1
|
Tang G, Chen P, Chen G, Yang Z, Ma W, Yan H, Su T, Zhang Y, Zhang S, Qi Z, Fang W, Jiang L, Tao Q, Wang Y. Effects of bright light therapy on cingulate cortex dynamic functional connectivity and neurotransmitter activity in young adults with subthreshold depression. J Affect Disord 2025; 374:330-341. [PMID: 39809355 DOI: 10.1016/j.jad.2025.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 12/16/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
BACKGROUND The neurobiological mechanisms behind the antidepressant effect of bright light therapy (BLT) are unclear. We aimed to explore the dynamic functional connectivity (dFC) changes of the cingulate cortex (CC) in subthreshold depression (StD). METHODS The StD participants (38 BLT and 39 placebo) underwent resting-state functional magnetic resonance imaging (rs-fMRI) and mood assessment before and after eight-week BLT. Seed-based whole-brain dFC analysis was conducted and multivariate regression model was adopted to predict Hamilton Depression Rating Scale (HDRS) and Centre for Epidemiologic Studies Depression Scale (CESD) scores changes after BLT. JuSpace toolbox was used to calculate the associations between dFC and neurotransmitter activity in the BLT group. RESULTS BLT group showed decreased CESD and HDRS scores. Also, BLT group showed increased dFC of the right supracallosal anterior cingulate cortex (supACC)-right temporal pole (TP), left middle cingulate cortex (MCC)-right insula, and left supACC-pons, and decreased dFC of the right supACC- right middle frontal gyrus (MFG). Changes in dFC of the right supACC-right TP showed positive correlation with changes in CESD and HDRS. Moreover, combining the baseline dFC variability of the CC could predict HDRS changes in BLT. Finally, compared to baseline, the supACC and MCC dFC changes showed significant correlations with the neurotransmitter activities. CONCLUSIONS BLT alleviates depressive symptoms and changes the CC dFC variability in StD, and pre-treatment dFC variability of the CC could be used as a biomarker for improved BLT treatment in StD. Furthermore, dFC changes with specific neurotransmitter systems after BLT may underline the antidepressant mechanisms of BLT.
Collapse
Affiliation(s)
- Guixian Tang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Zibin Yang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Wenhao Ma
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; Division of Medical Psychology and Behavior Science, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Hong Yan
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Ting Su
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Yuan Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; Division of Medical Psychology and Behavior Science, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Shu Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; Division of Medical Psychology and Behavior Science, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Wenjie Fang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; Division of Medical Psychology and Behavior Science, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Lijun Jiang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; Division of Medical Psychology and Behavior Science, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Qian Tao
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; Division of Medical Psychology and Behavior Science, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China.
| |
Collapse
|
2
|
Weerakkody S, Teji JU, Barrett E, Kousteni M, Flores-Villa L, Jenkins E, Montgomery H. Improved intensive care lighting and staff wellbeing: A pilot feasibility service evaluation. J Intensive Care Soc 2025:17511437251315570. [PMID: 39926386 PMCID: PMC11800227 DOI: 10.1177/17511437251315570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
Background The lighting environment in intensive care units (ICUs) is markedly different from natural light, potentially disrupting patients' circadian rhythms and impacting staff wellbeing. New lighting technologies may mitigate these effects. Methods A mixed methods service evaluation was conducted in a London ICU using Dyson Lightcycle™ luminaires (DLs) to evaluate staff wellbeing. Wellbeing assessments and user perceptions of the built environment were conducted using validated questionnaires before, during, and after DL deployment. Existing ambient light usage was measured using HOBO devices installed on the ceiling. Additionally, data on DL usage (including spectral data) were collected continuously using Raspberry Pi™ sensors. Results DL usage was high (>70% per 24 h), primarily as supplementary lighting. Users found DLs easy to control and beneficial for clinical and administrative tasks. Participants assigned a 12.5% higher satisfaction score rated from 0 to 8 of lighting overall during deployment compared to pre-deployment (6.06 ± 0.29 and 5.06 ± 0.60, respectively; p = 0.20). Control variables for the built environment (noise, temperature and air quality) remained unchanged. Staff reported improvements in mood (38%, p < 0.001), fatigue (17.7%, p < 0.001), and sleep quality (21.2%, p = 0.01) during DL use. Discussion In the first pilot feasibility service evaluation of its kind, the relationship between ICU lighting quality and staff wellbeing was investigated using DLs. We show that it is feasible to equip an ICU with a novel mode of lighting to evaluate both illuminance and user-centred outcomes. The study suggests a positive association between DL use and staff wellbeing, with notable improvements in mood, fatigue and sleep quality. The nature of the emitted light may enhance the space rather than simply illuminate, thus further adding to a feeling of wellbeing. These findings support data from studies which report effects of light brightness and colour on mood. Additionally, there appears to be a signal towards benefit to the user when additional lighting is provided, compared to the current overhead fluorescent luminaires prevalent in most ICUs. In this service evaluation these benefits were demonstrated in ICU staff operating the device. However, it is conceivable that effects such as improved mood and reduced sleep disturbance may have patient benefits too. Conclusion Local lighting systems like DLs show promise in enhancing ICU staff wellbeing. Their impact on patient outcomes and the potential for broader implementation deserve further investigation in appropriately designed and powered larger-scale trials.
Collapse
Affiliation(s)
- Sampath Weerakkody
- Centre for Human Health and Performance, UCL Division of Medicine, University College London, London, UK
| | - Jemima Unwin Teji
- UCL Institute for Environmental Design and Engineering, The Bartlett, London, UK
| | - Edward Barrett
- UCL Institute for Environmental Design and Engineering, The Bartlett, London, UK
| | | | | | | | - Hugh Montgomery
- Whittington Hospital, London, UK
- Centre for Human Health and Performance, University College London, London, UK
| |
Collapse
|
3
|
Dallaspezia S, Benedetti F. Chronobiologic treatments for mood disorders. HANDBOOK OF CLINICAL NEUROLOGY 2025; 206:181-192. [PMID: 39864926 DOI: 10.1016/b978-0-323-90918-1.00011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Chronotherapeutics are nonpharmacologic interventions whose development stems from investigations into sleep and circadian rhythm abnormalities associated with mood disorder. These therapies utilize controlled exposure to environmental cues (light, darkness) to regulate biologic rhythms. They encompass sleep-wake manipulations (partial/total sleep deprivation, sleep phase adjustment) and light therapy approaches. Growing evidence supports the safety and efficacy of chronotherapeutics in clinical settings. Indeed, they target core depressive symptoms, including suicidality and may represent a novel therapeutic approach for treatment-resistant depression. This makes them a viable treatment option, both as a monotherapy and in combination with existing psychopharmacologic medications and paves the way for their potential inclusion as first-line treatments for mood disorders.
