1
|
Nishio M, Kondo M, Yoshida E, Matsuzaki M. Medial prefrontal cortex suppresses reward-seeking behavior with risk of punishment by reducing sensitivity to reward. Front Neurosci 2024; 18:1412509. [PMID: 38903603 PMCID: PMC11188571 DOI: 10.3389/fnins.2024.1412509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/30/2024] [Indexed: 06/22/2024] Open
Abstract
Reward-seeking behavior is frequently associated with risk of punishment. There are two types of punishment: positive punishment, which is defined as addition of an aversive stimulus, and negative punishment, involves the omission of a rewarding outcome. Although the medial prefrontal cortex (mPFC) is important in avoiding punishment, whether it is important for avoiding both positive and negative punishment and how it contributes to such avoidance are not clear. In this study, we trained male mice to perform decision-making tasks under the risks of positive (air-puff stimulus) and negative (reward omission) punishment, and modeled their behavior with reinforcement learning. Following the training, we pharmacologically inhibited the mPFC. We found that pharmacological inactivation of mPFC enhanced the reward-seeking choice under the risk of positive, but not negative, punishment. In reinforcement learning models, this behavioral change was well-explained as an increase in sensitivity to reward, rather than a decrease in the strength of aversion to punishment. Our results suggest that mPFC suppresses reward-seeking behavior by reducing sensitivity to reward under the risk of positive punishment.
Collapse
Affiliation(s)
- Monami Nishio
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masashi Kondo
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eriko Yoshida
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masanori Matsuzaki
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, Tokyo, Japan
- Brain Functional Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Saitama, Japan
| |
Collapse
|
2
|
Dejoie JM, Senia N, Konova A, Smith D, Fareri D. Common and Distinct Drug Cue Reactivity Patterns Associated with Cocaine and Heroin: An fMRI Meta-Analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.10.19.23297268. [PMID: 37905133 PMCID: PMC10615011 DOI: 10.1101/2023.10.19.23297268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Substance use and substance use disorders represent ongoing major public health crises. Specifically, the use of substances such as cocaine and heroin are responsible for over 50,000 drug related deaths combined annually. We used a comparative meta-analysis procedure to contrast activation patterns associated with cocaine and heroin cue reactivity, which may reflect substance use risk for these substances. PubMed and Google Scholar were searched for studies with within-subject whole brain analyses comparing drug to neutral cues for users of cocaine and heroin published between 1995 and 2022. A total of 18 studies were included, 9 in each subgroup. Voxel-based meta-analyses were performed using seed-based d mapping with permuted subject images (SDM-PSI) for subgroup mean analyses and a contrast meta-regression comparing the two substances. Results from our mean analysis indicated that users of heroin showed more widespread activation in the nucleus accumbens, right inferior and left middle temporal gyrus, right thalamus, and right cerebellum. Cocaine use was associated with recruitment of dorsolateral prefrontal cortex during cue reactivity. Direct comparison of cue reactivity studies in heroin relative to cocaine users revealed greater activation in dopaminergic targets for users of heroin compared to users of cocaine. Differential activation patterns between substances may underlie differences in the clinical characteristics observed in users of cocaine and heroin, including seeking emotional blunting in users of heroin. More consistent research methodology is needed to provide adequate studies for stringent meta-analyses examining common and distinct neural activation patterns across substances and moderation by clinically relevant factors.
Collapse
|
3
|
Kohler RJ, Zhornitsky S, Potenza MN, Yip SW, Worhunsky P, Angarita GA. Cocaine self-administration behavior is associated with subcortical and cortical morphometry measures in individuals with cocaine use disorder. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2024; 50:345-356. [PMID: 38551365 PMCID: PMC11305926 DOI: 10.1080/00952990.2024.2318585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 05/24/2024]
Abstract
Background: Individual differences in gray-matter morphometry in the limbic system and frontal cortex have been linked to clinical features of cocaine use disorder (CUD). Self-administration paradigms can provide more direct measurements of the relationship between the regulation of cocaine use and gray-matter morphometry when compared to self-report assessments.Objectives: Our goal was to investigate associations with self-administration behavior in subcortical and cortical brain regions. We hypothesized the number of cocaine infusions self-administered would be correlated with gray-matter volumes (GMVs) in the striatum, amygdala, and hippocampus. Due to scarcity in human studies, we did not hypothesize subcortical directionality. In the frontal cortex, we hypothesized thickness would be negatively correlated with self-administered cocaine.Methods: We conducted an analysis of cocaine self-administration and structural MRI data from 33 (nFemales = 10) individuals with moderate-to-severe CUD. Self-administration lasted 60-minutes and cocaine (8, 16, or 32 mg/70 kg) was delivered on an FR1 schedule (5-minute lockout). Subcortical and cortical regression analyses were performed that included combined bilateral regions and age, experimental variables and use history as confounders.Results: Self-administered cocaine infusions were positively associated with caudal GMV (b = 0.18, p = 0.030) and negatively with putamenal GMV (b = -0.10, p = 0.041). In the cortical model, infusions were positively associated with insular thickness (b = 0.39, p = 0.008) and women appeared to self-administer cocaine more frequently (b = 0.23, p = 0.019).Conclusions: Brain morphometry features in the striatum and insula may contribute to cocaine consumption in CUD. These differences in morphometry may reflect consequences of prolonged use, predisposed vulnerability, or other possibilities.Clinical Trial Numbers: NCT01978431; NCT03471182.
Collapse
Affiliation(s)
- Robert J. Kohler
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Simon Zhornitsky
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
| | - Marc N. Potenza
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT
- Connecticut Council on Problem Gambling, Wethersfield, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Sarah W. Yip
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT
| | - Patrick Worhunsky
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
4
|
Hsu LM, Cerri DH, Lee SH, Shnitko TA, Carelli RM, Shih YYI. Intrinsic Functional Connectivity between the Anterior Insular and Retrosplenial Cortex as a Moderator and Consequence of Cocaine Self-Administration in Rats. J Neurosci 2024; 44:e1452232023. [PMID: 38233216 PMCID: PMC10869158 DOI: 10.1523/jneurosci.1452-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/19/2024] Open
Abstract
While functional brain imaging studies in humans suggest that chronic cocaine use alters functional connectivity (FC) within and between key large-scale brain networks, including the default mode network (DMN), the salience network (SN), and the central executive network (CEN), cross-sectional studies in humans are challenging to obtain brain FC prior to cocaine use. Such information is critical to reveal the relationship between individual's brain FC and the subsequent development of cocaine dependence and brain changes during abstinence. Here, we performed a longitudinal study examining functional magnetic resonance imaging (fMRI) data in male rats (n = 7), acquired before cocaine self-administration (baseline), on 1 d of abstinence following 10 d of cocaine self-administration, and again after 30 d of experimenter-imposed abstinence. Using repeated-measures analysis of variance (ANOVA) with network-based statistics (NBS), significant connectivity changes were found between anterior insular cortex (AI) of the SN, retrosplenial cortex (RSC) of the DMN, somatosensory cortex, and caudate-putamen (CPu), with AI-RSC FC showing the most robust changes between baseline and 1 d of abstinence. Additionally, the level of escalated cocaine intake is associated with AI-RSC and AI-CPu FC changes between 1 d and 30 d of abstinence; further, the subjects' AI-RSC FC prior to cocaine intake is a significant moderator for the AI-RSC changes during abstinence. These results provide novel insights into the roles of AI-RSC FC before and after cocaine intake and suggest this circuit to be a potential target to modulate large-scale network and associated behavioral changes in cocaine use disorders.
Collapse
Affiliation(s)
- Li-Ming Hsu
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill 27599, North Carolina
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill 27599, North Carolina
- Departments of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill 27599, North Carolina
| | - Domenic H Cerri
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill 27599, North Carolina
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill 27599, North Carolina
- Departments of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill 27599, North Carolina
| | - Sung-Ho Lee
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill 27599, North Carolina
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill 27599, North Carolina
- Departments of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill 27599, North Carolina
| | - Tatiana A Shnitko
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill 27599, North Carolina
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill 27599, North Carolina
- Departments of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill 27599, North Carolina
| | - Regina M Carelli
- Psychology and Neuroscience, The University of North Carolina at Chapel Hill, Chapel Hill 27599, North Carolina
| | - Yen-Yu Ian Shih
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill 27599, North Carolina
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill 27599, North Carolina
- Departments of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill 27599, North Carolina
| |
Collapse
|
5
|
Chang S, Kim HK, Ryu Y, Jang HB, Ahn D, Lee BH, Youn DH, Lee BH, Kim HY. Mediation of mPFC-LHb pathway in acupuncture inhibition of cocaine psychomotor activity. Addict Biol 2023; 28:e13321. [PMID: 37753567 DOI: 10.1111/adb.13321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/27/2023] [Accepted: 07/21/2023] [Indexed: 09/28/2023]
Abstract
The medial prefrontal cortex (mPFC) and the lateral habenula (LHb) play roles in drug addiction and cognitive functions. Our previous studies have suggested that acupuncture at Shenmen (HT7) points modulates mesolimbic reward system in order to suppress drug-induced addiction behaviours. To explore whether an mPFC-LHb circuit mediates the inhibitory effects of acupuncture on addictive behaviours, we examined the projection from mPFC to LHb, excitation of mPFC neurons during acupuncture stimulation, the effects of optogenetic modulation of mPFC-LHb on HT7 inhibition of cocaine-induced locomotion and the effect of mPFC lesion on HT7 inhibition of nucleus accumbens (NAc) dopamine release. Acupuncture was applied at bilateral HT7 points for 20 s, and locomotor activity was measured in male Sprague-Dawley rats. Although cocaine injection significantly increased locomotor activity, HT7 acupuncture suppressed the cocaine-induced locomotion. The inhibitory effect of HT7 on cocaine-enhanced locomotion was blocked by optogenetic silencing of the mPFC-LHb circuit. In vivo extracellular recordings showed that HT7 acupuncture evoked an increase in the action potentials of mPFC neurons. Optopatch experiment proved glutamatergic projections from mPFC to LHb. HT7 acupuncture suppressed NAc dopamine release following cocaine injection, which was blocked by electrolytic lesion of mPFC. These results suggest the mediation of mPFC-LHb circuit in the inhibitory effects of acupuncture on cocaine psychomotor activity in rats.
Collapse
Affiliation(s)
- Suchan Chang
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu, South Korea
| | - Hyung Kyu Kim
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu, South Korea
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Yeonhee Ryu
- Korean Medicine Fundamental Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Han Byeol Jang
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu, South Korea
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
| | - DanBi Ahn
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Bong Hyo Lee
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu, South Korea
| | - Dong-Ho Youn
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Bae Hwan Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hee Young Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
6
|
Yim YY, Nestler EJ. Cell-Type-Specific Neuroproteomics of Synapses. Biomolecules 2023; 13:998. [PMID: 37371578 PMCID: PMC10296650 DOI: 10.3390/biom13060998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
In the last two decades, our knowledge of synaptic proteomes and their relationship to normal brain function and neuropsychiatric disorders has been expanding rapidly through the use of more powerful neuroproteomic approaches. However, mass spectrometry (MS)-based neuroproteomic studies of synapses still require cell-type, spatial, and temporal proteome information. With the advancement of sample preparation and MS techniques, we have just begun to identify and understand proteomes within a given cell type, subcellular compartment, and cell-type-specific synapse. Here, we review the progress and limitations of MS-based neuroproteomics of synapses in the mammalian CNS and highlight the recent applications of these approaches in studying neuropsychiatric disorders such as major depressive disorder and substance use disorders. Combining neuroproteomic findings with other omics studies can generate an in-depth, comprehensive map of synaptic proteomes and possibly identify new therapeutic targets and biomarkers for several central nervous system disorders.
