | - Daniel Castrogiovanni
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology, IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata, La Plata, Argentina
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mirta Reynaldo
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology, IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata, La Plata, Argentina
| | - Jacky Marie
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM, Montpellier, France
| | - Jean-Alain Fehrentz
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM, Montpellier, France
| | - Mario Perello
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology, IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata, La Plata, Argentina
| |
Collapse
|
18
|
Koopmann A, Bach P, Schuster R, Bumb JM, Vollstädt-Klein S, Reinhard I, Rietschel M, Witt SH, Wiedemann K, Kiefer F. Ghrelin modulates mesolimbic reactivity to alcohol cues in alcohol-addicted subjects: a functional imaging study. Addict Biol 2019; 24:1066-1076. [PMID: 29984874 DOI: 10.1111/adb.12651] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/20/2018] [Accepted: 06/05/2018] [Indexed: 01/01/2023]
Abstract
Ghrelin has been shown to be involved in the pathophysiology of alcohol dependence, affecting alcohol self-administration and craving. However, the mechanism of action in alcohol dependence still has to be determined. We thus investigated whether ghrelin is associated with mesolimbic cue reactivity to alcohol cues and alcohol craving in recently detoxified alcohol-addicted subjects. We included 41 recently detoxified alcohol-dependent individuals. Functional magnetic resonance imaging (fMRI) was used to study mesolimbic cue reactivity during the presentation of alcohol-related pictures. Additionally, we assessed patients' alcohol craving using the Alcohol Urge Questionnaire and a visual analogue scale. Plasma concentrations of total and acylated (activated) ghrelin were measured in parallel to the fMRI session. The association between ghrelin plasma concentrations, mesolimbic cue reactivity and alcohol craving was assessed by performing correlation and mediation analyses. Alcohol-induced brain response in a network of brain clusters, including the right and left ventral striatum, showed a significant positive association with acylated ghrelin plasma concentration. Additionally, acylated ghrelin was significantly associated with craving. Mediation analyses showed that the association between acylated ghrelin plasma concentration and alcohol craving is mediated by a cue-induced brain response in the ventral striatum. Based on the finding that ghrelin modulates mesolimbic reactivity to alcohol cues, the following should be considered: If alcohol craving and the appetitive status were interrelated, this has to be taken into account when implementing fMRI studies for addictive disorders. Moreover, appetite regulation seems to represent a valid treatment target for reducing cue reactivity in addictive disorders.
Collapse
Affiliation(s)
- Anne Koopmann
- Department of Addictive Behavior and Addiction Medicine; Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University; Germany
- Feuerlein Center on Translational Addiction Medicine (FCTS); University of Heidelberg; Germany
| | - Patrick Bach
- Department of Addictive Behavior and Addiction Medicine; Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University; Germany
- Feuerlein Center on Translational Addiction Medicine (FCTS); University of Heidelberg; Germany
| | - Rilana Schuster
- Department of Addictive Behavior and Addiction Medicine; Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University; Germany
- Feuerlein Center on Translational Addiction Medicine (FCTS); University of Heidelberg; Germany
| | - Jan Malte Bumb
- Department of Addictive Behavior and Addiction Medicine; Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University; Germany
- Feuerlein Center on Translational Addiction Medicine (FCTS); University of Heidelberg; Germany
| | - Sabine Vollstädt-Klein
- Department of Addictive Behavior and Addiction Medicine; Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University; Germany
- Feuerlein Center on Translational Addiction Medicine (FCTS); University of Heidelberg; Germany
| | - Iris Reinhard
- Department of Biostatistics; Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University; Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry; Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University; Germany
| | - Stephanie H. Witt
- Department of Genetic Epidemiology in Psychiatry; Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University; Germany
| | - Klaus Wiedemann
- Department of Psychiatry & Psychotherapy; University Medical Center; Germany
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine; Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University; Germany
- Feuerlein Center on Translational Addiction Medicine (FCTS); University of Heidelberg; Germany
| |
Collapse
|
19
|
Ivezaj V, Benoit SC, Davis J, Engel S, Lloret-Linares C, Mitchell JE, Pepino MY, Rogers AM, Steffen K, Sogg S. Changes in Alcohol Use after Metabolic and Bariatric Surgery: Predictors and Mechanisms. Curr Psychiatry Rep 2019; 21:85. [PMID: 31410716 PMCID: PMC7057935 DOI: 10.1007/s11920-019-1070-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW This review synthesized the literature on predictors and mechanisms of post-bariatric alcohol problems, in order to guide future research on prevention and treatment targets. RECENT FINDINGS Consistent evidence suggests an elevated risk of developing problems with alcohol following bariatric surgery. While there is a paucity of empirical data on predictors of problematic alcohol use after bariatric surgery, being male, a younger age, smoking, regular alcohol consumption, pre-surgical alcohol use disorder, and a lower sense of belonging have predicted alcohol misuse post-operatively. This review synthesizes potential mechanisms including specific bariatric surgical procedures, peptides and reinforcement/reward pathways, pharmacokinetics, and genetic influences. Finally, potential misperceptions regarding mechanisms are explored. Certain bariatric procedures elevate the risk of alcohol misuse post-operatively. Future research should serve to elucidate the complexities of reward signaling, genetically mediated mechanisms, and pharmacokinetics in relation to alcohol use across gender and developmental period by surgery type.
Collapse
Affiliation(s)
- Valentina Ivezaj
- Yale School of Medicine, 301 Cedar Street, 2nd Floor, New Haven, CT, 06519, USA.
