1
|
Gao H, Jiang Y, Zeng G, Huda N, Thoudam T, Yang Z, Liangpunsakul S, Ma J. Cell-to-cell and organ-to-organ crosstalk in the pathogenesis of alcohol-associated liver disease. EGASTROENTEROLOGY 2024; 2:e100104. [PMID: 39735421 PMCID: PMC11674000 DOI: 10.1136/egastro-2024-100104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2024]
Abstract
Alcohol-associated liver disease (ALD) is a growing global health concern and its prevalence and severity are increasing steadily. While bacterial endotoxin translocation into the portal circulation is a well-established key factor, recent evidence highlights the critical role of sterile inflammation, triggered by diverse stimuli, in alcohol-induced liver injury. This review provides a comprehensive analysis of the complex interactions within the hepatic microenvironment in ALD. It examines the contributions of both parenchymal cells, like hepatocytes, and non-parenchymal cells, such as hepatic stellate cells, Kupffer cells, neutrophils, and liver sinusoidal endothelial cells, in driving the progression of the disease. Additionally, we explored the involvement of key mediators, including cytokines, chemokines and inflammasomes, which regulate inflammatory responses and promote liver injury and fibrosis. A particular focus has been placed on extracellular vesicles (EVs) as essential mediators of intercellular communication both within and beyond the liver. These vesicles facilitate the transfer of signalling molecules, such as microRNAs and proteins, which modulate immune responses, fibrogenesis and lipid metabolism, thereby influencing disease progression. Moreover, we underscore the importance of organ-to-organ crosstalk, particularly in the gut-liver axis, where dysbiosis and increased intestinal permeability lead to microbial translocation, exacerbating hepatic inflammation. The adipose-liver axis is also highlighted, particularly the impact of adipokines and free fatty acids from adipose tissue on hepatic steatosis and inflammation in the context of alcohol consumption.
Collapse
Affiliation(s)
- Hui Gao
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yanchao Jiang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ge Zeng
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Infectious Diseases, Southern Medical University, Guangzhou, China
| | - Nazmul Huda
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Themis Thoudam
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Zhihong Yang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Suthat Liangpunsakul
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| | - Jing Ma
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
2
|
Lewis SA, Cinco IR, Doratt BM, Blanton MB, Hoagland C, Newman N, Davies M, Grant KA, Messaoudi I. Chronic alcohol consumption dysregulates innate immune response to SARS-CoV-2 in the lung. EBioMedicine 2023; 97:104812. [PMID: 37793211 PMCID: PMC10562860 DOI: 10.1016/j.ebiom.2023.104812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Alcohol consumption is widespread with over half of the individuals over 18 years of age in the U.S. reporting alcohol use in the last 30 days. Moreover, 9 million Americans engaged in binge or chronic heavy drinking (CHD) in 2019. CHD negatively impacts pathogen clearance and tissue repair, including in the respiratory tract, thereby increasing susceptibility to infection. Although, it has been hypothesized that chronic alcohol consumption negatively impacts COVID-19 outcomes; the interplay between chronic alcohol use and SARS-CoV-2 infection outcomes has yet to be elucidated. METHODS In this study we employed luminex, scRNA sequencing, and flow cytometry to investigate the impact of chronic alcohol consumption on SARS-CoV-2 anti-viral responses in bronchoalveolar lavage cell samples from humans with alcohol use disorder and rhesus macaques that engaged in chronic drinking. FINDINGS Our data show that in both humans (n = 6) and macaques (n = 11), the induction of key antiviral cytokines and growth factors was decreased with chronic ethanol consumption. Moreover, in macaques fewer differentially expressed genes mapped to Gene Ontology terms associated with antiviral immunity following 6 month of ethanol consumption while TLR signaling pathways were upregulated. INTERPRETATION These data are indicative of aberrant inflammation and reduced antiviral responses in the lung with chronic alcohol drinking. FUNDING This study was supported by NIH 1R01AA028735-04 (Messaoudi), U01AA013510-20 (Grant), R24AA019431-14 (Grant), R24AA019661 (Burnham), P-51OD011092 (ONPRC core grant support). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.
