1
|
Hung CC, Ko YC, Chen PH, Chung CM. Impact of MAOA Gene Polymorphism on the Efficacy of Antidepressant Treatment and Craving Severity for Betel Quid Use Disorder. Int J Mol Sci 2024; 25:9221. [PMID: 39273170 PMCID: PMC11394840 DOI: 10.3390/ijms25179221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Betel quid (BQ) use disorder (BUD) is prevalent in many Asian countries, impacting approximately 600 million people. We conducted a randomized clinical trial to analyze the impact of MAOA genetic variations on the severity of BQ craving. This was measured using DSM-5 criteria and the Yale-Brown Obsessive-Compulsive Scale modified for betel quid use (Y-BOCS-BQ). Participants were grouped according to the severity of BUD and MAOA gene single-nucleotide polymorphism (SNP) rs5953210 genotypes. The Y-BOCS-BQ scores were assessed at baseline (week 0) and during follow-up at weeks 2, 4, 6, and 8. The AA genotype group showed significantly greater reductions in Y-BOCS-BQ at weeks 2 (p = 0.0194), 4 (p = 0.0078), 6 (p = 0.0277), and 8 (p = 0.0376) compared to the GG genotype group. Additionally, within the antidepressant group, the AA genotype showed significant reductions in the Y-BOCS-BQ scores at weeks 2 (p = 0.0313), 4 (p = 0.0134), 6 (p = 0.0061), and 8 (p = 0.0241) compared to the GG genotype. The statistical analysis revealed a significant interaction between the treatment and placebo groups based on MAOA genotypes, with the AA genotype in the treatment group exhibiting a more pronounced decrease in Y-BOCS-BQ score (p interaction <0.05) at week 6. Our study highlights the importance of considering genetic factors when developing personalized treatment plans for BUD.
Collapse
Affiliation(s)
- Chung-Chieh Hung
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Psychiatry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Ying-Chin Ko
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Ping-Ho Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Center for Medical Informatics and Statistics, Office of Research and Development, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Min Chung
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Psychiatry and Center for Addiction and Mental Health, China Medical University Hospital, Taichung 40447, Taiwan
| |
Collapse
|
2
|
Kaya-Akyüzlü D, Özkan-Kotiloğlu S, Yıldırım SA, Danışman M, Yıldırım MA, Özgür-İlhan İ. Effect of MAOA rs1465108 polymorphism on susceptibility to substance/alcohol use disorder: a novel PCR-RFLP assay for the detection of MAOA rs1465108. Mol Biol Rep 2024; 51:400. [PMID: 38457024 DOI: 10.1007/s11033-024-09366-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/19/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND The health and social consequences of substance/alcohol use disorders are harmful. Most of the individuals cannot stop using them due to more likely their genetic background. The current study aimed both to develop a novel PCR-RFLP method for genotyping of MAOA rs1465108 and to analyze the effect of MAOA rs1465108 on the risk of alcohol (AUD), opioid (OUD) or methamphetamine (MUD) use disorders and on the depressive and anxiety symptoms in a Turkish population. METHODS AND RESULTS A total of 353 individual with AUD (n = 154), OUD (n = 160) or MUD (n = 39) and 109 healthy subjects were included. The intensity of anxiety and depressive symptoms and craving and opioid withdrawal were measured by appropriate scales. Logistic regression analysis revealed no association between MAOA rs1465108 polymorphism and substance/alcohol use disorder (p > 0.05). Healthy subjects (3.0) had significantly lower levels of depressive symptoms than individuals with OUD (27.0), AUD (21.0) and MUD (25.5) groups. The severity of depressive symptoms was significantly higher in OUD as compared to AUD. There was a statistically significant difference between individuals with AUD, OUD and MUD in view of the average ages of first use (17, 19 and 20 years, respectively) (p < 0.05). CONCLUSIONS The results presented here do not support the hypothesis that MAOA rs1465108 is associated with substance/alcohol use disorders. The intensity of depressive symptoms could be changed according to the abused substance type. A novel PCR-RFLP was developed for genotyping of MAOA rs1465108 polymorphism, which could be a better option for laboratories without high technology equipment.
Collapse
Affiliation(s)
- Dilek Kaya-Akyüzlü
- Institute of Forensic Sciences, Ankara University, Dikimevi, 06590, Ankara, Turkey.