Collapse
Affiliation(s)
- Sara Dallaspezia
- Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy.
| | | |
Collapse
|
4
|
Barzegar Behrooz A, Aghanoori MR, Nazari M, Latifi-Navid H, Vosoughian F, Anjomani M, Lotfi J, Ahmadiani A, Eliassi A, Nabavizadeh F, Soleimani E, Ghavami S, Khodagholi F, Fahanik-Babaei J. 40 Hz light preserves synaptic plasticity and mitochondrial function in Alzheimer's disease model. Sci Rep 2024; 14:26949. [PMID: 39506052 PMCID: PMC11541745 DOI: 10.1038/s41598-024-78528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent type of dementia. Its causes are not fully understood, but it is now known that factors like mitochondrial dysfunction, oxidative stress, and compromised ion channels contribute to its onset and progression. Flickering light therapy has shown promise in AD treatment, though its mechanisms remain unclear. In this study, we used a rat model of streptozotocin (STZ)-induced AD to evaluate the effects of 40 Hz flickering light therapy. Rats received intracerebroventricular (ICV) STZ injections, and 7 days after, they were exposed to 40 Hz flickering light for 15 min daily over seven days. Cognitive and memory functions were assessed using Morris water maze, novel object recognition, and passive avoidance tests. STZ-induced AD rats exhibited cognitive decline, elevated reactive oxygen species, amyloid beta accumulation, decreased serotonin and dopamine levels, and impaired mitochondrial function. However, light therapy prevented these effects, preserving cognitive function and synaptic plasticity. Additionally, flickering light restored mitochondrial metabolites and normalized ATP-insensitive mitochondrial calcium-sensitive potassium (mitoBKCa) channel activity, which was otherwise downregulated in AD rats. Our findings suggest that 40 Hz flickering light therapy could be a promising treatment for neurodegenerative disorders like AD by preserving synaptic and mitochondrial function.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Mohamad-Reza Aghanoori
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary & Alberta Children's Hospital Research Institute, Calgary, AB, T2N 4N1, Canada
| | - Maryam Nazari
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Hamid Latifi-Navid
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Fatemeh Vosoughian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojdeh Anjomani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jabar Lotfi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Eliassi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Soleimani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Ghavami
- Faculty of Medicine in Zabrze, University of Technology in Katowice, Zabrze, 41-800, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB, Canada
- Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Fahanik-Babaei
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Dallaspezia S, Cardaci V, Mazza MG, De Lorenzo R, Rovere Querini P, Colombo C, Benedetti F. Higher Seasonal Variation of Systemic Inflammation in Bipolar Disorder. Int J Mol Sci 2024; 25:4310. [PMID: 38673894 PMCID: PMC11049938 DOI: 10.3390/ijms25084310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Seasonal rhythms affect the immune system. Evidence supports the involvement of immuno-inflammatory mechanisms in bipolar disorder (BD), with the neutrophil to lymphocyte ratio (NLR), and the systemic immune-inflammatory index (SII; platelets × neutrophils/lymphocytes) consistently reported to be higher in patients with BD than in HC, but seasonal rhythms of innate and adaptive immunity have never been studied. We retrospectively studied NLR and SII in 824 participants divided into three groups: 321 consecutively admitted inpatients affected by a major depressive episode in course of BD, and 255 consecutively admitted inpatients affected by obsessive-compulsive disorder (OCD; positive psychiatric control), and 248 healthy controls (HC). Patients with BD showed markedly higher markers of systemic inflammation in autumn and winter, but not in spring and summer, in respect to both HC and patients with OCD, thus suggesting a specific effect of season on inflammatory markers in BD, independent of a shared hospital setting and drug treatment. Given that systemic inflammation is emerging as a new marker and as target for treatment in depressive disorders, we suggest that seasonal rhythms should be considered for tailoring antidepressant immuno-modulatory treatments in a precision medicine approach.
Collapse
Affiliation(s)
- Sara Dallaspezia
- Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milano, Italy; (S.D.); (M.G.M.)
| | - Vincenzo Cardaci
- Università Vita-Salute San Raffaele, 20132 Milano, Italy; (V.C.); (P.R.Q.); (C.C.)
| | - Mario Gennaro Mazza
- Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milano, Italy; (S.D.); (M.G.M.)
| | - Rebecca De Lorenzo
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, 20132 Milano, Italy;
| | - Patrizia Rovere Querini
- Università Vita-Salute San Raffaele, 20132 Milano, Italy; (V.C.); (P.R.Q.); (C.C.)
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, 20132 Milano, Italy;
| | - Cristina Colombo
- Università Vita-Salute San Raffaele, 20132 Milano, Italy; (V.C.); (P.R.Q.); (C.C.)
- Mood Disorders Unit, IRCCS Ospedale San Raffaele, 20132 Milano, Italy
| | - Francesco Benedetti
- Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milano, Italy; (S.D.); (M.G.M.)
- Università Vita-Salute San Raffaele, 20132 Milano, Italy; (V.C.); (P.R.Q.); (C.C.)
| |
Collapse
|
6
|
Spies M, Murgaš M, Vraka C, Philippe C, Gryglewski G, Nics L, Balber T, Baldinger-Melich P, Hartmann AM, Rujescu D, Hacker M, Winkler-Pjrek E, Winkler D, Lanzenberger R. Impact of genetic variants within serotonin turnover enzymes on human cerebral monoamine oxidase A in vivo. Transl Psychiatry 2023; 13:208. [PMID: 37322010 PMCID: PMC10272199 DOI: 10.1038/s41398-023-02506-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
Variants within the monoamine oxidase A (MAO-A, MAOA) and tryptophan hydroxylase 2 (TPH2) genes, the main enzymes in cerebral serotonin (5-HT) turnover, affect risk for depression. Depressed cohorts show increased cerebral MAO-A in positron emission tomography (PET) studies. TPH2 polymorphisms might also influence brain MAO-A because availability of substrates (i.e. monoamine concentrations) were shown to affect MAO-A levels. We assessed the effect of MAOA (rs1137070, rs2064070, rs6323) and TPH2 (rs1386494, rs4570625) variants associated with risk for depression and related clinical phenomena on global MAO-A distribution volume (VT) using [11C]harmine PET in 51 participants (21 individuals with seasonal affective disorder (SAD) and 30 healthy individuals (HI)). Statistical analyses comprised general linear models with global MAO-A VT as dependent variable, genotype as independent variable and age, sex, group (individuals with SAD, HI) and season as covariates. rs1386494 genotype significantly affected global MAO-A VT after correction for age, group and sex (p < 0.05, corr.), with CC homozygotes showing 26% higher MAO-A levels. The role of rs1386494 on TPH2 function or expression is poorly understood. Our results suggest rs1386494 might have an effect on either, assuming that TPH2 and MAO-A levels are linked by their common product/substrate, 5-HT. Alternatively, rs1386494 might influence MAO-A levels via another mechanism, such as co-inheritance of other genetic variants. Our results provide insight into how genetic variants within serotonin turnover translate to the cerebral serotonin system. Clinicaltrials.gov Identifier: NCT02582398. EUDAMED Number: CIV-AT-13-01-009583.