| | | | - Jon Davis
- Washington State University, Pullman, WA, 99164, USA
| | | | - Celia Lloret-Linares
- Maladies Nutritionnelles et métaboliques, Ramsay-Générale de Santé, Hôpital Privé Pays de Savoie, 74105, Annemasse, France
| | - James E Mitchell
- University of North Dakota School of Medicine and Health Sciences, Fargo, ND, 58202, USA
| | - M Yanina Pepino
- University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA
| | - Ann M Rogers
- Penn State Health Milton S Hershey Medical Center, Hershey, PA, 17033, USA
| | | | - Stephanie Sogg
- Massachusetts General Hospital Weight Center, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
20
|
Godlewski G, Cinar R, Coffey NJ, Liu J, Jourdan T, Mukhopadhyay B, Chedester L, Liu Z, Osei-Hyiaman D, Iyer MR, Park JK, Smith RG, Iwakura H, Kunos G. Targeting Peripheral CB 1 Receptors Reduces Ethanol Intake via a Gut-Brain Axis. Cell Metab 2019; 29:1320-1333.e8. [PMID: 31105045 PMCID: PMC6551287 DOI: 10.1016/j.cmet.2019.04.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/01/2019] [Accepted: 04/21/2019] [Indexed: 12/21/2022]
Abstract
Endocannabinoids acting on the cannabinoid-1 receptor (CB1R) or ghrelin acting on its receptor (GHS-R1A) both promote alcohol-seeking behavior, but an interaction between the two signaling systems has not been explored. Here, we report that the peripheral CB1R inverse agonist JD5037 reduces ethanol drinking in wild-type mice but not in mice lacking CB1R, ghrelin peptide or GHS-R1A. JD5037 treatment of alcohol-drinking mice inhibits the formation of biologically active octanoyl-ghrelin without affecting its inactive precursor desacyl-ghrelin. In ghrelin-producing stomach cells, JD5037 reduced the level of the substrate octanoyl-carnitine generated from palmitoyl-carnitine by increasing fatty acid β-oxidation. Blocking gastric vagal afferents abrogated the ability of either CB1R or GHS-R1A blockade to reduce ethanol drinking. We conclude that blocking CB1R in ghrelin-producing cells reduces alcohol drinking by inhibiting the formation of active ghrelin and its signaling via gastric vagal afferents. Thus, peripheral CB1R blockade may have therapeutic potential in the treatment of alcoholism.
Collapse
Affiliation(s)
- Grzegorz Godlewski
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Resat Cinar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nathan J Coffey
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jie Liu
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tony Jourdan
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bani Mukhopadhyay
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lee Chedester
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ziyi Liu
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Douglas Osei-Hyiaman
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Malliga R Iyer
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joshua K Park
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Roy G Smith
- Scripps Research Institute, Jupiter, FL 33458, USA
| | - Hiroshi Iwakura
- Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
21
|
Vestlund J, Winsa-Jörnulf J, Hovey D, Lundström S, Lichtenstein P, Anckarsäter H, Studer E, Suchankova P, Westberg L, Jerlhag E. Ghrelin and aggressive behaviours-Evidence from preclinical and human genetic studies. Psychoneuroendocrinology 2019; 104:80-88. [PMID: 30818255 DOI: 10.1016/j.psyneuen.2019.02.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 01/06/2023]
Abstract
Aggressive behaviour is of crucial importance in the defence for limited resources including food and mates and involves central serotonin as well as dopamine signalling. As ghrelin modulates food intake and sexual behaviour we initially investigated the hypothesis that central ghrelin signalling regulates aggressive behaviour in the resident intruder paradigm in male mice. Moreover, interaction between ghrelin signalling and serotonergic, noradrenergic as well as dopaminergic neurotransmission in aggression was investigated. The relevance of ghrelin for human aggression per se as well as for aggression induced by alcohol was evaluated in a human genetic association study comprising young men (n = 784) from the normal population assessed for anti-social behaviours. The present study demonstrates that central ghrelin infusion, but not ghrelin administered systemically, increases aggression. Moreover aggressive behaviour is decreased by pharmacological suppression of the growth hormone secretagogue receptor-1 A (GHSR-1A) by JMV2959. As indicated by the ex vivo biochemical data serotonin, rather than dopamine or noradrenaline, in amygdala may have central roles for the ability of JMV2959 to reduce aggression. This link between central serotonin, GHSR-1A and aggression is further substantiated by the behavioural data showing that JMV2959 cannot decrease aggression following depletion of central serotonin signalling. The genetic association study demonstrates that males carrying the Leu72Leu genotype of the pre-pro-ghrelin gene and displaying hazardous alcohol use are more aggressive when compared to the group carrying the Met-allele. Collectively, this contributes to the identification of central ghrelin pathway as an important modulator in the onset of aggressive behaviours in male mice.
Collapse
Affiliation(s)
- Jesper Vestlund
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Julia Winsa-Jörnulf
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Daniel Hovey
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Sebastian Lundström
- Institute of Neuroscience and Physiology, Gillberg Neuropsychiatry Centre, University of Gothenburg, Sweden
| | - Paul Lichtenstein
- Karolinska Institutet, Department of Medical Epidemiology and Biostatistics, Stockholm, Sweden
| | - Henrik Anckarsäter
- Institute of Neuroscience and Physiology, Centre of Ethics, Law and Mental Health (CELAM), University of Gothenburg, Sweden
| | - Erik Studer
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Petra Suchankova
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Lars Westberg
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
22
|
Farokhnia M, Faulkner ML, Piacentino D, Lee MR, Leggio L. Ghrelin: From a gut hormone to a potential therapeutic target for alcohol use disorder. Physiol Behav 2019; 204:49-57. [DOI: 10.1016/j.physbeh.2019.02.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/24/2019] [Accepted: 02/06/2019] [Indexed: 12/22/2022]
|
23
|
Wenthur CJ, Gautam R, Zhou B, Vendruscolo LF, Leggio L, Janda KD. Ghrelin Receptor Influence on Cocaine Reward is Not Directly Dependent on Peripheral Acyl-Ghrelin. Sci Rep 2019; 9:1841. [PMID: 30755699 PMCID: PMC6372697 DOI: 10.1038/s41598-019-38549-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 12/31/2018] [Indexed: 12/30/2022] Open
Abstract
The peptide hormone acyl-ghrelin and its receptor, GHSR1a, represent intriguing therapeutic targets due to their actions in metabolic homeostasis and reward activity. However, this pleotropic activity makes it difficult to intervene in this system without inducing unwanted effects. Thus, it is desirable to identify passive and active regulatory mechanisms that allow differentiation between functional domains. Anatomical restriction by the blood brain barrier represents one major passive regulatory mechanism. However, it is likely that the ghrelin system is subject to additional passive mechanisms that promote independent regulation of orexigenic behavior and reward processing. By applying acyl-ghrelin sequestering antibodies, it was determined that peripheral sequestration of acyl-ghrelin is sufficient to blunt weight gain, but not cocaine rewarding effects. However, both weight gain and reward-associated behaviors were shown to be blocked by direct antagonism of GHSR1a. Overall, these data indicate that GHSR1a effects on reward are independent from peripheral acyl-ghrelin binding, whereas centrally-mediated alteration of energy storage requires peripheral acyl-ghrelin binding. This demonstration of variable ligand-dependence amongst functionally-distinct GHSR1a populations is used to generate a regulatory model for functional manipulation of specific effects when attempting to therapeutically target the ghrelin system.