Collapse
Affiliation(s)
- Yun Young Yim
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | | |
Collapse
|
7
|
Shen Z, Li W, Chang W, Yue N, Yu J. Sex differences in chronic pain-induced mental disorders: Mechanisms of cerebral circuitry. Front Mol Neurosci 2023; 16:1102808. [PMID: 36891517 PMCID: PMC9986270 DOI: 10.3389/fnmol.2023.1102808] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/16/2023] [Indexed: 02/22/2023] Open
Abstract
Mental disorders such as anxiety and depression induced by chronic pain are common in clinical practice, and there are significant sex differences in their epidemiology. However, the circuit mechanism of this difference has not been fully studied, as preclinical studies have traditionally excluded female rodents. Recently, this oversight has begun to be resolved and studies including male and female rodents are revealing sex differences in the neurobiological processes behind mental disorder features. This paper reviews the structural functions involved in the injury perception circuit and advanced emotional cortex circuit. In addition, we also summarize the latest breakthroughs and insights into sex differences in neuromodulation through endogenous dopamine, 5-hydroxytryptamine, GABAergic inhibition, norepinephrine, and peptide pathways like oxytocin, as well as their receptors. By comparing sex differences, we hope to identify new therapeutic targets to offer safer and more effective treatments.
Collapse
Affiliation(s)
- Zuqi Shen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Li
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weiqi Chang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Na Yue
- Weifang Maternal and Child Health Hospital, Weifang, China
| | - Jin Yu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Li H, Zhang X, Sun X, Dong L, Lu H, Yue S, Zhang H. Functional networks in prolonged disorders of consciousness. Front Neurosci 2023; 17:1113695. [PMID: 36875660 PMCID: PMC9981972 DOI: 10.3389/fnins.2023.1113695] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/25/2023] [Indexed: 02/19/2023] Open
Abstract
Prolonged disorders of consciousness (DoC) are characterized by extended disruptions of brain activities that sustain wakefulness and awareness and are caused by various etiologies. During the past decades, neuroimaging has been a practical method of investigation in basic and clinical research to identify how brain properties interact in different levels of consciousness. Resting-state functional connectivity within and between canonical cortical networks correlates with consciousness by a calculation of the associated temporal blood oxygen level-dependent (BOLD) signal process during functional MRI (fMRI) and reveals the brain function of patients with prolonged DoC. There are certain brain networks including the default mode, dorsal attention, executive control, salience, auditory, visual, and sensorimotor networks that have been reported to be altered in low-level states of consciousness under either pathological or physiological states. Analysis of brain network connections based on functional imaging contributes to more accurate judgments of consciousness level and prognosis at the brain level. In this review, neurobehavioral evaluation of prolonged DoC and the functional connectivity within brain networks based on resting-state fMRI were reviewed to provide reference values for clinical diagnosis and prognostic evaluation.
Collapse
Affiliation(s)
- Hui Li
- Rehabilitation Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China.,University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Xiaonian Zhang
- Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China
| | - Xinting Sun
- Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China
| | - Linghui Dong
- Rehabilitation Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China.,University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Haitao Lu
- Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China
| | - Shouwei Yue
- Rehabilitation Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Hao Zhang
- Rehabilitation Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China.,University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| |
Collapse
|
9
|
Knouse MC, McGrath AG, Deutschmann AU, Rich MT, Zallar LJ, Rajadhyaksha AM, Briand LA. Sex differences in the medial prefrontal cortical glutamate system. Biol Sex Differ 2022; 13:66. [PMID: 36348414 PMCID: PMC9641904 DOI: 10.1186/s13293-022-00468-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dysregulation in the prefrontal cortex underlies a variety of psychiatric illnesses, including substance use disorder, depression, and anxiety. Despite the established sex differences in prevalence and presentation of these illnesses, the neural mechanisms driving these differences are largely unexplored. Here, we investigate potential sex differences in glutamatergic transmission within the medial prefrontal cortex (mPFC). The goal of these experiments was to determine if there are baseline sex differences in transmission within this region that may underlie sex differences in diseases that involve dysregulation in the prefrontal cortex. METHODS Adult male and female C57Bl/6J mice were used for all experiments. Mice were killed and bilateral tissue samples were taken from the medial prefrontal cortex for western blotting. Both synaptosomal and total GluA1 and GluA2 levels were measured. In a second set of experiments, mice were killed and ex vivo slice electrophysiology was performed on prepared tissue from the medial prefrontal cortex. Spontaneous excitatory postsynaptic currents and rectification indices were measured. RESULTS Females exhibit higher levels of synaptosomal GluA1 and GluA2 in the mPFC compared to males. Despite similar trends, no statistically significant differences are seen in total levels of GluA1 and GluA2. Females also exhibit both a higher amplitude and higher frequency of spontaneous excitatory postsynaptic currents and greater inward rectification in the mPFC compared to males. CONCLUSIONS Overall, we conclude that there are sex differences in glutamatergic transmission in the mPFC. Our data suggest that females have higher levels of glutamatergic transmission in this region. This provides evidence that the development of sex-specific pharmacotherapies for various psychiatric diseases is important to create more effective treatments.
Collapse
Affiliation(s)
- Melissa C. Knouse
- Department of Psychology, Temple University, Weiss Hall, 1701 North 13th Street, Philadelphia, PA 19122 USA
| | - Anna G. McGrath
- Department of Psychology, Temple University, Weiss Hall, 1701 North 13th Street, Philadelphia, PA 19122 USA
| | - Andre U. Deutschmann
- Department of Psychology, Temple University, Weiss Hall, 1701 North 13th Street, Philadelphia, PA 19122 USA
| | - Matthew T. Rich
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854 USA
| | - Lia J. Zallar
- Department of Pharmacology, Weill Cornell Medicine of Cornell University, New York, NY USA
| | - Anjali M. Rajadhyaksha
- Pediatric Neurology, Pediatrics, Weill Cornell Medicine of Cornell University, New York, NY USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York, NY USA
- Weill Cornell Autism Research Program, Weill Cornell Medicine of Cornell University, New York, NY USA
| | - Lisa A. Briand
- Department of Psychology, Temple University, Weiss Hall, 1701 North 13th Street, Philadelphia, PA 19122 USA
- Neuroscience Program, Temple University, Philadelphia, USA
| |
Collapse
|
10
|
Domingo‐Rodriguez L, Cabana‐Domínguez J, Fernàndez‐Castillo N, Cormand B, Martín‐García E, Maldonado R. Differential expression of miR-1249-3p and miR-34b-5p between vulnerable and resilient phenotypes of cocaine addiction. Addict Biol 2022; 27:e13201. [PMID: 36001423 PMCID: PMC9286869 DOI: 10.1111/adb.13201] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 05/13/2022] [Accepted: 06/03/2022] [Indexed: 11/28/2022]
Abstract
Cocaine addiction is a complex brain disorder involving long-term alterations that lead to loss of control over drug seeking. The transition from recreational use to pathological consumption is different in each individual, depending on the interaction between environmental and genetic factors. Epigenetic mechanisms are ideal candidates to study psychiatric disorders triggered by these interactions, maintaining persistent malfunctions in specific brain regions. Here we aim to study brain-region-specific epigenetic signatures following exposure to cocaine in a mouse model of addiction to this drug. Extreme subpopulations of vulnerable and resilient phenotypes were selected to identify miRNA signatures for differential vulnerability to cocaine addiction. We used an operant model of intravenous cocaine self-administration to evaluate addictive-like behaviour in rodents based on the Diagnostic and Statistical Manual of Mental Disorders Fifth Edition criteria to diagnose substance use disorders. After cocaine self-administration, we performed miRNA profiling to compare two extreme subpopulations of mice classified as resilient and vulnerable to cocaine addiction. We found that mmu-miR-34b-5p was downregulated in the nucleus accumbens of vulnerable mice with high motivation for cocaine. On the other hand, mmu-miR-1249-3p was downregulated on vulnerable mice with high levels of motor disinhibition. The elucidation of the epigenetic profile related to vulnerability to cocaine addiction is expected to help find novel biomarkers that could facilitate the interventions to battle this devastating disorder.
Collapse
Affiliation(s)
- Laura Domingo‐Rodriguez
- Laboratory of Neuropharmacology‐Neurophar, Department of Medicine and Life SciencesUniversitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Judit Cabana‐Domínguez
- Departament de Genètica, Microbiologia i Estadística, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)BarcelonaSpain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de BarcelonaBarcelonaSpain
- Institut de Recerca Sant Joan de Déu (IR‐SJD)BarcelonaSpain
| | - Noèlia Fernàndez‐Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)BarcelonaSpain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de BarcelonaBarcelonaSpain
- Institut de Recerca Sant Joan de Déu (IR‐SJD)BarcelonaSpain
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)BarcelonaSpain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de BarcelonaBarcelonaSpain
- Institut de Recerca Sant Joan de Déu (IR‐SJD)BarcelonaSpain
| | - Elena Martín‐García
- Laboratory of Neuropharmacology‐Neurophar, Department of Medicine and Life SciencesUniversitat Pompeu Fabra (UPF)BarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology‐Neurophar, Department of Medicine and Life SciencesUniversitat Pompeu Fabra (UPF)BarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
| |
Collapse
|
11
|
Daiwile AP, Sullivan P, Jayanthi S, Goldstein DS, Cadet JL. Sex-Specific Alterations in Dopamine Metabolism in the Brain after Methamphetamine Self-Administration. Int J Mol Sci 2022; 23:ijms23084353. [PMID: 35457170 PMCID: PMC9027322 DOI: 10.3390/ijms23084353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 02/06/2023] Open
Abstract
Methamphetamine (METH) use disorder affects both sexes, with sex differences occurring in behavioral, structural, and biochemical consequences. The molecular mechanisms underlying these differences are unclear. Herein, we used a rat model to identify potential sex differences in the effects of METH on brain dopaminergic systems. Rats were trained to self-administer METH for 20 days, and a cue-induced drug-seeking test was performed on withdrawal days 3 and 30. Dopamine and its metabolites were measured in the prefrontal cortex (PFC), nucleus accumbens (NAc), dorsal striatum (dSTR), and hippocampus (HIP). Irrespective of conditions, in comparison to females, male rats showed increased 3,4-dihydroxyphenylalanine (DOPA) in the PFC, dSTR, and HIP; increased cys-dopamine in NAc; and increased 3,4-dihydroxyphenylethanol (DOPET) and 3,4-dihydroxyphenylacetic acid (DOPAC) in dSTR. Males also showed METH-associated decreases in DA levels in the HIP but increases in the NAc. Female rats showed METH-associated decreases in DA, DOPAL, and DOPAC levels in the PFC but increases in DOPET and DOPAC levels in the HIP. Both sexes showed METH-associated decreases in NAc DA metabolites. Together, these data document sex differences in METH SA-induced changes in DA metabolism. These observations provide further support for using sex as an essential variable when discussing therapeutic approaches against METH use disorder in humans.
