1
|
Alotaibi A, Travaglianti S, Wong W, Abou-Gharbia M, Childers W, Sari Y. Effects of MC-100093 on Ethanol Drinking and the Expression of Astrocytic Glutamate Transporters in the Mesocorticolimbic Brain Regions of Male and Female Alcohol-Preferring Rats. Neuroscience 2024; 552:89-99. [PMID: 38909675 PMCID: PMC11407434 DOI: 10.1016/j.neuroscience.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Chronic ethanol consumption increased extracellular glutamate concentrations in several reward brain regions. Glutamate homeostasis is regulated in majority by astrocytic glutamate transporter 1 (GLT-1) as well as the interactive role of cystine/glutamate antiporter (xCT). In this study, we aimed to determine the attenuating effects of a novel beta-lactam MC-100093, lacking the antibacterial properties, on ethanol consumption and GLT-1 and xCT expression in the subregions of nucleus accumbens (NAc core and NAc shell) and medial prefrontal cortex (Infralimbic, mPFC-IL and Prelimbic, mPFC-PL) in male and female alcohol-preferring (P) rats. Female and male rats were exposed to free access to ethanol (15% v/v) and (30% v/v) and water for five weeks, and on Week 6, rats were administered 100 mg/kg (i.p) of MC-100093 or saline for five days. MC-100093 reduced ethanol consumption in both male and female P rats from Day 1-5. Additionally, MC-100093 upregulated GLT-1 and xCT expression in the mPFC and NAc subregions as compared to ethanol-saline groups in female and male rats. Chronic ethanol intake reduced GLT-1 and xCT expression in the IL and PL in female and male rats, except there was no reduction in GLT-1 expression in the mPFC-PL in female rats. Although, MC-100093 upregulated GLT-1 and xCT expression in the subregions of NAc, we did not observe any reduction in GLT-1 and xCT expression with chronic ethanol intake in female rats. These findings strongly suggest that MC-100093 treatment effectively reduced ethanol intake and upregulated GLT-1 and xCT expression in the mPFC and NAc subregions in male and female P rats.
Collapse
Affiliation(s)
- Ahmed Alotaibi
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA
| | - Shelby Travaglianti
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA
| | - Woonyen Wong
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA
| | - Magid Abou-Gharbia
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | - Wayne Childers
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | - Youssef Sari
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA.
| |
Collapse
|
2
|
Gallardo J, Berríos-Cárcamo P, Ezquer F. Mesenchymal stem cells as a promising therapy for alcohol use disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 178:179-211. [PMID: 39523054 DOI: 10.1016/bs.irn.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Alcohol Use Disorder (AUD) is a highly prevalent medical condition characterized by impaired control over alcohol consumption, despite negative consequences on the individual's daily life and health. There is increasing evidence suggesting that chronic alcohol intake, like other addictive drugs, induces neuroinflammation and oxidative stress, disrupting glutamate homeostasis in the main brain areas related to drug addiction. This review explores the potential application of mesenchymal stem cells (MSCs)-based therapy for the treatment of AUD. MSCs secrete a broad array of anti-inflammatory and antioxidant molecules, thus, the administration of MSCs, or their secretome, could reduce neuroinflammation and oxidative stress in the brain. These effects correlate with an increase in the expression of the main glutamate transporter, GLT1, which, through the normalization of the extracellular glutamate levels, could mediate the inhibitory effect of MSCs' secretome on chronic alcohol consumption, thus highlighting GLT1 as a central target to reduce chronic alcohol consumption.
Collapse
Affiliation(s)
- Javiera Gallardo
- Center for Regenerative Medicine, Faculty of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Pablo Berríos-Cárcamo
- Center for Regenerative Medicine, Faculty of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Fernando Ezquer
- Center for Regenerative Medicine, Faculty of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile; Research Center for the Development of Novel Therapeutics Alternatives for Alcohol Use Disorders, Santiago, Chile.
| |
Collapse
|
3
|
Xu S, Kang UG. Region-specific alterations in the expression and phosphorylation of NMDA receptor subunits in the rat prefrontal cortex and dorsal striatum accompanying behavioral sensitization induced by cocaine and ethanol. Pharmacol Biochem Behav 2024; 236:173711. [PMID: 38253241 DOI: 10.1016/j.pbb.2024.173711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
Behavioral sensitization is defined as the enhanced behavioral response to drugs of abuse after repeated exposure, which can serve as a behavioral model of addiction. Our previous study demonstrated that behavioral cross-sensitization occurs between cocaine and ethanol, suggesting commonalities between these drugs. N-methyl-d-aspartate (NMDA) receptors play important roles in synaptic plasticity, learning, memory, and addiction-associated behaviors. However, little is known about whether NMDA receptor-mediated signaling regulation is a common feature following behavioral sensitizations induced by cocaine and ethanol. Thus, the present study examined the expression of phospho-S896-NR1, NR2A, and NR2B subunits in the prefrontal cortex and dorsal striatum following reciprocal cross-sensitization between cocaine and ethanol. We also examined the mRNA expression of the NR2A and NR2B subunits. In the ethanol-sensitized state, phosphorylation of NR1 and expression of NR2A and NR2B subunits were increased in both the prefrontal cortex and dorsal striatum. In the cocaine-sensitized state, phosphorylation of NR1 and expression of the NR2A and NR2B subunits were increased in the prefrontal cortex but not in the dorsal striatum. Corresponding changes in mRNA expression were observed in the ethanol-sensitized state but not in the cocaine-sensitized state. Acute treatment with either cocaine or ethanol had no effect on the phosphorylation and expression of NMDA receptor subunits in either the prefrontal cortex or dorsal striatum, regardless of the sensitization state. These results indicate a partially overlapping neural mechanism for cocaine and ethanol that may induce the development of behavioral sensitization.
Collapse
Affiliation(s)
- Shijie Xu
- Medical Research Center, Affiliated Cancer Hospital of Hainan Medical University, Haikou 570312, China; Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| | - Ung Gu Kang
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea; Department of Psychiatry and Behavioral Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| |
Collapse
|
4
|
Hamed K, El-Fiky SA, M Gawish A, R H Mohamed H, Khalil WKB, Huang X, Hasan M, Zafar A, Caprioli G. Assessing the Efficacy of Fenugreek Saponin Nanoparticles in Attenuating Nicotine-Induced Hepatotoxicity in Male Rats. ACS OMEGA 2023; 8:42722-42731. [PMID: 38024695 PMCID: PMC10653053 DOI: 10.1021/acsomega.3c05526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/14/2023] [Indexed: 12/01/2023]
Abstract
During smoking, nicotine, the most bountiful compound in cigarettes, is absorbed into the body by the lungs and quickly metabolized in the liver, causing three major adverse impacts such as toxic, neoplastic, and immunomodulatory effects. Saponins extracted from several plants are reported to exhibit various biological actions, such as anticancer effects. So, the potential protective effect of fenugreek saponin and nanofenugreek saponin against toxicity induced by nicotine in male rats was investigated in this study. Animals were exposed to nicotine (1.5 mg/kg/day) and/or treated with fenugreek saponin (25, 50, and 100 mg/kg/day) and nanofenugreek saponin (20, 40, and 80 mg/kg/day). Comet assays, histopathological examination, and analyses for the expression levels of glutamate aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) genes in liver tissues as well as the activity of glutathione peroxidase (GPx) and glutathione-S-transferase (GST) were conducted. The results revealed that nicotine treatment induced a significant increase in DNA damage, decrease in the expression levels of (GLAST) and (GLT-1) genes, and increase in histopathological alterations in liver tissues. Moreover, nicotine treatment induced a significant reduction in the activity of antioxidant enzymes GPx and GST. On the other hand, administration of fenugreek saponin or nanofenugreek saponin with nicotine significantly decreased the DNA damage, increased the expression levels of (GLAST) and (GLT-1) genes, and decreased histopathological alterations in liver tissues. Additionally, a significant increase in the activities of GPx and GST was observed. The results suggested that DNA damage and histological injuries induced by nicotine were decreased by the administration of fenugreek saponin or nanofenugreek saponin; thus, fenugreek saponin and nanofenugreek saponin can be used as ameliorative agents against nicotine toxicity.
Collapse
Affiliation(s)
- Karima
A. Hamed
- Department
of Cell Biology, National Research Centre, 33 El-Bohous St, 12622 Dokki, Giza, P.O. 12622, Egypt
| | - Saima A. El-Fiky
- Department
of Cell Biology, National Research Centre, 33 El-Bohous St, 12622 Dokki, Giza, P.O. 12622, Egypt
| | - Azza M Gawish
- Department
of Zoology, Faculty of Science, Cairo University, Cairo 12622, Giza, Egypt
| | - Hanan R H Mohamed
- Department
of Zoology, Faculty of Science, Cairo University, Cairo 12622, Giza, Egypt
| | - Wagdy K. B. Khalil
- Department
of Zoology, Faculty of Science, Cairo University, Cairo 12622, Giza, Egypt
| | - Xue Huang
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou 510225, P. R. China
| | - Murtaza Hasan
- Faculty
of Biological and Chemical Science, Department of Biotechnology, The Islamia University of Bahawalpur, Punjab 63100, Pakistan
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou 510225, P. R. China
| | - Ayesha Zafar
- Department
of Biomedical Engineering, College of Future Technology, Peking University, Beijing 510225, P. R. China
| | - Giovanni Caprioli
- Chemistry
Interdisciplinary Project (CHip), School of Pharmacy, University of Camerino, Camerino 62032, Italy
| |
Collapse
|
5
|
Esmaili-Shahzade-Ali-Akbari P, Ghaderi A, Hosseini SMM, Nejat F, Saeedi-Mofrad M, Karimi-Houyeh M, Ghattan A, Etemadi A, Rasoulian E, Khezri A. β_lactam antibiotics against drug addiction: A novel therapeutic option. Drug Dev Res 2023; 84:1411-1426. [PMID: 37602907 DOI: 10.1002/ddr.22110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/25/2023] [Accepted: 08/06/2023] [Indexed: 08/22/2023]
Abstract
Drug addiction as a problem for the health of the individual and the society is the result of a complex process in which there is an interaction between brain nuclei and neurotransmitters (such as glutamate). β-lactam antibiotics, due to their enhancing properties on the glutamate transporter glutamate transporter-1, can affect and counteract the addictive mechanisms of drugs through the regulation of extracellular glutamate. Since glutamate is a key neurotransmitter in the development of drug addiction, it seems that β-lactams can be considered as a promising treatment for addiction. However, more research in this field is necessary to identify other mechanisms involved in their effectiveness. This article is a review of the studies conducted on the effect of β-lactam administration in preventing the development of drug addiction, as well as their possible cellular and molecular mechanisms. This review suggests the clinical use of β-lactam antibiotics that have weak antimicrobial properties (such as clavulanic acid) in the treatment of drug dependence.
Collapse
Affiliation(s)
| | - Amir Ghaderi
- Department of Addiction Studies, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Fatemeh Nejat
- Department of Biology and Health Sciences, Meredith College, Raleigh, North Carolina, USA
| | | | | | - Alireza Ghattan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirreza Etemadi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Elham Rasoulian
- Department of Medical-Surgical Nursing, School of Nursing Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arina Khezri
- Department of Anesthesia, School of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
León BE, Peyton L, Essa H, Wieden T, Marion N, Childers WE, Abou-Gharbia M, Choi DS. A novel monobactam lacking antimicrobial activity, MC-100093, reduces sex-specific ethanol preference and depressive-like behaviors in mice. Neuropharmacology 2023; 232:109515. [PMID: 37001726 PMCID: PMC10144181 DOI: 10.1016/j.neuropharm.2023.109515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/24/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Several β-lactam derivatives upregulate astrocytic glutamate transporter type 1expression and are known to improve measures in models of mood and alcohol use disorders (AUD) through normalizing glutamatergic states. However, long-term, and high doses of β-lactams may cause adverse side effects for treating mood disorders and AUD. Studies suggest that MC-100093, a novel β-lactam lacking antimicrobial activity, rescues GLT1 expression. Thus, we sought to investigate whether MC-100093 improves affective behaviors and reduces voluntary ethanol drinking. We intraperitoneally administered MC-100093 (50 mg/kg) or vehicle once per day to C57BL/6J male and female mice (8-10 weeks old) over 6 days. We employed the open field test and the elevated plus maze to examine the effect of MC-100093 on anxiety-like behaviors. We assayed MC-100093's effects on depressive-like behaviors using the tail suspension and forced swim tests. Next, utilizing a separate cohort of male and female C57BL6 mice, we assessed the effects MC100093 treatment on voluntary ethanol drinking utilizing the 2-bottle choice continuous access drinking paradigm. After screening and selecting high-drinking mice, we systematically administered MC-100093 (50 mg/kg) or vehicle to the high-drinking mice over 6 days. Overall, we found that MC-100093 treatment resulted in sex-specific pharmacological effects with female mice displaying reduced innate depressive-like behaviors during the tail suspension and force swim testing juxtaposed with male treated mice who displayed no changes in tail suspension and a paradoxical increased depressive-like behavior during the forced swim testing. Additionally, we found that MC100093 treatment reduced female preference for 10% EtOH during the 2-bottle choice continuous access drinking with no effects of MC100093 treatment detected in male mice. Overall, this data suggests sex-specific regulation of innate depressive-like behavior and voluntary EtOH drinking by MC100093 treatment. Western blot analysis of the medial prefrontal cortex and hippocampus revealed no changes in male or female GLT1 protein abundance relative to GAPDH.