Collapse
Affiliation(s)
- Sloan A Lewis
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, USA
| | - Isaac R Cinco
- Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, USA
| | - Brianna M Doratt
- Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, USA
| | - Madison B Blanton
- Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, USA; Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, USA
| | - Cherise Hoagland
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, USA
| | - Natali Newman
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, USA
| | - Michael Davies
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, USA
| | - Kathleen A Grant
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, USA
| | - Ilhem Messaoudi
- Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, USA.
| |
Collapse
|
3
|
Lewis SA, Cinco IR, Doratt BM, Blanton MB, Hoagland C, Davies M, Grant KA, Messaoudi I. Chronic alcohol consumption dysregulates innate immune response to SARS-CoV-2 in the lung. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539139. [PMID: 37205543 PMCID: PMC10187161 DOI: 10.1101/2023.05.02.539139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Alcohol consumption is widespread with over half of the individuals over 18 years of age in the U.S. reporting alcohol use in the last 30 days. Moreover, 9 million Americans engaged in binge or chronic heavy drinking (CHD) in 2019. CHD negatively impacts pathogen clearance and tissue repair, including in the respiratory tract, thereby increasing susceptibility to infection. Although, it has been hypothesized that chronic alcohol consumption negatively impacts COVID-19 outcomes; the interplay between chronic alcohol use and SARS-CoV-2 infection outcomes has yet to be elucidated. Therefore, in this study we investigated the impact of chronic alcohol consumption on SARS-CoV-2 anti-viral responses in bronchoalveolar lavage cell samples from humans with alcohol use disorder and rhesus macaques that engaged in chronic drinking. Our data show that in both humans and macaques, the induction of key antiviral cytokines and growth factors was decreased with chronic ethanol consumption. Moreover, in macaques fewer differentially expressed genes mapped to Gene Ontology terms associated with antiviral immunity following 6 month of ethanol consumption while TLR signaling pathways were upregulated. These data are indicative of aberrant inflammation and reduced antiviral responses in the lung with chronic alcohol drinking.
Collapse
Affiliation(s)
- Sloan A. Lewis
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine
| | - Isaac R. Cinco
- Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky
| | - Brianna M. Doratt
- Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky
| | - Madison B. Blanton
- Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky
| | - Cherise Hoagland
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University
| | - Michael Davies
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University
| | - Kathleen A. Grant
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University
| | - Ilhem Messaoudi
- Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky
| |
Collapse
|
4
|
Wyatt TA, Warren KJ, Wetzel TJ, Suwondo T, Rensch GP, DeVasure JM, Mosley DD, Kharbanda KK, Thiele GM, Burnham EL, Bailey KL, Yeligar SM. Malondialdehyde-Acetaldehyde Adduct Formation Decreases Immunoglobulin A Transport across Airway Epithelium in Smokers Who Abuse Alcohol. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1732-1742. [PMID: 34186073 PMCID: PMC8485061 DOI: 10.1016/j.ajpath.2021.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 12/16/2022]
Abstract
Alcohol misuse and smoking are risk factors for pneumonia, yet the impact of combined cigarette smoke and alcohol on pneumonia remains understudied. Smokers who misuse alcohol form lung malondialdehyde-acetaldehyde (MAA) protein adducts and have decreased levels of anti-MAA secretory IgA (sIgA). Transforming growth factor-β (TGF-β) down-regulates polymeric Ig receptor (pIgR) on mucosal epithelium, resulting in decreased sIgA transcytosis to the mucosa. It is hypothesized that MAA-adducted lung protein increases TGF-β, preventing expression of epithelial cell pIgR and decreasing sIgA. Cigarette smoke and alcohol co-exposure on sIgA and TGF-β in human bronchoalveolar lavage fluid and in mice instilled with MAA-adducted surfactant protein D (SPD-MAA) were studied herein. Human bronchial epithelial cells (HBECs) and mouse tracheal epithelial cells were treated with SPD-MAA and sIgA and TGF-β was measured. Decreased sIgA and increased TGF-β were observed in bronchoalveolar lavage from combined alcohol and smoking groups in humans and mice. CD204 (MAA receptor) knockout mice showed no changes in sIgA. SPD-MAA decreased pIgR in HBECs. Conversely, SPD-MAA stimulated TGF-β release in both HBECs and mouse tracheal epithelial cells, but not in CD204 knockout mice. SPD-MAA stimulated TGF-β in alveolar macrophage cells. These data show that MAA-adducted surfactant protein stimulates lung epithelial cell TGF-β, down-regulates pIgR, and decreases sIgA transcytosis. These data provide a mechanism for the decreased levels of sIgA observed in smokers who misuse alcohol.