Collapse
Affiliation(s)
- Atul P. Daiwile
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, National Institutes of Health (NIH), Baltimore, MD 21224, USA; (A.P.D.); (S.J.)
| | - Patricia Sullivan
- Autonomic Medicine Section, NINDS Intramural Research Program, National Institutes of Health (NIH), Bethesda, MD 20892, USA; (P.S.); (D.S.G.)
| | - Subramaniam Jayanthi
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, National Institutes of Health (NIH), Baltimore, MD 21224, USA; (A.P.D.); (S.J.)
| | - David S. Goldstein
- Autonomic Medicine Section, NINDS Intramural Research Program, National Institutes of Health (NIH), Bethesda, MD 20892, USA; (P.S.); (D.S.G.)
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, National Institutes of Health (NIH), Baltimore, MD 21224, USA; (A.P.D.); (S.J.)
- Correspondence: ; Tel.: +1-443-740-2656
| |
Collapse
|
12
|
Olsen CM, Corrigan JD. Does Traumatic Brain Injury Cause Risky Substance Use or Substance Use Disorder? Biol Psychiatry 2022; 91:421-437. [PMID: 34561027 PMCID: PMC8776913 DOI: 10.1016/j.biopsych.2021.07.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/07/2021] [Accepted: 07/12/2021] [Indexed: 01/22/2023]
Abstract
There is a high co-occurrence of risky substance use among adults with traumatic brain injury (TBI), although it is unknown if the neurologic sequelae of TBI can promote this behavior. We propose that to conclude that TBI can cause risky substance use, it must be determined that TBI precedes risky substance use, that confounders with the potential to increase the likelihood of both TBI and risky substance use must be ruled out, and that there must be a plausible mechanism of action. In this review, we address these factors by providing an overview of key clinical and preclinical studies and list plausible mechanisms by which TBI could increase risky substance use. Human and animal studies have identified an association between TBI and risky substance use, although the strength of this association varies. Factors that may limit detection of this relationship include differential variability due to substance, sex, age of injury, and confounders that may influence the likelihood of both TBI and risky substance use. We propose possible mechanisms by which TBI could increase substance use that include damage-associated neuroplasticity, chronic changes in neuroimmune signaling, and TBI-associated alterations in brain networks.
Collapse
Affiliation(s)
- Christopher M Olsen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin.
| | - John D Corrigan
- Department of Physical Medicine & Rehabilitation, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
13
|
Torres-Castaño A, Rivero-Santana A, Perestelo-Pérez L, Duarte-Díaz A, Toledo-Chávarri A, Ramos-García V, Álvarez-Pérez Y, Cudeiro-Mazaira J, Padrón-González I, Serrano-Pérez P. Transcranial Magnetic Stimulation for the Treatment of Cocaine Addiction: A Systematic Review. J Clin Med 2021; 10:jcm10235595. [PMID: 34884297 PMCID: PMC8658408 DOI: 10.3390/jcm10235595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 12/26/2022] Open
Abstract
Long-term cocaine use is associated with cognitive deficits and neuro-psychiatric pathologies. Repetitive transcranial magnetic stimulation (rTMS) is an emerging therapeutic strategy relating to changes in brain activity. It stimulates the prefrontal cortex and is involved in inhibitory cognitive control, decision making and care. This systematic review aims to evaluate and synthesize the evidence on the safety, effectiveness, and cost-effectiveness of rTMS for the treatment of cocaine addiction. A systematic review of the literature was carried out. The following electronic databases were consulted from inception to October 2020: MEDLINE, Embase, CINAHL, PsycINFO, Cochrane Central Register of Controlled Trials and Web of Science. Randomised controlled trials, non-randomised controlled trials and case-series and full economic evaluations were included. Twelve studies were included. No identified study reported data on cost-effectiveness. Significant results of the efficacy of TMS have been observed in terms of the reduction of craving to consume and the number of doses consumed. No serious adverse effects have been observed. Despite the low quality of the studies, the first results were observed in terms of reduction of cocaine use and craving. In any case, this effect is considered moderate. Studies with larger sample sizes and longer follow-ups are required.
Collapse
Affiliation(s)
- Alezandra Torres-Castaño
- Canary Islands Health Research Institute Foundation (FIISC), 38109 El Rosario, Spain; (A.R.-S.); (A.D.-D.); (A.T.-C.); (V.R.-G.); (Y.Á.-P.)
- Evaluation Unit of the Canary Islands Health Service (SESCS), 38019 El Rosario, Spain;
- The Spanish Network of Agencies for Health Technology Assessment and Services of the National Health System (RedETS), 28071 Madrid, Spain
- Correspondence:
| | - Amado Rivero-Santana
- Canary Islands Health Research Institute Foundation (FIISC), 38109 El Rosario, Spain; (A.R.-S.); (A.D.-D.); (A.T.-C.); (V.R.-G.); (Y.Á.-P.)
- Evaluation Unit of the Canary Islands Health Service (SESCS), 38019 El Rosario, Spain;
| | | | - Andrea Duarte-Díaz
- Canary Islands Health Research Institute Foundation (FIISC), 38109 El Rosario, Spain; (A.R.-S.); (A.D.-D.); (A.T.-C.); (V.R.-G.); (Y.Á.-P.)
- Evaluation Unit of the Canary Islands Health Service (SESCS), 38019 El Rosario, Spain;
| | - Ana Toledo-Chávarri
- Canary Islands Health Research Institute Foundation (FIISC), 38109 El Rosario, Spain; (A.R.-S.); (A.D.-D.); (A.T.-C.); (V.R.-G.); (Y.Á.-P.)
- Evaluation Unit of the Canary Islands Health Service (SESCS), 38019 El Rosario, Spain;
| | - Vanesa Ramos-García
- Canary Islands Health Research Institute Foundation (FIISC), 38109 El Rosario, Spain; (A.R.-S.); (A.D.-D.); (A.T.-C.); (V.R.-G.); (Y.Á.-P.)
- Evaluation Unit of the Canary Islands Health Service (SESCS), 38019 El Rosario, Spain;
| | - Yolanda Álvarez-Pérez
- Canary Islands Health Research Institute Foundation (FIISC), 38109 El Rosario, Spain; (A.R.-S.); (A.D.-D.); (A.T.-C.); (V.R.-G.); (Y.Á.-P.)
- Evaluation Unit of the Canary Islands Health Service (SESCS), 38019 El Rosario, Spain;
| | - Javier Cudeiro-Mazaira
- Galician Brain Stimulation Center, 15009 A Coruña, Spain;
- Neuroscience and Motor Control Group (NEUROcom), Instituto Biomédico de A Coruña (INIBIC), Universidad de A Coruña, 15006 Oza, Spain
| | - Iván Padrón-González
- Institute of Neuroscience, University of La Laguna, Guajara Campus, 38200 San Cristobal de La Laguna, Spain;
| | - Pedro Serrano-Pérez
- Group of Psychiatry, Mental Health and Addictions at the Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain;
| |
Collapse
|
14
|
Neurophysiological correlate of incubation of craving in individuals with methamphetamine use disorder. Mol Psychiatry 2021; 26:6198-6208. [PMID: 34385601 DOI: 10.1038/s41380-021-01252-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 01/01/2023]
Abstract
Previous studies both in laboratory animals and humans have reported that abstinence induces incubation of cue-induced drug craving for nicotine, alcohol, cocaine, and methamphetamine. However, current experimental procedures utilized to study incubation of methamphetamine craving do not incorporate the temporal dynamics of neuropsychological measures and electrophysiological activities associated with this incubation process. This study utilized the high-density electroencephalogram (EEG) signals as a rapid, inexpensive, and noninvasive measure of cue-induced craving potential. A total of 156 male individuals with methamphetamine use disorder (MUD) enrolled in this multisite, cross-sectional study. Structured clinical interview data, self-report questionnaires (cued craving, quality of sleep, impulsivity, anxiety, and depression) and resting-state, eye-closed 128 high-density channel EEG signals were collected at 5 abstinence duration time points (<1, 1-3, 3-6, 6-12, and 12-24 months) to track the neuropsychological and neurophysiological signatures. Cue-induced craving was higher after 1-3 months than after the other time points. This incubation effect was also observed for sleep quality but not for anxiety, depression, and impulsivity symptoms, along with exhibited decreased power spectrum for theta (5.5-8 Hz) and alpha (8-13 Hz), and increased in beta (16.5-26.5 Hz) frequency band. Source reconstructed resting-state EEG analysis showed increased synchronization of medial prefrontal cortex (MPFC) for the beta frequency band in 1-3 months abstinent MUD group, and associated with the incubation of craving. Remarkably, the robust incubation-related abnormalities may be driven by beta-band source space connectivity between MPFC and bilateral orbital gyrus (ORB). Our findings suggest the enhancement of beta activity in the incubation period most likely originates from a dysfunction involving frontal brain regions. This neurophysiological signature of incubation of craving can be used to identify individuals who might be most susceptible to relapse, providing a potential insight into future therapeutic interventions for MUD via neuromodulation of beta activity.
Collapse
|
15
|
Antonini MJ, Sahasrabudhe A, Tabet A, Schwalm M, Rosenfeld D, Garwood I, Park J, Loke G, Khudiyev T, Kanik M, Corbin N, Canales A, Jasanoff AP, Fink Y, Anikeeva P. Customizing MRI-Compatible Multifunctional Neural Interfaces through Fiber Drawing. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2104857. [PMID: 34924913 PMCID: PMC8673858 DOI: 10.1002/adfm.202104857] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Indexed: 05/11/2023]
Abstract
Fiber drawing enables scalable fabrication of multifunctional flexible fibers that integrate electrical, optical and microfluidic modalities to record and modulate neural activity. Constraints on thermomechanical properties of materials, however, have prevented integrated drawing of metal electrodes with low-loss polymer waveguides for concurrent electrical recording and optical neuromodulation. Here we introduce two fabrication approaches: (1) an iterative thermal drawing with a soft, low melting temperature (Tm) metal indium, and (2) a metal convergence drawing with traditionally non-drawable high Tm metal tungsten. Both approaches deliver multifunctional flexible neural interfaces with low-impedance metallic electrodes and low-loss waveguides, capable of recording optically-evoked and spontaneous neural activity in mice over several weeks. We couple these fibers with a light-weight mechanical microdrive (1g) that enables depth-specific interrogation of neural circuits in mice following chronic implantation. Finally, we demonstrate the compatibility of these fibers with magnetic resonance imaging (MRI) and apply them to visualize the delivery of chemical payloads through the integrated channels in real time. Together, these advances expand the domains of application of the fiber-based neural probes in neuroscience and neuroengineering.