Collapse
Affiliation(s)
- Brandon Emanuel León
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA; Regenerative Sciences Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lee Peyton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Hesham Essa
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Tia Wieden
- Neuroscience Program, Mayo Clinic College of Medicine and Science, MN, 55905, USA
| | - Nicole Marion
- Neuroscience Program, Mayo Clinic College of Medicine and Science, MN, 55905, USA
| | - Wayne E Childers
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, 19140, USA
| | - Magid Abou-Gharbia
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, 19140, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA; Neuroscience Program, Mayo Clinic College of Medicine and Science, MN, 55905, USA; Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN, 59905, USA.
| |
Collapse
|
7
|
Quilaqueo ME, Adasme S, Solís-Egaña F, Quintanilla ME, Vásquez D, Morales P, Herrera-Marschitz M, Rivera-Meza M. The administration of Alda-1, an activator of ALDH2, inhibits relapse-like ethanol intake in female alcohol-preferring UChB rats. Life Sci 2023; 328:121876. [PMID: 37348813 DOI: 10.1016/j.lfs.2023.121876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
AIMS Alcohol relapse is a main limitation for the treatment of alcohol use disorders. Previous studies have shown that Alda-1, a pharmacological activator of ALDH2, inhibits both acquisition and chronic ethanol intake in rats; however, its effects on relapse-like ethanol intake are unknown. The aim of this study was to assess the effect of Alda-1 on post-deprivation and reaccess relapse-like ethanol intake in alcohol-preferring UChB rats. We also aimed to assess the possible mechanisms associated with the effects of Alda-1 by measuring the levels of glutamate transporter (GLT-1), oxidative stress and neuroinflammation markers in different regions of the mesocorticolimbic system. MAIN METHODS In Experiment I, UChB female rats were exposed for 100 days to voluntary ethanol intake followed by 2-weeks of ethanol withdrawal and 1 week of ethanol reaccess. Alda-1 (25 mg/kg, intragastric, i.g) or vehicle was administered daily for 14 days during the withdrawal/re-access period. Experiment II was similar to Experiment I, but after the withdrawal period, ethanol re-access was not allowed, and Alda-1 was administered during the last week of withdrawal. At the end of both experiments, the levels of GLT-1, oxidative stress (GSH, MDA), and neuroinflammation markers (GFAP, Iba-1) were assessed in nucleus accumbens and/or hippocampus. KEY FINDINGS The results showed that Alda-1 administration markedly blocked (90 %, p < 0.001) relapse-like ethanol intake in UChB rats. Alda-1 increased Iba-1 reactivity (microglial marker) in the NAc of ethanol-deprived rats. Alda-1 administration did not influence the levels of GLT-1, oxidative stress markers (MDA, GSH) or GFAP reactivity in the mesocorticolimbic system. SIGNIFICANCE These preclinical findings support the use of activators of ALDH2, such as Alda-1, as a potential pharmacological strategy in the treatment of alcohol relapse.
Collapse
Affiliation(s)
- María Elena Quilaqueo
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Chile
| | - Sofía Adasme
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Chile
| | - Fresia Solís-Egaña
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Chile
| | | | - David Vásquez
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Chile
| | - Paola Morales
- Program of Molecular and Clinical Pharmacology, Chile; Department of Neuroscience, Faculty of Medicine, University of Chile, Chile; Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago, Chile
| | | | - Mario Rivera-Meza
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Chile; Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago, Chile.
| |
Collapse
|
8
|
Quintanilla ME, Israel Y. Role of Metabolism on Alcohol Preference, Addiction, and Treatment. Curr Top Behav Neurosci 2023. [PMID: 37221350 DOI: 10.1007/7854_2023_422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Studies presented in this chapter show that: (1) in the brain, ethanol is metabolized by catalase to acetaldehyde, which condenses with dopamine forming salsolinol; (2) acetaldehyde-derived salsolinol increases the release of dopamine mediating, via opioid receptors, the reinforcing effects of ethanol during the acquisition of ethanol consumption, while (3) brain acetaldehyde does not influence the maintenance of chronic ethanol intake, it is suggested that a learned cue-induced hyperglutamatergic system takes precedence over the dopaminergic system. However, (4) following a prolonged ethanol deprivation, the generation of acetaldehyde in the brain again plays a role, contributing to the increase in ethanol intake observed during ethanol re-access, called the alcohol deprivation effect (ADE), a model of relapse behavior; (5) naltrexone inhibits the high ethanol intake seen in the ADE condition, suggesting that acetaldehyde-derived salsolinol via opioid receptors also contributes to the relapse-like drinking behavior. The reader is referred to glutamate-mediated mechanisms that trigger the cue-associated alcohol-seeking and that also contribute to triggering relapse.
Collapse
Affiliation(s)
- María Elena Quintanilla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Yedy Israel
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
- Centro de Medicina Regenerativa, ICM Clinica Alemana-Universidad de Desarrollo, Santiago, Chile
| |
Collapse
|
9
|
Fernández-Rodríguez S, Cano-Cebrián MJ, Esposito-Zapero C, Pérez S, Guerri C, Zornoza T, Polache A. N-Acetylcysteine normalizes brain oxidative stress and neuroinflammation observed after protracted ethanol abstinence: a preclinical study in long-term ethanol-experienced male rats. Psychopharmacology (Berl) 2023; 240:725-738. [PMID: 36708386 PMCID: PMC10006045 DOI: 10.1007/s00213-023-06311-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/04/2023] [Indexed: 01/29/2023]
Abstract
RATIONALE Using a preclinical model based on the Alcohol Deprivation Effect (ADE), we have reported that N-Acetylcysteine (NAC) can prevent the relapse-like drinking behaviour in long-term ethanol-experienced male rats. OBJECTIVES To investigate if chronic ethanol intake and protracted abstinence affect several glutamate transporters and whether NAC, administered during the withdrawal period, could restore the ethanol-induced brain potential dysfunctions. Furthermore, the antioxidant and anti-inflammatory effects of NAC during abstinence in rats under the ADE paradigm were also explored. METHODS The expression of GLT1, GLAST and xCT in nucleus accumbens (Nacc) and dorsal striatum (DS) of male Wistar was analysed after water and chronic ethanol intake. We used the model based on the ADE within another cohort of male Wistar rats. During the fourth abstinence period, rats were treated for 9 days with vehicle or NAC (60, 100 mg/kg; s.c.). The effects of NAC treatment on (i) glutamate transporters expression in the Nacc and DS, (ii) the oxidative status in the hippocampus (Hip) and amygdala (AMG) and (iii) some neuroinflammatory markers in prefrontal cortex (PFC) were tested. RESULTS NAC chronic administration during protracted abstinence restored oxidative stress markers (GSSG and GGSH/GSH) in the Hip. Furthermore, NAC was able to normalize some neuroinflammation markers in PFC without normalizing the observed downregulation of GLT1 and GLAST in Nacc. CONCLUSIONS NAC restores brain oxidative stress and neuroinflammation that we previously observed after protracted ethanol abstinence in long-term ethanol-experienced male rats. This NAC effect could be a plausible mechanism for its anti-relapse effect. Also, brain oxidative stress and neuroinflammation could represent and identify plausible targets for searching new anti-relapse pharmacotherapies.
Collapse
Affiliation(s)
- Sandra Fernández-Rodríguez
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Burjassot, 46100, Valencia, Spain
| | - María José Cano-Cebrián
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Burjassot, 46100, Valencia, Spain
| | - Claudia Esposito-Zapero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Burjassot, 46100, Valencia, Spain
| | - Salvador Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjassot, 46100, Valencia, Spain
| | - Consuelo Guerri
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, Valencia, Spain
| | - Teodoro Zornoza
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Burjassot, 46100, Valencia, Spain
| | - Ana Polache
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Burjassot, 46100, Valencia, Spain.
| |
Collapse
|
10
|
Abulseoud OA, Alasmari F, Hussein AM, Sari Y. Ceftriaxone as a Novel Therapeutic Agent for Hyperglutamatergic States: Bridging the Gap Between Preclinical Results and Clinical Translation. Front Neurosci 2022; 16:841036. [PMID: 35864981 PMCID: PMC9294323 DOI: 10.3389/fnins.2022.841036] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Dysregulation of glutamate homeostasis is a well-established core feature of neuropsychiatric disorders. Extracellular glutamate concentration is regulated by glutamate transporter 1 (GLT-1). The discovery of a beta-lactam antibiotic, ceftriaxone (CEF), as a safe compound with unique ability to upregulate GLT-1 sparked the interest in testing its efficacy as a novel therapeutic agent in animal models of neuropsychiatric disorders with hyperglutamatergic states. Indeed, more than 100 preclinical studies have shown the efficacy of CEF in attenuating the behavioral manifestations of various hyperglutamatergic brain disorders such as ischemic stroke, amyotrophic lateral sclerosis (ALS), seizure, Huntington’s disease, and various aspects of drug use disorders. However, despite rich and promising preclinical data, only one large-scale clinical trial testing the efficacy of CEF in patients with ALS is reported. Unfortunately, in that study, there was no significant difference in survival between placebo- and CEF-treated patients. In this review, we discussed the translational potential of preclinical efficacy of CEF based on four different parameters: (1) initiation of CEF treatment in relation to induction of the hyperglutamatergic state, (2) onset of response in preclinical models in relation to onset of GLT-1 upregulation, (3) mechanisms of action of CEF on GLT-1 expression and function, and (4) non-GLT-1-mediated mechanisms for CEF. Our detailed review of the literature brings new insights into underlying molecular mechanisms correlating the preclinical efficacy of CEF. We concluded here that CEF may be clinically effective in selected cases in acute and transient hyperglutamatergic states such as early drug withdrawal conditions.
Collapse
Affiliation(s)
- Osama A. Abulseoud
- Department of Psychiatry and Psychology, Alex School of Medicine at Mayo Clinic, Phoenix, AZ, United States
- *Correspondence: Osama A. Abulseoud,
| | - Fawaz Alasmari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH, United States
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdelaziz M. Hussein
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH, United States
- Youssef Sari,
| |
Collapse
|
11
|
Das SC, Althobaiti YS, Hammad AM, Alasmari F, Sari Y. Role of suppressing GLT‐1 and xCT in ceftriaxone‐induced attenuation of relapse‐like alcohol drinking in alcohol‐preferring rats. Addict Biol 2022; 27:e13178. [DOI: 10.1111/adb.13178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/22/2022] [Accepted: 04/08/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Sujan C. Das
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences University of Toledo Toledo OH USA
- Department of Psychiatry and Human Behavior University of California Irvine CA USA
| | - Yusuf S. Althobaiti
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences University of Toledo Toledo OH USA
- Department of Pharmacology and Toxicology, College of Pharmacy Taif University Taif Saudi Arabia
| | - Alaa M. Hammad
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences University of Toledo Toledo OH USA
- Department of Pharmacy, College of Pharmacy Al‐Zaytoonah University of Jordan Amman Jordan
| | - Fawaz Alasmari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences University of Toledo Toledo OH USA
- Department of Pharmacology and Toxicology, College of Pharmacy King Saud University Riyadh Saudi Arabia
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences University of Toledo Toledo OH USA
| |
Collapse
|
12
|
Rodd ZA, Engleman EA, Truitt WA, Burke AR, Molosh AI, Bell RL, Hauser SR. CNO administration increases dopamine and glutamate in the medial prefrontal cortex of wistar rats: Further concerns for the validity of the CNO-activated DREADD procedure. Neuroscience 2022; 491:176-184. [DOI: 10.1016/j.neuroscience.2022.03.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/03/2022] [Accepted: 03/23/2022] [Indexed: 12/14/2022]
|
13
|
Miczek KA, DiLeo A, Newman EL, Akdilek N, Covington HE. Neurobiological Bases of Alcohol Consumption After Social Stress. Curr Top Behav Neurosci 2022; 54:245-281. [PMID: 34964935 PMCID: PMC9698769 DOI: 10.1007/7854_2021_273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The urge to seek and consume excessive alcohol is intensified by prior experiences with social stress, and this cascade can be modeled under systematically controlled laboratory conditions in rodents and non-human primates. Adaptive coping with intermittent episodes of social defeat stress often transitions to maladaptive responses to traumatic continuous stress, and alcohol consumption may become part of coping responses. At the circuit level, the neural pathways subserving stress coping intersect with those for alcohol consumption. Increasingly discrete regions and connections within the prefrontal cortex, the ventral and dorsal striatum, thalamic and hypothalamic nuclei, tegmental areas as well as brain stem structures begin to be identified as critical for reacting to and coping with social stress while seeking and consuming alcohol. Several candidate molecules that modulate signals within these neural connections have been targeted in order to reduce excessive drinking and relapse. In spite of some early clinical failures, neuropeptides such as CRF, opioids, or oxytocin continue to be examined for their role in attenuating stress-escalated drinking. Recent work has focused on neural sites of action for peptides and steroids, most likely in neuroinflammatory processes as a result of interactive effects of episodic social stress and excessive alcohol seeking and drinking.
