1
|
Ávila-Gámiz F, Pérez-Cano AM, Pérez-Berlanga JM, Zambrana-Infantes EN, Mañas-Padilla MC, Gil-Rodríguez S, Tronel S, Santín LJ, Ladrón de Guevara-Miranda D. Sequential physical and cognitive training disrupts cocaine-context associations via multi-level stimulation of adult hippocampal neurogenesis. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111148. [PMID: 39284561 DOI: 10.1016/j.pnpbp.2024.111148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/02/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Cocaine-related contextual cues are a recurrent source of craving and relapse. Extinction of cue-driven cocaine seeking remains a clinical challenge, and the search for adjuvants is ongoing. In this regard, combining physical and cognitive training is emerging as a promising strategy that has shown synergistic benefits on brain structure and function, including enhancement of adult hippocampal neurogenesis (AHN), which has been recently linked to reduced maintenance of maladaptive drug seeking. Here, we examined whether this behavioral approach disrupts cocaine-context associations via improved AHN. To this aim, C57BL/6J mice (N = 37) developed a cocaine-induced conditioned place preference (CPP) and underwent interventions consisting of exercise and/or spatial working memory training. Bromodeoxyuridine (BrdU) was administered during early running sessions to tag a subset of new dentate granule cells (DGCs) reaching a critical window of survival during spatial learning. Once these DGCs became functionally mature (∼ 6 weeks-old), mice received extinction training before testing CPP extinction and reinstatement. We found that single and combined treatments accelerated CPP extinction and prevented reinstatement induced by a low cocaine priming (2 mg/kg). Remarkably, the dual-intervention mice showed a significant decrease of CPP after extinction relative to untreated animals. Moreover, combining the two strategies led to increased number and functional integration of BrdU+ DGCs, which in turn maximized the effect of spatial training (but not exercise) to reduce CPP persistence. Together, our findings suggests that sequencing physical and cognitive training may redound to decreased maintenance of cocaine-context associations, with multi-level stimulation of AHN as a potential underlying mechanism.
Collapse
Affiliation(s)
- Fabiola Ávila-Gámiz
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina (IBIMA Plataforma BIONAND), Spain
| | - Ana M Pérez-Cano
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina (IBIMA Plataforma BIONAND), Spain
| | - José Manuel Pérez-Berlanga
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina (IBIMA Plataforma BIONAND), Spain
| | - Emma N Zambrana-Infantes
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina (IBIMA Plataforma BIONAND), Spain
| | - M Carmen Mañas-Padilla
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina (IBIMA Plataforma BIONAND), Spain
| | - Sara Gil-Rodríguez
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina (IBIMA Plataforma BIONAND), Spain
| | - Sophie Tronel
- University of Bordeaux, INSERM, Magendie, U1215, F-33000 Bordeaux, France
| | - Luis J Santín
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina (IBIMA Plataforma BIONAND), Spain.
| | - David Ladrón de Guevara-Miranda
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina (IBIMA Plataforma BIONAND), Spain.
| |
Collapse
|
2
|
Tong Y, Zhao G, Shuang R, Wang H, Zeng N. Saikosaponin a activates tet1/dll3/notch1 signalling and promotes hippocampal neurogenesis to improve depression-like behavior in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117289. [PMID: 37844745 DOI: 10.1016/j.jep.2023.117289] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radix Bupleuri, also named "Chaihu" in Chinese, is a substance derived from the dry roots of Bupleurum chinense DC. [Apiaceae] and Bupleurum scorzonerifolium Willd. [Apiaceae]. Radix Bupleuri was initially recorded as a medicinal herb in Shen Nong Ben Cao Jing, the earliest monograph concerning traditional Chinese medicine (TCM). Ever since, Radix Bupleuri has been broadly used to alleviate exterior syndrome, disperse heat, modulate the liver-qi, and elevate yang-qi in TCM. Radix Bupleuri has also been utilized as an important component in Xiaoyaosan, a classical formula for relieving depression, which was originated from the famous Chinese medical book called "Tai Ping Hui Min He Ji Ju Fang" in Song Dynasty. Currently, many valuable pharmacological effects of Radix Bupleuri have been explored, such as antidepressant, neuroprotective activities, antiinflammation, anticancer, immunoregulation, etc. Former studies have illustrated that Saikosaponin A (SSa), one of the primary active components of Radix Bupleuri, possesses potential antidepressant properties. However, the underlying mechanisms still remain unknown. AIM OF THE STUDY We used a chronic social defeat stress (CSDS) mouse model to explore the ameliorative effects and potential mechanisms of SSa in depressive disorder in vivo. MATERIALS AND METHODS The CSDS mouse model was established and mice underwent behavioral studies using assays such as the social interaction test (SIT), sucrose preference test (SPT), forced-swim test (FST), tail suspension test (TST), and open field test (OFT). Western blotting, immunofluorescence, and Golgi staining were performed to investigate signaling pathway activity, and alterations in synaptic spines in the hippocampus. To model the anticipated interaction between SSa and Tet1, molecular docking and microscale thermophoresis (MST) techniques were employed. Finally, sh-RNA Tet1 was employed for validation via lentiviral transfection in CSDS mice to confirm the requirement of Tet1 for SSA efficacy. RESULTS SSa dramatically reduced depressed symptoms, boosted the expression of Tet1, Notch, DLL3, and BDNF, encouraged hippocampus development, and enhanced the dendritic spine density of hippocampal neurons. In contrast, Tet1 knockdown in CSDS mice dampened the beneficial effects of SSa on depressive symptoms. CONCLUSIONS Therefore, our results suggest that SSa significantly activates the Tet1/Notch/DLL3 signaling pathways and promotes hippocampal neurogenesis to exert antidepressant effects in the CSDS mouse model in vivo. The present results also provide new insight into the importance of the Tet1/DLL3/Notch pathways as potential targets for novel antidepressant development.