Collapse
Affiliation(s)
- Marc-Joseph Antonini
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Harvard/MIT Health Science & Technology Graduate Program, Cambridge, MA, 02139, USA
| | - Atharva Sahasrabudhe
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Anthony Tabet
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Miriam Schwalm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Dekel Rosenfeld
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Indie Garwood
- Harvard/MIT Health Science & Technology Graduate Program, Cambridge, MA, 02139, USA
| | - Jimin Park
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Gabriel Loke
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tural Khudiyev
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mehmet Kanik
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Kinetik Therapeutics LLC, Newton, MA, 02459, USA
| | - Nathan Corbin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | - Alan P. Jasanoff
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yoel Fink
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Advanced Functional Fabrics of America, Cambridge, MA, 02139 USA
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
| | - Polina Anikeeva
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
16
|
Similar role of mPFC orexin-1 receptors in the acquisition and expression of morphine- and food-induced conditioned place preference in male rats. Neuropharmacology 2021; 198:108764. [PMID: 34450116 DOI: 10.1016/j.neuropharm.2021.108764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 01/19/2023]
Abstract
Self-control problems are a typical character of drug addiction and excessive food consumption and it has been shown that natural rewards and drugs of abuse share parts of the same neural substrate and reward processing in the brain. Different brain areas are involved in natural and drug reward processing including the mesolimbic pathway, amygdala, nucleus accumbens (NAc), and prefrontal cortex. Considering the important role of orexins in the addictive behavior and the presence of orexin-1 subtype receptors (Orx1R) in the medial prefrontal cortex (mPFC), this study investigated the role of mPFC in natural- and drug-reward seeking behaviors to deepen our understanding of possible similarities or differences. To induce food- or morphine-conditioned place preference (CPP), adult male Wistar rats underwent CPP testing and received intra-mPFC doses of SB334867 (3, 10, or 30 nM/0.5 μl DMSO 12%), as an Orx1R antagonist, during the acquisition or expression phases of the CPP test. Results indicated that microinjection of Orx1R antagonist into the mPFC had similar effects on both morphine- and food-induced CPP and attenuated CPP scores in the acquisition and expression phases of the CPP test. The data demonstrated that Orx1Rs in the mPFC regulate the reward-related effects of morphine- and food-induced reward.
Collapse
|
17
|
Cabana-Domínguez J, Martín-García E, Gallego-Roman A, Maldonado R, Fernàndez-Castillo N, Cormand B. Reduced cue-induced reinstatement of cocaine-seeking behavior in Plcb1 +/- mice. Transl Psychiatry 2021; 11:521. [PMID: 34635637 PMCID: PMC8505421 DOI: 10.1038/s41398-021-01396-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/24/2021] [Accepted: 04/20/2021] [Indexed: 11/28/2022] Open
Abstract
Cocaine addiction causes serious health problems, and no effective treatment is available yet. We previously identified a genetic risk variant for cocaine addiction in the PLCB1 gene and found this gene upregulated in postmortem brains of cocaine abusers and in human dopaminergic neuron-like cells after an acute cocaine exposure. Here, we functionally tested the contribution of the PLCB1 gene to cocaine addictive properties using Plcb1+/- mice. First, we performed a general phenotypic characterization and found that Plcb1+/- mice showed normal behavior, although they had increased anxiety and impaired short-term memory. Subsequently, mice were trained for operant conditioning, self-administered cocaine for 10 days, and were tested for cocaine motivation. After extinction, we found a reduction in the cue-induced reinstatement of cocaine-seeking behavior in Plcb1+/- mice. After reinstatement, we identified transcriptomic alterations in the medial prefrontal cortex of Plcb1+/- mice, mostly related to pathways relevant to addiction like the dopaminergic synapse and long-term potentiation. To conclude, we found that heterozygous deletion of the Plcb1 gene decreases cue-induced reinstatement of cocaine-seeking, pointing at PLCB1 as a possible therapeutic target for preventing relapse and treating cocaine addiction.
Collapse
Affiliation(s)
- Judit Cabana-Domínguez
- grid.5841.80000 0004 1937 0247Department de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia Spain ,grid.452372.50000 0004 1791 1185Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain ,grid.5841.80000 0004 1937 0247Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia Spain ,grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu (IR-SJD), Barcelona, Catalonia Spain
| | - Elena Martín-García
- grid.5612.00000 0001 2172 2676Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Catalonia Spain ,grid.20522.370000 0004 1767 9005Hospital del Mar Medical Research Institute (IMIM), Barcelona, Catalonia Spain
| | - Ana Gallego-Roman
- grid.5612.00000 0001 2172 2676Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Catalonia Spain
| | - Rafael Maldonado
- grid.5612.00000 0001 2172 2676Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Catalonia Spain ,grid.20522.370000 0004 1767 9005Hospital del Mar Medical Research Institute (IMIM), Barcelona, Catalonia Spain
| | - Noèlia Fernàndez-Castillo
- Department de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain. .,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain. .,Institut de Recerca Sant Joan de Déu (IR-SJD), Barcelona, Catalonia, Spain.
| | - Bru Cormand
- Department de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain. .,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain. .,Institut de Recerca Sant Joan de Déu (IR-SJD), Barcelona, Catalonia, Spain.
| |
Collapse
|
18
|
Frankowska M, Jesus FM, Mühle C, Pacheco JV, Maior RS, Sadakierska‐Chudy A, Smaga I, Piechota M, Kalinichenko LS, Gulbins E, Kornhuber J, Filip M, Müller CP, Barros M. Cocaine attenuates acid sphingomyelinase activity during establishment of addiction-related behavior-A translational study in rats and monkeys. Addict Biol 2021; 26:e12955. [PMID: 32761719 DOI: 10.1111/adb.12955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
Cocaine addiction is a severe psychiatric condition for which currently no effective pharmacotherapy is available. Brain mechanisms for the establishment of addiction-related behaviors are still not fully understood, and specific biomarkers for cocaine use are not available. Sphingolipids are major membrane lipids, which shape neuronal membrane composition and dynamics in the brain. Here, we investigated how chronic cocaine exposure during establishment of addiction-related behaviors affects the activity of the sphingolipid rheostat controlling enzymes in the brain of rats. As we detected specific effects on several enzymes in the brain, we tested whether the activity of selected enzymes in the blood may serve as potential biomarker for cocaine exposure in non-human primates (Callithrix penicillata). We found that intravenous cocaine self-administration led to a reduced mRNA expression of Cers1, Degs1 and Degs2, and Smpd1 in the prefrontal cortex of rats, as well as a reduction of Cers4 expression in the striatum. These effects reversed after 10 days of abstinence. Monkeys showed a robust cocaine-induced place preference (CPP). This coincided with a reduction in blood acid sphingomyelinase (ASM) activity after CPP establishment. This effect normalized after 15 days of abstinence. Altogether, these findings suggest that the establishment of cocaine addiction-related behaviors coincides with changes in the activity of sphingolipid controlling enzymes. In particular, blood ASM levels may serve as a translational biomarker for recent cocaine exposure.
Collapse
Affiliation(s)
- Małgorzata Frankowska
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences Maj Institute of Pharmacology Krakow Poland
| | - Fernando M. Jesus
- Department of Pharmacy, School of Health Sciences University of Brasilia Brasilia Brazil
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy Friedrich‐Alexander‐University Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Jéssica V.N. Pacheco
- Department of Pharmacy, School of Health Sciences University of Brasilia Brasilia Brazil
| | - Rafael S. Maior
- Department of Physiological Sciences University of Brasília Brasilia Brazil
- Primate Center Institute of Biology, University of Brasilia Brasilia Brazil
| | - Anna Sadakierska‐Chudy
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences Maj Institute of Pharmacology Krakow Poland
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences Maj Institute of Pharmacology Krakow Poland
| | - Marcin Piechota
- Department of Molecular Neuropharmacology, Polish Academy of Sciences Maj Institute of Pharmacology Krakow Poland
| | - Liubov S. Kalinichenko
- Department of Psychiatry and Psychotherapy Friedrich‐Alexander‐University Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Erich Gulbins
- Department of Molecular Biology University of Duisburg‐Essen Essen Germany
- Department of Surgery University of Cincinnati Cincinnati Ohio USA
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy Friedrich‐Alexander‐University Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences Maj Institute of Pharmacology Krakow Poland
| | - Christian P. Müller
- Department of Psychiatry and Psychotherapy Friedrich‐Alexander‐University Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Marilia Barros
- Department of Pharmacy, School of Health Sciences University of Brasilia Brasilia Brazil
- Primate Center Institute of Biology, University of Brasilia Brasilia Brazil
| |
Collapse
|
19
|
Clare K, Pan C, Kim G, Park K, Zhao J, Volkow ND, Lin Z, Du C. Cocaine Reduces the Neuronal Population While Upregulating Dopamine D2-Receptor-Expressing Neurons in Brain Reward Regions: Sex-Effects. Front Pharmacol 2021; 12:624127. [PMID: 33912043 PMCID: PMC8072657 DOI: 10.3389/fphar.2021.624127] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/08/2021] [Indexed: 02/03/2023] Open
Abstract
Addiction to cocaine is associated with dysfunction of the dopamine mesocortical system including impaired dopamine-2 receptor (D2r) signaling. However, the effects of chronic cocaine on neuronal adaptations in this system have not been systematically examined and data available is mostly from males. Here, we investigated changes in the total neuronal density and relative concentration of D2r-expressing neurons in the medial prefrontal cortex (mPFC), dorsal striatum (Dstr), nucleus accumbens (NAc), and ventral tegmental area (VTA) in both male and female mice passively exposed to cocaine for two weeks. In parallel experiments, we measured mRNA levels for Drd2 and for opioid peptides (mPenk and mPdyn). Through a combination of large field of view fluorescent imaging with BAC transgenic D2r-eGFP mice and immunostaining, we observed that cocaine exposed mice had a higher density of D2r-positive cells that was most prominent in mPFC and VTA and larger for females than for males. This occurred amidst an overall significant decrease in neuronal density (measured with NeuN) in both sexes. However, increases in Drd2 mRNA levels with cocaine were only observed in mPFC and Dstr in females, which might reflect the limited sensitivity of the method. Our findings, which contrast with previous findings of cocaine-induced downregulation of D2r binding availability, could reflect a phenotypic shift in neurons that did not previously express Drd2 and merits further investigation. Additionally, the neuronal loss particularly in mPFC with chronic cocaine might contribute to the cognitive impairments observed with cocaine use disorder.