Collapse
Affiliation(s)
- Marie Spies
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Matej Murgaš
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Chrysoula Vraka
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Cecile Philippe
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Gregor Gryglewski
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
- Child Study Center, Yale University, New Haven, CT, USA
| | - Lukas Nics
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Theresa Balber
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Pia Baldinger-Melich
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Annette M Hartmann
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Dan Rujescu
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Edda Winkler-Pjrek
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Dietmar Winkler
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
7
|
Handschuh PA, Murgaš M, Vraka C, Nics L, Hartmann AM, Winkler-Pjrek E, Baldinger-Melich P, Wadsak W, Winkler D, Hacker M, Rujescu D, Domschke K, Lanzenberger R, Spies M. Effect of MAOA DNA Methylation on Human in Vivo Protein Expression Measured by [11C]harmine Positron Emission Tomography. Int J Neuropsychopharmacol 2023; 26:116-124. [PMID: 36573644 PMCID: PMC9926052 DOI: 10.1093/ijnp/pyac085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Epigenetic modifications like DNA methylation are understood as an intermediary between environmental factors and neurobiology. Cerebral monoamine oxidase A (MAO-A) levels are altered in depression, as are DNA methylation levels within the MAOA gene, particularly in the promoter/exon I/intron I region. An effect of MAOA methylation on peripheral protein expression was shown, but the extent to which methylation affects brain MAO-A levels is not fully understood. METHODS Here, the influence of MAOA promoter/exon I/intron I region DNA methylation on global MAO-A distribution volume (VT), an index of MAO-A density, was assessed via [11C]harmine positron emission tomography in 22 patients (14 females) suffering from seasonal affective disorder and 30 healthy controls (17 females). RESULTS No significant influence of MAOA DNA methylation on global MAO-A VT was found, despite correction for health status, sex, season, and MAOA variable number of tandem repeat genotype. However, season affected average methylation in women, with higher levels in spring and summer (Puncorr = .03). We thus did not find evidence for an effect of MAOA DNA methylation on brain MAO-A VT. CONCLUSIONS In contrast to a previous study demonstrating an effect of methylation of a MAOA promoter region located further 5' on brain MAO-A, MAOA methylation of the region assessed here appears to affect brain protein levels to a limited extent at most. The observed effect of season on methylation levels is in accordance with extensive evidence for seasonal effects within the serotonergic system. CLINICALTRIALS.GOV IDENTIFIER NCT02582398 (https://clinicaltrials.gov/ct2/show/NCT02582398).
Collapse
Affiliation(s)
- Patricia A Handschuh
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Matej Murgaš
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Chrysoula Vraka
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Lukas Nics
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Annette M Hartmann
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Edda Winkler-Pjrek
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Pia Baldinger-Melich
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Dietmar Winkler
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Dan Rujescu
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Germany
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Marie Spies
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| |
Collapse
|
8
|
Lai CH. Fronto-limbic neuroimaging biomarkers for diagnosis and prediction of treatment responses in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2021; 107:110234. [PMID: 33370569 DOI: 10.1016/j.pnpbp.2020.110234] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/02/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022]
Abstract
The neuroimaging is an important tool for understanding the biomarkers and predicting treatment responses in major depressive disorder (MDD). The potential biomarkers and prediction of treatment response in MDD will be addressed in the review article. The brain regions of cognitive control and emotion regulation, such as the frontal and limbic regions, might represent the potential targets for MDD biomarkers. The potential targets of frontal lobes might include anterior cingulate cortex (ACC), dorsolateral prefrontal cortex (DLPFC) and orbitofrontal cortex (OFC). For the limbic system, hippocampus and amygdala might be the potentially promising targets for MDD. The potential targets of fronto-limbic regions have been found in the studies of several major neuroimaging modalities, such as the magnetic resonance imaging, near-infrared spectroscopy, electroencephalography, positron emission tomography, and single-photon emission computed tomography. Additional regions, such as brainstem and midbrain, might also play a part in the MDD biomarkers. For the prediction of treatment response, the gray matter volumes, white matter tracts, functional representations and receptor bindings of ACC, DLPFC, OFC, amygdala, and hippocampus might play a role in the prediction of antidepressant responses in MDD. For the response prediction of psychotherapies, the fronto-limbic, reward regions, and insula will be the potential targets. For the repetitive transcranial magnetic stimulation, the DLPFC, ACC, limbic, and visuospatial regions might represent the predictive targets for treatment. The neuroimaging targets of MDD might be focused in the fronto-limbic regions. However, the neuroimaging targets for the prediction of treatment responses might be inconclusive and beyond the fronto-limbic regions.
Collapse
Affiliation(s)
- Chien-Han Lai
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan; PhD Psychiatry & Neuroscience Clinic, Taoyuan, Taiwan.
| |
Collapse
|
9
|
Pjrek E, Friedrich ME, Cambioli L, Dold M, Jäger F, Komorowski A, Lanzenberger R, Kasper S, Winkler D. The Efficacy of Light Therapy in the Treatment of Seasonal Affective Disorder: A Meta-Analysis of Randomized Controlled Trials. PSYCHOTHERAPY AND PSYCHOSOMATICS 2020; 89:17-24. [PMID: 31574513 DOI: 10.1159/000502891] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/22/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Bright light therapy (BLT) has been used as a treatment for seasonal affective disorder (SAD) for over 30 years. This meta-analysis was aimed to assess the efficacy of BLT in the treatment of SAD in adults. METHOD We performed a systematic literature search including randomized, single- or double-blind clinical trials investigating BLT (≥1,000 lx, light box or light visor) against dim light (≤400 lx) or sham/low-density negative ion generators as placebo. Only first-period data were used from crossover trials. The primary outcome was the post-treatment depression score measured by validated scales, and the secondary outcome was the rate of response to treatment. RESULTS A total of 19 studies finally met our predefined inclusion criteria. BLT was superior over placebo with a standardized mean difference of -0.37 (95% CI: -0.63 to -0.12) for depression ratings (18 studies, 610 patients) and a risk ratio of 1.42 (95% CI: 1.08-1.85) for response to active treatment (16 studies, 559 patients). We found no evidence for a publication bias, but moderate heterogeneity of the studies and a moderate-to-high risk of bias. CONCLUSIONS BLT can be regarded as an effective treatment for SAD, but the available evidence stems from methodologically heterogeneous studies with small-to-medium sample sizes, necessitating larger high-quality clinical trials.