Collapse
Affiliation(s)
- Yue Tong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Ge Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China; Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, PR China
| | - Ruonan Shuang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Hanqing Wang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia, 750004, PR China.
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China.
| |
Collapse
|
3
|
Mohammadi M, Eskandari K, Azizbeigi R, Haghparast A. The inhibitory effect of cannabidiol on the rewarding properties of methamphetamine in part mediates by interacting with the hippocampal D1-like dopamine receptors. Prog Neuropsychopharmacol Biol Psychiatry 2023; 126:110778. [PMID: 37100273 DOI: 10.1016/j.pnpbp.2023.110778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 04/28/2023]
Abstract
Cannabidiol (CBD) is a potential treatment to decrease the rewarding properties of psychostimulants. However, the exact mechanism and distinct neuroanatomical areas responsible for the CBD's effects remain unclear. Indicatively, the D1-like dopamine receptors (D1R) in the hippocampus (HIP) are essential for expressing and acquiring drug-associated conditioned place preference (CPP). Therefore, given that involving D1Rs in reward-related behaviors and the encouraging results of CBD in attenuating the psychostimulant's rewarding effects, the present study sought to investigate the role of D1Rs of the hippocampal dentate gyrus (DG) in the inhibitory effects of CBD on the acquisition and expression of METH-induced CPP. To this end, over a 5-day conditioning period by METH (1 mg/kg; sc), different groups of rats were given intra-DG SCH23390 (0.25, 1, or 4 μg/0.5 μl, saline) as a D1Rs antagonist before ICV administration of CBD (10 μg/5 μl, DMSO12%). In addition, a different set of animals, after the conditioning period, received a single dose of SCH23390 (0.25, 1, or 4 μg/0.5 μl) before CBD (50 μg/5 μl) administration on the expression day. The results showed that SCH23390 (1 and 4 μg) significantly reduced the suppressive effects of CBD on the acquisition of METH place preference (P < 0.05 and P < 0.001, respectively). Furthermore, the highest dose of SCH23390 (4 μg) in the expression phase remarkably abolished the preventive effects of CBD on the expression of METH-seeking behavior (P < 0.001). In conclusion, the current study revealed that CBD's inhibitory effect on rewarding properties of METH partially acts through D1Rs in the DG area of the HIP.
Collapse
Affiliation(s)
- Mahsa Mohammadi
- Department of Physiology, Faculty of Veterinary Science, Islamic Azad University, Sanandaj Branch, Sanandaj, Iran
| | - Kiarash Eskandari
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ronak Azizbeigi
- Department of Physiology, Faculty of Veterinary Science, Islamic Azad University, Sanandaj Branch, Sanandaj, Iran.
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Mañas-Padilla MC, Melgar-Locatelli S, Vicente L, Gil-Rodríguez S, Rivera P, Rodríguez-Pérez C, Castilla-Ortega E. Temozolomide treatment inhibits spontaneous motivation for exploring a complex object in mice: A potential role of adult hippocampal neurogenesis in "curiosity". J Comp Neurol 2023; 531:548-560. [PMID: 36515664 PMCID: PMC10107499 DOI: 10.1002/cne.25442] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/02/2022] [Accepted: 11/26/2022] [Indexed: 12/15/2022]
Abstract
Intrinsic exploratory biases are an innate motivation for exploring certain types of stimuli or environments over others, and they may be associated with cognitive, emotional, and even personality-like traits. However, their neurobiological basis has been scarcely investigated. Considering the involvement of the hippocampus in novelty recognition and in spatial and pattern separation tasks, this work researched the role of adult hippocampal neurogenesis (AHN) in intrinsic exploratory bias for a perceptually complex object in mice. Spontaneous object preference tasks revealed that both male and female C57BL/6J mice showed a consistent unconditioned preference for exploring "complex"-irregular-objects over simpler ones. Furthermore, increasing objects' complexity resulted in an augmented time of object exploration. In a different experiment, male mice received either vehicle or the DNA alkylating agent temozolomide (TMZ) for 4 weeks, a pharmacological treatment that reduced AHN as evidenced by immunohistochemistry. After assessment in a behavioral test battery, the TMZ-treated mice did not show any alterations in general exploratory and anxiety-like responses. However, when tested in the spontaneous object preference task, the TMZ-treated mice did not display enhanced exploration of the complex object, as evidenced both by a reduced exploration time-specifically for the complex object-and a lack of preference for the complex object over the simple one. This study supports a novel role of AHN in intrinsic exploratory bias for perceptual complexity. Moreover, the spontaneous complex object preference task as a rodent model of "curiosity" is discussed.