| | - Selin Özkan-Kotiloğlu
- Department of Molecular Biology and Genetics, Faculty of Science and Art, Kırşehir Ahi Evran University, Merkez/Kırşehir, Turkey
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - Sariye Aybüke Yıldırım
- Institute of Forensic Sciences, Ankara University, Dikimevi, 06590, Ankara, Turkey
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - Mustafa Danışman
- Ankara Training and Research Hospital AMATEM Clinic, Ankara, Turkey
| | - Mukaddes Asena Yıldırım
- Institute of Forensic Sciences, Ankara University, Dikimevi, 06590, Ankara, Turkey
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - İnci Özgür-İlhan
- Department of Mental Health and Diseases, Faculty of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
3
|
Darbinian N, Merabova N, Tatevosian G, Morrison M, Darbinyan A, Zhao H, Goetzl L, Selzer ME. Biomarkers of Affective Dysregulation Associated with In Utero Exposure to EtOH. Cells 2023; 13:2. [PMID: 38201206 PMCID: PMC10778368 DOI: 10.3390/cells13010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
INTRODUCTION Children with fetal alcohol spectrum disorders (FASD) exhibit behavioral and affective dysregulation, including hyperactivity and depression. The mechanisms are not known, but they could conceivably be due to postnatal social or environmental factors. However, we postulate that, more likely, the affective dysregulation is associated with the effects of EtOH exposure on the development of fetal serotonergic (5-HT) and/or dopaminergic (DA) pathways, i.e., pathways that in postnatal life are believed to regulate mood. Many women who use alcohol (ethanol, EtOH) during pregnancy suffer from depression and take selective serotonin reuptake inhibitors (SSRIs), which might influence these monoaminergic pathways in the fetus. Alternatively, monoaminergic pathway abnormalities might reflect a direct effect of EtOH on the fetal brain. To distinguish between these possibilities, we measured their expressions in fetal brains and in fetal brain-derived exosomes (FB-Es) isolated from the mothers' blood. We hypothesized that maternal use of EtOH and/or SSRIs during pregnancy would be associated with impaired fetal neural development, detectable as abnormal levels of monoaminergic and apoptotic biomarkers in FB-Es. METHODS Fetal brain tissues and maternal blood were collected at 9-23 weeks of pregnancy. EtOH groups were compared with unexposed controls matched for gestational age (GA). The expression of 84 genes associated with the DA and 5-HT pathways was analyzed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) on microarrays. FB-Es also were assayed for serotonin transporter protein (SERT) and brain-derived neurotrophic factor (BDNF) by enzyme-linked immunosorbent assay (ELISA). RESULTS Six EtOH-exposed human fetal brain samples were compared to SSRI- or polydrug-exposed samples and to unexposed controls. EtOH exposure was associated with significant upregulation of DA receptor D3 and 5-HT receptor HTR2C, while HTR3A was downregulated. Monoamine oxidase A (MAOA), MAOB, the serine/threonine kinase AKT3, and caspase-3 were upregulated, while mitogen-activated protein kinase 1 (MAPK1) and AKT2 were downregulated. ETOH was associated with significant upregulation of the DA transporter gene, while SERT was downregulated. There were significant correlations between EtOH exposure and (a) caspase-3 activation, (b) reduced SERT protein levels, and (c) reduced BDNF levels. SSRI exposure independently increased caspase-3 activity and downregulated SERT and BDNF. Early exposure to EtOH and SSRI together was associated synergistically with a significant upregulation of caspase-3 and a significant downregulation of SERT and BDNF. Reduced SERT and BDNF levels were strongly correlated with a reduction in eye diameter, a somatic manifestation of FASD. CONCLUSIONS Maternal use of EtOH and SSRI during pregnancy each was associated with changes in fetal brain monoamine pathways, consistent with potential mechanisms for the affective dysregulation associated with FASD.
Collapse
Affiliation(s)
- Nune Darbinian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (N.M.); (G.T.)
| | - Nana Merabova
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (N.M.); (G.T.)
- Medical College of Wisconsin-Prevea Health, Green Bay, WI 54304, USA
| | - Gabriel Tatevosian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (N.M.); (G.T.)
| | - Mary Morrison
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
- Department of Psychiatry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Armine Darbinyan
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Huaqing Zhao
- Center for Biostatistics and Epidemiology, Department of Biomedical Education and Data Science, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Laura Goetzl
- Department of Obstetrics & Gynecology, University of Texas, Houston, TX 77030, USA;
| | - Michael Edgar Selzer
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (N.M.); (G.T.)
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
4
|