Collapse
Affiliation(s)
- Klaus A. Miczek
- Department of Psychology, Tufts University, Medford, MA, USA,Department of Neuroscience, Tufts University, Boston, MA, USA
| | - Alyssa DiLeo
- Department of Neuroscience, Tufts University, Boston, MA, USA
| | - Emily L. Newman
- Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - Naz Akdilek
- Department of Psychology, Tufts University, Medford, MA, USA
| | | |
Collapse
|
14
|
Effects of ceftriaxone on ethanol drinking and GLT-1 expression in ethanol dependence and relapse drinking. Alcohol 2021; 92:1-9. [PMID: 33465464 DOI: 10.1016/j.alcohol.2021.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/11/2020] [Accepted: 01/12/2021] [Indexed: 12/26/2022]
Abstract
Repeated cycles of chronic intermittent ethanol (CIE) exposure increase voluntary consumption of alcohol (ethanol) in mice. Previous reports from our laboratory show that CIE increases extracellular glutamate in the nucleus accumbens (NAc) and that manipulating accumbal glutamate concentrations will alter ethanol drinking, indicating that glutamate homeostasis plays a crucial role in ethanol drinking in this model. A number of studies have shown that ceftriaxone increases GLT-1 expression, the major glutamate transporter, and that treatment with this antibiotic reduces ethanol drinking. The present studies examined the effects of ceftriaxone on ethanol drinking and GLT-1 in a mouse model of ethanol dependence and relapse drinking. The results show that ceftriaxone did not influence drinking at any dose in either ethanol-dependent or non-dependent mice. Further, ceftriaxone did not increase GLT-1 expression in the accumbens core or shell, with the exception of the ethanol-dependent mice receiving the highest dose of ceftriaxone. Interestingly, ethanol-dependent mice treated with only vehicle displayed reduced expression of GLT-1 in the accumbens shell and of the presynaptic mGlu2 receptor in the accumbens core. The reduced expression of the major glutamate transporter (GLT-1), as well as a receptor that regulates glutamate release (mGlu2), may help explain, at least in part, increased glutamatergic transmission in this model of ethanol dependence and relapse drinking.
Collapse
|
15
|
Hammad AM, Alasmari F, Sari Y. Effect of Modulation of the Astrocytic Glutamate Transporters' Expression on Cocaine-Induced Reinstatement in Male P Rats Exposed to Ethanol. Alcohol Alcohol 2021; 56:210-219. [PMID: 33063090 PMCID: PMC11004936 DOI: 10.1093/alcalc/agaa104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 11/14/2022] Open
Abstract
AIM Reinforcing properties of ethanol and cocaine are mediated in part through the glutamatergic system. Extracellular glutamate concentration is strictly maintained through several glutamate transporters, such as glutamate transporter 1 (GLT-1), cystine/glutamate transporter (xCT) and glutamate aspartate transporter (GLAST). Previous findings revealed that cocaine and ethanol exposure downregulated GLT-1 and xCT, and that β-lactam antibiotics restored their expression. METHODS In this study, we investigated the effect of ampicillin/sulbactam (AMP/SUL) (200 mg/kg, i.p.), a β-lactam antibiotic, on cocaine-induced reinstatement and locomotor activity in male alcohol preferring (P) rats using free choice ethanol (15 and 30%, v/v) and water. We also investigated the effect of co-exposure to ethanol and cocaine (20 mg/kg, i.p.) on GLT-1, xCT and GLAST expression in the nucleus accumbens (NAc) core, NAc shell and dorsomedial prefrontal cortex (dmPFC). RESULTS Cocaine exposure decreased ethanol intake and preference. Cocaine and ethanol co-exposure acquired place preference and increased locomotor activity compared to ethanol-exposed rats. GLT-1 and xCT expression were downregulated after cocaine and ethanol co-exposure in the NAc core and shell, but not in dmPFC. AMP/SUL attenuated reinstatement to cocaine as well attenuated the decrease in locomotor activity and ethanol intake and preference. These effects were associated with upregulation of GLT-1 and xCT expression in the NAc core/shell and dmPFC. GLAST expression was not affected after ethanol and cocaine co-exposure or AMP/SUL treatment. CONCLUSION Our findings demonstrate that astrocytic glutamate transporters within the mesocorticolimbic area are critical targets in modulating cocaine-seeking behavior while being consuming ethanol.
Collapse
Affiliation(s)
- Alaa M Hammad
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Fawaz Alasmari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
16
|
Demery-Poulos C, Chambers JM. Genetic variation in alcoholism and opioid addiction susceptibility and treatment: a pharmacogenomic approach. AIMS MOLECULAR SCIENCE 2021. [DOI: 10.3934/molsci.2021016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
<abstract>
<p>Alcohol and opioid abuse have pervasive and detrimental consequences from the individual to societal level. The extent of genetic contribution to alcoholism has been studied for decades, yielding speculative and often inconsistent results since the previous discovery of two pharmacokinetic variants strongly protective against alcoholism. The neurobiology of addiction involves innumerate genes with combinatorial and epistatic interactions, creating a difficult landscape for concrete conclusions. In contrast, pharmacogenomic variation in the treatment of alcoholism yields more immediate clinical utility, while also emphasizing pathways crucial to the progression of addiction. An improved understanding of genetic predisposition to alcohol abuse has inherent significance for opioid addiction and treatment, as the two drugs induce the same reward pathway. This review outlines current knowledge, treatments, and research regarding genetic predisposition to alcoholism, focusing on pharmacodynamic variation within the dopaminergic system and shared implications for opioid abuse. Multifaceted and highly polygenic, the phenotype of addiction seems to grow more complex as new research extends the scope of its impact on the brain, body, and progeny.</p>
</abstract>
Collapse
|
17
|
Effects of N-acetylcysteine treatment on ethanol's rewarding properties and dopaminergic alterations in mesocorticolimbic and nigrostriatal pathways. Behav Pharmacol 2020; 32:239-250. [PMID: 33290342 DOI: 10.1097/fbp.0000000000000613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent reports have shown that N-acetylcysteine (N-AC) has beneficial effects in the treatment of cocaine and nicotine abuse. Considering the similar neurobiologic mechanisms involved in the development of addiction to different drugs, N-AC treatment could be useful in the treatment of ethanol abuse. The rewarding properties of the drugs of abuse plays an important role in the development of addiction and can be studied using the conditioned place preference (CPP) paradigm. Thus, to study the effects of N-AC treatment in the rewarding effects of ethanol, we investigated the effects of N-AC administration in the ethanol-induced CPP and neurochemical alterations within the mesocorticolimbic and the nigrostriatal dopaminergic pathways. Adult male Swiss mice were pretreated with N-AC (60 or 120 mg/kg intraperitoneal) and tested for the development, expression, or extinction of the ethanol-induced CPP. Another cohort of animals received N-AC (60 or 120 mg/kg intraperitoneal) 2-h before an acute administration of ethanol and had their brains removed for dopamine and its metabolites quantification in the mesocorticolimbic and nigrostriatal pathways. Pretreatment with N-AC (120 mg/kg) blocked the development of ethanol-induced CPP. On the other hand, N-AC at both doses did not alter the expression nor the extinction of ethanol-induced CPP. N-AC increased 3,4-dihydroxyphenylacetic acid content in the medial prefrontal cortex and dopaminergic turnover within the substantia nigra. Besides that, there was an increase in dopamine content in the nucleus accumbens of ethanol-treated animals. In summary, N-AC treatment blocked the development of ethanol CPP, without altering ethanol effects on dopaminergic neurotransmission.
Collapse
|
18
|
Bauer MR, Garcy DP, Boehm SL. Systemic Administration of the AMPA Receptor Antagonist, NBQX, Reduces Alcohol Drinking in Male C57BL/6J, But Not Female C57BL/6J or High-Alcohol-Preferring, Mice. Alcohol Clin Exp Res 2020; 44:2316-2325. [PMID: 32945559 DOI: 10.1111/acer.14461] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 09/04/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are ionotropic glutamate receptors that have been investigated for their role in modulating alcohol consumption. However, little is known about the role of AMPA receptors in the control of binge-like or free-access alcohol drinking in C57BL/6J or in selectively bred high-alcohol-preferring (HAP) mice. The purpose of this experiment was to assess the role of systemic administration of the AMPA receptor antagonist, 2,3-dioxo-6-nitro-7-sulfamoyl-benzo[f]quinoxaline (NBQX), on alcohol consumption using a model of binge-like drinking, drinking in the dark (DID) and free-access 2-bottle choice (2BC) in male and female C57BL/6J and HAP mice. METHODS C57BL/6J mice were allowed free access to 20% (v/v) alcohol for 2 hours each day beginning 3 hours into the dark cycle for 4 days. On day 5, mice were intraperitoneally injected with one of 4 doses of NBQX (0, 3, 10, or 30 mg/kg; n = 10) 15 minutes before alcohol presentation and were given 4-hour alcohol access (extended DID). HAP mice were given 24-hour free access to 10% (v/v) alcohol and water for 19 days. On day 20, mice were intraperitoneally injected with one of 4 doses of NBQX (0, 3, 10, or 30 mg/kg; n = 9) 15 minutes before alcohol and water presentation. RESULTS In the first 2 hours of DID, at 30 mg/kg, male, but not female C57BL/6J or HAP, mice drank significantly less alcohol compared with controls and 30 mg/kg NBQX did not alter saccharin intake in the males. Although male HAP mice drank significantly less alcohol than female mice following 10 mg/kg NBQX, neither sex exhibited drinking that differed significantly from controls. NBQX did not reduce locomotor behavior at any dose, sex, or genotype. CONCLUSIONS These data suggest that AMPA receptors play a key role in modulating binge-like alcohol consumption without altering saccharin consumption or general locomotion and that this effect is specific to sex and genotype.