Collapse
Affiliation(s)
- M Carmen Mañas-Padilla
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain.,Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain
| | - Sonia Melgar-Locatelli
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain.,Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain
| | - Lucía Vicente
- Centro de Experimentación y Conducta Animal, Universidad de Málaga, Málaga, Spain.,Departamento de Psicología, Universidad de Deusto, Bilbao, Spain
| | - Sara Gil-Rodríguez
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain.,Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain
| | - Patricia Rivera
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain.,Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Celia Rodríguez-Pérez
- Departamento de Nutrición y Bromatología, Universidad de Granada, Campus de Melilla, Melilla, Spain.,Instituto de Nutrición y Tecnología de los Alimentos 'José Mataix', Universidad de Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Estela Castilla-Ortega
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain.,Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
5
|
Inoue R, Ni X, Mori H. Blockade of D-serine signaling and adult hippocampal neurogenesis attenuates remote contextual fear memory following multiple memory retrievals in male mice. Front Neurosci 2023; 16:1030702. [PMID: 36685240 PMCID: PMC9845639 DOI: 10.3389/fnins.2022.1030702] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
The retrieval of fear memories induces two opposing processes, reconsolidation, and extinction. The memory reconsolidation is an active process that involves gene expression and updates an existing memory. It is hypothesized that blockade of reconsolidation by manipulating the neurobiological factors, which are mechanistically involved in the process, could weaken or disrupt the original fear memory. The N-methyl-D-aspartate (NMDA) receptor and hippocampal neurogenesis play crucial roles in hippocampus-dependent memory processes, including reconsolidation. Using contextual fear conditioning paradigm with multiple retrievals, we attempted to weaken the original contextual fear memory by repeatedly disrupting retrieval-induced reconsolidation via downregulation of NMDA receptor signaling and inhibition of neurogenesis. In the first experiment, prior to fear conditioning, NMDA receptor signaling was downregulated by the genetic reduction of its co-agonist, D-serine, and the neurogenesis was dampened by focal X-ray irradiation on the hippocampus. We found that simultaneous D-serine reduction and neurogenesis dampening resulted in a progressive decrease in freezing following each retrieval, leading to an attenuation of remote contextual fear memory on day 28. In the second experiment using the same behavioral protocols, after conditioning, pharmacological approaches were conducted to simultaneously block D-serine signaling and neurogenesis, resulting in a similar suppressive effect on the remote fear memory. The present findings provide insights for understanding the role of D-serine-mediated NMDA receptor signaling and neurogenesis in memory retrieval and the maintenance of remote fear memory, and improving the efficacy of exposure-based therapy for the treatment of post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Ran Inoue
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Xiance Ni
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan,Graduate School of Innovative Life Science, University of Toyama, Toyama, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan,*Correspondence: Hisashi Mori,
| |
Collapse
|
6
|
Li J, Wu Y, Xue T, He J, Zhang L, Liu Y, Zhao J, Chen Z, Xie M, Xiao B, Ye Y, Qin S, Tang Q, Huang M, Zhu H, Liu N, Guo F, Zhang L, Zhang L. Cdc42 signaling regulated by dopamine D2 receptor correlatively links specific brain regions of hippocampus to cocaine addiction. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166569. [PMID: 36243293 DOI: 10.1016/j.bbadis.2022.166569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/18/2022] [Accepted: 10/06/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hippocampus plays critical roles in drug addiction. Cocaine-induced modifications in dopamine receptor function and the downstream signaling are important regulation mechanisms in cocaine addiction. Rac regulates actin filament accumulation while Cdc42 stimulates the formation of filopodia and neurite outgrowth. Based on the region specific roles of small GTPases in brain, we focused on the hippocampal subregions to detect the regulation of Cdc42 signaling in long-term morphological and behavioral adaptations to cocaine. METHODS Genetically modified mouse models of Cdc42, dopamine receptor D1 (D1R) and D2 (D2R) and expressed Cdc42 point mutants that are defective in binding to and activation of its downstream effector molecules PAK and N-WASP were generated, respectively, in CA1 or dentate gyrus (DG) subregion. RESULTS Cocaine induced upregulation of Cdc42 signaling activity. Cdc42 knockout or mutants blocked cocaine-induced increase in spine plasticity in hippocampal CA1 pyramidal neurons, leading to a decreased conditional place preference (CPP)-associated memories and spatial learning and memory in water maze. Cdc42 knockout or mutants promoted cocaine-induced loss of neurogenesis in DG, leading to a decreased CPP-associated memories and spatial learning and memory in water maze. Furthermore, by using D1R knockout, D2R knockout, and D2R/Cdc42 double knockout mice, we found that D2R, but not D1R, regulated Cdc42 signaling in cocaine-induced neural plasticity and behavioral changes. CONCLUSIONS Cdc42 acts downstream of D2R in the hippocampus and plays an important role in cocaine-induced neural plasticity through N-WASP and PAK-LIMK-Cofilin, and Cdc42 signaling pathway correlatively links specific brain regions (CA1, dentate gyrus) to cocaine-induced CPP behavior.