Gosling CJ, Caparos S, Pinabiaux C, Schwarzer G, Rücker G, Agha SS, Alrouh H, Ambler A, Anderson P, Andiarena A, Arnold LE, Arseneault L, Asherson P, Babinski L, Barbati V, Barkley R, Barros AJD, Barros F, Bates JE, Bell LJ, Berenguer C, van Bergen E, Biederman J, Birmaher B, B⊘e T, Boomsma DI, Brandt VC, Bressan RA, Brocki K, Broughton TR, Bufferd SJ, Bussing R, Cao M, Cartigny A, Casas AM, Caspi A, Castellanos FX, Caye A, Cederkvist L, Collishaw S, Copeland WE, Cote SM, Coventry WL, Debes NMM, Denyer H, Dodge KA, Dogru H, Efron D, Eller J, Abd Elmaksoud M, Ercan ES, Faraone SV, Fenesy M, Fernández MF, Fernández-Somoano A, Findling R, Fombonne E, Fossum IN, Freire C, Friedman NP, Fristad MA, Galera C, Garcia-Argibay M, Garvan CS, González-Safont L, Groenman AP, Guxens M, Halperin JM, Hamadeh RR, Hartman CA, Hill SY, Hinshaw SP, Hipwell A, Hokkanen L, Holz N, Íñiguez C, Jahrami HA, Jansen PW, Jónsdóttir LK, Julvez J, Kaiser A, Keenan K, Klein DN, Klein RG, Kuntsi J, Langfus J, Langley K, Lansford JE, Larsen SA, Larsson H, Law E, Lee SS, Lertxundi N, Li X, Li Y, Lichtenstein P, Liu J, Lundervold AJ, Lundström S, Marks DJ, Martin J, Masi G, Matijasevich A, Melchior M, Moffitt TE, Monninger M, Morrison CL, Mulraney M, Muratori P, Nguyen PT, Nicholson JM, Øie MG, O'Neill S, O'Connor C, Orri M, Pan PM, Pascoe L, Pettit GS, Price J, Rebagliato M, Riaño-Galán I, Rohde LA, Roisman GI, Rosa M, Rosenbaum JF, Salum GA, Sammallahti S, Santos IS, Schiavone NS, Schmid L, Sciberras E, Shaw P, Silk TJ, Simpson JA, Skogli EW, Stepp S, Strandberg-Larsen K, Sudre G, Sunyer J, Tandon M, Thapar A, Thomson P, Thorell LB, Tinchant H, Torrent M, Tovo-Rodrigues L, Tripp G, Ukoumunne O, Van Goozen SHM, Vos M, Wallez S, Wang Y, Westermaier FG, Whalen DJ, Yoncheva Y, Youngstrom EA, Sayal K, Solmi M, Delorme R, Cortese S. Association between relative age at school and persistence of ADHD in prospective studies: an individual participant data meta-analysis. Lancet Psychiatry 2023; 10:922-933. [PMID: 37898142 DOI: 10.1016/s2215-0366(23)00272-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND The youngest children in a school class are more likely than the oldest to be diagnosed with ADHD, but this relative age effect is less frequent in older than in younger school-grade children. However, no study has explored the association between relative age and the persistence of ADHD diagnosis at older ages. We aimed to quantify the association between relative age and persistence of ADHD at older ages. METHODS For this meta-analysis, we searched MEDLINE, Embase, CINAHL, PsycINFO, and PubPsych up to April 1, 2022, with terms related to "cohort" and "ADHD" with no date, publication type, or language restrictions. We gathered individual participant data from prospective cohorts that included at least ten children identified with ADHD before age 10 years. ADHD was defined by either a clinical diagnosis or symptoms exceeding clinical cutoffs. Relative age was recorded as the month of birth in relation to the school-entry cutoff date. Study authors were invited to share raw data or to apply a script to analyse data locally and generate anonymised results. Our outcome was ADHD status at a diagnostic reassessment, conducted at least 4 years after the initial assessment and after age 10 years. No information on sex, gender, or ethnicity was collected. We did a two-stage random-effects individual participant data meta-analysis to assess the association of relative age with persistence of ADHD at follow-up. This study was registered with PROSPERO, CRD42020212650. FINDINGS Of 33 119 studies generated by our search, we identified 130 eligible unique studies and were able to gather individual participant data from 57 prospective studies following up 6504 children with ADHD. After exclusion of 16 studies in regions with a flexible school entry system that did not allow confident linkage of birthdate to relative age, the primary analysis included 41 studies in 15 countries following up 4708 children for a period of 4 to 33 years. We found that younger relative age was not statistically significantly associated with ADHD persistence at follow-up (odds ratio 1·02, 95% CI 0·99-1·06; p=0·19). We observed statistically significant heterogeneity in our model (Q=75·82, p=0·0011, I2=45%). Participant-level sensitivity analyses showed similar results in cohorts with a robust relative age effect at baseline and when restricting to cohorts involving children with a clinical diagnosis of ADHD or with a follow-up duration of more than 10 years. INTERPRETATION The diagnosis of ADHD in younger children in a class is no more likely to be disconfirmed over time than that of older children in the class. One interpretation is that the relative age effect decreases the likelihood of children of older relative age receiving a diagnosis of ADHD, and another is that assigning a diagnostic label of ADHD leads to unexplored carryover effects of the initial diagnosis that persist over time. Future studies should be conducted to explore these interpretations further. FUNDING None.
Collapse
|
5
|
Blum K, Gold MS, Cadet JL, Gondre-Lewis MC, McLaughlin T, Braverman ER, Elman I, Paul Carney B, Cortese R, Abijo T, Bagchi D, Giordano J, Dennen CA, Baron D, Thanos PK, Soni D, Makale MT, Makale M, Murphy KT, Jafari N, Sunder K, Zeine F, Ceccanti M, Bowirrat A, Badgaiyan RD. Invited Expert Opinion- Bioinformatic and Limitation Directives to Help Adopt Genetic Addiction Risk Screening and Identify Preaddictive Reward Dysregulation: Required Analytic Evidence to Induce Dopamine Homeostatsis. MEDICAL RESEARCH ARCHIVES 2023; 11:10.18103/mra.v11i8.4211. [PMID: 37885438 PMCID: PMC10601302 DOI: 10.18103/mra.v11i8.4211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Addiction, albeit some disbelievers like Mark Lewis [1], is a chronic, relapsing brain disease, resulting in unwanted loss of control over both substance and non- substance behavioral addictions leading to serious adverse consequences [2]. Addiction scientists and clinicians face an incredible challenge in combatting the current opioid and alcohol use disorder (AUD) pandemic throughout the world. Provisional data from the Centers for Disease Control and Prevention (CDC) shows that from July 2021-2022, over 100,000 individuals living in the United States (US) died from a drug overdose, and 77,237 of those deaths were related to opioid use [3]. This number is expected to rise, and according to the US Surgeon General it is highly conceivable that by 2025 approximately 165,000 Americans will die from an opioid overdose. Alcohol abuse, according to data from the World Health Organization (WHO), results in 3 million deaths worldwide every year, which represents 5.3% of all deaths globally [4].