Collapse
Affiliation(s)
- Kevin Clare
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| | - Chelsea Pan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| | - Gloria Kim
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| | - Kicheon Park
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| | - Juan Zhao
- Laboratory of Psychiatric Neurogenomics, Basic Neuroscience Division, McLean Hospital, Belmont, MA, United States
| | - Nora D Volkow
- National Institute on Drug Abuse, Bethesda, MD, United States
| | - Zhicheng Lin
- Laboratory of Psychiatric Neurogenomics, Basic Neuroscience Division, McLean Hospital, Belmont, MA, United States
| | - Congwu Du
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
20
|
Impact of Acute and Persistent Excitation of Prelimbic Pyramidal Neurons on Motor Activity and Trace Fear Learning. J Neurosci 2021; 41:960-971. [PMID: 33402420 DOI: 10.1523/jneurosci.2606-20.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 11/21/2022] Open
Abstract
Drug-induced neuroadaptations in the mPFC have been implicated in addictive behaviors. Repeated cocaine exposure has been shown to increase pyramidal neuron excitability in the prelimbic (PL) region of the mouse mPFC, an adaptation attributable to a suppression of G protein-gated inwardly rectifying K+ (GIRK) channel activity. After establishing that this neuroadaptation is not seen in adjacent GABA neurons, we used viral GIRK channel ablation and complementary chemogenetic approaches to selectively enhance PL pyramidal neuron excitability in adult mice, to evaluate the impact of this form of plasticity on PL-dependent behaviors. GIRK channel ablation decreased somatodendritic GABAB receptor-dependent signaling and rheobase in PL pyramidal neurons. This manipulation also enhanced the motor-stimulatory effect of cocaine but did not impact baseline activity or trace fear learning. In contrast, selective chemogenetic excitation of PL pyramidal neurons, or chemogenetic inhibition of PL GABA neurons, increased baseline and cocaine-induced activity and disrupted trace fear learning. These effects were mirrored in male mice by selective excitation of PL pyramidal neurons projecting to the VTA, but not NAc or BLA. Collectively, these data show that manipulations enhancing the excitability of PL pyramidal neurons, and specifically those projecting to the VTA, recapitulate behavioral hallmarks of repeated cocaine exposure in mice.SIGNIFICANCE STATEMENT Prolonged exposure to drugs of abuse triggers neuroadaptations that promote core features of addiction. Understanding these neuroadaptations and their implications may suggest interventions capable of preventing or treating addiction. While previous work showed that repeated cocaine exposure increased the excitability of pyramidal neurons in the prelimbic cortex (PL), the behavioral implications of this neuroadaptation remained unclear. Here, we used neuron-specific manipulations to evaluate the impact of increased PL pyramidal neuron excitability on PL-dependent behaviors. Acute or persistent excitation of PL pyramidal neurons potentiated cocaine-induced motor activity and disrupted trace fear conditioning, effects replicated by selective excitation of the PL projection to the VTA. Our work suggests that hyperexcitability of this projection drives key behavioral hallmarks of addiction.
Collapse
|
21
|
Maldonado R, Calvé P, García-Blanco A, Domingo-Rodriguez L, Senabre E, Martín-García E. Vulnerability to addiction. Neuropharmacology 2021; 186:108466. [PMID: 33482225 DOI: 10.1016/j.neuropharm.2021.108466] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/03/2020] [Accepted: 01/14/2021] [Indexed: 12/22/2022]
Abstract
Addiction is a chronic brain disease that has dramatic health and socioeconomic consequences worldwide. Multiple approaches have been used for decades to clarify the neurobiological basis of this disease and to identify novel potential treatments. This review summarizes the main brain networks involved in the vulnerability to addiction and specific innovative technological approaches to investigate these neural circuits. First, the evolution of the definition of addiction across the Diagnostic and Statistical Manual of Mental Disorders (DSM) is revised. We next discuss several innovative experimental techniques that, combined with behavioral approaches, have allowed recent critical advances in understanding the neural circuits involved in addiction, including DREADDs, calcium imaging, and electrophysiology. All these techniques have been used to investigate specific neural circuits involved in vulnerability to addiction and have been extremely useful to clarify the neurobiological basis of each specific component of the addictive process. These novel tools targeting specific brain regions are of great interest to further understand the different aspects of this complex disease. This article is part of the special issue on 'Vulnerabilities to Substance Abuse.'.
Collapse
Affiliation(s)
- R Maldonado
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain; Hospital Del Mar Medical Research Institute (IMIM), Barcelona, Spain.
| | - P Calvé
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - A García-Blanco
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - L Domingo-Rodriguez
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - E Senabre
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - E Martín-García
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
22
|
Kestering-Ferreira E, Tractenberg SG, Lumertz FS, Orso R, Creutzberg KC, Wearick-Silva LE, Viola TW, Grassi-Oliveira R. Long-term Effects of Maternal Separation on Anxiety-Like Behavior and Neuroendocrine Parameters in Adult Balb/c Mice. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2021; 5:24705470211067181. [PMID: 34993376 PMCID: PMC8725222 DOI: 10.1177/24705470211067181] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022]
Abstract
Introduction: Disruption of maternal care using maternal separation (MS) models has provided significant evidence of the deleterious long-term effects of early life stress. Several preclinical studies investigating MS showed multiple behavioral and biomolecular alterations. However, there is still conflicting results from MS studies, which represents a challenge for reliability and replicability of those findings. Objective: To address that, this study was conducted to investigate whether MS would affect anxiety-like behaviors using a battery of classical tasks, as well as central and peripheral stress-related biomarkers. Methods: Male Balb/c mice were exposed to MS from postnatal day (PND) 2 to 14 for 180-min per day. Two independent cohorts were performed to evaluate both baseline and anxiety-like behavior responses to MS at PND60. We performed composite scores to evaluate MS effects on anxiety and risk assessment phenotypes. Also, we assessed mRNA gene expression in the medial pre-frontal cortex (mPFC) of glucocorticoid and mineralocorticoid receptors (GR and MR) using real-time PCR and peripheral corticosterone levels (CORT) to investigate possible neurobiological correlates to anxiety behaviors. Results: We found increased anxiety-like behavior and decreased risk assessment and exploratory behaviors in MS mice. The animals exposed to MS also presented a decrease in MR mRNA expression and higher levels of CORT compared to controls. Conclusions: Our findings reinforce the body of evidence suggesting that long-term MS induces effects on anxiety and risk assessment phenotypes following the exposure to a standardized MS protocol. Moreover, MS affected the expression of MR mRNA and induced significant changes on CORT response. This data highlights that the reprograming MS effects on HPA axis could be mediate by MR gene expression in mPFC and chronic overactivity of peripheral CORT levels.
Collapse
Affiliation(s)
- Erika Kestering-Ferreira
- Developmental Cognitive Neuroscience Lab
(DCNL), Pontifical University Catholic of Rio Grande do Sul
| | - Saulo Gantes Tractenberg
- Developmental Cognitive Neuroscience Lab
(DCNL), Pontifical University Catholic of Rio Grande do Sul
| | | | - Rodrigo Orso
- Developmental Cognitive Neuroscience Lab
(DCNL), Pontifical University Catholic of Rio Grande do Sul
| | | | | | - Thiago Wendt Viola
- Developmental Cognitive Neuroscience Lab
(DCNL), Pontifical University Catholic of Rio Grande do Sul
| | - Rodrigo Grassi-Oliveira
- Developmental Cognitive Neuroscience Lab
(DCNL), Pontifical University Catholic of Rio Grande do Sul
- Aarhus University, Denmark
| |
Collapse
|
23
|
Liu K, Zhao J, Chen C, Xu J, Bell RL, Hall FS, Koob GF, Volkow ND, Qing H, Lin Z. Epistatic evidence for gender-dependant slow neurotransmission signalling in substance use disorders: PPP1R12B versus PPP1R1B. EBioMedicine 2020; 61:103066. [PMID: 33096475 PMCID: PMC7581882 DOI: 10.1016/j.ebiom.2020.103066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Slow neurotransmission including DARPP-32 signalling is implicated in substance use disorders (SUDs) by experimental systems but not yet in the human aetiology. PPP1R12B, encoding another protein in the DARPP-32 family, hasn't been studied in the brain. METHODS Brain-regional gene activity was assessed in three different animal models of SUDs for mRNA level alterations. Genetic associations were assessed by meta-analysis of pre-existing dbGaP GWAS datasets for main effects and epistasis with known genetic risks, followed by cell type-specific pathway delineation. Parkinson's disease (PD) was included as a dopamine-related disease control for SUDs. FINDINGS In animal models of SUDs, environmentally-altered PPP1R12B expression sex-dependently involves motivation-related brain regions. In humans with polysubstance abuse, meta-analysis of pre-existing datasets revealed that PPP1R12B and PPP1R1B, although expressed in dopamine vs. dopamine-recipient neurons, exerted similar interactions with known genetic risks such as ACTR1B and DRD2 in men but with ADH1B, HGFAC and DRD3 in women. These interactions reached genome-wide significances (Pmeta<10-20) for SUDs but not for PD (disease selectivity: P = 4.8 × 10-142, OR = 6.7 for PPP1R12B; P = 8.0 × 10-8, OR = 2.1 for PPP1R1B). CADM2 was the common risk in the molecular signalling regardless of gender and cell type. INTERPRETATION Gender-dependant slow neurotransmission may convey both genetic and environmental vulnerabilities selectively to SUDs. FUNDING Grants from National Institute on Drug Abuse (NIDA) and National Institute on Alcohol Abuse and Alcoholism (NIAAA) of U.S.A. and National Natural Science Foundation of China (NSFC).
Collapse
Affiliation(s)
- Kefu Liu
- School of Life Science, Beijing Institute of Technology, 100081 Beijing, China; Laboratory of Psychiatric Neurogenomics, McLean Hospital, Belmont, MA 02478, United States of America
| | - Juan Zhao
- School of Life Science, Beijing Institute of Technology, 100081 Beijing, China; Laboratory of Psychiatric Neurogenomics, McLean Hospital, Belmont, MA 02478, United States of America
| | - Chunnuan Chen
- Laboratory of Psychiatric Neurogenomics, McLean Hospital, Belmont, MA 02478, United States of America; Department of Neurology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, P. R. China
| | - Jie Xu
- Department of Computer Information Systems, Bentley University, Waltham, MA, 02452, United States of America
| | - Richard L Bell
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States of America
| | - Frank S Hall
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43614, United States of America
| | - George F Koob
- National Institute on Drug Abuse and National Institute of Alcohol Abuse and Alcoholism, Bethesda, Maryland, 20892 United States of America
| | - Nora D Volkow
- National Institute on Drug Abuse and National Institute of Alcohol Abuse and Alcoholism, Bethesda, Maryland, 20892 United States of America
| | - Hong Qing
- School of Life Science, Beijing Institute of Technology, 100081 Beijing, China.
| | - Zhicheng Lin
- Laboratory of Psychiatric Neurogenomics, McLean Hospital, Belmont, MA 02478, United States of America.
| |
Collapse
|
24
|
Denomme WJ, Shane MS. History of withdrawal modulates drug- and food-cue reactivity in cocaine dependent participants. Drug Alcohol Depend 2020; 208:107815. [PMID: 31972520 DOI: 10.1016/j.drugalcdep.2019.107815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/09/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022]
Abstract
While the centrality of withdrawal in the diagnosis of addiction has been decreasing with each successive edition of the Diagnostic and Statistical Manual of Mental Disorders, psychometric and neurobiological evidence provides withdrawal a central role in the development and maintenance of addiction. The current study offers insight into these conflicting positions by using secondary analyses to assess how a history of DSM-assessed withdrawal influences the magnitude of bias in neural reactivity to drug- and/or food-related reward cues. To this end, we separated an existing sample of cocaine-dependent participants (Denomme et al., 2018) into those with (WD) and without (N-WD) a history of withdrawal, and compared food- and drug-cue reactivity between these groups, and to a non-dependent control group (ND). Analyses indicated that biases in neural reactivity towards drug- versus food-related cues only occurred among the WD participants (within: left dorsomedial prefrontal cortex, left anterior cingulate cortex, left orbitofrontal cortex, left caudate nucleus, and right ventrolateral prefrontal cortex). Thus, withdrawal status may be an important factor to consider when interpreting dependence-related biases in neural reactivity following reward-related cues. Interestingly, while N-WD participants did not show these broad biases in neural reactivity, the magnitude of their bias correlated positively with years of lifetime substance use history, particularly when psychopathic traits were low. It may be that for individuals who's addiction has not yet reached a compulsive state (see Wise and Koob, 2014), the magnitude of their drug > food bias could serve as a valuable biomarker of addiction severity.