Collapse
Affiliation(s)
- Juan Li
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, School of Basic Medical Sciences, Center for Orthopaedic Surgery of the Third Affiliated Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yue Wu
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Tao Xue
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jing He
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lei Zhang
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yutong Liu
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, School of Basic Medical Sciences, Center for Orthopaedic Surgery of the Third Affiliated Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jinlan Zhao
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhenzhong Chen
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Minjuan Xie
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bin Xiao
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yingshan Ye
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Sifei Qin
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qingqiu Tang
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mengfan Huang
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hangfei Zhu
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - N Liu
- Institute of Comparative Medicine & Laboratory Animal Center, Elderly Health Services Research Center, Southern Medical University, Guangzhou 510515, China
| | - Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, Cincinnati, OH, USA
| | - Lin Zhang
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, School of Basic Medical Sciences, Center for Orthopaedic Surgery of the Third Affiliated Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Lu Zhang
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
7
|
García-Gómez L, Castillo-Fernández I, Perez-Villalba A. In the pursuit of new social neurons. Neurogenesis and social behavior in mice: A systematic review. Front Cell Dev Biol 2022; 10:1011657. [PMID: 36407114 PMCID: PMC9672322 DOI: 10.3389/fcell.2022.1011657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Social behaviors have become more relevant to our understanding of the human nervous system because relationships with our peers may require and modulate adult neurogenesis. Here, we review the pieces of evidence we have to date for the divergence of social behaviors in mice by modulation of adult neurogenesis or if social behaviors and the social environment can drive a change in neurogenic processes. Social recognition and memory are deeply affected by antimitotic drugs and irradiation, while NSC transgenic mice may run with lower levels of social discrimination. Interestingly, social living conditions can create a big impact on neurogenesis. Social isolation and social defeat reduce the number of new neurons, while social dominance and enrichment of the social environment increase their number. These new “social neurons” trigger functional modifications with amazing transgenerational effects. All of these suggest that we are facing two bidirectional intertwined variables, and the great challenge now is to understand the cellular and genetic mechanisms that allow this relationship to be used therapeutically.
Collapse
|
8
|
The effect of self-administered methamphetamine on GABAergic interneuron populations and functional connectivity of the nucleus accumbens and prefrontal cortex. Psychopharmacology (Berl) 2022; 239:2903-2919. [PMID: 35920922 PMCID: PMC9385811 DOI: 10.1007/s00213-022-06175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 06/08/2022] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Methamphetamine (METH, "ice") is a potent and addictive psychostimulant. Abuse of METH perturbs neurotransmitter systems and induces neurotoxicity; however, the neurobiological mechanisms which underlie addiction to METH are not fully understood, limiting the efficacy of available treatments. Here we investigate METH-induced changes to neuronal nitric oxide synthase (nNOS), parvalbumin and calretinin-expressing GABAergic interneuron populations within the nucleus accumbens (NAc), prefrontal cortex (PFC) and orbitofrontal cortex (OFC). We hypothesise that dysfunction or loss of these GABAergic interneuron populations may disrupt the excitatory/inhibitory balance within the brain. METHODS Male Long Evans rats (N = 32) were trained to lever press for intravenous METH or received yoked saline infusions. Following 14 days of behavioural extinction, animals were given a non-contingent injection of saline or METH (1 mg/kg, IP) to examine drug-primed reinstatement to METH-seeking behaviours. Ninety minutes post-IP injection, animals were culled and brain sections were analysed for Fos, nNOS, parvalbumin and calretinin immunoreactivity in eight distinct subregions of the NAc, PFC and OFC. RESULTS METH exposure differentially affected GABAergic populations, with METH self-administration increasing nNOS immunoreactivity at distinct locations in the prelimbic cortex and decreasing parvalbumin immunoreactivity in the NAc. METH self-administration triggered reduced calretinin immunoreactivity, whilst acute METH administration produced a significant increase in calretinin immunoreactivity. As expected, non-contingent METH-priming treatment increased Fos immunoreactivity in subregions of the NAc and PFC. CONCLUSION Here we report that METH exposure in this model may alter the function of GABAergic interneurons in more subtle ways, such as alterations in neuronal firing or synaptic connectivity.
Collapse
|
9
|
Cai J, Che X, Xu T, Luo Y, Yin M, Lu X, Wu C, Yang J. Repeated oxytocin treatment during abstinence inhibited context- or restraint stress-induced reinstatement of methamphetamine-conditioned place preference and promoted adult hippocampal neurogenesis in mice. Exp Neurol 2021; 347:113907. [PMID: 34715133 DOI: 10.1016/j.expneurol.2021.113907] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/06/2021] [Accepted: 10/23/2021] [Indexed: 12/28/2022]
Abstract
Propensity to relapse, even after long-term abstinence, is a crucial feature of methamphetamine (METH) abuse. We and other laboratories have reported that acute treatment of oxytocin (OXT), a hormone and neuropeptide, could inhibit reinstatement of METH seeking in animal studies. However, the effects of repeated OXT treatment on METH reinstatement as well as underlying mechanisms are still unclear. In the present study, the effects of repeated OXT treatment during abstinence on context- or restraint stress-induced reinstatement were investigated using the mice conditioned place preference (CPP) paradigm. After three intermittent injections of METH (2 mg/kg, i.p.) to induce CPP, mice received a daily bilateral intra-hippocampus injection of OXT (0.625, 1.25 or 2.5 μg) for 8 consecutive days before the context- or restraint stress-induced reinstatement test. Meanwhile, adult hippocampal neurogenesis (AHN) level was detected using immunostaining. To further clarify the role of AHN underlying OXT's effects on METH-CPP reinstatement, temozolomide (TMZ, 25 mg/kg, i.p.) was employed to deplete AHN prior to OXT treatment. The data showed that repeated OXT treatment (1.25 and 2.5 μg, intra-hippocampus) significantly inhibited both context- and restraint stress-induced METH-CPP reinstatement and concomitantly promoted AHN in a dose-dependent manner. Notably, TMZ pre-treatment markedly abolished all the above-mentioned effects of OXT, suggesting that AHN was closely involved in OXT's inhibition on reinstatement induced by both triggers. Taken together, the present study indicated that repeated OXT treatment during abstinence could inhibit both context- and restraint stress-induced METH-CPP reinstatement possibly by promoting AHN in mice, which provided a better understanding for OXT's beneficial effects on METH addiction.