Collapse
Affiliation(s)
- Kenneth Blum
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX., USA
- Division of Addiction Research & Education, Center for Sports, Exercise & Psychiatry, Western University Health Sciences, Pomona, CA., USA
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Psychiatry, School of Medicine, University of Vermont, Burlington, VT.,USA
- Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Centre, Dayton, OH, USA
- Division of Nutrigenomics Research, TranspliceGen Therapeutics, Inc., Austin, Tx., 78701, USA
- Department of Nutrigenomic Research, Victory Nutrition International, Inc., Bonita Springs, FL, USA
- Division of Personalized Medicine, Cross-Cultural Research and Educational Institute, San Clemente, CA., USA
- Sunder Foundation, Palm Springs, CA, USA
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Mark S Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO., USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD., USA
| | - Marjorie C. Gondre-Lewis
- Neuropsychopharmacology Laboratory, Department of Anatomy, Howard University College of Medicine, Washington, DC., USA
| | - Thomas McLaughlin
- Division of Nutrigenomics Research, TranspliceGen Therapeutics, Inc., Austin, Tx., 78701, USA
| | - Eric R Braverman
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX., USA
| | - Igor Elman
- Center for Pain and the Brain (P.A.I.N Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Boston, MA., USA
| | - B. Paul Carney
- Division Pediatric Neurology, University of Missouri, School of Medicine, Columbia, MO., USA
| | - Rene Cortese
- Department of Child Health – Child Health Research Institute, & Department of Obstetrics, Gynecology and Women’s Health School of Medicine, University of Missouri, MO., USA
| | - Tomilowo Abijo
- Neuropsychopharmacology Laboratory, Department of Anatomy, Howard University College of Medicine, Washington, DC., USA
| | - Debasis Bagchi
- Department of Pharmaceutical Sciences, Texas Southern University College of Pharmacy and Health Sciences, Houston, TX, USA
| | - John Giordano
- Division of Personalized Mental Illness Treatment & Research, Ketamine Infusion Clinics of South Florida, Pompano Beach, Fl., USA
| | - Catherine A. Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA, USA
| | - David Baron
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Diwanshu Soni
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA., USA
| | - Milan T. Makale
- Department of Radiation Medicine and Applied Sciences, UC San Diego, 3855 Health Sciences Drive, La Jolla, CA 92093-0819, USA
| | - Miles Makale
- Department of Psychology, UC San Diego, Health Sciences Drive, La Jolla, CA, 92093, USA
| | | | - Nicole Jafari
- Department of Human Development, California State University at long Beach, Long Beach, CA., USA
- Division of Personalized Medicine, Cross-Cultural Research and Educational Institute, San Clemente, CA., USA
| | - Keerthy Sunder
- Department of Psychiatry, Menifee Global Medical Center, Palm Desert, CA., USA
- Sunder Foundation, Palm Springs, CA, USA
| | - Foojan Zeine
- Awareness Integration Institute, San Clemente, CA., USA
- Department of Health Science, California State University at Long Beach, Long Beach, CA., USA
| | - Mauro Ceccanti
- Società Italiana per il Trattamento dell’Alcolismo e le sue Complicanze (SITAC), ASL Roma1, Sapienza University of Rome, Rome, Italy
| | - Abdalla Bowirrat
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Medical Center, San Antonio, TX., USA
- Department of Psychiatry, Mt Sinai University School of Medicine, New York, NY., USA
| |
Collapse
|
6
|
Cabrera Lagunes A, Díaz-Anzaldúa A, Rojas Andrade G, Peschard VG, Arias Caballero A, Gaspar-Barba CE, Yunes Jimenez A, De la Peña Olvera FR, Cruz Fuentes CS, Feria-Aranda M, Sosa Mora L, Pérez Molina A, Guizar Sanchez D, Palacios-Cruz L. Association between CLOCK gene polymorphisms and ADHD in Mexican teenagers: A comprehensive assessment. Psychiatry Res 2022; 317:114835. [PMID: 36166946 PMCID: PMC10824139 DOI: 10.1016/j.psychres.2022.114835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/20/2022] [Accepted: 09/04/2022] [Indexed: 01/04/2023]
Abstract
This study aimed to evaluate markers of the CLOCK gene rs1801260 and rs4864548 in Mexican adolescents, addressing clinical and biological aspects previously associated with ADHD. 347 Mexican adolescents were assessed for mental disorders, metabolic disruption and related conditions, circadian preference, as well as genotyping for the CLOCK. We found a significant association between ADHD and the AA and AG genotypes of rs1801260. Also, we identified in the ADHD group that the total Triiodothyronine and total Thyroxine values were respectively 10 ng/dl units and 0.58 ug/dl units lower in females than in males. Previously reported common variations of the CLOCK gene have been associated with ADHD like the Rs1801260 polymorphism hereby we could consider it as risk factor, but genetic, biochemical and clinical studies in the Mexican population are entailed.
Collapse
Affiliation(s)
- Alfonso Cabrera Lagunes
- Comprehensive Wellbeing Program, Adolescent Clinic, Division of Clinical Services, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Adriana Díaz-Anzaldúa
- Department of Genetics, Sub-division of Clinical Research, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Gustavo Rojas Andrade
- Department of Genetics, Sub-division of Clinical Research, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Vanessa-Giselle Peschard
- Department of Medicine, Division of Nephrology, University of California, San Francisco 941130, United States
| | - Adriana Arias Caballero
- Comprehensive Wellbeing Program, Adolescent Clinic, Division of Clinical Services, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - César Enrique Gaspar-Barba
- Comprehensive Wellbeing Program, Adolescent Clinic, Division of Clinical Services, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Arlette Yunes Jimenez
- Comprehensive Wellbeing Program, Adolescent Clinic, Division of Clinical Services, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; Eating Disorders Clinic, Instituto Prado S.C., Mexico City 11000, Mexico
| | - Francisco Rafael De la Peña Olvera
- Adolescent Clinic, Division of Clinical Services, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; Unit of Research Promotion, Direction of Clinical Services, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Carlos Sabas Cruz Fuentes
- Department of Genetics, Sub-division of Clinical Research, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Miriam Feria-Aranda
- Comprehensive Wellbeing Program, Adolescent Clinic, Division of Clinical Services, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; Adolescent Clinic, Division of Clinical Services, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Liz Sosa Mora
- Comprehensive Wellbeing Program, Adolescent Clinic, Division of Clinical Services, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; Adolescent Clinic, Division of Clinical Services, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Armando Pérez Molina
- Department of Genetics, Sub-division of Clinical Research, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Diana Guizar Sanchez
- Department of Physiology, Laboratory of Learning Sciences, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Lino Palacios-Cruz
- Comprehensive Wellbeing Program, Adolescent Clinic, Division of Clinical Services, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; Department of Clinical Epidemiology, Sub-division of Clinical Research, Division of Neurosciences, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City 14370, Mexico.