Collapse
Affiliation(s)
- Edda Pjrek
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | | | - Luca Cambioli
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.,Competence Center for Eating Behavior, Obesity and the Psyche, Zofingen Hospital, Zofingen, Switzerland
| | - Markus Dold
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Fiona Jäger
- University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Arkadiusz Komorowski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Dietmar Winkler
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria,
| |
Collapse
|
10
|
Costa LHA, Santos BM, Branco LGS. Can selective serotonin reuptake inhibitors have a neuroprotective effect during COVID-19? Eur J Pharmacol 2020; 889:173629. [PMID: 33022271 PMCID: PMC7832208 DOI: 10.1016/j.ejphar.2020.173629] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/18/2020] [Accepted: 10/02/2020] [Indexed: 02/08/2023]
Abstract
The absence of a specific treatment for SARS-CoV-2 infection led to an intense global effort in order to find new therapeutic interventions and improve patient outcomes. One important feature of COVID-19 pathophysiology is the activation of immune cells, with consequent massive production and release of inflammatory mediators that may cause impairment of several organ functions, including the brain. In addition to its classical role as a neurotransmitter, serotonin (5-hydroxytryptamine, 5-HT) has immunomodulatory properties, downregulating the inflammatory response by central and peripheral mechanisms. In this review, we describe the roles of 5-HT in the regulation of systemic inflammation and the potential benefits of the use of specific serotonin reuptake inhibitors as a coadjutant therapy to attenuate neurological complications of COVID-19.
Collapse
Affiliation(s)
- Luis H A Costa
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14040-904, Brazil
| | - Bruna M Santos
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14040-904, Brazil
| | - Luiz G S Branco
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14040-904, Brazil.
| |
Collapse
|
11
|
Adidharma W, Deats SP, Ikeno T, Lipton JW, Lonstein JS, Yan L. Orexinergic modulation of serotonin neurons in the dorsal raphe of a diurnal rodent, Arvicanthis niloticus. Horm Behav 2019; 116:104584. [PMID: 31445011 PMCID: PMC6885537 DOI: 10.1016/j.yhbeh.2019.104584] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/02/2019] [Accepted: 08/20/2019] [Indexed: 01/22/2023]
Abstract
The hypothalamic neuropeptide, orexin (or hypocretin), is implicated in numerous physiology and behavioral functions, including affective states such as depression and anxiety. The underlying mechanisms and neural circuits through which orexin modulates affective responses remain unclear. The objective of the present study was to test the hypothesis that the serotonin (5-HT) system of the dorsal raphe nucleus (DRN) is a downstream target through which orexin potentially manifests its role in affective states. Using a diurnal rodent, the Nile grass rat (Arvicanthis niloticus), we first characterized the expression of the orexin receptors OX1R and OX2R in the DRN using in situ hybridization. The results revealed distinct distributions of OX1R and OX2R mRNAs, with OX1R predominantly expressed in the dorsal and lateral wings of the DRN that are involved in affective processes, while OX2R was mostly found in the ventral DRN that is more involved in sensory-motor function. We next examined how the orexin-OX1R pathway regulates 5-HT in the DRN and some of its projection sites using a selective OX1R antagonist SB-334867 (10 mg/kg, i.p.). A single injection of SB-334867 decreased 5-HT-ir fibers within the anterior cingulate cortex (aCgC); five once-daily administrations of SB-334867 decreased 5-HT-ir not only in the aCgC but also in the DRN, oval bed nucleus of the stria terminalis (ovBNST), nucleus accumbens shell (NAcSh), and periaqueductal gray (PAG). HPLC analysis revealed that five once-daily administrations of SB-334867 did not affect 5-HT turnover to any of the five sites, although it increased the levels of both 5-HT and 5-HIAA in the NAcSh. These results together suggest that orexinergic modulation of DRN 5-HT neurons via OX1Rs may be one pathway through which orexin regulates mood and anxiety, as well as perhaps other neurobiological processes.
Collapse
Affiliation(s)
- Widya Adidharma
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| | - Sean P Deats
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| | - Tomoko Ikeno
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA; Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Jack W Lipton
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA; Department of Translational Science & Molecular Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Joseph S Lonstein
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA; Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Lily Yan
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA; Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
12
|
Abstract
The neuroimaging has been applied in the study of pathophysiology in major depressive disorder (MDD). In this review article, several kinds of methodologies of neuroimaging would be discussed to summarize the promising biomarkers in MDD. For the magnetic resonance imaging (MRI) and magnetoencephalography field, the literature review showed the potentially promising roles of frontal lobes, such as anterior cingulate cortex (ACC), dorsolateral prefrontal cortex (DLPFC) and orbitofrontal cortex (OFC). In addition, the limbic regions, such as hippocampus and amygdala, might be the potentially promising biomarkers for MDD. The structures and functions of ACC, DLPFC, OFC, amygdala and hippocampus might be confirmed as the biomarkers for the prediction of antidepressant treatment responses and for the pathophysiology of MDD. The functions of cognitive control and emotion regulation of these regions might be crucial for the establishment of biomarkers. The near-infrared spectroscopy studies demonstrated that blood flow in the frontal lobe, such as the DLPFC and OFC, might be the biomarkers for the field of near-infrared spectroscopy. The electroencephalography also supported the promising role of frontal regions, such as the ACC, DLPFC and OFC in the biomarker exploration, especially for the sleep electroencephalogram to detect biomarkers in MDD. The positron emission tomography (PET) and single-photon emission computed tomography (SPECT) in MDD demonstrated the promising biomarkers for the frontal and limbic regions, such as ACC, DLPFC and amygdala. However, additional findings in brainstem and midbrain were also found in PET and SPECT. The promising neuroimaging biomarkers of MDD seemed focused in the fronto-limbic regions.
Collapse
Affiliation(s)
- Chien-Han Lai
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan.,Psychiatry & Neuroscience Clinic, Taoyuan, Taiwan.,Department of Psychiatry, Yeezen General Hospital, Taoyuan, Taiwan
| |
Collapse
|
13
|
Abstract
PURPOSE In this review, we will review the background and diagnosis of bipolar disorder (BD); describe the efficacy data and potential circadian and neural mechanisms underlying the effects of bright light for bipolar depression; and discuss the implementation of light therapy in clinical practice. RECENT FINDINGS To date, morning bright light is the most widely tested form of light therapy for all mood disorders. Clinical trial reports suggest that midday or morning bright light treatment and novel chronotherapeutic interventions are effective for bipolar depression. Mechanisms of response may relate to effects on the circadian system and other changes in neural functioning. Using bright light to manage depressive symptoms in BD is reasonable but also requires concurrent antimanic treatment and careful clinical monitoring for response, safety, and mood polarity switch.