Collapse
Affiliation(s)
- William James Denomme
- Clinical and Affective Neuroscience Laboratory for Discovery and Innovation, University of Ontario Institute of Technology, Faculty of Social Sciences and Humanities, 2000 Simcoe Street North, Oshawa, ON, L1H 7K4, Canada.
| | - Matthew S Shane
- Clinical and Affective Neuroscience Laboratory for Discovery and Innovation, University of Ontario Institute of Technology, Faculty of Social Sciences and Humanities, 2000 Simcoe Street North, Oshawa, ON, L1H 7K4, Canada; The Mind Research Network, University of New Mexico, 1101 Yale Boulevard North East, Albuquerque, NM, 87106, United States.
| |
Collapse
|
25
|
Prefrontal neural dynamics in consciousness. Neuropsychologia 2019; 131:25-41. [DOI: 10.1016/j.neuropsychologia.2019.05.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/11/2022]
|
26
|
Popa T, Morris LS, Hunt R, Deng ZD, Horovitz S, Mente K, Shitara H, Baek K, Hallett M, Voon V. Modulation of Resting Connectivity Between the Mesial Frontal Cortex and Basal Ganglia. Front Neurol 2019; 10:587. [PMID: 31275221 PMCID: PMC6593304 DOI: 10.3389/fneur.2019.00587] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/17/2019] [Indexed: 12/13/2022] Open
Abstract
Background: The mesial prefrontal cortex, cingulate cortex, and the ventral striatum are key nodes of the human mesial fronto-striatal circuit involved in decision-making and executive function and pathological disorders. Here we ask whether deep wide-field repetitive transcranial magnetic stimulation (rTMS) targeting the mesial prefrontal cortex (MPFC) influences resting state functional connectivity. Methods: In Study 1, we examined functional connectivity using resting state multi-echo and independent components analysis in 154 healthy subjects to characterize default connectivity in the MPFC and mid-cingulate cortex (MCC). In Study 2, we used inhibitory, 1 Hz deep rTMS with the H7-coil targeting MPFC and dorsal anterior cingulate (dACC) in a separate group of 20 healthy volunteers and examined pre- and post-TMS functional connectivity using seed-based and independent components analysis. Results: In Study 1, we show that MPFC and MCC have distinct patterns of functional connectivity with MPFC-ventral striatum showing negative, whereas MCC-ventral striatum showing positive functional connectivity. Low-frequency rTMS decreased functional connectivity of MPFC and dACC with the ventral striatum. We further showed enhanced connectivity between MCC and ventral striatum. Conclusions: These findings emphasize how deep inhibitory rTMS using the H7-coil can influence underlying network functional connectivity by decreasing connectivity of the targeted MPFC regions, thus potentially enhancing response inhibition and decreasing drug-cue reactivity processes relevant to addictions. The unexpected finding of enhanced default connectivity between MCC and ventral striatum may be related to the decreased influence and connectivity between the MPFC and MCC. These findings are highly relevant to the treatment of disorders relying on the mesio-prefrontal-cingulo-striatal circuit.
Collapse
Affiliation(s)
- Traian Popa
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Laurel S. Morris
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Rachel Hunt
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
- Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Zhi-De Deng
- Non-Invasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Silvina Horovitz
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Karin Mente
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Hitoshi Shitara
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Kwangyeol Baek
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Valerie Voon
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
27
|
Taslimi Z, Komaki A, Sarihi A, Haghparast A. Effect of acute and chronic restraint stress on electrical activity of prefrontal cortex neurons in the reinstatement of extinguished methamphetamine-induced conditioned place preference: An electrophysiological study. Brain Res Bull 2019; 146:237-243. [PMID: 30660715 DOI: 10.1016/j.brainresbull.2019.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 01/09/2019] [Accepted: 01/12/2019] [Indexed: 12/29/2022]
Abstract
Increased vulnerability to drug abuse has been observed after exposure to stress and the prefrontal cortex (PFC) plays a major role in the control of the stress response and reward pathway. The current study was conducted to clarify the effects of acute and chronic restraint stress on PFC neural activity during the reinstatement of methamphetamine (METH)-induced conditioned place preference (CPP) in rats. Following the establishment of CPP (METH 0.5 mg/kg; s.c. for 3 days) and the extinction phase, male Wistar rats were divided into threshold (0.25 mg/kg; s.c.) and sub-threshold (0.125 mg/kg; s.c.) METH-treated super groups to induce reinstatement. Each super group contained control (non-stressed), acute restraint stress (ARS) and chronic restraint stress (CRS) groups. in vivo single unit recordings were performed on the urethane-anesthetized rats in these groups. After baseline recordings (10-min period) of the neurons in the PFC, their firing activity was recorded for 50 min during the reinstatement phase after injection of METH. The results showed that the threshold dose, but not the sub-threshold dose, of METH significantly increased PFC neural activity in the non-stressed animals. The sub-threshold dose of METH notably changed this activity in both the ARS and CRS groups. These changes in the excited neurons after the sub-threshold dose in the ARS and CRS groups were significantly higher than those in the non-stressed group. It appears that the PFC is implicated in the associated reward pathway and stress functions. METH affected the firing rate of PFC neurons and stress amplified the effect of METH on changes in the neuronal firing rate in the PFC.
Collapse
Affiliation(s)
- Zahra Taslimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, 19615-1178, Tehran, Iran.
| |
Collapse
|
28
|
Goode TD, Maren S. Common neurocircuitry mediating drug and fear relapse in preclinical models. Psychopharmacology (Berl) 2019; 236:415-437. [PMID: 30255379 PMCID: PMC6373193 DOI: 10.1007/s00213-018-5024-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/03/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Comorbidity of anxiety disorders, stressor- and trauma-related disorders, and substance use disorders is extremely common. Moreover, therapies that reduce pathological fear and anxiety on the one hand, and drug-seeking on the other, often prove short-lived and are susceptible to relapse. Considerable advances have been made in the study of the neurobiology of both aversive and appetitive extinction, and this work reveals shared neural circuits that contribute to both the suppression and relapse of conditioned responses associated with trauma or drug use. OBJECTIVES The goal of this review is to identify common neural circuits and mechanisms underlying relapse across domains of addiction biology and aversive learning in preclinical animal models. We focus primarily on neural circuits engaged during the expression of relapse. KEY FINDINGS After extinction, brain circuits involving the medial prefrontal cortex and hippocampus come to regulate the expression of conditioned responses by the amygdala, bed nucleus of the stria terminalis, and nucleus accumbens. During relapse, hippocampal projections to the prefrontal cortex inhibit the retrieval of extinction memories resulting in a loss of inhibitory control over fear- and drug-associated conditional responding. CONCLUSIONS The overlapping brain systems for both fear and drug memories may explain the co-occurrence of fear and drug-seeking behaviors.
Collapse
Affiliation(s)
- Travis D Goode
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, 301 Old Main Dr., College Station, TX, 77843-3474, USA
| | - Stephen Maren
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, 301 Old Main Dr., College Station, TX, 77843-3474, USA.
| |
Collapse
|
29
|
Yuanyuan J, Junyan Z, Cuola D, Jingjing C, Yuhui S, Dan X, Wei D, Yongsheng Z. Memantine attenuated alcohol withdrawal-induced anxiety-like behaviors through down-regulating NR1-CaMKII-ERK signaling pathway. Neurosci Lett 2018; 686:133-139. [PMID: 30213620 DOI: 10.1016/j.neulet.2018.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 11/19/2022]
Abstract
Alcohol abuse and anxiety disorders often occur concurrently, but their underlying cellular mechanisms remain unclear. N-methyl-D-aspartic acid receptors (NMDARs) have recently received attention from those interested in the neurobiology of anxiety. A chronic alcohol exposure rat model (28 consecutive days of 20% alcohol intake and 6 h of withdrawal) was established. Here, we investigated the NMDAR1 (NR1), Ca2+/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-regulated kinases (ERK) pathway in the modulation of anxiety-like behaviors in rats exposed to an open field and elevated plus maze (EPM) through systematic injections of memantine (a NMDAR inhibitor). We found that the NR1-CaMKII-ERK signaling pathway was activated after alcohol withdrawal in medial prefrontal cortex (mPFC) and nucleus accumbens shell (NAcSh) but not core (NAcC). Memantine treatment greatly ameliorated anxiety-like behavior in the rats experiencing alcohol withdrawal. Moreover, memantine uniformly suppressed the phosphorylation of NR1-CaMKII-ERK pathway induced by alcohol withdrawal. Our results suggest that activation of the NR1-CaMKII-ERK pathway in the mPFC and NAcSh is an important contributor to the molecular mechanisms underlying alcohol withdrawal-induced anxiety behaviors. NMDAR signaling pathway inhibitors are thus potential therapeutics for treating alcohol abuse.
Collapse
Affiliation(s)
- Ji Yuanyuan
- College of Forensic Science, School of Medicine, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Zhu Junyan
- Xi'an Mental Health Center, Xi'an, Shannxi, China
| | - DeJi Cuola
- College of Forensic Science, School of Medicine, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Cui Jingjing
- College of Forensic Science, School of Medicine, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Shi Yuhui
- College of Forensic Science, School of Medicine, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Xu Dan
- College of Forensic Science, School of Medicine, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Dang Wei
- College of Forensic Science, School of Medicine, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi 710061, China; Xi'an Mental Health Center, Xi'an, Shannxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Zhu Yongsheng
- College of Forensic Science, School of Medicine, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
30
|
Gonzalez DA, Jia T, Pinzón JH, Acevedo SF, Ojelade SA, Xu B, Tay N, Desrivières S, Hernandez JL, Banaschewski T, Büchel C, Bokde AL, Conrod PJ, Flor H, Frouin V, Gallinat J, Garavan H, Gowland PA, Heinz A, Ittermann B, Lathrop M, Martinot JL, Paus T, Smolka MN, Rodan AR, Schumann G, Rothenfluh A. The Arf6 activator Efa6/PSD3 confers regional specificity and modulates ethanol consumption in Drosophila and humans. Mol Psychiatry 2018; 23:621-628. [PMID: 28607459 PMCID: PMC5729071 DOI: 10.1038/mp.2017.112] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 03/21/2017] [Accepted: 04/11/2017] [Indexed: 12/19/2022]
Abstract
Ubiquitously expressed genes have been implicated in a variety of specific behaviors, including responses to ethanol. However, the mechanisms that confer this behavioral specificity have remained elusive. Previously, we showed that the ubiquitously expressed small GTPase Arf6 is required for normal ethanol-induced sedation in adult Drosophila. Here, we show that this behavioral response also requires Efa6, one of (at least) three Drosophila Arf6 guanine exchange factors. Ethanol-naive Arf6 and Efa6 mutants were sensitive to ethanol-induced sedation and lacked rapid tolerance upon re-exposure to ethanol, when compared with wild-type flies. In contrast to wild-type flies, both Arf6 and Efa6 mutants preferred alcohol-containing food without prior ethanol experience. An analysis of the human ortholog of Arf6 and orthologs of Efa6 (PSD1-4) revealed that the minor G allele of single nucleotide polymorphism (SNP) rs13265422 in PSD3, as well as a haplotype containing rs13265422, was associated with an increased frequency of drinking and binge drinking episodes in adolescents. The same haplotype was also associated with increased alcohol dependence in an independent European cohort. Unlike the ubiquitously expressed human Arf6 GTPase, PSD3 localization is restricted to the brain, particularly the prefrontal cortex (PFC). Functional magnetic resonance imaging revealed that the same PSD3 haplotype was also associated with a differential functional magnetic resonance imaging signal in the PFC during a Go/No-Go task, which engages PFC-mediated executive control. Our translational analysis, therefore, suggests that PSD3 confers regional specificity to ubiquitous Arf6 in the PFC to modulate human alcohol-drinking behaviors.