| |
Collapse
|
7
|
Sakala K, Kasearu K, Katus U, Veidebaum T, Harro J. Association between platelet MAO activity and lifetime drug use in a longitudinal birth cohort study. Psychopharmacology (Berl) 2022; 239:327-337. [PMID: 35001146 DOI: 10.1007/s00213-021-06035-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022]
Abstract
RATIONALE Platelet monoamine oxidase (MAO) activity, a marker of central serotonergic capacity, has been associated with a variety of problem behaviours. However, studies on platelet MAO activity and addictive drugs have not consistently linked MAO activity with addiction or reported to predict illicit substance use initiation or frequency. OBJECTIVES Platelet MAO activity and illicit drug use was examined in a longitudinal birth cohort study. METHODS The sample included both birth cohorts (original n = 1238) of the Estonian Children Personality Behaviour and Health Study. Longitudinal association from age 15 to 25 years between platelet MAO activity and lifetime drug use was analysed by mixed-effects regression models. Differences at ages 15, 18 and 25 were analysed by t-test. Cox proportional hazard regression analysis was used to assess the association between platelet MAO activity and the age of drug use initiation. RESULTS Male subjects who reported at least one drug use event had lower platelet MAO activity compared to nonusers, both in cross-sectional and longitudinal analyses. Males with low platelet MAO activity had started to use drugs at a younger age. Moreover, in male subjects who had experimented with illicit drugs only once in lifetime, low platelet MAO activity was also associated with higher risk at a younger age. In females, platelet MAO activity was not associated with drug use. CONCLUSION In males, low platelet MAO activity is associated with drug abuse primarily owing to risk-taking at early age.
Collapse
Affiliation(s)
- Katre Sakala
- Department of Chronic Diseases, National Institute for Health Development, Hiiu 42, 11619, Tallinn, Estonia.,Institute of Family Medicine and Public Health, Faculty of Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia.,School of Natural Sciences and Health, Tallinn University, Narva Road 29, 10120, Tallinn, Estonia
| | - Kairi Kasearu
- Institute of Social Studies, Faculty of Social Sciences, University of Tartu, Lossi 36, 51003, Tartu, Estonia
| | - Urmeli Katus
- Institute of Family Medicine and Public Health, Faculty of Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Toomas Veidebaum
- Department of Chronic Diseases, National Institute for Health Development, Hiiu 42, 11619, Tallinn, Estonia
| | - Jaanus Harro
- School of Natural Sciences and Health, Tallinn University, Narva Road 29, 10120, Tallinn, Estonia. .,Chair of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia.
| |
Collapse
|
8
|
Luderer M, Ramos Quiroga JA, Faraone SV, Zhang James Y, Reif A. Alcohol use disorders and ADHD. Neurosci Biobehav Rev 2021; 128:648-660. [PMID: 34265320 DOI: 10.1016/j.neubiorev.2021.07.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 12/18/2022]
Abstract
Despite a growing literature on the complex bidirectional relationship of ADHD and substance use, reviews specifically focusing on alcohol are scarce. ADHD and AUD show a significant genetic overlap, including genes involved in gluatamatergic and catecholaminergic neurotransmission. ADHD drives risky behavior and negative experiences throughout the lifespan that subsequently enhance a genetically increased risk for Alcohol Use Disorders (AUD). Impulsive decisions and a maladaptive reward system make individuals with ADHD vulnerable for alcohol use and up to 43 % develop an AUD; in adults with AUD, ADHD occurs in about 20 %, but is vastly under-recognized and under-treated. Thus, routine screening and treatment procedures need to be implemented in AUD treatment. Long-acting stimulants or non-stimulants can be used to treat ADHD in individuals with AUD. However, it is crucial to combine medical treatment for ADHD with pharmacotherapy and psychotherapy for AUD, and other comorbid disorders. Identification of individuals at risk for AUD, especially those with ADHD and conduct disorder or oppositional defiant disorder, is a key factor to prevent negative outcomes.
Collapse
Affiliation(s)
- Mathias Luderer
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Frankfurt am Main, Germany.
| | - Josep Antoni Ramos Quiroga
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain; Department of Psychiatryand Forensic Medicine, Universitat Autònoma deBarcelona, Bellaterra, Catalonia, Spain; Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain
| | - Stephen V Faraone
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Yanli Zhang James
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
9
|
Soler Artigas M, Sánchez-Mora C, Rovira P, Richarte V, Garcia-Martínez I, Pagerols M, Demontis D, Stringer S, Vink JM, Børglum AD, Neale BM, Franke B, Faraone SV, Casas M, Ramos-Quiroga JA, Ribasés M. Attention-deficit/hyperactivity disorder and lifetime cannabis use: genetic overlap and causality. Mol Psychiatry 2020; 25:2493-2503. [PMID: 30610198 PMCID: PMC8025199 DOI: 10.1038/s41380-018-0339-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 11/02/2018] [Accepted: 12/10/2018] [Indexed: 11/09/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a severely impairing neurodevelopmental disorder with a prevalence of 5% in children and adolescents and of 2.5% in adults. Comorbid conditions in ADHD play a key role in symptom progression, disorder course and outcome. ADHD is associated with a significantly increased risk for substance use, abuse and dependence. ADHD and cannabis use are partly determined by genetic factors; the heritability of ADHD is estimated at 70-80% and of cannabis use initiation at 40-48%. In this study, we used summary statistics from the largest available meta-analyses of genome-wide association studies (GWAS) of ADHD (n = 53,293) and lifetime cannabis use (n = 32,330) to gain insights into the genetic overlap and causal relationship of these two traits. We estimated their genetic correlation to be r2 = 0.29 (P = 1.63 × 10-5) and identified four new genome-wide significant loci in a cross-trait analysis: two in a single variant association analysis (rs145108385, P = 3.30 × 10-8 and rs4259397, P = 4.52 × 10-8) and two in a gene-based association analysis (WDPCP, P = 9.67 × 10-7 and ZNF251, P = 1.62 × 10-6). Using a two-sample Mendelian randomization approach we found support that ADHD is causal for lifetime cannabis use, with an odds ratio of 7.9 for cannabis use in individuals with ADHD in comparison to individuals without ADHD (95% CI (3.72, 15.51), P = 5.88 × 10-5). These results substantiate the temporal relationship between ADHD and future cannabis use and reinforce the need to consider substance misuse in the context of ADHD in clinical interventions.