Collapse
Affiliation(s)
- Cody J Wenthur
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
- Department of Pharmacy, University of Wisconsin - Madison, Madison, WI, USA
| | - Ritika Gautam
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Bin Zhou
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Leandro F Vendruscolo
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research and National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA
| | - Kim D Janda
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
- Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, and The Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
24
|
Geisel O, Hellweg R, Wernecke KD, Wiedemann K, Müller CA. Total and acylated ghrelin plasma levels as potential long-term response markers in alcohol-dependent patients receiving high-dose of the GABA-B receptor agonist baclofen. Psychiatry Res 2019; 272:431-437. [PMID: 30611960 DOI: 10.1016/j.psychres.2018.12.095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/09/2018] [Accepted: 12/18/2018] [Indexed: 01/01/2023]
Abstract
The orexigenic hormone ghrelin is involved in the regulation of food intake and energy balance. Previous findings suggest its involvement in the modulation of mesolimbic reward pathways, thus potentially being relevant in the pathophysiology of substance use disorders such as alcohol dependence. In the present study, we assessed plasma levels of total and acylated ghrelin within the BACLAD trial, where alcohol-dependent patients received individually titrated high-dose baclofen (30-270 mg/d) within a randomized, placebo-controlled design. Plasma levels of total ghrelin and acylated ghrelin were measured at baseline, during treatment with individually titrated high-dose baclofen and after termination of the study medication within a timeframe of up to 20 weeks. Multivariate longitudinal non-parametric analysis revealed that plasma levels of total ghrelin significantly decreased in the group of abstinent patients receiving high-dose baclofen. In addition, plasma levels of total ghrelin correlated negatively with days of abstinence during treatment with high-dose baclofen. Plasma levels of acylated ghrelin increased during the study in the group of relapsed patients under baclofen and placebo treatment. These findings suggest that the long-term response to baclofen treatment in alcohol use disorder (AUD) might be monitored by assessing total and acylated ghrelin plasma levels.
Collapse
Affiliation(s)
- Olga Geisel
- Charité - Universitätsmedizin Berlin, Department of Psychiatry, Campus Charité Mitte, Charitéplatz 1, 10117 Berlin, Germany.
| | - Rainer Hellweg
- Charité - Universitätsmedizin Berlin, Department of Psychiatry, Campus Charité Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | | | - Klaus Wiedemann
- Department of Psychiatry, Universitätsklinikum Hamburg Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Christian A Müller
- Charité - Universitätsmedizin Berlin, Department of Psychiatry, Campus Charité Mitte, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
25
|
Koopmann A, Schuster R, Kiefer F. The impact of the appetite-regulating, orexigenic peptide ghrelin on alcohol use disorders: A systematic review of preclinical and clinical data. Biol Psychol 2018; 131:14-30. [DOI: 10.1016/j.biopsycho.2016.12.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/13/2016] [Accepted: 12/15/2016] [Indexed: 12/13/2022]
|
26
|
Koopmann A, Lippmann K, Schuster R, Reinhard I, Bach P, Weil G, Rietschel M, Witt SH, Wiedemann K, Kiefer F. Drinking water to reduce alcohol craving? A randomized controlled study on the impact of ghrelin in mediating the effects of forced water intake in alcohol addiction. Psychoneuroendocrinology 2017; 85:56-62. [PMID: 28822300 DOI: 10.1016/j.psyneuen.2017.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/17/2017] [Accepted: 08/03/2017] [Indexed: 11/26/2022]
Abstract
BACKGROUND Recent data suggest that ghrelin is involved in the pathophysiology of alcohol use disorders, affecting alcohol self-administration and craving. Gastric ghrelin secretion is reduced by stomach distension. We now tested the hypothesis whether the clinically well-known effects of high-volume water intake on craving reduction in alcoholism is mediated by acute changes in ghrelin secretion. METHODS In this randomized human laboratory study, we included 23 alcohol-dependent male inpatient subjects who underwent alcohol cue exposure. Participants of the intervention group drank 1000ml of mineral water within 10min directly thereafter, compared to the participants of the control group who did not. Craving and plasma concentrations of acetylated ghrelin were measured ten times during the 120min following the alcohol cue exposure session. RESULTS In the intervention group, a significant decrease in acetylated ghrelin in plasma compared to the control group was observed. This decrease was correlated to a reduction in patients' subjective level of craving. In the control group, no decrease of acetylated ghrelin in plasma and no association between alcohol craving and changes in plasma concentrations of acetylated ghrelin were observed. CONCLUSIONS Our results present new evidence that the modulation in the ghrelin system by oral water intake mediates the effects of volume intake with craving reduction in alcohol use disorders. Hence, in addition to pharmacological interventions with ghrelin antagonists, the reduction of physiological ghrelin secretion might be a target for future interventions in the treatment of alcohol craving.
Collapse
Affiliation(s)
- Anne Koopmann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany; Feuerlein Center on Translational Addiction Medicine (FCTS), University of Heidelberg, Germany.
| | - Katharina Lippmann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany
| | - Rilana Schuster
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany; Feuerlein Center on Translational Addiction Medicine (FCTS), University of Heidelberg, Germany
| | - Iris Reinhard
- Department of Biostatistics, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany
| | - Patrick Bach
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany; Feuerlein Center on Translational Addiction Medicine (FCTS), University of Heidelberg, Germany
| | - Georg Weil
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany
| | - Klaus Wiedemann
- Department of Psychiatry & Psychotherapy, University Medical Center, Hamburg, Martinistr. 52, 20246 Hamburg, Germany
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany; Feuerlein Center on Translational Addiction Medicine (FCTS), University of Heidelberg, Germany
| |
Collapse
|
27
|
Zallar LJ, Farokhnia M, Tunstall BJ, Vendruscolo LF, Leggio L. The Role of the Ghrelin System in Drug Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 136:89-119. [PMID: 29056157 DOI: 10.1016/bs.irn.2017.08.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past years, a significant volume of research has implicated the appetitive hormone ghrelin in the mechanisms underlying drug use and addiction. From a neuroscientific standpoint, ghrelin modulates both reward and stress pathways, two key drivers of substance use behaviors. Previous investigations support a connection between the ghrelin system and alcohol, stimulants, and tobacco use in both animals and humans, while the research on opioids and cannabis is scarce. In general, upregulation of the ghrelin system seems to enhance craving for drugs as well as substances use. On the other hand, acute and chronic exposure to drugs of abuse influences the ghrelin system at different levels. This chapter summarizes the literature on the relationship between the ghrelin system and substance-related behaviors. We also review recent work investigating the ghrelin system as a potential pharmacological target for treating substance use disorders and discuss the need for additional research.