Collapse
Affiliation(s)
- Todd A Wyatt
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, Nebraska; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska.
| | - Kristi J Warren
- Department of Medicine-Pulmonary Division, University of Utah/VA Salt Lake Health Care System, Salt Lake City, Utah
| | - Tanner J Wetzel
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Troy Suwondo
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Gage P Rensch
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jane M DeVasure
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Deanna D Mosley
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Geoffrey M Thiele
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Ellen L Burnham
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Denver, Colorado
| | - Kristina L Bailey
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Samantha M Yeligar
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, Georgia; Research Service, Atlanta VA Health Care System, Decatur, Georgia
| |
Collapse
|
5
|
Fan X, Liu Z, Poulsen KL, Wu X, Miyata T, Dasarathy S, Rotroff DM, Nagy LE. Alcohol Consumption Is Associated with Poor Prognosis in Obese Patients with COVID-19: A Mendelian Randomization Study Using UK Biobank. Nutrients 2021; 13:1592. [PMID: 34068824 PMCID: PMC8152000 DOI: 10.3390/nu13051592] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Acute and chronic alcohol abuse has adverse impacts on both the innate and adaptive immune response, which may result in reduced resistance to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and promote the progression of coronavirus disease 2019 (COVID-19). However, there are no large population-based data evaluating potential causal associations between alcohol consumption and COVID-19. METHODS We conducted a Mendelian randomization study using data from UK Biobank to explore the association between alcohol consumption and risk of SARS-CoV-2 infection and serious clinical outcomes in patients with COVID-19. A total of 12,937 participants aged 50-83 who tested for SARS-CoV-2 between 16 March to 27 July 2020 (12.1% tested positive) were included in the analysis. The exposure factor was alcohol consumption. Main outcomes were SARS-CoV-2 positivity and death in COVID-19 patients. We generated allele scores using three genetic variants (rs1229984 (Alcohol Dehydrogenase 1B, ADH1B), rs1260326 (Glucokinase Regulator, GCKR), and rs13107325 (Solute Carrier Family 39 Member 8, SLC39A8)) and applied the allele scores as the instrumental variables to assess the effect of alcohol consumption on outcomes. Analyses were conducted separately for white participants with and without obesity. RESULTS Of the 12,937 participants, 4496 were never or infrequent drinkers and 8441 were frequent drinkers. Both logistic regression and Mendelian randomization analyses found no evidence that alcohol consumption was associated with risk of SARS-CoV-2 infection in participants either with or without obesity (All q > 0.10). However, frequent drinking, especially heavy drinking (HR = 2.07, 95%CI 1.24-3.47; q = 0.054), was associated with higher risk of death in patients with obesity and COVID-19, but not in patients without obesity. Notably, the risk of death in frequent drinkers with obesity increased slightly with the average amount of alcohol consumed weekly (All q < 0.10). CONCLUSIONS Our findings suggest that alcohol consumption has adverse effects on the progression of COVID-19 in white participants with obesity, but was not associated with susceptibility to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Xiude Fan
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA; (X.F.); (K.L.P.); (X.W.); (T.M.); (S.D.)
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710049, China;
| | - Zhengwen Liu
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710049, China;
| | - Kyle L. Poulsen
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA; (X.F.); (K.L.P.); (X.W.); (T.M.); (S.D.)
| | - Xiaoqin Wu
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA; (X.F.); (K.L.P.); (X.W.); (T.M.); (S.D.)
| | - Tatsunori Miyata
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA; (X.F.); (K.L.P.); (X.W.); (T.M.); (S.D.)
| | - Srinivasan Dasarathy
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA; (X.F.); (K.L.P.); (X.W.); (T.M.); (S.D.)
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Daniel M. Rotroff
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Laura E. Nagy
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA; (X.F.); (K.L.P.); (X.W.); (T.M.); (S.D.)