Collapse
Affiliation(s)
- Dorothy Sit
- Feinberg School of Medicine, Department of Psychiatry and Behavioral Sciences, Asher Center for the Study and Treatment of Depressive Disorders, Northwestern University, 676 N St. Clair Street, Suite 1000, Chicago, IL, 60611, USA.
| | - Sarah Haigh
- Department of Psychology and Center for Integrative Neuroscience, University of Nevada, Reno, 1664 Virginia Street, Reno, NV, 89557, USA
| |
Collapse
|
14
|
Wirz-Justice A, Benedetti F. Perspectives in affective disorders: Clocks and sleep. Eur J Neurosci 2019; 51:346-365. [PMID: 30702783 DOI: 10.1111/ejn.14362] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/30/2018] [Accepted: 01/22/2019] [Indexed: 12/17/2022]
Abstract
Mood disorders are often characterised by alterations in circadian rhythms, sleep disturbances and seasonal exacerbation. Conversely, chronobiological treatments utilise zeitgebers for circadian rhythms such as light to improve mood and stabilise sleep, and manipulations of sleep timing and duration as rapid antidepressant modalities. Although sleep deprivation ("wake therapy") can act within hours, and its mood-elevating effects be maintained by regular morning light administration/medication/earlier sleep, it has not entered the regular guidelines for treating affective disorders as a first-line treatment. The hindrances to using chronotherapeutics may lie in their lack of patentability, few sponsors to carry out large multi-centre trials, non-reimbursement by medical insurance and their perceived difficulty or exotic "alternative" nature. Future use can be promoted by new technology (single-sample phase measurements, phone apps, movement and sleep trackers) that provides ambulatory documentation over long periods and feedback to therapist and patient. Light combinations with cognitive behavioural therapy and sleep hygiene practice may speed up and also maintain response. The urgent need for new antidepressants should hopefully lead to reconsideration and implementation of these non-pharmacological methods, as well as further clinical trials. We review the putative neurochemical mechanisms underlying the antidepressant effect of sleep deprivation and light therapy, and current knowledge linking clocks and sleep with affective disorders: neurotransmitter switching, stress and cortico-limbic reactivity, clock genes, cortical neuroplasticity, connectomics and neuroinflammation. Despite the complexity of multi-system mechanisms, more insight will lead to fine tuning and better application of circadian and sleep-related treatments of depression.
Collapse
Affiliation(s)
- Anna Wirz-Justice
- Centre for Chronobiology, Transfaculty Research Platform Molecular and Cognitive Neurosciences, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Francesco Benedetti
- University Vita-Salute San Raffaele, Milano, Italy.,Psychiatry & Clinical Psychobiology, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
15
|
Brain monoamine oxidase A in seasonal affective disorder and treatment with bright light therapy. Transl Psychiatry 2018; 8:198. [PMID: 30242221 PMCID: PMC6155094 DOI: 10.1038/s41398-018-0227-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 04/23/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
Increased cerebral monoamine oxidase A (MAO-A) levels have been shown in non-seasonal depression using positron emission tomography (PET). Seasonal affective disorder (SAD) is a sub-form of major depressive disorder and is typically treated with bright light therapy (BLT). The serotonergic system is affected by season and light. Hence, this study aims to assess the relevance of brain MAO-A levels to the pathophysiology and treatment of SAD. Changes to cerebral MAO-A distribution (1) in SAD in comparison to healthy controls (HC), (2) after treatment with BLT and (3) between the seasons, were investigated in 24 patients with SAD and 27 HC using [11C]harmine PET. PET scans were performed in fall/winter before and after 3 weeks of placebo-controlled BLT, as well as in spring/summer. Cerebral MAO-A distribution volume (VT, an index of MAO-A density) did not differ between patients and HC at any of the three time-points. However, MAO-A VT decreased from fall/winter to spring/summer in the HC group (F1, 187.84 = 4.79, p < 0.050), while SAD showed no change. In addition, BLT, but not placebo, resulted in a significant reduction in MAO-A VT (F1, 208.92 = 25.96, p < 0.001). This is the first study to demonstrate an influence of BLT on human cerebral MAO-A levels in vivo. Furthermore, we show that SAD may lack seasonal dynamics in brain MAO-A levels. The lack of a cross-sectional difference between patients and HC, in contrast to studies in non-seasonal depression, may be due to the milder symptoms typically shown by patients with SAD.
Collapse
|
16
|
Brewerton TD, Putnam KT, Lewine RR, Risch SC. Seasonality of cerebrospinal fluid monoamine metabolite concentrations and their associations with meteorological variables in humans. J Psychiatr Res 2018; 99:76-82. [PMID: 29427844 PMCID: PMC5849528 DOI: 10.1016/j.jpsychires.2018.01.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 01/07/2018] [Accepted: 01/11/2018] [Indexed: 12/18/2022]
Abstract
Seasonal variations in neurotransmitter parameters have been previously reported in humans. However, these studies have involved small sample sizes and have not examined possible relationships with meteorological variables. We compared cerebrospinal fluid (CSF) concentrations of the major monoamine neurotransmitter metabolites (5-HIAA, HVA, and MHPG) in 188 healthy controls (80 men, 108 women) in relationship to age, sex, BMI, and available meteorological variables. All subjects had a lumbar puncture (LP) performed at 9 a.m. after overnight stay. Meteorological data for the day prior to LP were obtained from the National Climatic Association and included the photoperiod, percent sunshine, temperature (max, min, mean), barometric pressure, relative humidity, amount of precipitation and sky cover. Results revealed differences across seasons and cross-seasons for CSF 5-HIAA (p ≤ .05), with post-hoc differences emerging between spring versus summer and fall and between x-spring and x-summer (p ≤ .05). Differences were also found across seasons for CSF HVA (p ≤ .05) with post-hoc differences between spring versus fall. CSF 5-HIAA was significantly inversely correlated with maximum (r = -.28, p ≤ .02), minimum (r = -.24, p ≤ .04), and mean temperature (r = -.28, p ≤ .02) in men. In women, 5-HIAA (r = -.22, p ≤ .02) and HVA (r = -.28, p ≤ .003) were significantly correlated with relative humidity. These data confirm previous findings of variations in serotonin and dopamine metabolites across the year and highlight possible underlying mechanisms involving meteorological changes, which may result in alterations in neurophysiology and behavior.