Collapse
Affiliation(s)
- Lia J Zallar
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, United States; Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Mehdi Farokhnia
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, United States
| | - Brendan J Tunstall
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Leandro F Vendruscolo
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, United States; Center for Alcohol and Addiction Studies, Brown University, Providence, RI, United States.
| |
Collapse
|
28
|
Sirohi S, Richardson BD, Lugo JM, Rossi DJ, Davis JF. Impact of Roux-en-Y gastric bypass surgery on appetite, alcohol intake behaviors, and midbrain ghrelin signaling in the rat. Obesity (Silver Spring) 2017; 25:1228-1236. [PMID: 28500684 PMCID: PMC6029700 DOI: 10.1002/oby.21839] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 02/28/2017] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Roux-en-Y gastric bypass (RYGB) surgery reduces appetite and stimulates new onset alcohol misuse; however, the genesis of these behavioral changes is unclear. This study is hypothesized that new onset alcohol intake is a behavioral adaptation that occurs secondary to reduced appetite and correlates with altered central ghrelin signaling. METHODS Hedonic high-fat diet (HFD) intake was evaluated prior to the assessment of alcohol intake behaviors in RYGB and control rats. Measurements were also taken of circulating ghrelin and ghrelin receptor (GHSR) regulation of neuronal firing in ventral tegmental area (VTA) dopamine (DA) neurons. RESULTS RYGB rats displayed reduced HFD intake relative to controls. Sham and RYGB rats consumed more alcohol and preferred lower concentrations of alcohol, whereas only RYGB rats escalated alcohol intake during acute withdrawal. Remarkably, GHSR activity, independent of peripheral ghrelin release, set the tonic firing of VTA DA neurons, a response selectively diminished in RYGB rats. CONCLUSIONS This study indicates that gut manipulations lead to increased alcohol intake, whereas RYGB promotes behaviors that may maintain alcohol misuse. Reductions in hedonic feeding and diminished GHSR control of VTA firing further distinguish gut manipulation from complete bypass and present a potential mechanism linking reduced appetite with alcohol misuse after RYGB surgery.
Collapse
Affiliation(s)
- Sunil Sirohi
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
| | - Ben D Richardson
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
| | - Janelle M Lugo
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
| | - David J Rossi
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
| | - Jon F Davis
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
| |
Collapse
|
29
|
Vallöf D, Ulenius L, Egecioglu E, Engel JA, Jerlhag E. Central administration of the anorexigenic peptide neuromedin U decreases alcohol intake and attenuates alcohol-induced reward in rodents. Addict Biol 2017; 22:640-651. [PMID: 26769653 PMCID: PMC6680249 DOI: 10.1111/adb.12355] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 10/26/2015] [Accepted: 12/01/2015] [Indexed: 01/24/2023]
Abstract
By investigating the neurochemical mechanisms through which alcohol activates the brain reward systems, novel treatment strategies for alcohol use disorder (AUD), a chronic relapsing disease, can be developed. In contrast to the common view of the function of gut-brain peptides, such as neuromedin U (NMU), to regulate food intake and appetite, a novel role in reinforcement mediation has been implied. The anorexigenic effects of NMU are mediated via NMU2 receptors, preferably in the arcuate nucleus and paraventricular nucleus. The expression of NMU2 receptors is also expressed in several reward-related areas in the brain, suggesting a role in reward regulation. The present experiments were therefore set up to investigate the effect of intracerebroventricular administration of NMU on alcohol-mediated behaviors in rodents. We found that central administration of NMU attenuated alcohol-induced locomotor stimulation, accumbal dopamine release and the expression of conditioned place preference in mice. In addition, NMU dose dependently decreased alcohol intake in high, but not in low, alcohol-consuming rats. Central NMU administration did not alter the blood alcohol concentrations nor change the corticosterone levels in rodents. Given that AUD is a major health-care challenge causing an enormous cost to society and novel treatment strategies are warranted, our data suggest that NMU analogues deserve to be evaluated as novel treatment of AUD in humans.
Collapse
Affiliation(s)
- Daniel Vallöf
- Department of Pharmacology, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - Lisa Ulenius
- Department of Pharmacology, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - Emil Egecioglu
- Department of Pharmacology, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - Jörgen A. Engel
- Department of Pharmacology, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| |
Collapse
|
30
|
Abstract
Many of the neurocircuits and hormones known to underlie the sensations of hunger and satiety also substantially alter the activity of the dopaminergic reward system. Much interest lies in the ways that hunger, satiety, and reward tie together, as the epidemic of obesity seems tied to the recent development and mass availability of highly palatable foods. In this review, we will first discuss the basic neurocircuitry of the midbrain and basal forebrain reward system. We will elaborate how several important mediators of hunger-the agouti-related protein neurons of the arcuate nucleus, the lateral hypothalamic nucleus, and ghrelin-enhance the sensitivity of the dopaminergic reward system. Then, we will elaborate how mediators of satiety-the nucleus tractus solitarius, pro-opiomelanocortin neurons of the arcuate nucleus, and its peripheral hormonal influences such as leptin-reduce the reward system sensitivity. We hope to provide a template by which future research may identify the ways in which highly rewarding foods bypass this balanced system to produce excessive food consumption.
Collapse
Affiliation(s)
- Ryan Michael Cassidy
- Brown Foundation of the Institute of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, Neuroscience Program MD Anderson Cancer Center and UTHealth Graduate School of Biological Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
- *Correspondence: Ryan Michael Cassidy,
| | - Qingchun Tong
- Brown Foundation of the Institute of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, Neuroscience Program MD Anderson Cancer Center and UTHealth Graduate School of Biological Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
31
|
Sirohi S, Van Cleef A, Davis JF. Intermittent access to a nutritionally complete high-fat diet attenuates alcohol drinking in rats. Pharmacol Biochem Behav 2016; 153:105-115. [PMID: 27998722 DOI: 10.1016/j.pbb.2016.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/25/2016] [Accepted: 12/16/2016] [Indexed: 10/20/2022]
Abstract
Binge eating disorder and alcohol use disorder (AUD) frequently co-occur in the presence of other psychiatric conditions. Data suggest that binge eating engages similar behavioral and neurochemical processes common to AUD, which might contribute to the etiology or maintenance of alcoholism. However, it is unclear how binge feeding behavior and alcohol intake interact to promote initiation or maintenance of AUD. We investigated the impact of binge-like feeding on alcohol intake and anxiety-like behavior in male Long Evans rats. Rats received chow (controls) or extended intermittent access (24h twice a week; Int-HFD) to a nutritionally complete high-fat diet for six weeks. Standard rodent chow was available ad-libitum to all groups and food intake was measured. Following HFD exposure, 20.0% ethanol, 2.0% sucrose intake and endocrine peptide levels were evaluated. Anxiety-like behavior was measured using a light-dark (LD) box apparatus. Rats in the Int-HFD group displayed a binge-like pattern of feeding (alternations between caloric overconsumption and voluntary caloric restriction). Surprisingly, alcohol intake was significantly attenuated in the Int-HFD group whereas sugar consumption was unaffected. Plasma acyl-ghrelin levels were significantly elevated in the Int-HFD group, whereas glucagon-like peptide-1 levels did not change. Moreover, rats in the Int-HFD group spent more time in the light side of the LD box compared to controls, indicating that binge-like feeding induced anxiolytic effects. Collectively, these data suggest that intermittent access to HFD attenuates alcohol intake through reducing anxiety-like behavior, a process potentially controlled by elevated plasma ghrelin levels.