Collapse
Affiliation(s)
- Jialing Cai
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xiaohang Che
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Tianyu Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Yuanchao Luo
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Meixue Yin
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xianda Lu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
10
|
Che X, Bai Y, Cai J, Liu Y, Li Y, Yin M, Xu T, Wu C, Yang J. Hippocampal neurogenesis interferes with extinction and reinstatement of methamphetamine-associated reward memory in mice. Neuropharmacology 2021; 196:108717. [PMID: 34273388 DOI: 10.1016/j.neuropharm.2021.108717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/30/2021] [Accepted: 07/11/2021] [Indexed: 12/16/2022]
Abstract
Drugs of abuse, including morphine and cocaine, can reduce hippocampal neurogenesis (HN). Whereas promotion of HN is being increasingly recognized as a promising strategy for treating morphine and cocaine addiction. The present study is focused on exploring the changes of HN during methamphetamine (METH) administration and further clarify if HN is involved in METH-associated reward memory. After successfully establishing the conditioned place preference (CPP) paradigm to simulate the METH-associated reward memory in C57BL/6 mice, we observed that HN was significantly inhibited during METH (2 mg/kg, i. p.) administration and returned to normal after the extinction of METH CPP, as indicated by the immunostaining of bromodeoxyuridine (BrdU) and doublecortin (DCX) in the hippocampus. To promote/inhibit HN levels, 7,8-dihydroxyflavone (DHF), a small tyrosine kinase receptor B (TrkB) agonist and temozolomide (TMZ), an alkylating agent, were administered intraperitoneally (i.p.), respectively. The data showed that either DHF (5 mg/kg, i. p.) or TMZ (25 mg/kg, i. p.) pre-treatment before METH administration could significantly prolong extinction and enhance reinstatement of the reward memory. Notably, DHF treatment after METH administration significantly facilitated extinction and inhibited METH reinstatement, while TMZ treatment resulted in opposite effects. The present study indicated that METH administration could induce a temporal inhibitory effect on HN. More importantly, promotion of HN after the acquisition of METH-associated reward memory, but not inhibition of HN or promotion of HN before the acquisition of reward memory, could facilitate METH extinction and inhibit METH reinstatement, indicating the beneficial effect of HN on METH addiction by erasing the according reward memory.
Collapse
Affiliation(s)
- Xiaohang Che
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Yijun Bai
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Jialing Cai
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Yueyang Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Yuting Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Meixue Yin
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Tianyu Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| |
Collapse
|
11
|
4R Tau Modulates Cocaine-Associated Memory through Adult Dorsal Hippocampal Neurogenesis. J Neurosci 2021; 41:6753-6774. [PMID: 34099513 DOI: 10.1523/jneurosci.2848-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/28/2021] [Accepted: 05/25/2021] [Indexed: 02/05/2023] Open
Abstract
The development, persistence and relapse of drug addiction require drug memory that generally develops with drug administration-paired contextual stimuli. Adult hippocampal neurogenesis (AHN) contributes to cocaine memory formation; however, the underlying mechanism remains unclear. Male mice hippocampal expression of Tau was significantly decreased during the cocaine-associated memory formation. Genetic overexpression of four microtubule-binding repeats Tau (4R Tau) in the mice hippocampus disrupted cocaine memory by suppressing AHN. Furthermore, 4R Tau directly interacted with phosphoinositide 3-kinase (PI3K)-p85 and impaired its nuclear translocation and PI3K-AKT signaling, processes required for hippocampal neuron proliferation. Collectively, 4R Tau modulates cocaine memory formation by disrupting AHN, suggesting a novel mechanism underlying cocaine memory formation and provide a new strategy for the treatment of cocaine addiction.SIGNIFICANCE STATEMENT Drug memory that generally develops with drug-paired contextual stimuli and drug administration is critical for the development, persistence and relapse of drug addiction. Previous studies have suggested that adult hippocampal neurogenesis (AHN) plays a role in cocaine memory formation. Here, we showed that Tau was significantly downregulated in the hippocampus in the cocaine memory formation. Tau knock-out (KO) promoted AHN in the hippocampal dentate gyrus (DG), resulting in the enhanced memory formation evoked by cocaine-cue stimuli. In contrast, genetically overexpressed 4R Tau in the hippocampus disrupted cocaine-cue memory by suppressing AHN. In addition, 4R Tau interacted directly with phosphoinositide 3-kinase (PI3K)-p85 and hindered its nuclear translocation, eventually repressing PI3K-AKT signaling, which is essential for hippocampal neuronal proliferation.