Collapse
Affiliation(s)
- Timothy D. Brewerton
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425-0742
| | - Karen T. Putnam
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, NC
| | - Richard R.J. Lewine
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY
| | - S. Craig Risch
- Department of Psychiatry, University of California at San Francisco, San Francisco, CA
| |
Collapse
|
17
|
Tiihonen J, Halonen P, Tiihonen L, Kautiainen H, Storvik M, Callaway J. The Association of Ambient Temperature and Violent Crime. Sci Rep 2017; 7:6543. [PMID: 28754972 PMCID: PMC5533778 DOI: 10.1038/s41598-017-06720-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/15/2017] [Indexed: 11/10/2022] Open
Abstract
It is controversial if global warming will result into increased crime and conflict rate, and no causal neurobiological mechanisms have been proposed for the putative association between ambient temperature and aggressive behavior. This study shows that during 1996–2013, ambient temperature explained 10% of variance in the violent crime rate in Finland, corresponding to a 1.7% increase/degree centigrade. Ambient temperature also correlated with a one month delay in circannual changes in peripheral serotonin transporter density among both offenders and healthy control subjects, which itself correlated strongly with the monthly violent crime rate. This suggests that rise in temperature modulates serotonergic transmission which may increase impulsivity and general human activity level, resulting into increase in social interaction and risk of violent incidents. Together, these results suggest that the effect of ambient temperature on occurrence of violent crime is partly mediated through the serotonergic system, and that a 2 °C increase in average temperatures would increase violent crime rates by more than 3% in non-tropical and non-subtropical areas, if other contributing factors remained constant.
Collapse
Affiliation(s)
- Jari Tiihonen
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, FI-70240, Kuopio, Finland. .,Department of Clinical Neuroscience, Karolinska Institutet, S-171 76, Stockholm, Sweden.
| | - Pirjo Halonen
- University of Jyväskylä, FI-40014, Jyväskylän yliopisto, Jyväskylä, Finland
| | | | - Hannu Kautiainen
- Unit of Primary Care, Helsinki University Central Hospital, and Department of General Practice, University of Helsinki, FI-00014, Helsingin yliopisto, Helsinki, Finland
| | - Markus Storvik
- Department of Pharmacology and Toxicology, University of Eastern Finland, FI-70211, Kuopio, Finland
| | - James Callaway
- Department of Pharmaceutical Chemistry, University of Eastern Finland, FI-70211, Kuopio, Finland
| |
Collapse
|
18
|
Meesters Y, Gordijn MC. Seasonal affective disorder, winter type: current insights and treatment options. Psychol Res Behav Manag 2016; 9:317-327. [PMID: 27942239 PMCID: PMC5138072 DOI: 10.2147/prbm.s114906] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Seasonal affective disorder (SAD), winter type, is a seasonal pattern of recurrent major depressive episodes most commonly occurring in autumn or winter and remitting in spring/summer. The syndrome has been well-known for more than three decades, with light treatment being the treatment of first choice. In this paper, an overview is presented of the present insights in SAD. Description of the syndrome, etiology, and treatment options are mentioned. Apart from light treatment, medication and psychotherapy are other treatment options. The predictable, repetitive nature of the syndrome makes it possible to discuss preventive treatment options. Furthermore, critical views on the concept of SAD as a distinct diagnosis are discussed.
Collapse
Affiliation(s)
- Ybe Meesters
- University Center for Psychiatry, University Medical Center Groningen
| | - Marijke Cm Gordijn
- Department of Chronobiology, GeLifes, University of Groningen, Groningen, the Netherlands; Chrono@Work B.V., Groningen, the Netherlands
| |
Collapse
|
19
|
Tyrer AE, Levitan RD, Houle S, Wilson AA, Nobrega JN, Rusjan PM, Meyer JH. Serotonin transporter binding is reduced in seasonal affective disorder following light therapy. Acta Psychiatr Scand 2016; 134:410-419. [PMID: 27553523 DOI: 10.1111/acps.12632] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To investigate the effects of light therapy on serotonin transporter binding (5-HTT BPND ), an index of 5-HTT levels, in the anterior cingulate and prefrontal cortices (ACC and PFC) during winter in seasonal affective disorder (SAD). 5-HTT BPND fluctuates seasonally to a greater extent in SAD relative to health. We hypothesized that in SAD, 5-HTT BPND would be reduced in the ACC and PFC following light therapy. METHODS Eleven SAD participants underwent [11 C] DASB positron emission tomography (PET) scans to measure 5-HTT BPND before and after 2 weeks of daily morning light therapy. RESULTS The primary finding was a main effect of treatment on 5-HTT BPND in the ACC and PFC (repeated-measures manova, F(2,9) = 6.82, P = 0.016). This effect was significant in the ACC (F(1,10) = 15.11 and P = 0.003, magnitude of decrease, 11.94%) and PFC (F(1,10) = 8.33, P = 0.016, magnitude of decrease, 9.13%). 5-HTT BPND also decreased in other regions assayed following light therapy (repeated-measures manova, F(4,7) = 8.54, P = 0.028) including the hippocampus, ventral striatum, dorsal putamen, thalamus and midbrain (F(1,10) = 8.02-36.94, P < 0.0001-0.018; magnitude -8.83% to -16.74%). CONCLUSIONS These results demonstrate that light therapy reaches an important therapeutic target in the treatment of SAD and provide a basis for improvement of this treatment via application of [11 C]DASB PET.
Collapse
Affiliation(s)
- A E Tyrer
- CAMH Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Departments of Psychiatry, Pharmacology and Toxicology, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - R D Levitan
- CAMH Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Departments of Psychiatry, Pharmacology and Toxicology, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - S Houle
- CAMH Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Departments of Psychiatry, Pharmacology and Toxicology, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - A A Wilson
- CAMH Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Departments of Psychiatry, Pharmacology and Toxicology, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - J N Nobrega
- CAMH Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Departments of Psychiatry, Pharmacology and Toxicology, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Behavioural Neurobiology Laboratory and Campbell Family Mental Health Research Institute, Departments of Psychiatry, Pharmacology and Toxicology, and Psychology, University of Toronto, Toronto, ON, Canada
| | - P M Rusjan
- CAMH Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Departments of Psychiatry, Pharmacology and Toxicology, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - J H Meyer
- CAMH Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Departments of Psychiatry, Pharmacology and Toxicology, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
20
|
Tyrer AE, Levitan RD, Houle S, Wilson AA, Nobrega JN, Meyer JH. Increased Seasonal Variation in Serotonin Transporter Binding in Seasonal Affective Disorder. Neuropsychopharmacology 2016; 41:2447-54. [PMID: 27087270 PMCID: PMC4987850 DOI: 10.1038/npp.2016.54] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/21/2016] [Accepted: 03/25/2016] [Indexed: 11/09/2022]
Abstract
Seasonal affective disorder (SAD) is highly prevalent with rates of 1-6% and greater prevalence at more extreme latitudes; however, there are almost no direct brain investigations of this disorder. In health, serotonin transporter binding potential (5-HTT BPND), an index of 5-HTT levels, is greater throughout the brain in fall-winter compared with spring-summer. We hypothesized that in SAD, this seasonal variation would be greater in brain regions containing structures that regulate affect such as the prefrontal and anterior cingulate cortices (PFC and ACC). Furthermore, given the dimensional nature of SAD symptoms, it was hypothesized that seasonal fluctuation of 5-HTT BPND in the PFC and ACC would be greatest in severe SAD. Twenty SAD and twenty healthy participants underwent [(11)C]DASB positron emission tomography scans in summer and winter to measure seasonal variation in [(11)C]DASB 5-HTT BPND. Seasonal increases in [(11)C]DASB 5-HTT BPND were greater in SAD compared with healthy in the PFC and ACC, primarily due to differences between severe SAD and healthy (severe SAD vs healthy; Mann-Whitney U, U=42.5 and 37.0, p=0.005 and 0.003, respectively; greater magnitude in severe SAD of 35.10 and 14.23%, respectively), with similar findings observed in other regions (U=40.0-62.0, p=0.004-0.048; greater magnitude in severe SAD of 13.16-17.49%). To our knowledge, this is the first brain biomarker identified in SAD. This creates a new opportunity for phase 0 studies to target this phenotype and optimize novel prevention/treatment strategies for SAD.