Collapse
Affiliation(s)
- Sunil Sirohi
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, United States; Laboratory of Endocrine and Neuropsychiatric Disorders, Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, United States.
| | - Arriel Van Cleef
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, United States
| | - Jon F Davis
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, United States
| |
Collapse
|
32
|
Suchankova P, Nilsson S, Pahlen B, Santtila P, Sandnabba K, Johansson A, Jern P, Engel JA, Jerlhag E. Genetic variation of the growth hormone secretagogue receptor gene is associated with alcohol use disorders identification test scores and smoking. Addict Biol 2016; 21:481-8. [PMID: 26059200 PMCID: PMC5033010 DOI: 10.1111/adb.12277] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The multifaceted gut‐brain peptide ghrelin and its receptor (GHSR‐1a) are implicated in mechanisms regulating not only the energy balance but also the reward circuitry. In our pre‐clinical models, we have shown that ghrelin increases whereas GHSR‐1a antagonists decrease alcohol consumption and the motivation to consume alcohol in rodents. Moreover, ghrelin signaling is required for the rewarding properties of addictive drugs including alcohol and nicotine in rodents. Given the hereditary component underlying addictive behaviors and disorders, we sought to investigate whether single nucleotide polymorphisms (SNPs) located in the pre‐proghrelin gene (GHRL) and GHSR‐1a gene (GHSR) are associated with alcohol use, measured by the alcohol use disorders identification test (AUDIT) and smoking. Two SNPs located in GHRL, rs4684677 (Gln90Leu) and rs696217 (Leu72Met), and one in GHSR, rs2948694, were genotyped in a subset (n = 4161) of a Finnish population‐based cohort, the Genetics of Sexuality and Aggression project. The effect of these SNPs on AUDIT scores and smoking was investigated using linear and logistic regressions, respectively. We found that the minor allele of the rs2948694 SNP was nominally associated with higher AUDIT scores (P = 0.0204, recessive model) and smoking (P = 0.0002, dominant model). Furthermore, post hoc analyses showed that this risk allele was also associated with increased likelihood of having high level of alcohol problems as determined by AUDIT scores ≥ 16 (P = 0.0043, recessive model). These convergent findings lend further support for the hypothesized involvement of ghrelin signaling in addictive disorders.
Collapse
Affiliation(s)
- Petra Suchankova
- Department of Pharmacology Institute of Neuroscience and Physiology The Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | - Staffan Nilsson
- Department of Mathematical Statistics Institute of Mathematical Sciences Chalmers University of Technology Gothenburg Sweden
| | - Bettina Pahlen
- Department of Psychology and Logopedics Abo Akademi University Turku Finland
| | - Pekka Santtila
- Department of Psychology and Logopedics Abo Akademi University Turku Finland
| | - Kenneth Sandnabba
- Department of Psychology and Logopedics Abo Akademi University Turku Finland
| | - Ada Johansson
- Department of Pharmacology Institute of Neuroscience and Physiology The Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Department of Psychology and Logopedics Abo Akademi University Turku Finland
| | - Patrick Jern
- Department of Psychology and Logopedics Abo Akademi University Turku Finland
- Department of Behavioral Sciences and Philosophy University of Turku Turku Finland
| | - Jörgen A. Engel
- Department of Pharmacology Institute of Neuroscience and Physiology The Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | - Elisabet Jerlhag
- Department of Pharmacology Institute of Neuroscience and Physiology The Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| |
Collapse
|
33
|
Engel JA, Nylander I, Jerlhag E. A ghrelin receptor (GHS-R1A) antagonist attenuates the rewarding properties of morphine and increases opioid peptide levels in reward areas in mice. Eur Neuropsychopharmacol 2015; 25:2364-71. [PMID: 26508707 DOI: 10.1016/j.euroneuro.2015.10.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/17/2015] [Accepted: 10/05/2015] [Indexed: 11/28/2022]
Abstract
Gut-brain hormones such as ghrelin have recently been suggested to have a role in reward regulation. Ghrelin was traditionally known to regulate food intake and body weight homoeostasis. In addition, recent work has pin-pointed that this peptide has a novel role in drug-induced reward, including morphine-induced increase in the extracellular levels of accumbal dopamine in rats. Herein the effect of the ghrelin receptor (GHS-R1A) antagonist, JMV2959, on morphine-induced activation of the mesolimbic dopamine system was investigated in mice. In addition, the effects of JMV2959 administration on opioid peptide levels in reward related areas were investigated. In the present series of experiment we showed that peripheral JMV2959 administration, at a dose with no effect per se, attenuates the ability of morphine to cause locomotor stimulation, increase the extracellular levels of accumbal dopamine and to condition a place preference in mice. JMV2959 administration significantly increased tissue levels of Met-enkephalin-Arg(6)Phe(7) in the ventral tegmental area, dynorphin B in hippocampus and Leu-enkephalin-Arg(6) in striatum. We therefore hypothesise that JMV2959 prevents morphine-induced reward via stimulation of delta receptor active peptides in striatum and ventral tegmental areas. In addition, hippocampal peptides that activate kappa receptor may be involved in JMV2959׳s ability to regulate memory formation of reward. Given that development of drug addiction depends, at least in part, of the effects of addictive drugs on the mesolimbic dopamine system the present data suggest that GHS-R1A antagonists deserve to be elucidated as novel treatment strategies of opioid addiction.