Collapse
|
12
|
Mañas‐Padilla MC, Gil‐Rodríguez S, Sampedro‐Piquero P, Ávila‐Gámiz F, Rodríguez de Fonseca F, Santín LJ, Castilla‐Ortega E. Remote memory of drug experiences coexists with cognitive decline and abnormal adult neurogenesis in an animal model of cocaine-altered cognition. Addict Biol 2021; 26:e12886. [PMID: 32090424 DOI: 10.1111/adb.12886] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/23/2019] [Accepted: 02/12/2020] [Indexed: 12/27/2022]
Abstract
Cocaine addiction is a chronic disorder in which the person loses control over drug use. The past memories of the stimuli associated with the drug are a relevant clinical problem, since they trigger compulsive drug-seeking and drug-taking habits. Furthermore, these persistent drug-related memories seemingly coexist with cognitive decline that predicts worse therapeutic output. Here, we use a new animal model of cocaine-altered cognition that allowed to observe these events in the same individual and study their relationship. Mice were chronically administered cocaine in a conditioned place preference (CPP) apparatus for 14 days, and control mice received saline. After 28 days of cocaine withdrawal, animals were tested for retrieval of remote drug-associated memory as well as for cognitive performance in a battery of tests, including novel object and place recognition and spatial memory. The cocaine-withdrawn mice showed persistent CPP memory while impaired in the cognitive tasks, displaying deficits in reference memory acquisition and working memory. However, the CPP expression was not associated with the defective cognitive performance, indicating that they were concomitant but independent occurrences. After completion of the experiment, adult hippocampal neurogenesis (AHN) was studied as a relevant neurobiological correlate due to its potential role in both learning and drug addiction. Results suggested a preserved basal AHN in the cocaine-withdrawn mice but an aberrant learning-induced regulation of these neurons. This paradigm may be useful to investigate maladaptive cognition in drug addiction as well as related therapies.
Collapse
Affiliation(s)
- M. Carmen Mañas‐Padilla
- Instituto de Investigación Biomédica de Málaga‐IBIMA Málaga Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología Universidad de Málaga Málaga Spain
| | - Sara Gil‐Rodríguez
- Instituto de Investigación Biomédica de Málaga‐IBIMA Málaga Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología Universidad de Málaga Málaga Spain
| | - Patricia Sampedro‐Piquero
- Instituto de Investigación Biomédica de Málaga‐IBIMA Málaga Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología Universidad de Málaga Málaga Spain
| | - Fabiola Ávila‐Gámiz
- Instituto de Investigación Biomédica de Málaga‐IBIMA Málaga Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología Universidad de Málaga Málaga Spain
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga‐IBIMA Málaga Spain
- Unidad de Gestión Clínica de Salud Mental Hospital Regional Universitario de Málaga Málaga Spain
| | - Luis J. Santín
- Instituto de Investigación Biomédica de Málaga‐IBIMA Málaga Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología Universidad de Málaga Málaga Spain
| | - Estela Castilla‐Ortega
- Instituto de Investigación Biomédica de Málaga‐IBIMA Málaga Spain
- Unidad de Gestión Clínica de Salud Mental Hospital Regional Universitario de Málaga Málaga Spain
| |
Collapse
|
13
|
Luján MÁ, Cantacorps L, Valverde O. The pharmacological reduction of hippocampal neurogenesis attenuates the protective effects of cannabidiol on cocaine voluntary intake. Addict Biol 2020; 25:e12778. [PMID: 31162770 DOI: 10.1111/adb.12778] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/26/2019] [Accepted: 05/02/2019] [Indexed: 12/24/2022]
Abstract
The administration of cannabidiol has shown promising evidence in the treatment of some neuropsychiatric disorders, including cocaine addiction. However, little information is available as to the mechanisms by which cannabidiol reduces drug use and compulsive seeking. We investigated the role of adult hippocampal neurogenesis in reducing cocaine voluntary intake produced by repeated cannabidiol treatment in mice. Cocaine intake was modelled using the intravenous cocaine self-administration procedure in CD1 male mice. Cannabidiol (20 mg/kg) reduced cocaine self-administration behaviour acquisition and total cocaine intake and enhanced adult hippocampal neurogenesis. Our results show that a 6-day repeated temozolomide treatment (25 mg/kg/day), a chemotherapy drug that blocks hippocampal neurogenesis, prevented cannabidiol-induced increment in the early stages of neuronal maturation and differentiation, without altering the basal levels of BrdU/NeuN and doublecortin immunostaining. The reduction of total cocaine intake and operant behaviour acquisition observed following cannabidiol exposure was attenuated by temozolomide treatment. Our results also show a similar effect of temozolamide on a cannabidiol-induced improvement of novel object recognition memory, a task influenced by the proneurogenic effects of cannabidiol (10 and 20 mg/kg). The anxiolytic effects of cannabidiol (10 and 20 mg/kg), however, remained unaffected after its proneurogenic effects decreased. The present study confirms that adult hippocampal neurogenesis is one of the mechanisms by which cannabidiol lowers cocaine reinforcement and demonstrates the functional implication of adult hippocampal neurogenesis in cocaine voluntary consumption in mice. Such findings highlight the possible use of cannabidiol for developing new pharmacotherapies to manage cocaine use disorders.