Collapse
Affiliation(s)
- María Soler Artigas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain.
| | - Cristina Sánchez-Mora
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Paula Rovira
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Vanesa Richarte
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Iris Garcia-Martínez
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Mireia Pagerols
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Ditte Demontis
- Department of Biomedicine-Human Genetics, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
| | - Sven Stringer
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
| | - Jacqueline M Vink
- Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands
| | - Anders D Børglum
- Department of Biomedicine-Human Genetics, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
| | - Benjamin M Neale
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research and the Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Miguel Casas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Antoni Ramos-Quiroga
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain.
| |
Collapse
|
10
|
Prospects of Genetics and Epigenetics of Alcohol Use Disorder. CURRENT ADDICTION REPORTS 2020. [DOI: 10.1007/s40429-020-00331-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
Purpose of Review
In this study, we illustrate recent findings regarding the genetics and epigenetics of alcohol use disorder (AUD). We further outline the future direction of genetic and epigenetic research in AUD.
Recent Findings
Recent genome- and epigenome-wide studies allow new insight into genetic and epigenetic variation associated with AUD. The largest EWAS of AUD so far/to date found evidence for altered glucocorticoid receptor regulation. Longitudinal studies provide insight into the dynamics of the disease. Analyses of postmortem brain tissue reveal the impact of chronic alcohol consumption on DNA methylation in the brain.
Summary
Genetic and environmental factors—mediated via epigenetic mechanisms—play an important role in AUD. Although knowledge of the biological underpinnings of AUD is still limited, ongoing research will ultimately lead to the development of biomarkers for disease classification, course of disease, and treatment response to support personalized medicine in the future.
Collapse
|
11
|
Gareeva AE, Sharafiev RR, Akhmetova EA, Nasibullin TR, Fakhurtdinova ZR, Yuldashev VL, Asadullin AR. [The combined effect of genetic factors and attention deficit hyperactivity disorder on the development of dependence on synthetic cannabinoids]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:15-21. [PMID: 32307406 DOI: 10.17116/jnevro202012002115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To develop a model of assessment of individual risk of dependence on synthetic cannabinoids based on genetic factors and diagnosis of attention deficit hyperactivity disorder (ADHD). MATERIAL AND METHODS The study included 146 male adolescents using synthetic cannabinoids and 136 healthy people. The genetic study considered the combination of dependence on synthetic cannabinoids and ADHD. Six polymorphisms in the genes of dopaminergic and serotonergic systems were genotyped. RESULTS AND CONCLUSION In general, the results of this work confirm the important role of the dopaminergic and serotonergic systems in the pathogenesis of substance use disorders, and the significance of changes in the nucleotide sequences of DRD2, SLC6A3, HTR2A genes in the development of dependence on synthetic cannabinoids with ADHD.
Collapse
Affiliation(s)
- A E Gareeva
- Bashkir State Medical University, Ufa, Russia; Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, Ufa, Russia
| | | | | | - T R Nasibullin
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, Ufa, Russia
| | | | | | | |
Collapse
|
12
|
Schoenmacker GH, Groenman AP, Sokolova E, Oosterlaan J, Rommelse N, Roeyers H, Oades RD, Faraone SV, Franke B, Heskes T, Arias Vasquez A, Claassen T, Buitelaar JK. Role of conduct problems in the relation between Attention-Deficit Hyperactivity disorder, substance use, and gaming. Eur Neuropsychopharmacol 2020; 30:102-113. [PMID: 30292416 DOI: 10.1016/j.euroneuro.2018.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 03/29/2018] [Accepted: 06/19/2018] [Indexed: 11/17/2022]
Abstract
Known comorbidities for Attention-Deficit Hyperactivity Disorder (ADHD) include conduct problems, substance use disorder and gaming. Comorbidity with conduct problems may increase the risk for substance use disorder and gaming in individuals with ADHD. The aim of the study was to build a causal model of the relationships between ADHD and comorbid conduct problems, and alcohol, nicotine, and other substance use, and gaming habits, while accounting for age and sex. We used a state-of-the-art causal discovery algorithm to analyze a case-only sample of 362 ADHD-diagnosed individuals in the ages 12-24 years. We found that conduct problem severity mediates between ADHD severity and nicotine use, but not with more severe alcohol or substance use. More severe ADHD-inattentive symptoms lead to more severe gaming habits. Furthermore, our model suggests that ADHD severity has no influence on severity of alcohol or other drug use. Our findings suggest that ADHD severity is a risk factor for nicotine use, and that this effect is fully mediated by conduct problem severity. Finally, ADHD-inattentive severity was a risk factor for gaming, suggesting that gaming dependence has a different causal pathway than substance dependence and should be treated differently. By identifying these intervention points, our model can aid both researchers and clinicians.