Collapse
Affiliation(s)
- Jörgen A Engel
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Ingrid Nylander
- Neuropharmacology, Addiction and Behaviour, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Elisabet Jerlhag
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
34
|
Gomez JL, Cunningham CL, Finn DA, Young EA, Helpenstell LK, Schuette LM, Fidler TL, Kosten TA, Ryabinin AE. Differential effects of ghrelin antagonists on alcohol drinking and reinforcement in mouse and rat models of alcohol dependence. Neuropharmacology 2015; 97:182-93. [PMID: 26051399 PMCID: PMC4537402 DOI: 10.1016/j.neuropharm.2015.05.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/21/2015] [Accepted: 05/23/2015] [Indexed: 12/15/2022]
Abstract
An effort has been mounted to understand the mechanisms of alcohol dependence in a way that may allow for greater efficacy in treatment. It has long been suggested that drugs of abuse seize fundamental reward pathways and disrupt homeostasis to produce compulsive drug seeking behaviors. Ghrelin, an endogenous hormone that affects hunger state and release of growth hormone, has been shown to increase alcohol intake following administration, while antagonists decrease intake. Using rodent models of dependence, the current study examined the effects of two ghrelin receptor antagonists, [DLys3]-GHRP-6 (DLys) and JMV2959, on dependence-induced alcohol self-administration. In two experiments adult male C57BL/6J mice and Wistar rats were made dependent via intermittent ethanol vapor exposure. In another experiment, adult male C57BL/6J mice were made dependent using the intragastric alcohol consumption (IGAC) procedure. Ghrelin receptor antagonists were given prior to voluntary ethanol drinking. Ghrelin antagonists reduced ethanol intake, preference, and operant self-administration of ethanol and sucrose across these models, but did not decrease food consumption in mice. In experiments 1 and 2, voluntary drinking was reduced by ghrelin receptor antagonists, however this reduction did not persist across days. Despite the transient effects of ghrelin antagonists, the drugs had renewed effectiveness following a break in administration as seen in experiment 1. The results show the ghrelin system as a potential target for studies of alcohol abuse. Further research is needed to determine the central mechanisms of these drugs and their influence on addiction in order to design effective pharmacotherapies.
Collapse
Affiliation(s)
- Juan L Gomez
- Oregon Health & Science University, Department of Behavioral Neuroscience and Portland Alcohol Research Center, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | - Christopher L Cunningham
- Oregon Health & Science University, Department of Behavioral Neuroscience and Portland Alcohol Research Center, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Deborah A Finn
- Oregon Health & Science University, Department of Behavioral Neuroscience and Portland Alcohol Research Center, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Portland VA Healthcare System, Department of Research, 3710 SW US Veterans Hospital Road, Portland, OR 97239, USA
| | - Emily A Young
- Oregon Health & Science University, Department of Behavioral Neuroscience and Portland Alcohol Research Center, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Lily K Helpenstell
- Oregon Health & Science University, Department of Behavioral Neuroscience and Portland Alcohol Research Center, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Lindsey M Schuette
- Oregon Health & Science University, Department of Behavioral Neuroscience and Portland Alcohol Research Center, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Tara L Fidler
- Oregon Health & Science University, Department of Behavioral Neuroscience and Portland Alcohol Research Center, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Therese A Kosten
- Baylor College of Medicine, Menninger Department of Psychiatry & Behavioral Sciences, Michael E Debakey VAMC, 2002 Holcombe Blvd, Houston, TX 77030, USA
| | - Andrey E Ryabinin
- Oregon Health & Science University, Department of Behavioral Neuroscience and Portland Alcohol Research Center, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
35
|
Shi P, Chen B, Chen C, Xu J, Shen Z, Miao X, Yao H. Honey reduces blood alcohol concentration but not affects the level of serum MDA and GSH-Px activity in intoxicated male mice models. Altern Ther Health Med 2015; 15:225. [PMID: 26169497 PMCID: PMC4499888 DOI: 10.1186/s12906-015-0766-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 07/06/2015] [Indexed: 11/12/2022]
Abstract
Background For a long time, honey was purportedly helpful to prevent drunkenness and relieve hangover symptoms. However, few of the assertions have experienced scientific assessment. The present study examined the effects of honey on intoxicated male mice. Methods Low or high doses of lychee flower honey (2.19 or 4.39 g/kg body weight, respectively) were single orally administrated 30 min before the ethanol intoxication of mice, followed by recording the locomotor activity by autonomic activity instrument and observing the climbing ability after alcohol. On the other hand, 2.19 g/kg honey was single orally administrated 5 min after the ethanol intoxication of mice, followed by determining the ethanol concentration in mice blood. In addition, subacute alcoholism mice models were developed and after the treatment of 2.19 g/kg honey s.i.d for successive three days, the level of serum malondialdehyde (MDA) and glutathione peroxidase (GSH-Px) activity were detected in the models. Results Both of the two doses of honey increased the autonomic activity of alcoholized mice. Furthermore, the treatment of 2.19 g/kg honey could decrease significantly the blood ethanol concentration in intoxicated mice. The anti-intoxication activity of honey could be due to the effect of the fructose contained in the honey. Meanwhile, honey could not affect the serum MDA level and GSH-Px activity in alcoholism mice models. Conclusion Honey indeed possesses anti-intoxication activity.
Collapse
|
36
|
Wittekind DA, Kluge M. Ghrelin in psychiatric disorders - A review. Psychoneuroendocrinology 2015; 52:176-94. [PMID: 25459900 DOI: 10.1016/j.psyneuen.2014.11.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/13/2014] [Accepted: 11/13/2014] [Indexed: 12/21/2022]
Abstract
Ghrelin is a 28-amino-acid peptide hormone, first described in 1999 and broadly expressed in the organism. As the only known orexigenic hormone secreted in the periphery, it increases hunger and appetite, promoting food intake. Ghrelin has also been shown to be involved in various physiological processes being regulated in the central nervous system such as sleep, mood, memory and reward. Accordingly, it has been implicated in a series of psychiatric disorders, making it subject of increasing investigation, with knowledge rapidly accumulating. This review aims at providing a concise yet comprehensive overview of the role of ghrelin in psychiatric disorders. Ghrelin was consistently shown to exert neuroprotective and memory-enhancing effects and alleviated psychopathology in animal models of dementia. Few human studies show a disruption of the ghrelin system in dementia. It was also shown to play a crucial role in the pathophysiology of addictive disorders, promoting drug reward, enhancing drug seeking behavior and increasing craving in both animals and humans. Ghrelin's exact role in depression and anxiety is still being debated, as it was shown to both promote and alleviate depressive and anxiety-behavior in animal studies, with an overweight of evidence suggesting antidepressant effects. Not surprisingly, the ghrelin system is also implicated in eating disorders, however its exact role remains to be elucidated. Its widespread involvement has made the ghrelin system a promising target for future therapies, with encouraging findings in recent literature.