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
6
|
Patchett D, Yang J, Northern J, Salinas M, Bauer BA. Viral Respiratory Infections: An Ounce of Prevention Is Worth a Pound of Cure. Mayo Clin Proc Innov Qual Outcomes 2021; 5:480-485. [PMID: 33585798 PMCID: PMC7864792 DOI: 10.1016/j.mayocpiqo.2020.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The sudden outbreak and global spread of COVID-19 demanded a tremendous amount of attention for viral respiratory infections (VRIs) in modern times. Evidence accumulated over the past few decades increasingly suggests the importance of recognizing the background and context of lifestyle factors in the prevention of VRIs recurrence. The focus of attention has specifically been on how to optimize respiratory barrier function and immune function during the period of the pandemic outbreak. This viewpoint discusses the impact of a healthy lifestyle on VRIs and demonstrates a practical approach to preventing the occurrence of VRIs based on contemporary evidence.
Collapse
Affiliation(s)
- David Patchett
- Department of Family Medicine, Mayo Clinic, Scottsdale, AZ.,Department of Integrative Medicine, Mayo Clinic, Scottsdale, AZ
| | - Juan Yang
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN
| | - Jane Northern
- Department of Women's Health Internal Medicine, Mayo Clinic, Scottsdale, AZ
| | - Manisha Salinas
- Division of General Internal Medicine, Mayo Clinic, Jacksonville, FL
| | - Brent A Bauer
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
7
|
Fan X, Liu Z, Poulsen KL, Wu X, Miyata T, Dasarathy S, Rotroff DM, Nagy LE. Alcohol Consumption is Associated with Poor Prognosis in Obese Patients with COVID-19: a Mendelian Randomization Study using UK Biobank. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.11.25.20238915. [PMID: 33269370 PMCID: PMC7709191 DOI: 10.1101/2020.11.25.20238915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Background Acute and chronic alcohol abuse have adverse impacts on both the innate and adaptive immune response, which may result in reduced resistance to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and promote the progression of coronavirus disease 2019 (COVID-19). However, there are no large population-based data evaluating potential causal associations between alcohol consumption and COVID-19. Method We conducted a Mendelian randomization study using data from UK Biobank to explore the association between alcohol consumption and risk of SARS-CoV-2 infection and serious clinical outcomes in patients with COVID-19. A total of 12,937 participants aged 50-83 who tested for SARS-CoV-2 between 16 March to 27 July 2020 (12.1% tested positive) were included in the analysis. The exposure factor was alcohol consumption. Main outcomes were SARS-CoV-2 positivity and death in COVID-19 patients. We generated weighted and unweighted allele scores using three genetic variants (rs1229984, rs1260326, and rs13107325) and applied the allele scores as the instrumental variables to assess the effect of alcohol consumption on outcomes. Analyses were conducted separately for white participates with and without obesity. Results Of the 12,937 participants, 4,496 were never or infrequent drinkers and 8,441 were frequent drinkers. (including 1,156 light drinkers, 3,795 moderate drinkers, and 3,490 heavy drinkers). Both logistic regression and Mendelian randomization analyses found no evidence that alcohol consumption was associated with risk of SARS-CoV-2 infection in participants either with (OR=0.963, 95%CI 0.800-1.159; q =1.000) or without obesity (OR=0.891, 95%CI 0.755-1.053; q =.319). However, frequent drinking (HR=1.565, 95%CI 1.012-2.419; q =.079), especially heavy drinking (HR=2.071, 95%CI 1.235-3.472; q =.054), was associated with higher risk of death in patients with obesity and COVID-19, but not in patients without obesity. Notably, the risk of death in frequent drinkers with obesity increased slightly with the average amount of alcohol consumed weekly (HR=1.480, 95%CI 1.059-2.069; q =.099). Conclusions Our findings suggested alcohol consumption may had adverse effects on the progression of COVID-19 in white participants with obesity, but was not associate with susceptibility to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Xiude Fan
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Zhengwen Liu
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Kyle L Poulsen
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Xiaoqin Wu
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Tatsunori Miyata
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Srinivasan Dasarathy
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH
| | - Daniel M. Rotroff
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH
| | - Laura E. Nagy
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
8
|
Investigating the Impact of Delivery System Design on the Efficacy of Self-Amplifying RNA Vaccines. Vaccines (Basel) 2020; 8:vaccines8020212. [PMID: 32397231 PMCID: PMC7348957 DOI: 10.3390/vaccines8020212] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/26/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022] Open
Abstract
messenger RNA (mRNA)-based vaccines combine the positive attributes of both live-attenuated and subunit vaccines. In order for these to be applied for clinical use, they require to be formulated with delivery systems. However, there are limited in vivo studies which compare different delivery platforms. Therefore, we have compared four different cationic platforms: (1) liposomes, (2) solid lipid nanoparticles (SLNs), (3) polymeric nanoparticles (NPs) and (4) emulsions, to deliver a self-amplifying mRNA (SAM) vaccine. All formulations contained either the non-ionizable cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or dimethyldioctadecylammonium bromide (DDA) and they were characterized in terms of physico-chemical attributes, in vitro transfection efficiency and in vivo vaccine potency. Our results showed that SAM encapsulating DOTAP polymeric nanoparticles, DOTAP liposomes and DDA liposomes induced the highest antigen expression in vitro and, from these, DOTAP polymeric nanoparticles were the most potent in triggering humoral and cellular immunity among candidates in vivo.