Collapse
Affiliation(s)
- Andrea E Tyrer
- Departments of Psychiatry, Pharmacology and Toxicology, CAMH Research Imaging Centre, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, and Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Robert D Levitan
- Departments of Psychiatry, Pharmacology and Toxicology, CAMH Research Imaging Centre, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, and Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Sylvain Houle
- Departments of Psychiatry, Pharmacology and Toxicology, CAMH Research Imaging Centre, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, and Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Alan A Wilson
- Departments of Psychiatry, Pharmacology and Toxicology, CAMH Research Imaging Centre, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, and Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - José N Nobrega
- Departments of Psychiatry, Pharmacology and Toxicology, CAMH Research Imaging Centre, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, and Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada,Behavioural Neurobiology Laboratory, Departments of Psychiatry, Pharmacology and Toxicology, and Psychology, Campbell Family Mental Health Research Institute, University of Toronto, Toronto, ON, Canada
| | - Jeffrey H Meyer
- Departments of Psychiatry, Pharmacology and Toxicology, CAMH Research Imaging Centre, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, and Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada,CAMH Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T1R8, Canada, Tel: +1 416 535 8501 x 34007, Fax: +1 416 979 4656, E-mail:
| |
Collapse
|
21
|
Kohno K, Terao T, Hatano K, Kodama K, Makino M, Mizokami Y, Kamei K, Sakai A, Shirahama M, Hirakawa H, Kashino G, Matsumoto S, Mori H, Ohashi K, Yano T. Postcomparison of [(18) F]-fluorodeoxyglucose uptake in the brain after short-term bright light exposure and no intervention. Acta Psychiatr Scand 2016; 134:65-72. [PMID: 27028708 DOI: 10.1111/acps.12569] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2016] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Bright light therapy is widely used as the treatment of choice for seasonal affective disorder. Nonetheless, our understanding of the mechanisms of bright light is limited and it is important to investigate the mechanisms. The purpose of this study is to examine the hypothesis that bright light exposure may increase [(18) F]-fluorodeoxyglucose (FDG) uptake in olfactory bulb and/or hippocampus which may be associated neurogenesis in the human brain. METHOD A randomized controlled trial comparing 5-day bright light exposure + environmental light (bright light exposure group) with environmental light alone (no intervention group) was performed for 55 participants in a university hospital. The uptake of [(18) F]FDG in olfactory bulb and hippocampus using FDG positron emission tomography was compared between two groups. RESULTS There was a significant increase of uptake in both right and left olfactory bulb for bright light exposure group vs. no intervention group. After adjustment of log-transformed illuminance, there remained a significant increase of uptake in the right olfactory bulb. CONCLUSION The present findings suggest a possibility that 5-day bright light exposure may increase [(18) F]FDG in the right olfactory bulb of the human brain, suggesting a possibility of neurogenesis. Further studies are warranted to directly confirm this possibility.
Collapse
Affiliation(s)
- K Kohno
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Yufu City, Oita Prefecture, Japan
| | - T Terao
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Yufu City, Oita Prefecture, Japan
| | - K Hatano
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Yufu City, Oita Prefecture, Japan
| | - K Kodama
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Yufu City, Oita Prefecture, Japan
| | - M Makino
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Yufu City, Oita Prefecture, Japan
| | - Y Mizokami
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Yufu City, Oita Prefecture, Japan
| | - K Kamei
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Yufu City, Oita Prefecture, Japan
| | - A Sakai
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Yufu City, Oita Prefecture, Japan
| | - M Shirahama
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Yufu City, Oita Prefecture, Japan
| | - H Hirakawa
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Yufu City, Oita Prefecture, Japan
| | - G Kashino
- Advanced Molecular Imaging Center, Oita University Faculty of Medicine, Yufu City, Oita Prefecture, Japan
| | - S Matsumoto
- Department of Radiology, Oita University Faculty of Medicine, Yufu City, Oita Prefecture, Japan
| | - H Mori
- Department of Radiology, Oita University Faculty of Medicine, Yufu City, Oita Prefecture, Japan
| | - K Ohashi
- Department of Clinical Pharmacology, Oita University Faculty of Medicine, Yufu City, Oita Prefecture, Japan
| | - T Yano
- Advanced Molecular Imaging Center, Oita University Faculty of Medicine, Yufu City, Oita Prefecture, Japan.,Engineering Department, Industrial Equipment Division, Sumitomo Heavy Industries Ltd, Shinagawa, Tokyo, Japan.,Department of Nuclear Medicine, Oita University Faculty of Medicine, Yufu City, Oita Prefecture, Japan
| |
Collapse
|
22
|
Quiles CL, de Oliveira MAB, Tonon AC, Hidalgo MPL. Biological adaptability under seasonal variation of light/dark cycles. Chronobiol Int 2016; 33:964-71. [PMID: 27222076 DOI: 10.1080/07420528.2016.1182175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
3A substantial amount of experimental models designed to understand rhythms entrainment and the effects of different regimens of light exposure on health have been proposed. However, many of them do not relate to what occurs in real life. Our objective was to evaluate the influence of "seasonal-like" variation in light/dark cycles on biological rhythms. Twenty adult male Wistar rats were assigned to three groups: control (CT), kept in 12:12 light/dark (LD) cycle; long photoperiod/short photoperiod (LP/SP), kept in 16.5:7.5 LD cycle for 18 days (phase A), then 17 days of gradual reductions in light time (phase B), then 18 days of shorter exposure (7.5:16.5 LD cycle, phase C); short photoperiod/long photoperiod (SP/LP) group, with same modifications as the LP/SP group, but in reverse order, starting phase A in 7.5:16.5 LD cycle. Activity and temperature were recorded constantly, and melatonin and cortisol concentrations were measured twice. Activity and temperature acrophases of all groups changed according to light. The correlation between activity and temperature was, overall, significantly lower for SP/LP group compared with LP/SP and CT groups. Regarding melatonin concentration, LP/SP group showed significant positive correlation between phase A and C (p = 0.018). Animals changed temperature and activity according to photoperiod and demonstrated better adaptability in transitioning from long to short photoperiod. Since this model imitates seasonal variation in light in a species that is largely used in behavioral experiments, it reveals promising methods to improve the reliability of experimental models and of further environmental health research.