Collapse
Affiliation(s)
- Miguel Ángel Luján
- Neurobiology of Behaviour Research Group (GReNeC—NeuroBio), Department of Experimental and Health Sciences Universitat Pompeu Fabra Barcelona Spain
| | - Lídia Cantacorps
- Neurobiology of Behaviour Research Group (GReNeC—NeuroBio), Department of Experimental and Health Sciences Universitat Pompeu Fabra Barcelona Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC—NeuroBio), Department of Experimental and Health Sciences Universitat Pompeu Fabra Barcelona Spain
- Neuroscience Research Programme IMIM‐Hospital del Mar Research Institute Barcelona Spain
| |
Collapse
|
14
|
Han Y, Wang J, Zhao Q, Xie X, Song R, Xiao Y, Kang X, Zhang L, Zhang Y, Peng C, You Z. Pioglitazone alleviates maternal sleep deprivation-induced cognitive deficits in male rat offspring by enhancing microglia-mediated neurogenesis. Brain Behav Immun 2020; 87:568-578. [PMID: 32032783 DOI: 10.1016/j.bbi.2020.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Maternal sleep disturbance in pregnancy causes cognitive impairments and emotional disorders in offspring. Microglia-mediated inflammatory processes contribute to prenatal stress-induced neurodevelopmental deficits. Peroxisome proliferator-activated receptor gamma (PPARγ) activation underlies the switching of microglial activation phenotypes, which has emerged as a pharmacological target for regulating neuroinflammatory responses in the treatment of neuropsychiatric disorders. Here we investigated the effects of PPARγ-dependent microglial activation on neurogenesis and cognitive behavioral outcomes in male rat offspring exposed to maternal sleep deprivation (MSD) for 72 h from days 18-21 of pregnancy. In the Morris water maze test, male MSD rat offspring needed more time than control offspring to escape to the hidden platform and spent less time in the target quadrant when the hidden platform was removed. In MSD rat offspring, microglial density as determined by immunofluorescence was higher, microglia showed fewer and shorter processes, and neurogenesis in the hippocampus was significantly reduced. Levels of mRNA encoding pro-inflammatory markers IL-6, TNFα, and IL-1β were higher in male MSD offspring, whereas levels of anti-inflammatory markers Arg1, IL-4, and IL-10 were lower, as was PPARγ expression in the hippocampus. PPARγ activation by pioglitazone (30 mg/kg/day, i.p., 7 d) mitigated these negative effects of MSD, rescuing hippocampal neurogenesis and improving cognitive function. The PPARγ inhibitor GW9662 (1 mg/kg/day, i.p., 7 d) eliminated the effects of pioglitazone. Conditioned medium from pioglitazone-treated microglia promoted proliferation and differentiation of neural progenitor cells. These results suggest that MSD-induced deficits in spatial learning and memory can be ameliorated through PPARγ-dependent modulation of microglial phenotypes.
Collapse
Affiliation(s)
- Yue Han
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jiutai Wang
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qiuying Zhao
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Song
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ying Xiao
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xixi Kang
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Lijuan Zhang
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yue Zhang
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zili You
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
15
|
Sampedro-Piquero P, Ávila-Gámiz F, Moreno Fernández RD, Castilla-Ortega E, Santín LJ. The presence of a social stimulus reduces cocaine-seeking in a place preference conditioning paradigm. J Psychopharmacol 2019; 33:1501-1511. [PMID: 31542987 DOI: 10.1177/0269881119874414] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND One challenge in the treatment of substance use disorders is to re-engage the interest toward non-drug-related activities. Among these activities, social interaction has had a prominent role due to its positive influence on treatment outcome. AIMS AND METHODS Our aim was to study whether the presence of a social stimulus during the cocaine-induced conditioned place preference test was able to reduce the time spent in the drug-paired compartment. For that purpose, mice were trained for four days on a conditioned place preference task with one compartment paired with cocaine and the opposite with saline. On the test day, we introduced an unfamiliar juvenile male mouse into the saline-conditioned compartment (inside a pencil cup) to analyse the animal preference towards the two rewarding stimuli (cocaine vs mouse). Additionally, to discard the possible effect of novelty, as well as the housing condition (social isolation) on social preference, we decided to include a novel object during the test session, as well as perform the same conditioned place preference protocol with a group of animals in social housing conditions. RESULTS The social stimulus was able to reduce the preference for cocaine and enhance the active interaction with the juvenile mouse (sniffing) compared to the empty pencil cup paired with the drug. The introduction of a novel object during the test session did not reduce the preference for the cocaine-paired compartment, and interestingly, the preference for the social stimulus was independent of the housing condition. c-Fos immunohistochemistry revealed a different pattern of activation based on cocaine-paired conditioning or the presence of social stimulus. CONCLUSIONS These results suggest that social interaction could constitute a valuable component in the treatment of substance use disorders by reducing the salience of the drug.
Collapse
Affiliation(s)
- Patricia Sampedro-Piquero
- Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain.,Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Malaga, Spain
| | - Fabiola Ávila-Gámiz
- Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain.,Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Malaga, Spain
| | - Román D Moreno Fernández
- Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain.,Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Malaga, Spain
| | - Estela Castilla-Ortega
- Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain.,Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Malaga, Spain
| | - Luis J Santín
- Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain.,Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Malaga, Spain
| |
Collapse
|
16
|
Castilla-Ortega E, Santín LJ. Adult hippocampal neurogenesis as a target for cocaine addiction: a review of recent developments. Curr Opin Pharmacol 2019; 50:109-116. [PMID: 31708413 DOI: 10.1016/j.coph.2019.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/23/2019] [Accepted: 10/01/2019] [Indexed: 11/16/2022]
Abstract
Basic research in rodents has shown that adult hippocampal neurogenesis (AHN) plays a key role in neuropsychiatric disorders that compromise hippocampal functioning. The discovery that dependence-inducing drugs regulate AHN has led to escalating interest in the potential involvement of AHN in drug addiction over the last decade, with cocaine being one of the most frequently investigated drugs. This review argues that, unlike other drugs of abuse, preclinical studies do not, overall, support that cocaine induces a marked or persistent impairment in AHN. Nevertheless, experimental reduction of AHN consistently exacerbates vulnerability to cocaine. Interestingly, preliminary evidence suggests that, on the contrary, increasing AHN might help both to prevent and treat addiction.