Collapse
Affiliation(s)
- Meredith R Bauer
- From the, Department of Psychology, Indiana Alcohol Research Center, Indiana University - Purdue University Indianapolis, Indianapolis, Indiana
| | - Daniel P Garcy
- From the, Department of Psychology, Indiana Alcohol Research Center, Indiana University - Purdue University Indianapolis, Indianapolis, Indiana
| | - Stephen L Boehm
- From the, Department of Psychology, Indiana Alcohol Research Center, Indiana University - Purdue University Indianapolis, Indianapolis, Indiana
| |
Collapse
|
19
|
Oxidative Stress and Neuroinflammation as a Pivot in Drug Abuse. A Focus on the Therapeutic Potential of Antioxidant and Anti-Inflammatory Agents and Biomolecules. Antioxidants (Basel) 2020; 9:antiox9090830. [PMID: 32899889 PMCID: PMC7555323 DOI: 10.3390/antiox9090830] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022] Open
Abstract
Drug abuse is a major global health and economic problem. However, there are no pharmacological treatments to effectively reduce the compulsive use of most drugs of abuse. Despite exerting different mechanisms of action, all drugs of abuse promote the activation of the brain reward system, with lasting neurobiological consequences that potentiate subsequent consumption. Recent evidence shows that the brain displays marked oxidative stress and neuroinflammation following chronic drug consumption. Brain oxidative stress and neuroinflammation disrupt glutamate homeostasis by impairing synaptic and extra-synaptic glutamate transport, reducing GLT-1, and system Xc− activities respectively, which increases glutamatergic neurotransmission. This effect consolidates the relapse-promoting effect of drug-related cues, thus sustaining drug craving and subsequent drug consumption. Recently, promising results as experimental treatments to reduce drug consumption and relapse have been shown by (i) antioxidant and anti-inflammatory synthetic molecules whose effects reach the brain; (ii) natural biomolecules secreted by mesenchymal stem cells that excel in antioxidant and anti-inflammatory properties, delivered via non-invasive intranasal administration to animal models of drug abuse and (iii) potent anti-inflammatory microRNAs and anti-miRNAs which target the microglia and reduce neuroinflammation and drug craving. In this review, we address the neurobiological consequences of brain oxidative stress and neuroinflammation that follow the chronic consumption of most drugs of abuse, and the current and potential therapeutic effects of antioxidants and anti-inflammatory agents and biomolecules to reduce these drug-induced alterations and to prevent relapse.
Collapse
|
20
|
Buck SA, Torregrossa MM, Logan RW, Freyberg Z. Roles of dopamine and glutamate co-release in the nucleus accumbens in mediating the actions of drugs of abuse. FEBS J 2020; 288:1462-1474. [PMID: 32702182 DOI: 10.1111/febs.15496] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/30/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022]
Abstract
Projections of ventral tegmental area dopamine (DA) neurons to the medial shell of the nucleus accumbens have been increasingly implicated as integral to the behavioral and physiological changes involved in the development of substance use disorders (SUDs). Recently, many of these nucleus accumbens-projecting DA neurons were found to also release the neurotransmitter glutamate. This glutamate co-release from DA neurons is critical in mediating the effect of drugs of abuse on addiction-related behaviors. Potential mechanisms underlying the role(s) of dopamine/glutamate co-release in contributing to SUDs are unclear. Nevertheless, an important clue may relate to glutamate's ability to potentiate loading of DA into synaptic vesicles within terminals in the nucleus accumbens in response to drug-induced elevations in neuronal activity, enabling a more robust release of DA after stimulation. Here, we summarize how drugs of abuse, particularly cocaine, opioids, and alcohol, alter DA release in the nucleus accumbens medial shell, examine the potential role of DA/glutamate co-release in mediating these effects, and discuss future directions for further investigating these mechanisms.
Collapse
Affiliation(s)
- Silas A Buck
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mary M Torregrossa
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan W Logan
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Zachary Freyberg
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Vena AA, Zandy SL, Cofresí RU, Gonzales RA. Behavioral, neurobiological, and neurochemical mechanisms of ethanol self-administration: A translational review. Pharmacol Ther 2020; 212:107573. [PMID: 32437827 PMCID: PMC7580704 DOI: 10.1016/j.pharmthera.2020.107573] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2020] [Indexed: 12/16/2022]
Abstract
Alcohol use disorder has multiple characteristics including excessive ethanol consumption, impaired control over drinking behaviors, craving and withdrawal symptoms, compulsive seeking behaviors, and is considered a chronic condition. Relapse is common. Determining the neurobiological targets of ethanol and the adaptations induced by chronic ethanol exposure is critical to understanding the clinical manifestation of alcohol use disorders, the mechanisms underlying the various features of the disorder, and for informing medication development. In the present review, we discuss ethanol's interactions with a variety of neurotransmitter systems, summarizing findings from preclinical and translational studies to highlight recent progress in the field. We then describe animal models of ethanol self-administration, emphasizing the value, limitations, and validity of commonly used models. Lastly, we summarize the behavioral changes induced by chronic ethanol self-administration, with an emphasis on cue-elicited behavior, the role of ethanol-related memories, and the emergence of habitual ethanol seeking behavior.
Collapse
Affiliation(s)
- Ashley A Vena
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, United States of America
| | | | - Roberto U Cofresí
- Psychological Sciences, University of Missouri, United States of America
| | - Rueben A Gonzales
- Division of Pharmacology and Toxicology, College of Pharmacy and Institute for Neuroscience, The University of Texas at Austin, United States of America.
| |
Collapse
|
22
|
Alasmari F, Alhaddad H, Wong W, Bell RL, Sari Y. Ampicillin/Sulbactam Treatment Modulates NMDA Receptor NR2B Subunit and Attenuates Neuroinflammation and Alcohol Intake in Male High Alcohol Drinking Rats. Biomolecules 2020; 10:biom10071030. [PMID: 32664441 PMCID: PMC7407831 DOI: 10.3390/biom10071030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022] Open
Abstract
Exposure to ethanol commonly manifests neuroinflammation. Beta (β)-lactam antibiotics attenuate ethanol drinking through upregulation of astroglial glutamate transporters, especially glutamate transporter-1 (GLT-1), in the mesocorticolimbic brain regions, including the nucleus accumbens (Acb). However, the effect of β-lactam antibiotics on neuroinflammation in animals chronically exposed to ethanol has not been fully investigated. In this study, we evaluated the effects of ampicillin/sulbactam (AMP/SUL, 100 and 200 mg/kg, i.p.) on ethanol consumption in high alcohol drinking (HAD1) rats. Additionally, we investigated the effects of AMP/SUL on GLT-1 and N-methyl-d-aspartate (NMDA) receptor subtypes (NR2A and NR2B) in the Acb core (AcbCo) and Acb shell (AcbSh). We found that AMP/SUL at both doses attenuated ethanol consumption and restored ethanol-decreased GLT-1 and NR2B expression in the AcbSh and AcbCo, respectively. Moreover, AMP/SUL (200 mg/kg, i.p.) reduced ethanol-increased high mobility group box 1 (HMGB1) and receptor for advanced glycation end-products (RAGE) expression in the AcbSh. Moreover, both doses of AMP/SUL attenuated ethanol-elevated tumor necrosis factor-alpha (TNF-α) in the AcbSh. Our results suggest that AMP/SUL attenuates ethanol drinking and modulates NMDA receptor NR2B subunits and HMGB1-associated pathways.
Collapse
Affiliation(s)
- Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA; (H.A.); (W.W.)
| | - Hasan Alhaddad
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA; (H.A.); (W.W.)
| | - Woonyen Wong
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA; (H.A.); (W.W.)
| | - Richard L. Bell
- Department of Psychiatry and Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence: (R.L.B.); (Y.S.); Tel.: +317-278-8407 (R.L.B.); +419-383-1507 (Y.S.)
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA; (H.A.); (W.W.)
- Correspondence: (R.L.B.); (Y.S.); Tel.: +317-278-8407 (R.L.B.); +419-383-1507 (Y.S.)
| |
Collapse
|
23
|
Giacometti LL, Barker JM. Sex differences in the glutamate system: Implications for addiction. Neurosci Biobehav Rev 2020; 113:157-168. [PMID: 32173404 DOI: 10.1016/j.neubiorev.2020.03.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 01/21/2020] [Accepted: 03/08/2020] [Indexed: 12/21/2022]
Abstract
Clinical and preclinical research have identified sex differences in substance use and addiction-related behaviors. Historically, substance use disorders are more prevalent in men than women, though this gap is closing. Despite this difference, women appear to be more susceptible to the effects of many drugs and progress to substance abuse treatment more quickly than men. While the glutamate system is a key regulator of addiction-related behaviors, much of the work implicating glutamate signaling and glutamatergic circuits has been conducted in men and male rodents. An increasing number of studies have identified sex differences in drug-induced glutamate alterations as well as sex and estrous cycle differences in drug seeking behaviors. This review will describe sex differences in the glutamate system with an emphasis on implications for substance use disorders, highlighting the gaps in our current understanding of how innate and drug-induced alterations in the glutamate system may contribute to sex differences in addiction-related behaviors.
Collapse
Affiliation(s)
- L L Giacometti
- Department of Pharmacology and Physiology, Drexel University College of Medicine, United States.
| | - J M Barker
- Department of Pharmacology and Physiology, Drexel University College of Medicine, United States.
| |
Collapse
|
24
|
Waeiss RA, Knight CP, Engleman EA, Hauser SR, Rodd ZA. Co-administration of ethanol and nicotine heightens sensitivity to ethanol reward within the nucleus accumbens (NAc) shell and increasing NAc shell BDNF is sufficient to enhance ethanol reward in naïve Wistar rats. J Neurochem 2020; 152:556-569. [PMID: 31721205 PMCID: PMC10826843 DOI: 10.1111/jnc.14914] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/26/2022]
Abstract
Alcohol use disorder most commonly presents as a polydrug disorder where greater than 85% are estimated to smoke. EtOH and nicotine (NIC) co-abuse or exposure results in unique neuroadaptations that are linked to behaviors that promote drug use. The current experiments aimed to identify neuroadaptations within the mesolimbic pathway produced by concurrent EtOH and NIC exposure. The experiments used four overall groups of male Wistar rats consisting of vehicle, EtOH or NIC alone, and EtOH+NIC. Drug exposure through direct infusion into the posterior ventral tegmental area (pVTA) stimulated release of glutamate and dopamine in the nucleus accumbens (NAc) shell, which was quantified through high-performance liquid chromatography. Additionally, brain-derived neurotrophic factor (BDNF) protein levels were measured via enzyme-linked immunosorbent assay (ELISA). A second experiment investigated the effects of drug pretreatment within the pVTA on the reinforcing properties of EtOH within the NAc shell through intracranial self-administration (ICSA). The concluding experiment evaluated the effect of NAc shell pretreatment with BDNF on EtOH reward utilizing ICSA within that region. The data indicated that only EtOH+NIC administration into the pVTA simultaneously increased glutamate, dopamine, and BDNF in the NAc shell. Moreover, only pVTA pretreatment with EtOH+NIC enhanced the reinforcing properties of EtOH in the NAc shell. BDNF pretreatment in the NAc shell was also sufficient to enhance the reinforcing properties of EtOH in the NAc shell. The collected data suggest that concurrent EtOH+NIC exposure results in a distinct neurochemical response and neuroadaptations within the mesolimbic pathway that alter EtOH reward.
Collapse
Affiliation(s)
- Robert A Waeiss
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Christopher P Knight
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Eric A Engleman
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sheketha R Hauser
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Zachary A Rodd
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
25
|
Blaker AL, Moore ER, Yamamoto BK. Serial exposure to ethanol drinking and methamphetamine enhances glutamate excitotoxicity. J Neurochem 2019; 151:749-763. [PMID: 31478210 DOI: 10.1111/jnc.14861] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/05/2019] [Accepted: 08/26/2019] [Indexed: 12/22/2022]
Abstract
A significant comorbidity exists between alcohol and methamphetamine (Meth) abuse but the neurochemical consequences of this co-abuse are unknown. Alcohol and Meth independently and differentially affect glutamatergic transmission but the unique effects of their serial exposure on glutamate signaling in mediating damage to dopamine neurons are unknown. Sprague-Dawley rats had intermittent voluntary access to 10% ethanol (EtOH) every other day and water over 28 days and were then administered a binge injection regimen of Meth or saline. EtOH drinking decreased the glutamate aspartate transporter and increased basal extracellular concentrations of glutamate within the striatum when measured after the last day of drinking. Ceftriaxone is known to increase the expression and/or activity of glutamate transporters in the brain and prevented both the decreases in glutamate aspartate transporter and the increases in basal extracellular glutamate when administered during EtOH drinking. EtOH drinking also exacerbated the acute increases in extracellular glutamate observed upon Meth exposure, the subsequent increases in spectrin proteolysis, and the long-term decreases in dopamine content in the striatum, all of which were attenuated by ceftriaxone administration during EtOH drinking only. These results implicate EtOH-induced increases in extracellular glutamate and corresponding decreases in glutamate uptake as mechanisms that contribute to the vulnerability produced by EtOH drinking and the unique neurotoxicity observed after serial exposure to Meth that is not observed with either drug alone. Open Science: This manuscript was awarded with the Open Materials Badge For more information see: https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Amanda L Blaker
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Elizabeth R Moore
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Bryan K Yamamoto
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
26
|
Fritz BM, Muñoz B, Atwood BK. Genetic Selection for Alcohol Preference in Mice Alters Dorsal Striatum Neurotransmission. Alcohol Clin Exp Res 2019; 43:2312-2321. [PMID: 31491046 DOI: 10.1111/acer.14187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/26/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Although it is widely acknowledged that the risk of developing an alcohol use disorder (AUD) is strongly influenced by genetic factors, very little is known about how this genetic predisposition may alter neurotransmission in a way that promotes AUD susceptibility. The dorsal striatum has garnered increased attention as a brain region of interest in AUD development given its significant roles in goal-directed and habitual behavior. METHODS In the present work, dorsal striatal neurotransmission parameters were measured in preclinical mouse models of high and low AUD risk. We performed brain slice whole-cell patch clamp electrophysiological recordings from medium spiny neurons (MSNs) in the dorsomedial (DMS) and dorsolateral (DLS) striatum of naïve adult male and female selectively bred high- and low-alcohol-preferring lines of mice (HAP and LAP). RESULTS We found that MSNs of HAP mice were significantly more excitable than those of LAP mice, specifically in the DLS. Additionally, the frequencies of spontaneous glutamate- and GABA-mediated currents were both elevated in HAP mice relative to LAP mice in both dorsal striatal subregions, whereas amplitude differences were more variable between lines and subregions. AMPAR/NMDAR current ratios were significantly lower in HAP mice in both DLS and DMS. CONCLUSIONS Collectively, these results suggest that genetic predisposition for high or low alcohol consumption produces significantly different basal functional states within both DLS and DMS which may be important factors in the behavioral phenotypes of HAP and LAP mice.