Collapse
|
9
|
Zacharias ZR, Legge KL. Chronic Ethanol Consumption Reduces Existing CD8 T Cell Memory and Is Associated with Lesions in Protection against Secondary Influenza A Virus Infections. THE JOURNAL OF IMMUNOLOGY 2019; 203:3313-3324. [PMID: 31712384 DOI: 10.4049/jimmunol.1900770] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/16/2019] [Indexed: 01/12/2023]
Abstract
Chronic alcohol consumption is associated with an increased incidence of disease severity during pulmonary infections. Our previous work in a mouse model of chronic alcohol consumption has detailed that the primary influenza A virus (IAV)-specific CD8 T cell response in mice that consumed ethanol (EtOH) had a reduced proliferative capacity as well as the ability to kill IAV target cells. Interestingly, recent studies have highlighted that human alcoholics have an increased susceptibility to IAV infections, even though they likely possess pre-existing immunity to IAV. However, the effects of chronic alcohol consumption on pre-existing immune responses (i.e., memory) to IAV have not been explored. Our results presented in this study show that IAV-immune mice that then chronically consumed alcohol (X31→EtOH) exhibited increased morbidity and mortality following IAV re-exposure compared with IAV-immune mice that had consumed water (X31→H2O). This increased susceptibility in X31→EtOH mice was associated with reduced IAV-specific killing of target cells and a reduction in the number of IAV-specific CD8 T cells within the lungs. Furthermore, upon IAV challenge, recruitment of the remaining memory IAV-specific CD8 T cells into the lungs is reduced in X31→EtOH mice. This altered recruitment is associated with a reduced pulmonary expression of CXCL10 and CXCL11, which are chemokines that are important for T cell recruitment to the lungs. Overall, these results demonstrate that chronic alcohol consumption negatively affects the resting memory CD8 T cell response and reduces the ability of memory T cells to be recruited to the site of infection upon subsequent exposures, therein contributing to an enhanced susceptibility to IAV infections.
Collapse
Affiliation(s)
- Zeb R Zacharias
- Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, IA 52242.,Department of Pathology, University of Iowa, Iowa City, IA 52242; and
| | - Kevin L Legge
- Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, IA 52242; .,Department of Pathology, University of Iowa, Iowa City, IA 52242; and.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
10
|
Warren KJ, Poole JA, Sweeter JM, DeVasure JM, Wyatt TA. An association between MMP-9 and impaired T cell migration in ethanol-fed BALB/c mice infected with respiratory syncytial virus-2A. Alcohol 2019; 80:25-32. [PMID: 30291948 DOI: 10.1016/j.alcohol.2018.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/14/2018] [Accepted: 09/26/2018] [Indexed: 12/20/2022]
Abstract
Matrix metalloproteinases are important for proper airway matrix structure and wound healing. These enzymes are also implicated in many airway diseases. Previously, chronic ethanol consumption was shown to prolong inflammation and delay viral clearance in respiratory syncytial virus (RSV)-infected mice. We hypothesize that alcohol alters anti-viral immunity by disrupting immune cell chemotaxis in the lung. BALB/c mice were randomly selected to consume 18% alcohol ad libitum for 8 weeks prior to infection with RSV-2A. Bronchoalveolar lavage (BAL) cell populations were measured by flow cytometry, and chemokines were detected by Western blot or ELISA. MMP-9 levels were determined by polymerase chain reaction (PCR) in mouse lungs and in BAL fluid by ELISA. T cells were acquired from the spleens of water-fed, non-infected control mice (CTRL); alcohol-fed, non-infected (ETOH); water-fed, RSV-infected (RSV); or ethanol-fed, RSV-infected (ETOH-RSV) 4 days after RSV infection. T cells were placed in a transmigration system where chemokines had been treated with and without activated MMP-9. Lymphocyte recruitment was significantly reduced in the BAL 4 days after RSV infection in ETOH-RSV mice, whereas chemokine levels were the highest in this group at all experimental time points examined in comparison to RSV (p < 0.05). MMP-9 mRNA and protein were detected at high levels in ETOH-RSV mice compared to RSV. Using ex vivo transmigration to CCL2 and CXCL10, T cell migration was not impaired between any of the treatment groups, yet when CCL2 and CXCL10 were treated with activated MMP-9, significantly fewer T cells migrated across collagen-coated 5-μm membranes (p < 0.05). Immune cell recruitment is necessary for viral clearance. We show that immune cells are decreased in the lungs of ETOH-RSV mice. In contrast to decreased cell recruitment, key inflammatory chemokines were elevated in the lungs of ETOH-RSV mice. These proteins may be prematurely degraded by MMP-9 in the lung, leading to defective immunity and reduced viral clearance.