Collapse
Affiliation(s)
- G H Schoenmacker
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Faculty of Science, Radboud University, Nijmegen, The Netherlands.
| | - A P Groenman
- Vrije Universiteit Amsterdam, Faculty of Behavioural and Movement Science, Clinical Neuropsychology Section, Amsterdam, The Netherlands
| | - E Sokolova
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - J Oosterlaan
- Vrije Universiteit Amsterdam, Faculty of Behavioural and Movement Science, Clinical Neuropsychology Section, Amsterdam, The Netherlands
| | - N Rommelse
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands; Karakter Child and Adolescent Psychiatry University Centre, Radboud University Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - H Roeyers
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - R D Oades
- Clinic for Child and Adolescent Psychiatry and Psychotherapy, University of Duisburg-Essen, Essen, Germany
| | - S V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA; K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - B Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - T Heskes
- Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - A Arias Vasquez
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | - T Claassen
- Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - J K Buitelaar
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands; Karakter Child and Adolescent Psychiatry University Centre, Radboud University Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
13
|
Connolly RD, Speed D, Hesson J. Probabilities of ADD/ADHD and Related Substance Use Among Canadian Adults. J Atten Disord 2019; 23:1454-1463. [PMID: 27179356 DOI: 10.1177/1087054716647474] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Objective: The aim of this study was to estimate the prevalence and probabilities of comorbidities between self-reported ADD/ADHD and smoking, alcohol binge drinking, and substance use disorders (SUDs) from a national Canadian sample. Method: Data were taken from the Public Use Microdata File of the 2012 Canadian Community Health Survey-Mental Health (N = 17 311). The prevalence of (a) smoking, (b) alcohol binge drinking, and (c) SUDs was estimated among those with an ADD/ADHD diagnosis versus those without an ADD/ADHD diagnosis. Results: After controlling for potential socioeconomic and mental health covariates, self-reported ADD/ADHD acted as a significant predictor for group membership in the heaviest smoking, heaviest drinking, and heaviest drug usage categories. Conclusion: Individuals self-reporting a diagnosis of ADD/ADHD were found to have a significantly higher likelihood of engaging in smoking and alcohol binge drinking, and were more likely to meet criteria for SUDs than individuals not reporting an ADD/ADHD diagnosis.
Collapse
Affiliation(s)
| | - David Speed
- 1 Memorial University of Newfoundland, St. John's, Canada
| | | |
Collapse
|
14
|
Faraone SV, Larsson H. Genetics of attention deficit hyperactivity disorder. Mol Psychiatry 2019; 24:562-575. [PMID: 29892054 PMCID: PMC6477889 DOI: 10.1038/s41380-018-0070-0] [Citation(s) in RCA: 530] [Impact Index Per Article: 88.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/31/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023]
Abstract
Decades of research show that genes play an vital role in the etiology of attention deficit hyperactivity disorder (ADHD) and its comorbidity with other disorders. Family, twin, and adoption studies show that ADHD runs in families. ADHD's high heritability of 74% motivated the search for ADHD susceptibility genes. Genetic linkage studies show that the effects of DNA risk variants on ADHD must, individually, be very small. Genome-wide association studies (GWAS) have implicated several genetic loci at the genome-wide level of statistical significance. These studies also show that about a third of ADHD's heritability is due to a polygenic component comprising many common variants each having small effects. From studies of copy number variants we have also learned that the rare insertions or deletions account for part of ADHD's heritability. These findings have implicated new biological pathways that may eventually have implications for treatment development.
Collapse
Affiliation(s)
- Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Henrik Larsson
- School of Medical Sciences, Örebro University, Örebro, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Molina BS, Howard AL, Swanson JM, Stehli A, Mitchell JT, Kennedy TM, Epstein JN, Arnold LE, Hechtman L, Vitiello B, Hoza B. Substance use through adolescence into early adulthood after childhood-diagnosed ADHD: findings from the MTA longitudinal study. J Child Psychol Psychiatry 2018; 59:692-702. [PMID: 29315559 PMCID: PMC5985671 DOI: 10.1111/jcpp.12855] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/14/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND Inconsistent findings exist regarding long-term substance use (SU) risk for children diagnosed with attention-deficit/hyperactivity disorder (ADHD). The observational follow-up of the Multimodal Treatment Study of Children with ADHD (MTA) provides an opportunity to assess long-term outcomes in a large, diverse sample. METHODS Five hundred forty-seven children, mean age 8.5, diagnosed with DSM-IV combined-type ADHD and 258 classmates without ADHD (local normative comparison group; LNCG) completed the Substance Use Questionnaire up to eight times from mean age 10 to mean age 25. RESULTS In adulthood, weekly marijuana use (32.8% ADHD vs. 21.3% LNCG) and daily cigarette smoking (35.9% vs. 17.5%) were more prevalent in the ADHD group than the LNCG. The cumulative record also revealed more early substance users in adolescence for ADHD (57.9%) than LNCG (41.9%), including younger first use of alcohol, cigarettes, marijuana, and illicit drugs. Alcohol and nonmarijuana illicit drug use escalated slightly faster in the ADHD group in early adolescence. Early SU predicted quicker SU escalation and more SU in adulthood for both groups. CONCLUSIONS Frequent SU for young adults with childhood ADHD is accompanied by greater initial exposure at a young age and slightly faster progression. Early SU prevention and screening is critical before escalation to intractable levels.