Collapse
Affiliation(s)
- Brandon M Fritz
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Braulio Muñoz
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brady K Atwood
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
27
|
Genders SG, Scheller KJ, Jaehne EJ, Turner BJ, Lawrence AJ, Brunner SM, Kofler B, van den Buuse M, Djouma E. GAL 3 receptor knockout mice exhibit an alcohol-preferring phenotype. Addict Biol 2019; 24:886-897. [PMID: 29984872 DOI: 10.1111/adb.12641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/08/2018] [Accepted: 05/16/2018] [Indexed: 11/28/2022]
Abstract
Galanin is a neuropeptide which mediates its effects via three G-protein coupled receptors (GAL1-3 ). Administration of a GAL3 antagonist reduces alcohol self-administration in animal models while allelic variation in the GAL3 gene has been associated with an increased risk of alcohol use disorders in diverse human populations. Based on the association of GAL3 with alcoholism, we sought to characterize drug-seeking behavior in GAL3 -deficient mice for the first time. In the two-bottle free choice paradigm, GAL3 -KO mice consistently showed a significantly increased preference for ethanol over water when compared to wildtype littermates. Furthermore, male GAL3 -KO mice displayed significantly increased responding for ethanol under operant conditions. These differences in alcohol seeking behavior in GAL3 -KO mice did not result from altered ethanol metabolism. In contrast to ethanol, GAL3 -KO mice exhibited similar preference for saccharin and sucrose over water, and a similar preference for a high fat diet over a low fat diet as wildtype littermates. No differences in cognitive and locomotor behaviors were observed in GAL3 -KO mice to account for increased alcohol seeking behavior. Overall, these findings suggest genetic ablation of GAL3 in mice increases alcohol consumption.
Collapse
Affiliation(s)
- Shannyn G. Genders
- School of Life Sciences, Department of Physiology, Anatomy and Microbiology; La Trobe University; Australia
| | - Karlene J. Scheller
- School of Life Sciences, Department of Physiology, Anatomy and Microbiology; La Trobe University; Australia
| | - Emily J. Jaehne
- School of Psychology and Public Health, Department of Psychology; La Trobe University; Australia
| | - Bradley J. Turner
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Australia
| | - Andrew J. Lawrence
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Australia
| | - Susanne M. Brunner
- Laura Bassi Centre of Expertise-Therapeutic Application of Neuropeptides (THERAPEP), Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Pediatrics; Paracelsus Medical University; Austria
| | - Barbara Kofler
- Laura Bassi Centre of Expertise-Therapeutic Application of Neuropeptides (THERAPEP), Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Pediatrics; Paracelsus Medical University; Austria
| | - Maarten van den Buuse
- School of Psychology and Public Health, Department of Psychology; La Trobe University; Australia
- Department of Pharmacology; University of Melbourne; Australia
- The College of Public health, Medical and Veterinary Sciences; James Cook University; Australia
| | - Elvan Djouma
- School of Life Sciences, Department of Physiology, Anatomy and Microbiology; La Trobe University; Australia
| |
Collapse
|
28
|
Effects of Ethanol Exposure and Withdrawal on Neuronal Morphology in the Agranular Insular and Prelimbic Cortices: Relationship with Withdrawal-Related Structural Plasticity in the Nucleus Accumbens. Brain Sci 2019; 9:brainsci9080180. [PMID: 31357611 PMCID: PMC6721441 DOI: 10.3390/brainsci9080180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
The present study investigated the effects of chronic intermittent ethanol exposure and withdrawal on dendritic morphology and spine density in the agranular insular and prelimbic cortices. Adult male Sprague–Dawley rats were passively exposed to vaporized ethanol (~37 mg/L; 12 h/day) or air (control) for ten consecutive days. Dendritic length, branching, and spine density were quantified in layer II/III pyramidal neurons 24 hours or seven days following the final ethanol exposure. Compared to unexposed control animals there were structural alterations on neurons in the prelimbic cortex, and to a lesser extent the agranular insular cortex. The most prominent ethanol-related differences were the transient increases in dendritic length and branching in prelimbic neurons at 24 h post-cessation, and increased mushroom-shaped spines at seven days post-cessation. The results obtained in the prelimbic cortex are the opposite of those previously reported in the nucleus accumbens core (Peterson, et al. 2015), suggesting that these regions undergo distinct functional adaptations following ethanol exposure and withdrawal.
Collapse
|
29
|
Lebourgeois S, González-Marín MC, Antol J, Naassila M, Vilpoux C. Evaluation of N-acetylcysteine on ethanol self-administration in ethanol-dependent rats. Neuropharmacology 2019; 150:112-120. [DOI: 10.1016/j.neuropharm.2019.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 02/15/2019] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
|
30
|
Role of glutamatergic system and mesocorticolimbic circuits in alcohol dependence. Prog Neurobiol 2018; 171:32-49. [PMID: 30316901 DOI: 10.1016/j.pneurobio.2018.10.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/08/2018] [Accepted: 10/08/2018] [Indexed: 02/06/2023]
Abstract
Emerging evidence demonstrates that alcohol dependence is associated with dysregulation of several neurotransmitters. Alterations in dopamine, glutamate and gamma-aminobutyric acid release are linked to chronic alcohol exposure. The effects of alcohol on the glutamatergic system in the mesocorticolimbic areas have been investigated extensively. Several studies have demonstrated dysregulation in the glutamatergic systems in animal models exposed to alcohol. Alcohol exposure can lead to an increase in extracellular glutamate concentrations in mesocorticolimbic brain regions. In addition, alcohol exposure affects the expression and functions of several glutamate receptors and glutamate transporters in these brain regions. In this review, we discussed the effects of alcohol exposure on glutamate receptors, glutamate transporters and glutamate homeostasis in each area of the mesocorticolimbic system. In addition, we discussed the genetic aspect of alcohol associated with glutamate and reward circuitry. We also discussed the potential therapeutic role of glutamate receptors and glutamate transporters in each brain region for the treatment of alcohol dependence. Finally, we provided some limitations on targeting the glutamatergic system for potential therapeutic options for the treatment alcohol use disorders.
Collapse
|
31
|
Windisch KA, Czachowski CL. Effects of group II metabotropic glutamate receptor modulation on ethanol- and sucrose-seeking and consumption in the rat. Alcohol 2018; 66:77-85. [PMID: 29220747 DOI: 10.1016/j.alcohol.2017.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 11/30/2022]
Abstract
Previous studies suggest that group II metabotropic glutamate receptors (mGluR2/3) are involved in regulating ethanol-seeking and consumption. The mGluR2/3 agonist LY379268 (LY37) and selective mGluR2 positive allosteric modulator biphenyl‑indanone A (BINA) were used to investigate the relative contribution of mGlu2 and mGlu3 receptors on ethanol- and sucrose-seeking and consumption. A microinjection study was then performed to examine the role of nucleus accumbens (NAc) core mGluR2/3 on ethanol-seeking. For the systemic experiments, separate groups of male Wistar rats [LY37 (0-2.0 mg/kg); BINA (0-20 mg/kg)] were trained to complete a response requirement (RR) resulting in access to 10% ethanol or 2% sucrose (in separate groups) for a 20‑min drinking period. Animals then underwent consummatory testing (weekly drug injections with RR1) followed by appetitive testing (weekly drug injections followed by extinction session). A separate group of male Wistar rats was surgically implanted with bilateral guide cannulae directed toward the NAc core and had weekly microinjections followed by an extinction session. Systemic administration of the mGluR2/3 agonist LY37 significantly reduced ethanol- and sucrose-seeking. The same treatment also reduced sucrose consumption and body weight (24‑h post injection). Systemic administration of the selective mGluR2 PAM BINA, however, had no effect on either seeking or consumption of ethanol or sucrose. Intra-accumbens core LY37 significantly reduced ethanol-seeking. These findings suggest that systemic mGluR2/3 agonism, but not allosteric modulation of mGluR2, reduces reinforcer-seeking. In particular, NAc core group II mGluR may be involved in regulating ethanol-seeking.
Collapse
Affiliation(s)
- Kyle A Windisch
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.
| | - Cristine L Czachowski
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| |
Collapse
|
32
|
Cuzon Carlson VC. GABA and Glutamate Synaptic Coadaptations to Chronic Ethanol in the Striatum. Handb Exp Pharmacol 2018; 248:79-112. [PMID: 29460153 DOI: 10.1007/164_2018_98] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Alcohol (ethanol) is a widely used and abused drug with approximately 90% of adults over the age of 18 consuming alcohol at some point in their lifetime. Alcohol exerts its actions through multiple neurotransmitter systems within the brain, most notably the GABAergic and glutamatergic systems. Alcohol's actions on GABAergic and glutamatergic neurotransmission have been suggested to underlie the acute behavioral effects of ethanol. The striatum is the primary input nucleus of the basal ganglia that plays a role in motor and reward systems. The effect of ethanol on GABAergic and glutamatergic neurotransmission within striatal circuitry has been thought to underlie ethanol taking, seeking, withdrawal and relapse. This chapter reviews the effects of ethanol on GABAergic and glutamatergic transmission, highlighting the dynamic changes in striatal circuitry from acute to chronic exposure and withdrawal.
Collapse
|
33
|
GABA Uptake Inhibition Reduces In Vivo Extraction Fraction in the Ventral Tegmental Area of Long Evans Rats Measured by Quantitative Microdialysis Under Transient Conditions. Neurochem Res 2017; 43:306-315. [PMID: 29127598 DOI: 10.1007/s11064-017-2424-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/17/2017] [Accepted: 10/21/2017] [Indexed: 10/18/2022]
Abstract
Inhibitory signaling in the ventral tegmental area (VTA) is involved in the mechanism of action for many drugs of abuse. Although drugs of abuse have been shown to alter extracellular γ-aminobutyric acid (GABA) concentration in the VTA, knowledge on how uptake mechanisms are regulated in vivo is limited. Quantitative (no-net-flux) microdialysis is commonly used to examine the extracellular concentration and clearance of monoamine neurotransmitters, however it is unclear whether this method is sensitive to changes in clearance for amino acid neurotransmitters such as GABA. The purpose of this study was to determine whether changes in GABA uptake are reflected by in vivo extraction fraction within the VTA. Using quantitative (no-net-flux) microdialysis adapted for transient conditions, we examined the effects of local perfusion with the GABA uptake inhibitor, nipecotic acid, in the VTA of Long Evans rats. Basal extracellular GABA concentration and in vivo extraction fraction were 44.4 ± 1.9 nM (x-intercepts from 4 baseline regressions using a total of 24 rats) and 0.19 ± 0.01 (slopes from 4 baseline regressions using a total of 24 rats), respectively. Nipecotic acid (50 μM) significantly increased extracellular GABA concentration to 170 ± 4 nM and reduced in vivo extraction fraction to 0.112 ± 0.003. Extraction fraction returned to baseline following removal of nipecotic acid from the perfusate. Conventional microdialysis substantially underestimated the increase of extracellular GABA concentration due to nipecotic acid perfusion compared with that obtained from the quantitative analysis. Together, these results show that inhibiting GABA uptake mechanisms within the VTA alters in vivo extraction fraction measured using microdialysis and that in vivo extraction fraction may be an indirect measure of GABA clearance.