Collapse
Affiliation(s)
- Kristi J Warren
- University of Nebraska Medical Center, Pulmonary, Critical Care, Sleep & Allergy, 985910 Nebraska Medical Center, Omaha, NE, 68198-5910, United States.
| | - Jill A Poole
- University of Nebraska Medical Center, Pulmonary, Critical Care, Sleep & Allergy, 985910 Nebraska Medical Center, Omaha, NE, 68198-5910, United States
| | - Jenea M Sweeter
- University of Nebraska Medical Center, Pulmonary, Critical Care, Sleep & Allergy, 985910 Nebraska Medical Center, Omaha, NE, 68198-5910, United States.
| | - Jane M DeVasure
- University of Nebraska Medical Center, Pulmonary, Critical Care, Sleep & Allergy, 985910 Nebraska Medical Center, Omaha, NE, 68198-5910, United States.
| | - Todd A Wyatt
- University of Nebraska Medical Center, Pulmonary, Critical Care, Sleep & Allergy, 985910 Nebraska Medical Center, Omaha, NE, 68198-5910, United States; Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, United States; University of Nebraska Medical Center, Department of Environmental, Agricultural, & Occupational Health, Omaha, NE, 68198, United States.
| |
Collapse
|
11
|
Novel detection of post-translational modifications in human monocyte-derived dendritic cells after chronic alcohol exposure: Role of inflammation regulator H4K12ac. Sci Rep 2017; 7:11236. [PMID: 28894190 PMCID: PMC5593989 DOI: 10.1038/s41598-017-11172-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 08/21/2017] [Indexed: 01/21/2023] Open
Abstract
Previous reports on epigenetic mechanisms involved in alcohol abuse have focus on hepatic and neuronal regions, leaving the immune system and specifically monocyte-derived dendritic cells (MDDCs) understudied. Our lab has previously shown histone deacetylases are modulated in cells derived from alcohol users and after in vitro acute alcohol treatment of human MDDCs. In the current study, we developed a novel screening tool using matrix assisted laser desorption ionization-fourier transform-ion cyclotron resonance mass spectrometry (MALDI-FT-ICR MS) and single cell imaging flow cytometry to detect post-translational modifications (PTMs) in human MDDCs due to chronic alcohol exposure. Our results demonstrate, for the first time, in vitro chronic alcohol exposure of MDDCs modulates H3 and H4 and induces a significant increase in acetylation at H4K12 (H4K12ac). Moreover, the Tip60/HAT inhibitor, NU9056, was able to block EtOH-induced H4K12ac, enhancing the effect of EtOH on IL-15, RANTES, TGF-β1, and TNF-α cytokines while restoring MCP-2 levels, suggesting that H4K12ac may be playing a major role during inflammation and may serve as an inflammation regulator or a cellular stress response mechanism under chronic alcohol conditions.