Collapse
Affiliation(s)
- Caroline Luísa Quiles
- a Laboratório de Cronobiologia e Sono, Hospital de Clínicas de Porto Alegre (HCPA) , Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , Brasil
| | - Melissa Alves Braga de Oliveira
- a Laboratório de Cronobiologia e Sono, Hospital de Clínicas de Porto Alegre (HCPA) , Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , Brasil
| | - André Comiran Tonon
- a Laboratório de Cronobiologia e Sono, Hospital de Clínicas de Porto Alegre (HCPA) , Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , Brasil
| | - Maria Paz Loayza Hidalgo
- a Laboratório de Cronobiologia e Sono, Hospital de Clínicas de Porto Alegre (HCPA) , Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , Brasil.,b Pós-graduação em Psiquiatria e Ciências do Comportamento, Faculdade de Medicina (FAMED) , Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , Brasil
| |
Collapse
|
23
|
Arany PR. Craniofacial Wound Healing with Photobiomodulation Therapy: New Insights and Current Challenges. J Dent Res 2016; 95:977-84. [PMID: 27161014 DOI: 10.1177/0022034516648939] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The fundamental pathophysiologic response for the survival of all organisms is the process of wound healing. Inadequate or lack of healing constitutes the etiopathologic basis of many oral and systemic diseases. Among the numerous efforts to promote wound healing, biophotonics therapies have shown much promise. Advances in photonic technologies and a better understanding of light-tissue interactions, from parallel biophotonics fields such as in vivo optical imaging and optogenetics, are spearheading their popularity in biology and medicine. Use of high-dose lasers and light devices in dermatology, ophthalmology, oncology, and dentistry are now popular for specific clinical applications, such as surgery, skin rejuvenation, ocular and soft tissue recontouring, and antitumor and antimicrobial photodynamic therapy. However, a less well-known clinical application is the therapeutic use of low-dose biophotonics termed photobiomodulation (PBM) therapy, which is aimed at alleviating pain and inflammation, modulating immune responses, and promoting wound healing and tissue regeneration. Despite significant volumes of scientific literature from clinical and laboratory studies noting the phenomenological evidence for this innovative therapy, limited mechanistic insights have prevented rigorous and reproducible PBM clinical protocols. This article briefly reviews current evidence and focuses on gaps in knowledge to identify potential paths forward for clinical translation with PBM therapy with an emphasis on craniofacial wound healing. PBM offers a novel opportunity to examine fundamental nonvisual photobiological processes as well as develop innovative clinical therapies, thereby presenting an opportunity for a paradigm shift from conventional restorative/prosthetic approaches to regenerative modalities in clinical dentistry.
Collapse
Affiliation(s)
- P R Arany
- Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
24
|
Abstract
Chronobiological therapies for mood disorders include manipulations of the sleep-wake cycle such as sleep deprivation and sleep phase advance and the controlled exposure to light and darkness. Their antidepressant efficacy can overcome drug resistance and targets the core depressive symptoms including suicide, thus making them treatment options to be tried either alone or as adjunctive treatments combined with common psychopharmacological interventions. The specific pattern of mood change observed with chronobiological therapies is characterized by rapid and sustained effects, when used among themselves or combined with drugs. Effects sizes are the same reported for the most effective psychiatric treatments, but side effects are usually marginal or absent. New treatment protocols are developed to adapt them in different clinical settings. This review deals with the general principles of clinical chronobiology and the latest findings in this rapidly developing field.
Collapse
Affiliation(s)
- Sara Dallaspezia
- Dipartimento di Neuroscienze Cliniche, Istituto Scientifico Universitario Ospedale San Raffaele, San Raffaele Turro, Via Stamira d'Ancona 20, 20127, Milano, Italy.
| | - Masahiro Suzuki
- Department of Psychiatry, Nihon University School of Medicine, Tokyo, Japan
| | - Francesco Benedetti
- Dipartimento di Neuroscienze Cliniche, Istituto Scientifico Universitario Ospedale San Raffaele, San Raffaele Turro, Via Stamira d'Ancona 20, 20127, Milano, Italy
| |
Collapse
|
25
|
Enhanced inflammatory and T-helper-1 type responses but suppressed lymphocyte proliferation in patients with seasonal affective disorder and treated by light therapy. J Affect Disord 2015; 185:90-6. [PMID: 26148465 DOI: 10.1016/j.jad.2015.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 06/05/2015] [Accepted: 06/05/2015] [Indexed: 01/28/2023]
Abstract
BACKGROUND Animals show seasonal changes in the endocrine and immune system in response to winter stressors. Even though increased inflammation has been implicated in the pathophysiology of depression, whether immune disorder is a key mediator in seasonal affective depression (SAD) is unknown. Here, we hypothesized that short photoperiods in winter may induce inflammatory response, which contributes to SAD, and that light treatments should normalize immune function and improve depressive symptoms. METHODS Twenty patients with a diagnosis of SAD, and a score on the HAM-29 of 20 or higher were recruited for this study. Twenty-one healthy subjects with no personal and family history of psychiatric disorder were matched to patients according to age and sex. Patients and controls were sampled during winter between November and January, inclusive. A subset of SAD patients (N=13) was re-sampled after 4 weeks of light therapy. Blood samples were assayed for macrophage activity, lymphocyte proliferation and cytokine release. RESULTS SAD patients showed significantly higher macrophage activity and lower lymphocyte proliferation in winter compared to healthy subjects. The concentrations of macrophage-produced proinflammatory cytokines interleukin-1β and tumour necrosis factor-α, and T-helper (Th)-1 produced cytokine, interferon-γ were all significantly increased. In contrast, no significant changes in Th2-produced cytokines were observed. Light therapy significantly improved depressive scores, which was associated with attenuation of decreased lymphocyte functions, increased macrophage activity and level of proinflammatory cytokines. CONCLUSION SAD patients have increased macrophage and Th1 type responses in winter, and light therapy normalized immune functions and depressive symptoms. These results support an inflammatory hypothesis for SAD and an immunomodulatory role of light therapy.
Collapse
|