Collapse
|
34
|
Ding ZM, Ingraham CM, Hauser SR, Lasek AW, Bell RL, McBride WJ. Reduced Levels of mGlu2 Receptors within the Prelimbic Cortex Are Not Associated with Elevated Glutamate Transmission or High Alcohol Drinking. Alcohol Clin Exp Res 2017; 41:1896-1906. [PMID: 28858384 PMCID: PMC5659915 DOI: 10.1111/acer.13488] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/23/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND A Grm2 cys407* stop codon mutation, which results in a loss of the metabotropic glutamate 2 (mGlu2) receptor protein, was identified as being associated with high alcohol drinking by alcohol-preferring (P) rats. The objectives of the current study were to characterize the effects of reduced levels of mGlu2 receptors on glutamate transmission and alcohol drinking. METHODS Quantitative no-net-flux microdialysis was used to test the hypothesis that basal extracellular glutamate levels in the prelimbic (PL) cortex and nucleus accumbens shell (NACsh) will be higher in P than Wistar rats. A lentiviral-delivered short-hairpin RNA (shRNA)-mediated knockdown was used to test the hypothesis that reduced levels of mGlu2 receptors within the PL cortex will increase voluntary alcohol drinking by Wistar rats. A linear regression analysis was used to test the hypothesis that there will be a significant correlation between the Grm2 cys407* mutation and level of alcohol intake. RESULTS Extracellular glutamate concentrations within the PL cortex (3.6 ± 0.6 vs. 6.4 ± 0.6 μM) and NACsh (3.2 ± 0.4 vs. 6.6 ± 0.6 μM) were significantly lower in female P than female Wistar rats. Western blot detected the presence of mGlu2 receptors in these regions of female Wistar rats, but not female P rats. Micro-infusion of shRNAs into the PL cortex significantly reduced local mGlu2 receptor levels (by 40%), but did not alter voluntary alcohol drinking in male Wistar rats. In addition, there was no significant correlation between the Grm2 mutation and alcohol intake in 36 rodent lines (r = 0.29, p > 0.05). CONCLUSIONS Collectively, these results suggest a lack of association between the loss of mGlu2 receptors and glutamate transmission in the NACsh and PL cortex of female P rats, and between the level of mGlu2 receptors in the PL cortex and alcohol drinking of male Wistar rats.
Collapse
Affiliation(s)
- Zheng-Ming Ding
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Cynthia M. Ingraham
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Sheketha R. Hauser
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Amy W. Lasek
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612
| | - Richard L. Bell
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202
| | - William J. McBride
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
35
|
Ostroumov A, Dani JA. Convergent Neuronal Plasticity and Metaplasticity Mechanisms of Stress, Nicotine, and Alcohol. Annu Rev Pharmacol Toxicol 2017; 58:547-566. [PMID: 28977763 DOI: 10.1146/annurev-pharmtox-010617-052735] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stress and tobacco smoking are risk factors for alcoholism, but the underlying neural mechanisms are not well understood. Although stress, nicotine, and alcohol have broad, individual effects in the brain, some of their actions converge onto the same mechanisms and circuits. Stress and nicotine augment alcohol-related behaviors, in part via modulation of alcohol-evoked neuronal plasticity and metaplasticity mechanisms. Stress modulates alcohol-evoked plasticity via the release of signaling molecules that influence synaptic transmission. Nicotine also activates some of the same signaling molecules, cells, and circuits, producing a convergence of both stress and nicotine onto common plasticity mechanisms that influence alcohol self-administration. We describe several forms of alcohol-induced plasticity, including classic Hebbian plasticity at glutamatergic synapses, and we highlight less appreciated forms, such as non-Hebbian and GABAergic synaptic plasticity. Risk factors such as stress and nicotine initiate lasting neural changes that modify subsequent alcohol-induced synaptic plasticity and increase the vulnerability to alcohol addiction.
Collapse
Affiliation(s)
- Alexey Ostroumov
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, Philadelphia, Pennsylvania 19104, USA; ,
| | - John A Dani
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, Philadelphia, Pennsylvania 19104, USA; ,
| |
Collapse
|
36
|
Heymann D, Stern Y, Cosentino S, Tatarina-Nulman O, Dorrejo JN, Gu Y. The Association Between Alcohol Use and the Progression of Alzheimer's Disease. Curr Alzheimer Res 2017; 13:1356-1362. [PMID: 27628432 DOI: 10.2174/1567205013666160603005035] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 04/30/2016] [Accepted: 05/28/2016] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To examine the relationship between alcohol, both the amount and type, and cognitive decline in a cohort of Alzheimer's disease (AD) patients. METHODS A cohort of 360 patients with early AD in New York, Boston, Baltimore and Paris were followed-up biannually for up to 19.28 years. At each visit, the cognitive profile of the patients was assessed using the modified Mini-Mental State Examination (mMMSE), and patients' alcohol intake, including beverage type, was reported by patients' primary caregivers. General estimating equation analysis was used to determine whether baseline alcohol use was associated with the rate of cognitive decline. RESULTS Heavy drinkers (8 or more alcoholic drinks/week) had a faster cognitive decline, deteriorating 1.849 more points on their mMMSE score annually compared to abstainers (P = 0.001), or 2.444 more points compared to mild-moderate drinkers (1-7 alcoholic drinks/week) (P = 0.008). There was no significant difference when comparing mild-moderate drinkers to abstainers. Increasing standard drinks of hard liquor, but not beer or wine, was also associated with a faster rate of cognitive decline (β = -0.117 P = 0.001). CONCLUSION Heavy alcohol consumption and more hard liquor are associated with a faster rate of cognitive decline in AD patients, suggesting that they may hasten progression of AD. Our results suggest that alcohol drinking habits might alter the course of AD.
Collapse
Affiliation(s)
| | | | | | | | | | - Yian Gu
- The Taub Institute for Research in Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA.
| |
Collapse
|
37
|
de Paiva Lima C, da Silva E Silva DA, Damasceno S, Ribeiro AF, Rocha CS, Berenguer de Matos AH, Correia D, Boerngen-Lacerda R, Brunialti Godard AL. Loss of control over the ethanol consumption: differential transcriptional regulation in prefrontal cortex. J Neurogenet 2017; 31:170-177. [PMID: 28714806 DOI: 10.1080/01677063.2017.1349121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Alcohol use disorder (AUD) is a complex multifactorial disease with heritability of ∼50% and corresponds to the state in which the body triggers a reinforcement or reward compulsive behavior due to ethanol consumption, even when faced with negative consequences. Although several studies have shown the impact of high ethanol intake on the prefrontal cortex (PFC) gene expression, few have addressed the relationship between the patterns of gene expression underlying the compulsive behaviour associated with relapsing. In this study, we used a chronic three-bottle free-choice mouse model to investigate the PFC transcriptome in three different groups of mice drinkers: 'Light drinkers' (preference for water throughout the experiment); 'Heavy drinkers' (preference for ethanol with a non-compulsive intake), and 'Inflexible drinkers' (preference for ethanol with a compulsive drinking component). Our aim was to correlate the intake patterns observed in this model with gene expression changes in the PFC, a brain region critical for the development and maintenance of alcohol addiction. We found that the Camk2a gene showed a downregulated profile only in the Inflexible when compared to the Light drinkers group, the Camk2n1 and Pkp2 genes showed an upregulated profile only in the Inflexible drinkers when compared to the Control group, and the Gja1 gene showed an upregulated profile in the Light and Inflexible drinkers when compared to the Control group. These different transcription patterns have been associated to the presence of alcohol, in the Camk2n1 and Gja1 genes; to the amount of ethanol consumed, in the Camk2a gene; and to the loss of control in the alcohol consumption, in the Pkp2 gene. Here, we provide, for the first time, the potential involvement of the Pkp2 gene in the compulsivity and loss of control over the voluntary ethanol consumption.
Collapse
Affiliation(s)
- Carolina de Paiva Lima
- a Programa de Pós-Graduação em Genética, Departamento de Biologia Geral , Universidade Federal de Minas Gerais , Belo Horizonte , MG , Brazil
| | - Daniel Almeida da Silva E Silva
- a Programa de Pós-Graduação em Genética, Departamento de Biologia Geral , Universidade Federal de Minas Gerais , Belo Horizonte , MG , Brazil
| | - Samara Damasceno
- a Programa de Pós-Graduação em Genética, Departamento de Biologia Geral , Universidade Federal de Minas Gerais , Belo Horizonte , MG , Brazil
| | - Andrea Frozino Ribeiro
- b Programa de Pós-Graduação em Neurociências, Faculdade de Filosofia de Ciências Humanas , Universidade Federal de Minas Gerais , Belo Horizonte , MG , Brazil
| | - Cristiane S Rocha
- c Departamento de Genética Médica, Faculdade de Ciências Medicas , Universidade de Campinas, Cidade Universitária Zeferino Vaz , Campinas , SP , Brazil
| | - Alexandre H Berenguer de Matos
- c Departamento de Genética Médica, Faculdade de Ciências Medicas , Universidade de Campinas, Cidade Universitária Zeferino Vaz , Campinas , SP , Brazil
| | - Diego Correia
- a Programa de Pós-Graduação em Genética, Departamento de Biologia Geral , Universidade Federal de Minas Gerais , Belo Horizonte , MG , Brazil.,d Departamento de Farmacologia, Jardim das Américas , Universidade Federal do Paraná , Curitiba , PR , Brazil
| | - Roseli Boerngen-Lacerda
- d Departamento de Farmacologia, Jardim das Américas , Universidade Federal do Paraná , Curitiba , PR , Brazil
| | - Ana Lúcia Brunialti Godard
- a Programa de Pós-Graduação em Genética, Departamento de Biologia Geral , Universidade Federal de Minas Gerais , Belo Horizonte , MG , Brazil
| |
Collapse
|
38
|
Stennett BA, Frankowski JC, Peris J, Knackstedt LA. Ceftriaxone reduces alcohol intake in outbred rats while upregulating xCT in the nucleus accumbens core. Pharmacol Biochem Behav 2017; 159:18-23. [PMID: 28687200 DOI: 10.1016/j.pbb.2017.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 06/19/2017] [Accepted: 07/03/2017] [Indexed: 12/11/2022]
Abstract
Alcohol addiction is a chronic disease characterized by an inability to regulate drinking. A critical brain region involved in alcohol consumption is the nucleus accumbens (NA). Glutamate transmission in this region regulates alcohol consumption and relapse to alcohol-seeking. Across multiple alcohol-administration rodent models, basal extracellular glutamate levels are increased in the NA during early withdrawal. Glutamate transporter 1 (GLT-1) and system xC-, containing the subunit xCT, regulate NA glutamate levels. Ceftriaxone (Cef) increases expression and function of both transporters following extinction from cocaine self-administration and here we sought to determine if Cef would similarly decrease alcohol consumption while increasing xCT and GLT-1 in the NA core. We used the intermittent access to alcohol (IAA) paradigm to induce drinking in outbred Sprague-Dawley rats; this paradigm permits rats access to alcohol (20%v/v) for 24-h without water deprivation, followed by 24-h of abstinence. Following 17 24-h drinking sessions, Cef treatment (200mg/kg IP) was initiated and continued for 5days while a control group received vehicle (0.9% saline IP). Alcohol consumption was assessed for two 24-h periods during Cef and two 24-h periods after cessation of Cef treatment. In a separate cohort of rats, Cef's ability to alter blood alcohol levels (BALs) after a non-contingent alcohol injection (1g/kg) was assessed. We found that Cef decreased alcohol consumption during the period of Cef treatment and on the two days following injections, and this was accompanied by an increase in NA core xCT expression. Furthermore, a history of alcohol consumption did not alter xCT and GLT-1 expression relative to alcohol-naïve controls. Cef did not alter BALs, indicating that the reduction in alcohol consumption was not caused by altered alcohol clearance. These results indicate that while Cef reduces alcohol consumption in outbred rats, its ability to do so is not associated with an increase in GLT-1 expression.