Collapse
|
12
|
Thompson MG, Navarro F, Chitsike L, Ramirez L, Kovacs EJ, Watkins SK. Alcohol exposure differentially effects anti-tumor immunity in females by altering dendritic cell function. Alcohol 2016; 57:1-8. [PMID: 27916138 DOI: 10.1016/j.alcohol.2016.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/17/2016] [Accepted: 10/17/2016] [Indexed: 12/18/2022]
Abstract
Dendritic cells (DCs) are a critical component of anti-tumor immunity due to their ability to induce a robust immune response to antigen (Ag). Alcohol was previously shown to reduce DC ability to present foreign Ag and promote pro-inflammatory responses in situations of infection and trauma. However the impact of alcohol exposure on generation of an anti-tumor response, especially in the context of generation of an immune vaccine has not been examined. In the clinic, DC vaccines are typically generated from autologous blood, therefore prior exposure to substances such as alcohol may be a critical factor to consider regarding the effectiveness in generating an immune response. In this study, we demonstrate for the first time that ethanol differentially affects DC and tumor Ag-specific T cell responses depending on sex. Signaling pathways were found to be differentially regulated in DC in females compared to males and these differences were exacerbated by ethanol treatment. DC from female mice treated with ethanol were unable to activate Ag-specific cytotoxic T cells (CTL) as shown by reduced expression of CD44, CD69, and decreased production of granzyme B and IFNγ. Furthermore, although FOXO3, an immune suppressive mediator of DC function, was found to be upregulated in DC from female mice, ethanol related suppression was independent of FOXO3. These findings demonstrate for the first time differential impacts of alcohol on the immune system of females compared to males and may be a critical consideration for determining the effectiveness of an immune based therapy for cancer in patients that consume alcohol.
Collapse
Affiliation(s)
- Matthew G Thompson
- Loyola University Chicago, Department of Surgery, Cardinal Bernardin Cancer Center, Maywood, IL 60153, USA
| | - Flor Navarro
- Loyola University Chicago, Department of Surgery, Cardinal Bernardin Cancer Center, Maywood, IL 60153, USA
| | - Lennox Chitsike
- Loyola University Chicago, Department of Surgery, Cardinal Bernardin Cancer Center, Maywood, IL 60153, USA
| | - Luis Ramirez
- Loyola University Chicago, Department of Surgery, Cardinal Bernardin Cancer Center, Maywood, IL 60153, USA
| | - Elizabeth J Kovacs
- Loyola University Chicago, Department of Surgery, Cardinal Bernardin Cancer Center, Maywood, IL 60153, USA; University of Colorado Denver, Department of Surgery, Aurora, CO, USA
| | - Stephanie K Watkins
- Loyola University Chicago, Department of Surgery, Cardinal Bernardin Cancer Center, Maywood, IL 60153, USA.
| |
Collapse
|
13
|
Margoles LM, Mittal R, Klingensmith NJ, Lyons JD, Liang Z, Serbanescu MA, Wagener ME, Coopersmith CM, Ford ML. Chronic Alcohol Ingestion Delays T Cell Activation and Effector Function in Sepsis. PLoS One 2016; 11:e0165886. [PMID: 27861506 PMCID: PMC5115670 DOI: 10.1371/journal.pone.0165886] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 10/19/2016] [Indexed: 12/21/2022] Open
Abstract
Sepsis is the leading cause of death in intensive care units in the US, and it is known that chronic alcohol use is associated with higher incidence of sepsis, longer ICU stays, and higher mortality from sepsis. Both sepsis and chronic alcohol use are associated with immune deficits such as decreased lymphocyte numbers, impaired innate immunity, delayed-type hypersensitivity reactions, and susceptibility to infections; however, understanding of specific pathways of interaction or synergy between these two states of immune dysregulation is lacking. This study therefore sought to elucidate mechanisms underlying the immune dysregulation observed during sepsis in the setting of chronic alcohol exposure. Using a murine model of chronic ethanol ingestion followed by sepsis induction via cecal ligation and puncture, we determined that while CD4+ and CD8+ T cells isolated from alcohol fed mice eventually expressed the same cellular activation markers (CD44, CD69, and CD43) and effector molecules (IFN-γ, TNF) as their water fed counterparts, there was an overall delay in the acquisition of these phenotypes. This early lag in T cell activation was associated with significantly reduced IL-2 production at a later timepoint in both the CD4+ and CD8+ T cell compartments in alcohol sepsis, as well as with a reduced accumulation of CD8dim activated effectors. Taken together, these data suggest that delayed T cell activation may result in qualitative differences in the immune response to sepsis in the setting of chronic alcohol ingestion.