Collapse
Affiliation(s)
| | - Michael Kluge
- Department of Psychiatry and Psychotherapy, University of Leipzig, Leipzig, Germany
| |
Collapse
|
37
|
Blockade of growth hormone secretagogue receptor 1A signaling by JMV 2959 attenuates the NMDAR antagonist, phencyclidine-induced impairments in prepulse inhibition. Psychopharmacology (Berl) 2015; 232:4285-92. [PMID: 26319159 PMCID: PMC4613889 DOI: 10.1007/s00213-015-4054-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 08/17/2015] [Indexed: 11/03/2022]
Abstract
RATIONALE Schizophrenic-spectrum patients commonly display deficits in preattentive information processing as evidenced, for example, by disrupted prepulse inhibition (PPI), a measure of sensorimotor gating. Similar disruptions in PPI can be induced in rodents and primates by the psychotomimetic drug phencyclidine (PCP), a noncompetitive inhibitor of the NMDA receptor. Mounting evidence suggests that the hunger hormone ghrelin and its constitutively active receptor influences neuronal circuits involved in the regulation of mood and cognition. OBJECTIVES In the present series of experiments, we investigated the effects of ghrelin and the growth hormone secretagogue receptor (GHS-R1A) neutral antagonist, JMV 2959, on acoustic startle responses (ASR), PPI, and PCP-induced alterations in PPI. RESULTS Intraperitoneal (i.p.) administration of ghrelin (0.033, 0.1, and 0.33 mg/kg) did not alter the ASR or PPI in rats. Conversely, i.p. injection of JMV 2959 (1, 3, and 6 mg/kg), dose dependently decreased the ASR and increased PPI. Pretreatment with JMV 2959 at a dose with no effect on ASR or PPI per se, completely blocked PCP-induced (2 mg/kg) deficits in PPI while pretreatment with the highest dose of ghrelin did not potentiate or alter PPI responses of a sub-threshold dose of PCP (0.75 mg/kg). CONCLUSION These findings indicate that the GHS-R1A is involved in specific behavioral effects of PCP and may have relevance for patients with schizophrenia.
Collapse
|
38
|
Kiefer F. Ghrelin in addictive behaviors: plenus venter non studet libenter. Biol Psychiatry 2014; 76:676-7. [PMID: 25282532 DOI: 10.1016/j.biopsych.2014.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
39
|
Vadnie CA, Park JH, Abdel Gawad N, Ho AMC, Hinton DJ, Choi DS. Gut-brain peptides in corticostriatal-limbic circuitry and alcohol use disorders. Front Neurosci 2014; 8:288. [PMID: 25278825 PMCID: PMC4166902 DOI: 10.3389/fnins.2014.00288] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/26/2014] [Indexed: 12/22/2022] Open
Abstract
Peptides synthesized in endocrine cells in the gastrointestinal tract and neurons are traditionally considered regulators of metabolism, energy intake, and appetite. However, recent work has demonstrated that many of these peptides act on corticostriatal-limbic circuitry and, in turn, regulate addictive behaviors. Given that alcohol is a source of energy and an addictive substance, it is not surprising that increasing evidence supports a role for gut-brain peptides specifically in alcohol use disorders (AUD). In this review, we discuss the effects of several gut-brain peptides on alcohol-related behaviors and the potential mechanisms by which these gut-brain peptides may interfere with alcohol-induced changes in corticostriatal-limbic circuitry. This review provides a summary of current knowledge on gut-brain peptides focusing on five peptides: neurotensin, glucagon-like peptide 1, ghrelin, substance P, and neuropeptide Y. Our review will be helpful to develop novel therapeutic targets for AUD.
Collapse
Affiliation(s)
- Chelsea A Vadnie
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Neurobiology of Disease Program, Mayo Clinic College of Medicine Rochester, MN, USA
| | - Jun Hyun Park
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Department of Psychiatry, Sanggye Paik Hospital, College of Medicine, InJe University Seoul, South Korea
| | - Noha Abdel Gawad
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine Rochester, MN, USA
| | - Ada Man Choi Ho
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Department of Psychiatry and Psychology, Mayo Clinic College of Medicine Rochester, MN, USA
| | - David J Hinton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Neurobiology of Disease Program, Mayo Clinic College of Medicine Rochester, MN, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Neurobiology of Disease Program, Mayo Clinic College of Medicine Rochester, MN, USA ; Department of Psychiatry and Psychology, Mayo Clinic College of Medicine Rochester, MN, USA
| |
Collapse
|
40
|
Panagopoulos VN, Ralevski E. The role of ghrelin in addiction: a review. Psychopharmacology (Berl) 2014; 231:2725-40. [PMID: 24947976 DOI: 10.1007/s00213-014-3640-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 05/19/2014] [Indexed: 12/24/2022]
Abstract
RATIONALE Ghrelin is a fast-acting hormone that is produced primarily by the stomach and by the brain although in smaller quantities. The regulation and the secretion of ghrelin are complex and not limited to aspects of feeding. Ghrelin exerts powerful effects on multiple processes, and it has been demonstrated that it mediates the rewarding properties of food as well as of drugs of abuse. OBJECTIVES The purpose of this review is to summarize the findings of preclinical and clinical studies related to ghrelin's possible role in addiction for each specific class of substances. Questions related to ghrelin's involvement in addiction are highlighted. Recurrent methodological issues that render the interpretation of the findings challenging are discussed. Also, the potential of targeting ghrelin as a pharmacologic treatment strategy for addiction is explored. RESULTS Ghrelin signaling is implicated in the mediation of behavioral and biochemical effects of drugs of abuse that are cardinal for the development of addiction, especially for alcohol, nicotine, and stimulants. The available literature implicating ghrelin in opioid or cannabis use disorders is currently limited and inconclusive. CONCLUSIONS There is intriguing, although not always consistent, evidence for the involvement of ghrelin signaling in aspects of addiction, especially in the cases of alcohol, nicotine, and stimulants. Further research, particularly in humans, is recommended to replicate and expand on the findings of the current literature. Improved and novel methodologies that take into account the volatile and complex nature of ghrelin are required to clarify the inconsistencies of the findings.