Collapse
Affiliation(s)
- Dante A. Gonzalez
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX,Program in Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX
| | - Tianye Jia
- Institute of Psychiatry, King’s College London, United Kingdom,MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre, London, United Kingdom
| | - Jorge H. Pinzón
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Summer F. Acevedo
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Shamsideen A. Ojelade
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX,Program in Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX
| | - Bing Xu
- Institute of Psychiatry, King’s College London, United Kingdom,MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre, London, United Kingdom
| | - Nicole Tay
- Institute of Psychiatry, King’s College London, United Kingdom,MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre, London, United Kingdom
| | - Sylvane Desrivières
- Institute of Psychiatry, King’s College London, United Kingdom,MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre, London, United Kingdom
| | - Jeannie L. Hernandez
- Department of Psychiatry, Molecular Medicine Program, University of Utah, Salt Lake City
| | - Tobias Banaschewski
- Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | | | - Arun L.W. Bokde
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Patricia J. Conrod
- MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre, London, United Kingdom,Department of Psychiatry, Université de Montreal, CHU Ste Justine Hospital, Canada
| | - Herta Flor
- Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Vincent Frouin
- Neurospin, Commissariat à l’Energie Atomique, Gif-sur-Yvette, France
| | - Jürgen Gallinat
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité – Universitätsmedizin Berlin, Germany
| | - Hugh Garavan
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland,Departments of Psychiatry and Psychology, University of Vermont, Burlington, USA
| | - Penny A. Gowland
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig und Berlin, Germany
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité – Universitätsmedizin Berlin, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig und Berlin, Germany
| | - Mark Lathrop
- McGill University and Genome Quebec Innovation Centre, Ontario, Canada
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM CEA Unit 1000 “Imaging & Psychiatry”, University Paris Sud, Orsay, and AP-HP Department of Adolescent Psychopathology and Medicine, Maison de Solenn, University Paris Descartes, Paris, France
| | - Tomás Paus
- School of Psychology, University of Nottingham, United Kingdom,Rotman Research Institute, University of Toronto, Toronto, Canada,Montreal Neurological Institute, McGill University, Canada
| | - Michael N. Smolka
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Germany,Neuroimaging Center, Department of Psychology, Technische Universität Dresden, Germany
| | | | - Aylin R. Rodan
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX,Department of Internal Medicine, Division of Nephrology, Molecular Medicine Program, University of Utah, Salt Lake City
| | - Gunter Schumann
- Institute of Psychiatry, King’s College London, United Kingdom,MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre, London, United Kingdom
| | - Adrian Rothenfluh
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX,Program in Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX,Department of Psychiatry, Molecular Medicine Program, University of Utah, Salt Lake City
| |
Collapse
|
31
|
Ma L, Steinberg JL, Cunningham KA, Bjork JM, Lane SD, Schmitz JM, Burroughs T, Narayana PA, Kosten TR, Bechara A, Moeller FG. Altered anterior cingulate cortex to hippocampus effective connectivity in response to drug cues in men with cocaine use disorder. Psychiatry Res 2018; 271:59-66. [PMID: 29108734 PMCID: PMC5741507 DOI: 10.1016/j.pscychresns.2017.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/24/2017] [Accepted: 10/22/2017] [Indexed: 11/26/2022]
Abstract
Drug-related attentional bias may have significant implications for the treatment of cocaine use disorder (CocUD). However, the neurobiology of attentional bias is not completely understood. This study employed dynamic causal modeling (DCM) to conduct an analysis of effective (directional) connectivity involved in drug-related attentional bias in treatment-seeking CocUD subjects. The DCM analysis was conducted based on functional magnetic resonance imaging (fMRI) data acquired from fifteen CocUD subjects while performing a cocaine-word Stroop task, during which blocks of Cocaine Words (CW) and Neutral Words (NW) alternated. There was no significant attentional bias at group level. Although no significant brain activation was found, the DCM analysis found that, relative to the NW, the CW caused a significant increase in the strength of the right (R) anterior cingulate cortex (ACC) to R hippocampus effective connectivity. Greater increase of this connectivity was associated with greater CW reaction time (relative to NW reaction time). The increased strength of R ACC to R hippocampus connectivity may reflect ACC activation of hippocampal memories related to drug use, which was triggered by the drug cues. This circuit could be a potential target for therapeutics in CocUD patients. No significant change was found in the other modeled connectivities.
Collapse
Affiliation(s)
- Liangsuo Ma
- Institute for Drug and Alcohol Studies, Richmond, VA, USA; Department of Radiology, Richmond, VA, USA.
| | - Joel L Steinberg
- Institute for Drug and Alcohol Studies, Richmond, VA, USA; Department of Psychiatry, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Kathryn A Cunningham
- Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - James M Bjork
- Institute for Drug and Alcohol Studies, Richmond, VA, USA; Department of Psychiatry, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Scott D Lane
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center (UTHSC), Houston, TX, USA
| | - Joy M Schmitz
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center (UTHSC), Houston, TX, USA
| | | | - Ponnada A Narayana
- Department of Diagnostic and Interventional Imaging, UTHSC, Houston, TX, USA
| | - Thomas R Kosten
- Department of Psychiatry and Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Antoine Bechara
- Brain and Creativity Institute, and Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - F Gerard Moeller
- Institute for Drug and Alcohol Studies, Richmond, VA, USA; Department of Psychiatry, Virginia Commonwealth University (VCU), Richmond, VA, USA; Department of Pharmacology and Toxicology, Richmond, VA, USA; Department of Neurology, VCU, Richmond, VA, USA
| |
Collapse
|
32
|
Rachid F. Neurostimulation techniques in the treatment of cocaine dependence: A review of the literature. Addict Behav 2018; 76:145-155. [PMID: 28822321 DOI: 10.1016/j.addbeh.2017.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/06/2017] [Accepted: 08/08/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Cocaine use disorder is a very common condition that represents a substantial public health problem, and no effective pharmacological or psychological therapies have been identified to date. Urgent therapeutic alternatives are therefore needed such as neurostimulation techniques. The purpose of this review is to describe and discuss studies that have evaluated the safety and efficacy of these techniques for the treatment of cocaine dependence. METHODS The electronic literature on repetitive transcranial magnetic stimulation, theta-burst stimulation, deep transcranial magnetic stimulation, transcranial direct current stimulation, magnetic seizure therapy, electroconvulsive therapy, cranial electro-stimulation, and deep brain stimulation in the treatment of cocaine addiction were reviewed. RESULTS Most of these studies which are few in numbers and with limited sample sizes found that some of these neurostimulation techniques, particularly transcranial magnetic stimulation, and transcranial direct current stimulation are safe and potentially effective in the reduction of craving to cocaine. Although deep brain stimulation showed some good results in one patient, no conclusion can be drawn so far concerning the efficacy and safety of this approach. CONCLUSION Given the somewhat promising results of some of the studies, future controlled studies with larger samples, and optimal stimulus parameters should be designed to confirm the short- and long-term safety and efficacy of neurostimulation techniques to treat cocaine addiction.
Collapse
|
33
|
Nitric oxide in the medial prefrontal cortex contributes to the acquisition of cocaine place preference and synaptic plasticity in the laterodorsal tegmental nucleus. Neurosci Lett 2017; 660:39-44. [PMID: 28893594 DOI: 10.1016/j.neulet.2017.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/04/2017] [Accepted: 09/07/2017] [Indexed: 11/23/2022]
Abstract
Nitric oxide (NO), a gaseous neurotransmitter, is involved in a variety of brain functions, including drug addiction. Although previous studies have suggested that NO plays an important role in the development of cocaine addiction, the brain region(s) in which NO acts and how it contributes to cocaine addiction remain unclear. In this study, we examined these issues using a cocaine-induced conditioned place preference (CPP) paradigm and ex vivo electrophysiological recordings in rats. Specifically, we focused on the medial prefrontal cortex (mPFC) and laterodorsal tegmental nucleus (LDT), brain regions associated with cocaine CPP development and cocaine-induced plasticity. Intra-mPFC injection of the non-selective NO synthase (NOS) inhibitor L-NAME or the neuronal NOS (nNOS) selective inhibitor L-NPA during the conditioning phase disrupted cocaine CPP. Additionally, intra-mPFC injection of L-NPA prior to each cocaine injection prevented the induction of presynaptic plasticity, induced by repeated cocaine administration, in LDT cholinergic neurons. These findings indicate that NO generated in the mPFC contributes to the acquisition of cocaine CPP and the induction of neuroplasticity in LDT cholinergic neurons. Together with previous studies showing that NO induces membrane plasticity in mPFC neurons, that mPFC neurons project to the LDT, and that LDT activity is critical for the acquisition of cocaine CPP, the present findings suggest that NO-mediated neuroplasticity induced in the mPFC-LDT circuitry is critical for the development of cocaine addiction.
Collapse
|
34
|
Abstract
Dual diagnosis is a prevalent and serious health problem. These disorders challenge psychiatric mental health and addiction nurses to treat 2 distinct disorders. Despite advances in the treatment of these disorders, there remains a void in the ideal approach. This article offers psychiatric nurses opportunities to improve their expertise in the identification of vulnerable or high-risk populations by using integrated screening and brief interventions to discern treatment options. Patients who require comprehensive treatment to stabilize 1 or both disorders further challenge nurses to have a basic understanding of the powerful effects of substance use on psychiatric conditions and vice versa.
Collapse
|
35
|
Heinz A, Deserno L, Zimmermann US, Smolka MN, Beck A, Schlagenhauf F. Targeted intervention: Computational approaches to elucidate and predict relapse in alcoholism. Neuroimage 2017; 151:33-44. [DOI: 10.1016/j.neuroimage.2016.07.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/24/2016] [Accepted: 07/26/2016] [Indexed: 12/12/2022] Open
|
36
|
Wan L, Bi J, Li J, Zuo Z. Glutamate transporter type 3 participates in maintaining morphine-induced conditioned place preference. Neuroscience 2017; 344:67-73. [PMID: 28049029 DOI: 10.1016/j.neuroscience.2016.12.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 01/15/2023]
Abstract
Glutamate transporters (EAAT) have been implicated in the drug addiction behavior. We determined whether EAAT type 3 (EAAT3) played a role in morphine addiction. Six- to eight-week-old EAAT3 knockout (EAAT3-/-) mice and their wild-type littermates received 3 intraperitoneal injections of 10mg/kg morphine, each on an alternative day, to induce conditioned place preference (CPP). Two days after the place preference returned to baseline, mice received 2.5mg/kg morphine to induce reinstatement. Some mice received intraperitoneal injection of 4mg/kg riluzole, an EAAT activator, 30min before morphine or saline injection. Hippocampus, medial prefrontal cortex, nucleus accumbens and ventral tegmental area were harvested for Western analysis 24h after the last dose of morphine was injected. Morphine induced CPP in wild-type and EAAT3-/- mice. Gender is not a statistically significant factor to influence this behavior. This conditioned behavior extinguished after morphine administration was stopped for 8-9days in wild-type mice, while this extinction occurred 6days after discontinuation of morphine injection in EAAT3-/- mice. A small dose of morphine similarly reinstated the conditioned behavior in the wild-type and EAAT3-/- mice. Riluzole abolished morphine-induced CPP during the initial place preference. Morphine increased EAAT3 expression in the plasma membrane of medial prefrontal cortex, nucleus accumbens and ventral tegmental area but did not affect EAAT3 expression in the hippocampus. These results suggest that EAAT3 delays the extinction of morphine-induced CPP. EAAT activation may prevent the formation of morphine-induced CPP.