Collapse
Affiliation(s)
- Lindsay M. Margoles
- Division of Infectious Diseases, Emory University, Atlanta, GA, United States of America
| | - Rohit Mittal
- Department of Surgery, Emory University, Atlanta, GA, United States of America
| | | | - John D. Lyons
- Department of Surgery, Emory University, Atlanta, GA, United States of America
| | - Zhe Liang
- Department of Surgery, Emory University, Atlanta, GA, United States of America
| | - Mara A. Serbanescu
- Department of Surgery, Emory University, Atlanta, GA, United States of America
| | - Maylene E. Wagener
- Department of Surgery, Emory University, Atlanta, GA, United States of America
- Emory Transplant Center, Emory University, Atlanta, GA, United States of America
| | - Craig M. Coopersmith
- Department of Surgery, Emory University, Atlanta, GA, United States of America
- Emory Critical Care Center, Emory University, Atlanta, GA, United States of America
| | - Mandy L. Ford
- Department of Surgery, Emory University, Atlanta, GA, United States of America
- Emory Transplant Center, Emory University, Atlanta, GA, United States of America
| |
Collapse
|
14
|
Zaldivar Fujigaki JL, Arroyo Valerio AG, López Alvarenga JC, Gutiérrez Reyes EG, Kershenobich D, Hernández Ruiz J. Alterations in Activation, Cytotoxic Capacity and Trafficking Profile of Peripheral CD8 T Cells in Young Adult Binge Drinkers. PLoS One 2015; 10:e0132521. [PMID: 26151816 PMCID: PMC4494878 DOI: 10.1371/journal.pone.0132521] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/15/2015] [Indexed: 12/14/2022] Open
Abstract
Background Excess of alcohol consumption is a public health problem and has documented effects on the immune system of humans and animals. Animal and in vitro studies suggest that alcohol abuse changes CD8 T cell (CD8) characteristics, however it remains unknown if the CD8 profile of binge drinkers is different in terms of activation, trafficking and cytotoxic capacity. Aim To analyze the peripheral CD8 cytotoxic capacity, activation and trafficking phenotypic profile of Mexican young adults with regard to alcohol consumption pattern. Methods 55 Mexican young adults were stratified as Light (20), Intermediate (18) or Binge drinkers (17) according to their reported alcohol consumption pattern. Blood samples were obtained and hematic biometry and liver enzyme analysis were performed. Peripheral CD8 profile was established by expression of Granzyme B (GB), CD137, CD127, CD69, TLR4, PD1, CCR2, CCR4, CCR5 and CXCR4 by FACS. Data was analyzed by ANOVA, posthoc DMS and Tamhane, and principal component analysis (PCA) with varimax rotation, p<0.05. Results The Binge drinking group showed increased γGT together with increased expression of CD69 and reduced expression of TLR4, PD1, CCR2 and CXCR4 in peripheral CD8 cells. Other parameters were also specific to Binge drinkers. PCA established 3 factors associated with alcohol consumption: “Early Activation” represented by CD69 and TLR4 expression in the CD8 population; “Effector Activation” by CD69 expression in CD8 CD127+CD137+ and CD8 CD25+ CD137+; and Trafficking by CXCR4 expression on total CD8 and CD8 GB+CXCR4+, and CCR2 expression on total CD8. Binge drinking pattern showed low expression of Early Activation and Trafficking factors while Light drinking pattern exhibited high expression of Effector Activation factor. Conclusions Alcohol consumption affects the immune phenotype of CD8 cells since binge drinking pattern was found to be associated with high CD69 and low TLR4, CXCR4 and CCR2 expression, which suggest recent activation, decreased sensitivity to LPS and lower migration capacity in response to chemokines SDF-1 and MCP-1. These results indicate that a binge-drinking pattern of alcohol consumption may induce an altered immune profile that could be related with liver damage and the increased susceptibility to infection reported to this behavior.
Collapse
Affiliation(s)
- José Luis Zaldivar Fujigaki
- Laboratory of Liver, Pancreas and Motility, Department of Experimental Medicine, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | - Esperanza Gabriela Gutiérrez Reyes
- Laboratory of Liver, Pancreas and Motility, Department of Experimental Medicine, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - David Kershenobich
- Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - Joselin Hernández Ruiz
- Laboratory of Liver, Pancreas and Motility, Department of Experimental Medicine, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Dirección de Investigación, Hospital General de México "Dr. Eduardo Liceaga", Mexico City, Mexico
- * E-mail:
| |
Collapse
|