Collapse
Affiliation(s)
- Bethany A Stennett
- Psychology Department, University of Florida, Gainesville, FL, United States.
| | - Jan C Frankowski
- Psychology Department, University of Florida, Gainesville, FL, United States
| | - Joanna Peris
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, United States
| | - Lori A Knackstedt
- Psychology Department, University of Florida, Gainesville, FL, United States
| |
Collapse
|
39
|
Spencer S, Kalivas PW. Glutamate Transport: A New Bench to Bedside Mechanism for Treating Drug Abuse. Int J Neuropsychopharmacol 2017; 20:797-812. [PMID: 28605494 PMCID: PMC5632313 DOI: 10.1093/ijnp/pyx050] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/09/2017] [Indexed: 02/06/2023] Open
Abstract
Drug addiction has often been described as a "hijacking" of the brain circuits involved in learning and memory. Glutamate is the principal excitatory neurotransmitter in the brain, and its contribution to synaptic plasticity and learning processes is well established in animal models. Likewise, over the past 20 years the addiction field has ascribed a critical role for glutamatergic transmission in the development of addiction. Chronic drug use produces enduring neuroadaptations in corticostriatal projections that are believed to contribute to a maladaptive deficit in inhibitory control over behavior. Much of this research focuses on the role played by ionotropic glutamate receptors directly involved in long-term potentiation and depression or metabotropic receptors indirectly modulating synaptic plasticity. Importantly, the balance between glutamate release and clearance tightly regulates the patterned activation of these glutamate receptors, emphasizing an important role for glutamate transporters in maintaining extracellular glutamate levels. Five excitatory amino acid transporters participate in active glutamate reuptake. Recent evidence suggests that these glutamate transporters can be modulated by chronic drug use at a variety of levels. In this review, we synopsize the evidence and mechanisms associated with drug-induced dysregulation of glutamate transport. We then summarize the preclinical and clinical data suggesting that glutamate transporters offer an effective target for the treatment of drug addiction. In particular, we focus on the role that altered glutamate transporters have in causing drug cues and contexts to develop an intrusive quality that guides maladaptive drug seeking behaviors.
Collapse
Affiliation(s)
- Sade Spencer
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina.,Correspondence: Sade Spencer, PhD, Medical University of South Carolina, 173 Ashley Avenue, BSB, 403- MSC 510, Charleston, SC 29425 ()
| | - Peter W Kalivas
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
40
|
Hammad AM, Althobaiti YS, Das SC, Sari Y. Effects of repeated cocaine exposure and withdrawal on voluntary ethanol drinking, and the expression of glial glutamate transporters in mesocorticolimbic system of P rats. Mol Cell Neurosci 2017; 82:58-65. [PMID: 28442364 DOI: 10.1016/j.mcn.2017.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/18/2017] [Accepted: 04/20/2017] [Indexed: 11/26/2022] Open
Abstract
Glutamatergic neurotransmission within the brain's reward circuits plays a major role in the reinforcing properties of both ethanol and cocaine. Glutamate homeostasis is regulated by several glutamate transporters, including glutamate transporter type 1 (GLT-1), cystine/glutamate transporter (xCT), and glutamate aspartate transporter (GLAST). Cocaine exposure has been shown to induce a dysregulation in glutamate homeostasis and a decrease in the expression of GLT-1 and xCT in the nucleus accumbens (NAc). In this study, alcohol preferring (P) rats were exposed to free-choice of ethanol (15% and 30%) and/or water for five weeks. On Week 6, rats were administered (i.p.) cocaine (10 and 20mg/kg) or saline for 12 consecutive days. This study tested two groups of rats: the first group was euthanized after seven days of repeated cocaine i.p. injection, and the second group was deprived from cocaine for five days and euthanized at Day 5 after cocaine withdrawal. Only repeated cocaine (20mg/kg, i.p.) exposure decreased ethanol intake from Day 3 through Day 8. Co-exposure of cocaine and ethanol decreased the relative mRNA expression and the expression of GLT-1 in the NAc but not in the medial prefrontal cortex (mPFC). Importantly, co-exposure of cocaine and ethanol decreased relative expression of xCT in the NAc but not in the mPFC. Our findings demonstrated that chronic cocaine exposure affects ethanol intake; and ethanol and cocaine co-abuse alters the expression of glial glutamate transporters.
Collapse
Affiliation(s)
- Alaa M Hammad
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Yusuf S Althobaiti
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Sujan C Das
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
41
|
Goodwani S, Saternos H, Alasmari F, Sari Y. Metabotropic and ionotropic glutamate receptors as potential targets for the treatment of alcohol use disorder. Neurosci Biobehav Rev 2017; 77:14-31. [PMID: 28242339 DOI: 10.1016/j.neubiorev.2017.02.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/13/2017] [Accepted: 02/22/2017] [Indexed: 12/16/2022]
Abstract
Emerging evidence indicates that dysfunctional glutamate neurotransmission is critical in the initiation and development of alcohol and drug dependence. Alcohol consumption induced downregulation of glutamate transporter 1 (GLT-1) as reported in previous studies from our laboratory. Glutamate is the major excitatory neurotransmitter in the brain, which acts via interactions with several glutamate receptors. Alcohol consumption interferes with the glutamatergic signal transmission by altering the functions of these receptors. Among the glutamate receptors involved in alcohol-drinking behavior are the metabotropic receptors such as mGluR1/5, mGluR2/3, and mGluR7, as well as the ionotropic receptors, NMDA and AMPA. Preclinical studies using agonists and antagonists implicate these glutamatergic receptors in the development of alcohol use disorder (AUD). Therefore, the purpose of this review is to discuss the neurocircuitry involving glutamate transmission in animals exposed to alcohol and further outline the role of metabotropic and ionotropic receptors in the regulation of alcohol-drinking behavior. This review provides ample information about the potential therapeutic role of glutamatergic receptors for the treatment of AUD.
Collapse
Affiliation(s)
- Sunil Goodwani
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA; The Neurodegeneration Consortium, Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Hannah Saternos
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA
| | - Fawaz Alasmari
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA
| | - Youssef Sari
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA.
| |
Collapse
|
42
|
Peana AT, Rosas M, Porru S, Acquas E. From Ethanol to Salsolinol: Role of Ethanol Metabolites in the Effects of Ethanol. J Exp Neurosci 2016; 10:137-146. [PMID: 27891052 PMCID: PMC5117487 DOI: 10.4137/jen.s25099] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/13/2016] [Accepted: 11/03/2016] [Indexed: 12/29/2022] Open
Abstract
In spite of the global reputation of ethanol as the psychopharmacologically active ingredient of alcoholic drinks, the neurobiological basis of the central effects of ethanol still presents some dark sides due to a number of unanswered questions related to both its precise mechanism of action and its metabolism. Accordingly, ethanol represents the interesting example of a compound whose actions cannot be explained as simply due to the involvement of a single receptor/neurotransmitter, a scenario further complicated by the robust evidence that two main metabolites, acetaldehyde and salsolinol, exert many effects similar to those of their parent compound. The present review recapitulates, in a perspective manner, the major and most recent advances that in the last decades boosted a significant growth in the understanding on the role of ethanol metabolism, in particular, in the neurobiological basis of its central effects.
Collapse
Affiliation(s)
- Alessandra T Peana
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Michela Rosas
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Simona Porru
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Elio Acquas
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy.; Centre of Excellence on Neurobiology of Addiction, University of Cagliari, Cagliari, Italy
| |
Collapse
|
43
|
Lee KM, Coelho MA, McGregor HA, Solton NR, Cohen M, Szumlinski KK. Adolescent Mice Are Resilient to Alcohol Withdrawal-Induced Anxiety and Changes in Indices of Glutamate Function within the Nucleus Accumbens. Front Cell Neurosci 2016; 10:265. [PMID: 27917110 PMCID: PMC5114265 DOI: 10.3389/fncel.2016.00265] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 10/31/2016] [Indexed: 11/13/2022] Open
Abstract
Binge-drinking is the most prevalent form of alcohol abuse and while an early life history of binge-drinking is a significant risk factor for subsequent alcoholism and co-morbid affective disorders, relatively little is known regarding the biobehavioral impact of binge-drinking during the sensitive neurodevelopmental period of adolescence. In adult mice, a month-long history of binge-drinking elicits a hyper-glutamatergic state within the nucleus accumbens (Acb), coinciding with hyper-anxiety. Herein, we employed a murine model of binge-drinking to determine whether or not: (1) withdrawal-induced changes in brain and behavior differ between adult and adolescent bingers; and (2) increased behavioral signs of negative affect and changes in Acb expression of glutamate-related proteins would be apparent in adult mice with less chronic binge-drinking experience (14 days, approximating the duration of mouse adolescence). Adult and adolescent male C57BL/6J mice were subjected to a 14-day binge-drinking protocol (5, 10, 20 and 40% alcohol (v/v) for 2 h/day), while age-matched controls received water. At 24 h withdrawal, half of the animals from each group were assayed for negative affect, while tissue was sampled from the shell (AcbSh) and core (AcbC) subregions of the remaining mice for immunoblotting analyses. Adult bingers exhibited hyper-anxiety when tested for defensive marble burying. Additionally, adult bingers showed increased mGlu1, mGlu5, and GluN2b expression in the AcbSh and PKCε and CAMKII in the AcbC. Compared to adults, adolescent mice exhibited higher alcohol intake and blood alcohol concentrations (BACs); however, adolescent bingers did not show increased anxiety in the marble-burying test. Furthermore, adolescent bingers also failed to exhibit the same alcohol-induced changes in mGlu and kinase protein expression seen in the adult bingers. Irrespective of age, bingers exhibited behavioral hyperactivity in the forced swim test (FST) compared to water drinkers, which was paralleled by an increase in AcbC levels of GluN2b. Thus, a 2-week period of binge-drinking is sufficient to produce a hyper-anxious state and related increases in protein indices of Acb glutamate function. In contrast, adolescents were resilient to many of the effects of early alcohol withdrawal and this attenuated sensitivity to the negative consequences of binge drinking may facilitate greater alcohol intake in adolescent drinkers.
Collapse
Affiliation(s)
- Kaziya M. Lee
- Department of Psychological and Brain Sciences, University of California Santa BarbaraSanta Barbara, CA, USA
| | - Michal A. Coelho
- Department of Psychological and Brain Sciences, University of California Santa BarbaraSanta Barbara, CA, USA
| | - Hadley A. McGregor
- Department of Psychological and Brain Sciences, University of California Santa BarbaraSanta Barbara, CA, USA
| | - Noah R. Solton
- Department of Psychological and Brain Sciences, University of California Santa BarbaraSanta Barbara, CA, USA
| | - Matan Cohen
- Department of Psychological and Brain Sciences, University of California Santa BarbaraSanta Barbara, CA, USA
| | - Karen K. Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa BarbaraSanta Barbara, CA, USA
- Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California Santa BarbaraSanta Barbara, CA, USA
| |
Collapse
|
44
|
Ding ZM, Ingraham CM, Rodd ZA, McBride WJ. Alcohol drinking increases the dopamine-stimulating effects of ethanol and reduces D2 auto-receptor and group II metabotropic glutamate receptor function within the posterior ventral tegmental area of alcohol preferring (P) rats. Neuropharmacology 2016; 109:41-48. [PMID: 27260326 PMCID: PMC4970907 DOI: 10.1016/j.neuropharm.2016.05.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/29/2016] [Accepted: 05/30/2016] [Indexed: 11/30/2022]
Abstract
Repeated local administration of ethanol (EtOH) sensitized the posterior ventral tegmental area (pVTA) to the local dopamine (DA)-stimulating effects of EtOH. Chronic alcohol drinking increased nucleus accumbens (NAC) DA transmission and pVTA glutamate transmission in alcohol-preferring (P) rats. The objectives of the present study were to determine the effects of chronic alcohol drinking by P rats on the (a) sensitivity and response of the pVTA DA neurons to the DA-stimulating actions of EtOH, and (b) negative feedback control of DA (via D2 auto-receptors) and glutamate (via group II mGlu auto-receptors) release in the pVTA. EtOH (50 or 150 mg%) or the D2/3 receptor antagonist sulpiride (100 or 200 μM) was microinjected into the pVTA while DA was sampled with microdialysis in the NAC shell (NACsh). The mGluR2/3 antagonist LY341495 (1 or 10 μM) was perfused through the pVTA via reverse microdialysis and local extracellular glutamate and DA levels were measured. EtOH produced a more robust increase of NACsh DA in the 'EtOH' than 'Water' groups (e.g., 150 mg% EtOH: to ∼ 210 vs 150% of baseline). In contrast, sulpiride increased DA release in the NACsh more in the 'Water' than 'EtOH' groups (e.g., 200 μM sulpiride: to ∼ 190-240 vs 150-160% of baseline). LY341495 (at 10 μM) increased extracellular glutamate and DA levels in the 'Water' (to ∼ 150-180% and 180-230% of baseline, respectively) but not the 'EtOH' groups. These results indicate that alcohol drinking enhanced the DA-stimulating effects of EtOH, and attenuated the functional activities of D2 auto-receptors and group II mGluRs within the pVTA.