Collapse
Affiliation(s)
- Li Wan
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, United States; Department of Anesthesiology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiangjiang Bi
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, United States; Department of Anesthesiology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Li
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, United States
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, United States.
| |
Collapse
|
37
|
Saunders BT, Richard JM, Janak PH. Contemporary approaches to neural circuit manipulation and mapping: focus on reward and addiction. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140210. [PMID: 26240425 DOI: 10.1098/rstb.2014.0210] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tying complex psychological processes to precisely defined neural circuits is a major goal of systems and behavioural neuroscience. This is critical for understanding adaptive behaviour, and also how neural systems are altered in states of psychopathology, such as addiction. Efforts to relate psychological processes relevant to addiction to activity within defined neural circuits have been complicated by neural heterogeneity. Recent advances in technology allow for manipulation and mapping of genetically and anatomically defined neurons, which when used in concert with sophisticated behavioural models, have the potential to provide great insight into neural circuit bases of behaviour. Here we discuss contemporary approaches for understanding reward and addiction, with a focus on midbrain dopamine and cortico-striato-pallidal circuits.
Collapse
Affiliation(s)
- Benjamin T Saunders
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jocelyn M Richard
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Patricia H Janak
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
38
|
Latagliata EC, Saccoccio P, Milia C, Puglisi-Allegra S. Norepinephrine in prelimbic cortex delays extinction of amphetamine-induced conditioned place preference. Psychopharmacology (Berl) 2016; 233:973-82. [PMID: 26660648 DOI: 10.1007/s00213-015-4177-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/30/2015] [Indexed: 01/11/2023]
Abstract
RATIONALE Drug-associated cues exposure to induce extinction is a useful strategy to contrast cue-induced drug seeking. Treatments aimed at reducing motivational properties of cues are considered highly promising since they could decrease their ability to induce drug-conditioned behaviors. Norepinephrine (NE) in the medial prefrontal cortex (mPFC) is critical for attribution of motivational salience to highly salient stimuli, suggesting a major role in prelimbic (PL) mpFC to modulate the motivational properties of drug-related cues, invigorating them, and consequently, delaying extinction. OBJECTIVES To investigate if NE in PL fosters the maintenance of drug-seeking behavior, we assessed its role on amphetamine-induced conditioned place preference (CPP). Moreover, to affirm the specificity of NE in PL, we also assessed the role of NE in the infralimbic (IL) mPFC. METHODS The effects of selective NE depletion in the PL or in the IL of C57BL/6J mice were assessed on the expression of amphetamine-induced CPP before and after extinction procedure. RESULTS NE-depleted mice in PL extinguished preference for Amph-paired chamber long before sham animals. By contrast, IL-depleted animals maintained place preference for more than 4 weeks after the procedure of extinction, having at that moment interrupted the test. CONCLUSIONS Inactivation of NE in PL cortex blunts amphetamine-induced CPP, thus fostering extinction and showing to be critical for the maintenance of conditioned Amph-seeking behavior. Opposite effects of NE depletion in IL, seemingly in agreement with literature on extinction, are discussed in terms of balance of activity between PL and IL in extinction.
Collapse
Affiliation(s)
| | - Pamela Saccoccio
- Dipartimento di Psicologia e Centro "Daniel Bovet", Sapienza University, via dei Marsi 78, 00185, Rome, Italy
| | - Chiara Milia
- Dipartimento di Psicologia e Centro "Daniel Bovet", Sapienza University, via dei Marsi 78, 00185, Rome, Italy
| | - Stefano Puglisi-Allegra
- Dipartimento di Psicologia e Centro "Daniel Bovet", Sapienza University, via dei Marsi 78, 00185, Rome, Italy.,Fondazione Santa Lucia, IRCCS, via del Fosso di Fiorano 64, 00143, Rome, Italy
| |
Collapse
|
39
|
Belin-Rauscent A, Fouyssac M, Bonci A, Belin D. How Preclinical Models Evolved to Resemble the Diagnostic Criteria of Drug Addiction. Biol Psychiatry 2016; 79:39-46. [PMID: 25747744 PMCID: PMC4702261 DOI: 10.1016/j.biopsych.2015.01.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/17/2014] [Accepted: 01/12/2015] [Indexed: 02/04/2023]
Abstract
Drug addiction is a complex neuropsychiatric disorder that affects a subset of the individuals who take drugs. It is characterized by maladaptive drug-seeking habits that are maintained despite adverse consequences and intense drug craving. The pathophysiology and etiology of addiction is only partially understood despite extensive research because of the gap between current preclinical models of addiction and the clinical criteria of the disorder. This review presents a brief overview, based on selected methodologies, of how behavioral models have evolved over the last 50 years to the development of recent preclinical models of addiction that more closely mimic diagnostic criteria of addiction. It is hoped that these new models will increase our understanding of the complex neurobiological mechanisms whereby some individuals switch from controlled drug use to compulsive drug-seeking habits and relapse to these maladaptive habits. Additionally, by paving the way to bridge the gap that exists between biobehavioral research on addiction and the human situation, these models may provide new perspectives for the development of novel and effective therapeutic strategies for drug addiction.
Collapse
Affiliation(s)
- Aude Belin-Rauscent
- Department of Pharmacology and Behavioural, University of Cambridge, Cambridge, United Kingdom; Clinical Neurosciences Institute, University of Cambridge, Cambridge, United Kingdom
| | - Maxime Fouyssac
- Department of Pharmacology and Behavioural, University of Cambridge, Cambridge, United Kingdom; Clinical Neurosciences Institute, University of Cambridge, Cambridge, United Kingdom
| | - Antonello Bonci
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, U.S. Department of Health and Human Services, Baltimore, Maryland.
| | - David Belin
- Department of Pharmacology and Behavioural, University of Cambridge, Cambridge, United Kingdom; Clinical Neurosciences Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
40
|
Terraneo A, Leggio L, Saladini M, Ermani M, Bonci A, Gallimberti L. Transcranial magnetic stimulation of dorsolateral prefrontal cortex reduces cocaine use: A pilot study. Eur Neuropsychopharmacol 2016; 26:37-44. [PMID: 26655188 PMCID: PMC9379076 DOI: 10.1016/j.euroneuro.2015.11.011] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 10/25/2015] [Accepted: 11/13/2015] [Indexed: 12/21/2022]
Abstract
UNLABELLED Recent animal studies demonstrate that compulsive cocaine seeking strongly reduces prelimbic frontal cortex activity, while optogenetic stimulation of this brain area significantly inhibits compulsive cocaine seeking, providing a strong rationale for applying brain stimulation to reduce cocaine consumption. Thus, we employed repetitive transcranial magnetic stimulation (rTMS), to test if dorsolateral prefrontal cortex (DLPFC) stimulation might prevent cocaine use in humans. Thirty-two cocaine-addicted patients were randomly assigned to either the experimental group (rTMS) on the left DLPFC, or to a control group (pharmacological agents) during a 29-day study (Stage 1). This was followed by a 63-day follow-up (Stage 2), during which all participants were offered rTMS treatment. Amongst the patients who completed Stage 1, 16 were in the rTMS group (100%) and 13 in the control group (81%). No significant adverse events were noted. During Stage 1, there were a significantly higher number of cocaine-free urine drug tests in the rTMS group compared to control (p=0.004). Craving for cocaine was also significantly lower in the rTMS group compared to the controls (p=0.038). Out of 13 patients who completed Stage 1 in the control group, 10 patients received rTMS treatment during Stage 2 and showed significant improvement with favorable outcomes becoming comparable to those of the rTMS group. The present preliminary findings support the safety of rTMS in cocaine-addicted patients, and suggest its potential therapeutic role for rTMS-driven PFC stimulation in reducing cocaine use, providing a strong rationale for developing larger placebo-controlled studies. Trial name: Repetitive transcranial magnetic stimulation (rTMS) in cocaine abusers, URL:〈http://www.isrctn.com/ISRCTN15823943?q=&filters=&sort=&offset=8&totalResults=13530&page=1&pageSize=10&searchType=basic-search〉, REGISTRATION NUMBER ISRCTN15823943.
Collapse
Affiliation(s)
| | - Lorenzo Leggio
- National Institute on Drug Abuse (NIDA) Intramural Research Program, Baltimore, MD, United States; Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism (NIAAA), Bethesda, MD, United States; Center for Alcohol and Addiction Studies, Brown University, Providence, RI, United States
| | | | - Mario Ermani
- Department of Neuroscience, University of Padua, Italy
| | - Antonello Bonci
- National Institute on Drug Abuse (NIDA) Intramural Research Program, Baltimore, MD, United States; Solomon H. Snyder Neuroscience Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | | |
Collapse
|
41
|
Buchta WC, Riegel AC. Chronic cocaine disrupts mesocortical learning mechanisms. Brain Res 2015; 1628:88-103. [PMID: 25704202 DOI: 10.1016/j.brainres.2015.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/28/2015] [Accepted: 02/01/2015] [Indexed: 01/06/2023]
Abstract
The addictive power of drugs of abuse such as cocaine comes from their ability to hijack natural reward and plasticity mechanisms mediated by dopamine signaling in the brain. Reward learning involves burst firing of midbrain dopamine neurons in response to rewards and cues predictive of reward. The resulting release of dopamine in terminal regions is thought to act as a teaching signaling to areas such as the prefrontal cortex and striatum. In this review, we posit that a pool of extrasynaptic dopaminergic D1-like receptors activated in response to dopamine neuron burst firing serve to enable synaptic plasticity in the prefrontal cortex in response to rewards and their cues. We propose that disruptions in these mechanisms following chronic cocaine use contribute to addiction pathology, in part due to the unique architecture of the mesocortical pathway. By blocking dopamine reuptake in the cortex, cocaine elevates dopamine signaling at these extrasynaptic receptors, prolonging D1-receptor activation and the subsequent activation of intracellular signaling cascades, and thus inducing long-lasting maladaptive plasticity. These cellular adaptations may account for many of the changes in cortical function observed in drug addicts, including an enduring vulnerability to relapse. Therefore, understanding and targeting these neuroadaptations may provide cognitive benefits and help prevent relapse in human drug addicts.
Collapse
Affiliation(s)
- William C Buchta
- Neurobiology of Addiction Research Center (NARC), Medical University of South Carolina, Charleston, SC 29425, USA
| | - Arthur C Riegel
- Neurobiology of Addiction Research Center (NARC), Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|