Collapse
Affiliation(s)
- Vassilis N Panagopoulos
- Department of Psychiatry, VA St. Louis Health Care System, 915 North Grand Blvd, St. Louis, MO, 63106, USA
| | | |
Collapse
|
41
|
|
42
|
Engel JA, Jerlhag E. Role of appetite-regulating peptides in the pathophysiology of addiction: implications for pharmacotherapy. CNS Drugs 2014; 28:875-86. [PMID: 24958205 PMCID: PMC4181507 DOI: 10.1007/s40263-014-0178-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Food intake and appetite are regulated by various circulating hormones including ghrelin and glucagon-like-peptide 1 (GLP-1). Ghrelin, mainly released from the stomach, increases food intake, induces appetite, enhances adiposity as well as releases growth hormone. Hypothalamic "ghrelin receptors" (GHS-R1A) have a critical role in food intake regulation, but GHS-R1A are also expressed in reward related areas. GLP-1 is produced in the intestinal mucosa as well as in the hindbrain in response to nutrient ingestion. This gut-brain hormone reduces food intake as well as regulates glucose homeostasis, foremost via GLP-1 receptors in hypothalamus and brain stem. However, GLP-1 receptors are expressed in areas intimately associated with reward regulation. Given that regulation of food and drug intake share common neurobiological substrates, the possibility that ghrelin and GLP-1 play an important role in reward regulation should be considered. Indeed, this leading article describes that the orexigenic peptide ghrelin activates the cholinergic-dopaminergic reward link, an important part of the reward systems in the brain associated with reinforcement and thereby increases the incentive salience for motivated behaviors via this system. We also review the role of ghrelin signaling for reward induced by alcohol and addictive drugs from a preclinical, clinical and human genetic perspective. In addition, the recent findings showing that GLP-1 controls reward induced by alcohol, amphetamine, cocaine and nicotine in rodents are overviewed herein. Finally, the role of several other appetite regulatory hormones for reward and addiction is briefly discussed. Collectively, these data suggest that ghrelin and GLP-1 receptors may be novel targets for development of pharmacological treatments of alcohol and drug dependence.
Collapse
Affiliation(s)
- Jörgen A. Engel
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, POB 431, 405 30 Gothenburg, Sweden
| | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, POB 431, 405 30 Gothenburg, Sweden
| |
Collapse
|
43
|
Labarthe A, Fiquet O, Hassouna R, Zizzari P, Lanfumey L, Ramoz N, Grouselle D, Epelbaum J, Tolle V. Ghrelin-Derived Peptides: A Link between Appetite/Reward, GH Axis, and Psychiatric Disorders? Front Endocrinol (Lausanne) 2014; 5:163. [PMID: 25386163 PMCID: PMC4209873 DOI: 10.3389/fendo.2014.00163] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 09/23/2014] [Indexed: 12/25/2022] Open
Abstract
Psychiatric disorders are often associated with metabolic and hormonal alterations, including obesity, diabetes, metabolic syndrome as well as modifications in several biological rhythms including appetite, stress, sleep-wake cycles, and secretion of their corresponding endocrine regulators. Among the gastrointestinal hormones that regulate appetite and adapt the metabolism in response to nutritional, hedonic, and emotional dysfunctions, at the interface between endocrine, metabolic, and psychiatric disorders, ghrelin plays a unique role as the only one increasing appetite. The secretion of ghrelin is altered in several psychiatric disorders (anorexia, schizophrenia) as well as in metabolic disorders (obesity) and in animal models in response to emotional triggers (psychological stress …) but the relationship between these modifications and the physiopathology of psychiatric disorders remains unclear. Recently, a large literature showed that this key metabolic/endocrine regulator is involved in stress and reward-oriented behaviors and regulates anxiety and mood. In addition, preproghrelin is a complex prohormone but the roles of the other ghrelin-derived peptides, thought to act as functional ghrelin antagonists, are largely unknown. Altered ghrelin secretion and/or signaling in psychiatric diseases are thought to participate in altered appetite, hedonic response and reward. Whether this can contribute to the mechanism responsible for the development of the disease or can help to minimize some symptoms associated with these psychiatric disorders is discussed in the present review. We will thus describe (1) the biological actions of ghrelin and ghrelin-derived peptides on food and drugs reward, anxiety and depression, and the physiological consequences of ghrelin invalidation on these parameters, (2) how ghrelin and ghrelin-derived peptides are regulated in animal models of psychiatric diseases and in human psychiatric disorders in relation with the GH axis.
Collapse
Affiliation(s)
- Alexandra Labarthe
- UMR-S 894, Centre de Psychiatrie et Neurosciences, L’Institut national de la santé et de la recherche médicale, Université Paris Descartes, Paris, France
| | - Oriane Fiquet
- UMR-S 894, Centre de Psychiatrie et Neurosciences, L’Institut national de la santé et de la recherche médicale, Université Paris Descartes, Paris, France
| | - Rim Hassouna
- UMR-S 894, Centre de Psychiatrie et Neurosciences, L’Institut national de la santé et de la recherche médicale, Université Paris Descartes, Paris, France
| | - Philippe Zizzari
- UMR-S 894, Centre de Psychiatrie et Neurosciences, L’Institut national de la santé et de la recherche médicale, Université Paris Descartes, Paris, France
| | - Laurence Lanfumey
- UMR-S 894, Centre de Psychiatrie et Neurosciences, L’Institut national de la santé et de la recherche médicale, Université Paris Descartes, Paris, France
| | - Nicolas Ramoz
- UMR-S 894, Centre de Psychiatrie et Neurosciences, L’Institut national de la santé et de la recherche médicale, Université Paris Descartes, Paris, France
| | - Dominique Grouselle
- UMR-S 894, Centre de Psychiatrie et Neurosciences, L’Institut national de la santé et de la recherche médicale, Université Paris Descartes, Paris, France
| | - Jacques Epelbaum
- UMR-S 894, Centre de Psychiatrie et Neurosciences, L’Institut national de la santé et de la recherche médicale, Université Paris Descartes, Paris, France
| | - Virginie Tolle
- UMR-S 894, Centre de Psychiatrie et Neurosciences, L’Institut national de la santé et de la recherche médicale, Université Paris Descartes, Paris, France
- *Correspondence: Virginie Tolle, UMR-S 894, Centre de Psychiatrie et Neurosciences, INSERM, Université Paris Descartes, 2 ter rue d’Alésia, Paris 75014, France e-mail:
| |
Collapse
|