Collapse
Affiliation(s)
- Brooke S.G. Molina
- Departments of Psychiatry, Psychology, & Pediatrics, University of Pittsburgh
| | | | | | | | - John T. Mitchell
- Department of Psychiatry & Behavioral Sciences, Duke University Medical Center
| | - Traci M. Kennedy
- Department of Psychiatry, University of Pittsburgh School of Medicine
| | | | | | - Lily Hechtman
- Division of Child Psychiatry, McGill University and Montreal Children’s Hospital
| | | | - Betsy Hoza
- Department of Psychological Science, University of Vermont
| |
Collapse
|
16
|
Weissenberger S, Ptacek R, Vnukova M, Raboch J, Klicperova-Baker M, Domkarova L, Goetz M. ADHD and lifestyle habits in Czech adults, a national sample. Neuropsychiatr Dis Treat 2018; 14:293-299. [PMID: 29391802 PMCID: PMC5774466 DOI: 10.2147/ndt.s148921] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Adult attention-deficit/hyperactivity disorder (ADHD) has been added as a diagnosis to the Diagnostic and Statistical Manual of Mental Disorders version 5 (DSM5) in 2013, thus making ADHD, which has been classically known as a childhood disorder, a life-long disorder. Those suffering from the condition show very specific behavioral traits, which manifest as lifestyle habits; they also show comorbidities that can be the symptoms and/or consequences of certain lifestyles. MATERIALS AND METHODS The targeted population was adults aged 18-65 years. The total sample was 1,012 (507 males and 505 females). The Adult ADHD Self-Report Scale (ASRS V. 1.1) was administered to evaluate the current symptoms of ADHD and a questionnaire regarding lifestyles that are pertinent to ADHD, exercise, drug use, and diet. RESULTS An ASRS score of 4-6 points was found in 11.4% of the male population and 9.7% of the female population (5-6 points indicate very high-intensity symptoms). A score of 6, the highest intensity of symptomatology, was found in 1.18% of males and 0.99% of females. Gender differences in scores were not statistically significant. In terms of self-reported lifestyles, we calculated an ordered logistic regression and the odds ratios of those with ASRS scores >4. Those with higher ASRS scores had higher rates of self-reported unhealthy lifestyles and poor diets with high consumption of sweets. We also ascertained a paradoxical finding that is not in line with the current literature on the disorder - lower rates of cigarette smoking among people with higher ADHD symptomatology. CONCLUSION Several specific lifestyles were found to be associated with higher ADHD symptoms such as poor diet and cannabis use. Other factors classically associated with the disorder such as cocaine addiction and nicotinism were either insignificant or surprisingly less prominent among the Czech sample. However, ADHD-prone respondents reported to be more physically active, which fits the clinical picture of hyperactivity but contrasts with literature that reports sedentary ADHD lifestyle.
Collapse
Affiliation(s)
- Simon Weissenberger
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague.,Department of Psychology, University of New York in Prague, Prague
| | - Radek Ptacek
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague.,Department of Psychology, University of New York in Prague, Prague
| | - Martina Vnukova
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague.,Department of Psychology, University of New York in Prague, Prague
| | - Jiri Raboch
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague
| | | | - Lucie Domkarova
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague
| | - Michal Goetz
- Department of Paediatric Psychiatry, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| |
Collapse
|
17
|
Coley RL, Sims J, Carrano J. Environmental risks outweigh dopaminergic genetic risks for alcohol use and abuse from adolescence through early adulthood. Drug Alcohol Depend 2017; 175:106-118. [PMID: 28412301 DOI: 10.1016/j.drugalcdep.2017.01.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 12/16/2016] [Accepted: 01/24/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Alcohol use is a primary public health concern, particularly among adolescents and young adults. Based on the rapidly growing field of gene-environment models, this study assessed the combined role of environmental and dopamine-related genetic correlates of early alcohol use and abuse. METHODS Multilevel growth models assessed trajectories of alcohol use and intoxication and ordered logistic regressions assessed alcohol use disorder among a sample of 12,437 youth from the nationally representative Add Health study who were followed from mid-adolescence through early adulthood. RESULTS Endogenous and exogenous stressful life events and social norms supportive of alcohol use from parents and peers were significant predictors of alcohol use, intoxication, and alcohol use disorder, with consistent patterns across males and females. In contrast, a dopamine-system genetic risk score (GRS) was not associated with alcohol use trajectories nor alcohol use disorder in early adulthood, although weak connections emerged between the GRS and growth trajectories of intoxication, indicating that higher GRS predicted more frequent episodes of intoxication during the transition to adulthood but not during adolescence or later 20s. No evidence of gene-environment interactions emerged. CONCLUSIONS Results extend a substantial body of prior research primarily assessing single genetic polymorphisms in the dopamine system, suggesting that dopaminergic GRSs may be associated with more problematic alcohol behaviors at some developmental periods, but further, that social norms and stressful life experiences are more consistent correlates of early and problematic alcohol use among youth. These environmental factors present potential targets for research manipulating contexts to identify causal pathways.
Collapse
Affiliation(s)
- Rebekah Levine Coley
- Boston College, Lynch School of Education, Department of Counseling, Developmental, and Educational Psychology, United States.
| | - Jacqueline Sims
- Boston College, Lynch School of Education, Department of Counseling, Developmental, and Educational Psychology, United States
| | - Jennifer Carrano
- University of Delaware, Department of Human Development and Family Studies, United States
| |
Collapse
|
18
|
Abstract
Adolescence is an important neurodevelopmental period marked by rapidly escalating rates of alcohol and drug use. Over the past decade, research has attempted to disentangle pre- and post-substance use effects on brain development by using sophisticated longitudinal designs. This review focuses on recent, prospective studies and addresses the following important questions: (1) what neuropsychological and neural features predate adolescent substance use, making youth more vulnerable to engage in heavy alcohol or drug use, and (2) how does heavy alcohol and drug use affect normal neural development and cognitive functioning? Findings suggest that pre-existing neural features that relate to increased substance use during adolescence include poorer neuropsychological functioning on tests of inhibition and working memory, smaller gray and white matter volume, changes in white matter integrity, and altered brain activation during inhibition, working memory, reward, and resting state. After substance use is initiated, alcohol and marijuana use are associated with poorer cognitive functioning on tests of verbal memory, visuospatial functioning, psychomotor speed, working memory, attention, cognitive control, and overall IQ. Heavy alcohol use during adolescence is related to accelerated decreases in gray matter and attenuated increases in white matter volume, as well as increased brain activation during tasks of inhibition and working memory, relative to controls. Larger longitudinal studies with more diverse samples are needed to better understand the interactive effects of alcohol, marijuana, and other substances, as well as the role of sex, co-occurring psychopathology, genetics, sleep, and age of initiation on substance use.
Collapse
|