Collapse
Affiliation(s)
- Zheng-Ming Ding
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Cynthia M Ingraham
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Zachary A Rodd
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - William J McBride
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
45
|
Althobaiti YS, Alshehri FS, Almalki AH, Sari Y. Effects of Ceftriaxone on Glial Glutamate Transporters in Wistar Rats Administered Sequential Ethanol and Methamphetamine. Front Neurosci 2016; 10:427. [PMID: 27713684 PMCID: PMC5031687 DOI: 10.3389/fnins.2016.00427] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/31/2016] [Indexed: 12/27/2022] Open
Abstract
Methamphetamine (METH) is one of the psychostimulants that is co-abused with ethanol. Repeated exposure to high dose of METH has been shown to cause increases in extracellular glutamate concentration. We have recently reported that ethanol exposure can also increase the extracellular glutamate concentration and downregulate the expression of glutamate transporter subtype 1 (GLT-1). GLT-1 is a glial transporter that regulates the majority of extracellular glutamate. A Wistar rat model of METH and ethanol co-abuse was used to examine the expression of GLT-1 as well as other glutamate transporters such as cystine/glutamate exchanger (xCT) and glutamate aspartate transporter (GLAST). We also examined the body temperature in rats administered METH, ethanol or both drugs. We further investigated the effects of ceftriaxone (CEF), a β-lactam antibiotic known to upregulate GLT-1, in this METH/ethanol co-abuse rat model. After 7 days of either ethanol (6 g/kg) or water oral gavage, Wistar rats received either saline or METH (10 mg/kg i.p. every 2 h × 4), followed by either saline or CEF (200 mg/kg) posttreatment. METH administered alone decreased GLT-1 expression in the nucleus accumbens (NAc) and prefrontal cortex (PFC) and increased body temperature, but did not reduce either xCT or GLAST expression in ethanol and water-pretreated rats. Interestingly, ethanol and METH were found to have an additive effect on the downregulation of GLT-1 expression in the NAc but not in the PFC. Moreover, ethanol alone caused GLT-1 downregulation in the NAc and elevated body temperature compared to control. Finally, CEF posttreatment significantly reversed METH-induced hyperthermia, restored GLT-1 expression, and increased xCT expression. These findings suggest the potential therapeutic role of CEF against METH- or ethanol/METH-induced hyperglutamatergic state and hyperthermia.
Collapse
Affiliation(s)
- Yusuf S Althobaiti
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Toledo, OH, USA
| | - Fahad S Alshehri
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Toledo, OH, USA
| | - Atiah H Almalki
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Toledo, OH, USA
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of ToledoToledo, OH, USA; Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of ToledoToledo, OH, USA
| |
Collapse
|
46
|
Adermark L, Bowers MS. Disentangling the Role of Astrocytes in Alcohol Use Disorder. Alcohol Clin Exp Res 2016; 40:1802-16. [PMID: 27476876 PMCID: PMC5407469 DOI: 10.1111/acer.13168] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 07/02/2016] [Indexed: 01/29/2023]
Abstract
Several laboratories recently identified that astrocytes are critical regulators of addiction machinery. It is now known that astrocyte pathology is a common feature of ethanol (EtOH) exposure in both humans and animal models, as even brief EtOH exposure is sufficient to elicit long-lasting perturbations in astrocyte gene expression, activity, and proliferation. Astrocytes were also recently shown to modulate the motivational properties of EtOH and other strongly reinforcing stimuli. Given the role of astrocytes in regulating glutamate homeostasis, a crucial component of alcohol use disorder (AUD), astrocytes might be an important target for the development of next-generation alcoholism treatments. This review will outline some of the more prominent features displayed by astrocytes, how these properties are influenced by acute and long-term EtOH exposure, and future directions that may help to disentangle astrocytic from neuronal functions in the etiology of AUD.
Collapse
Affiliation(s)
- Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Box 410, SE-405 30 Gothenburg, Sweden
| | - M. Scott Bowers
- Department of Psychiatry, Virginia Commonwealth University, PO Box 980126, Richmond, VA 23298, USA
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980126, Richmond, VA 23298, USA
- Faulk Center for Molecular Therapeutics, Northwestern University; Aptinyx,, Evanston, Il 60201, USA
| |
Collapse
|
47
|
Morais-Silva G, Alves GC, Marin MT. N-acetylcysteine treatment blocks the development of ethanol-induced behavioural sensitization and related ΔFosB alterations. Neuropharmacology 2016; 110:135-142. [PMID: 27401790 DOI: 10.1016/j.neuropharm.2016.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 11/30/2022]
Abstract
Ethanol addiction is a serious public health problem that still needs more effective pharmacological treatment. A key factor in the development and maintenance of this disease is the advent of neuroadaptations in the mesocorticolimbic brain pathway upon chronic ethanol abuse. In general, these neuroadaptations are maladaptive and affect numerous neurotransmitter systems and intracellular molecules. One of these molecules is ΔFosB, a transcription factor that is altered after chronic drug use. Behavioural sensitization is a useful model for the study of the neuroadaptations related to addiction. Recent works have shown a role for the imbalance of glutamatergic neurotransmission in the symptoms found in addicted people. In this sense, the treatment with N-acetylcysteine, a l-cysteine prodrug that acts by restoring extrasynaptic concentrations of glutamate through the activation of cystine-glutamate antiporter, has shown promising results in the treatment of addiction. Thus, an animal model of behavioural sensitization was used to evaluate the effects of N-acetylcysteine treatment in the behavioural and molecular alterations induced by chronic ethanol administration. Swiss mice were subject to 13 days of daily ethanol administration to induce behavioural sensitization. Two hours before each ethanol administration and locomotor activity evaluation, the animals received intraperitoneally N-acetylcysteine injections. Immediately after the last test session, their brains were removed for ΔFosB and cystine-glutamate antiporter quantification. It was found that N-acetylcysteine treatment blocked ethanol-induced behavioural sensitization, the increase of ΔFosB content in the prefrontal cortex, and its reduction in the nucleus accumbens. The results suggest a possible use of N-acetylcysteine in ethanol-related disorders.
Collapse
Affiliation(s)
- Gessynger Morais-Silva
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Univ Estadual Paulista - UNESP, Araraquara, SP, Brazil; Joint Graduate Programme in Physiological Sciences, UFSCar/UNESP, São Carlos/Araraquara, SP, Brazil
| | - Gabrielle Cunha Alves
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Univ Estadual Paulista - UNESP, Araraquara, SP, Brazil
| | - Marcelo T Marin
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Univ Estadual Paulista - UNESP, Araraquara, SP, Brazil; Joint Graduate Programme in Physiological Sciences, UFSCar/UNESP, São Carlos/Araraquara, SP, Brazil.
| |
Collapse
|
48
|
Abstract
Alcohol consumption with psychostimulants is very common among drug addicts. There is little known about the possible pharmacological interactions between alcohol and psychostimulants. Among most commonly co-abused psychostimulants with alcohol are methamphetamine, cocaine, 3,4-methylenedioxymethamphetaminen, and nicotine. Co-abuse of alcohol with psychostimulants can lead to several neurophysiological dysfunctions such as decrease in brain antioxidant enzymes, disruption of learning and memory processes, cerebral hypo-perfusion, neurotransmitters depletion as well as potentiation of drug seeking behaviour. Moreover, co-abuse of alcohol and psychostimulants can lead to increase in heart rate, blood pressure, myocardial oxygen consumption and cellular stress, and the risk of developing different types of cancer. Co-abuse of alcohol with psychostimulants during pregnancy can lead to fetal brain abnormalities. Further studies are needed to investigate the pharmacokinetics, pharmacodynamics, and neurochemical changes on co-abuse of alcohol and psychostimulants.
Collapse
Affiliation(s)
- Yusuf S Althobaiti
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH, USA
| | - Youssef Sari
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH, USA
| |
Collapse
|
49
|
Pati D, Kelly K, Stennett B, Frazier CJ, Knackstedt LA. Alcohol consumption increases basal extracellular glutamate in the nucleus accumbens core of Sprague-Dawley rats without increasing spontaneous glutamate release. Eur J Neurosci 2016; 44:1896-905. [PMID: 27207718 DOI: 10.1111/ejn.13284] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/06/2016] [Accepted: 05/16/2016] [Indexed: 12/27/2022]
Abstract
Glutamate neurotransmission in the nucleus accumbens core (NAc) mediates ethanol consumption. Previous studies using non-contingent and voluntary alcohol administration in inbred rodents have reported increased basal extracellular glutamate levels in the NAc. Here, we assessed basal glutamate levels in the NAc following intermittent alcohol consumption in male Sprague-Dawley rats that had access to ethanol for 7 weeks on alternating days. We found increased basal NAc glutamate at 24 h withdrawal from ethanol and thus sought to identify the source of this glutamate. To do so, we employed a combination of microdialysis, slice electrophysiology and western blotting. Reverse dialysis of the voltage-gated sodium channel blocker tetrodotoxin did not affect glutamate levels in either group. Electrophysiological recordings in slices made after 24 h withdrawal revealed a decrease in spontaneous excitatory postsynaptic current (sEPSC) frequency relative to controls, with no change in sEPSC amplitude. No change in metabotropic glutamate receptor 2/3 (mGlu2/3) function was detected as bath application of the mGlu2/3 agonist LY379268 decreased spontaneous and miniature EPSC frequency in slices from both control and ethanol-consuming rats. The increase in basal glutamate was not associated with changes in the surface expression of GLT-1, however, a decrease in slope of the no-net-flux dialysis function was observed following ethanol consumption, indicating a potential decrease in glutamate reuptake. Taken together, these findings indicate that the increase in basal extracellular glutamate occurring after chronic ethanol consumption is not mediated by an increase in action potential-dependent glutamate release or a failure of mGlu2/3 autoreceptors to regulate such release.
Collapse
Affiliation(s)
- Dipanwita Pati
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Kyle Kelly
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Bethany Stennett
- Psychology Department, University of Florida, PO Box 112250, Gainesville, FL, 332611, USA
| | - Charles J Frazier
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Lori A Knackstedt
- Psychology Department, University of Florida, PO Box 112250, Gainesville, FL, 332611, USA
| |
Collapse
|
50
|
Hakami AY, Hammad AM, Sari Y. Effects of Amoxicillin and Augmentin on Cystine-Glutamate Exchanger and Glutamate Transporter 1 Isoforms as well as Ethanol Intake in Alcohol-Preferring Rats. Front Neurosci 2016; 10:171. [PMID: 27199635 PMCID: PMC4842775 DOI: 10.3389/fnins.2016.00171] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/04/2016] [Indexed: 12/22/2022] Open
Abstract
Alcohol dependence is associated with alteration of glutamate transport and glutamate neurotransmission. Glutamate transporter 1 (GLT-1) is a major transporter that regulates the majority of extracellular glutamate concentration, which is also regulated by cystine-glutamate exchanger (xCT). Importantly, we recently reported that amoxicillin and Augmentin (amoxicillin/clavulanate) upreglulated GLT-1 expression in nucleus accumbens (NAc) and prefrontal cortex (PFC) as well as reduced ethanol consumption in male P rats. In this study, we examined the effects of amoxicillin and Augmentin on GLT-1 isoforms (GLT-1a and GLT-1b), xCT, and glutamate/aspartate transporter (GLAST) expression in NAc and PFC as well as ethanol intake in male P rats. We found that both compounds significantly reduced ethanol intake, and increased GLT-1a, GLT-1b, and xCT expression in NAc. However, only Augmentin increased GLT-1a, GLT-1b, and xCT expression in PFC. There were no effects of these compounds on GLAST expression in NAc and PFC. These findings demonstrated that Augmentin and amoxicillin have the potential to upregulate GLT-1 isoforms and xCT expression, and consequently attenuate ethanol dependence.
Collapse
Affiliation(s)
- Alqassem Y Hakami
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Toledo, OH, USA
| | - Alaa M Hammad
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Toledo, OH, USA
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Toledo, OH, USA
| |
Collapse
|