Collapse
Affiliation(s)
- Estela Castilla-Ortega
- Instituto de Investigación Biomédica de Málaga-IBIMA, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Spain.
| | - Luis J Santín
- Instituto de Investigación Biomédica de Málaga-IBIMA, Spain; Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, Spain.
| |
Collapse
|
17
|
Cocaine-induced changes in CX 3CL1 and inflammatory signaling pathways in the hippocampus: Association with IL1β. Neuropharmacology 2019; 162:107840. [PMID: 31704270 DOI: 10.1016/j.neuropharm.2019.107840] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/31/2019] [Accepted: 11/02/2019] [Indexed: 11/23/2022]
Abstract
Cocaine induces neuroinflammatory response and interleukin-1 beta (IL1β) is suggested a final effector for many cocaine-induced inflammatory signals. Recently, the chemokine fractalkine (CX3CL1) has been reported to regulate hippocampus-dependent neuroinflammation and synaptic plasticity via CX3C-receptor 1 (CX3CR1), but little is known about the impact of cocaine. This study is mainly focused on the characterization of CX3CL1, IL1β and relevant inflammatory signal transduction pathways in the hippocampus in acute and repeated cocaine-treated male mice. Complementarily, the rewarding properties of cocaine were also assessed in Cx3cr1-knockout (KO) mice using a conditioned place preference (CPP). We observed significant increases in CX3CL1 and IL1β concentrations after cocaine, although repeated cocaine produced an enhancement of CX3CL1 concentrations. CX3CL1 and IL1β concentrations were positively correlated in acute (r = +0.61) and repeated (r = +0.82) cocaine-treated mice. Inflammatory signal transduction pathways were assessed. Whereas acute cocaine-treated mice showed transient increases in p-ERK1/2/ERK1/2 and p-p65/p65 NFκB ratios after cocaine injection, repeated cocaine-treated mice showed transient increases in p-ERK1/2/ERK1/2, p-p38/p38 MAPK, p-NFκB p65/NF-κB p65 and p-CREB/CREB ratios. Baseline p-p38/p38 MAPK and p-CREB/CREB ratios were downregulated in repeated cocaine-treated mice. Regarding the cocaine-induced CPP, Cx3cr1-KO mice showed a notably impaired extinction but no differences during acquisition and reinstatement. These results indicate that cocaine induces alterations in CX3CL1 concentrations, which are associated with IL1β concentrations, and activates convergent inflammatory pathways in the hippocampus. Furthermore, the CX3CL1/CX3CR1 signaling could mediate the processes involved in the extinction of cocaine-induced CPP.
Collapse
|
18
|
Ladrón de Guevara‐Miranda D, Moreno‐Fernández RD, Gil‐Rodríguez S, Rosell‐Valle C, Estivill‐Torrús G, Serrano A, Pavón FJ, Rodríguez de Fonseca F, Santín LJ, Castilla‐Ortega E. Lysophosphatidic acid-induced increase in adult hippocampal neurogenesis facilitates the forgetting of cocaine-contextual memory. Addict Biol 2019; 24:458-470. [PMID: 29480526 DOI: 10.1111/adb.12612] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/17/2018] [Accepted: 01/23/2018] [Indexed: 01/10/2023]
Abstract
Erasing memories of cocaine-stimuli associations might have important clinical implications for addiction therapy. Stimulating hippocampal plasticity by enhancing adult hippocampal neurogenesis (AHN) is a promising strategy because the addition of new neurons may not only facilitate new learning but also modify previous connections and weaken retrograde memories. To investigate whether increasing AHN prompted the forgetting of previous contextual cocaine associations, mice trained in a cocaine-induced conditioned place preference (CPP) paradigm were administered chronic intracerebroventricular infusions of lysophosphatidic acid (LPA, an endogenous lysophospholipid with pro-neurogenic actions), ki16425 (an LPA1/3 receptor antagonist) or a vehicle solution, and they were tested 23 days later for CPP retention and extinction. The results of immunohistochemical experiments showed that the LPA-treated mice exhibited reduced long-term CPP retention and an approximately twofold increase in the number of adult-born hippocampal cells that differentiated into mature neurons. Importantly, mediation analyses confirmed a causal role of AHN in reducing CPP maintenance. In contrast, the ki16425-treated mice displayed aberrant responses, with initially decreased CPP retention that progressively increased across the extinction sessions, leading to no effect on AHN. The pharmacological treatments did not affect locomotion or general exploratory or anxiety-like responses. In a second experiment, normal and LPA1 -receptor-deficient mice were acutely infused with LPA, which revealed that LPA1 -mediated signaling was required for LPA-induced proliferative actions. These results suggest that the LPA/LPA1 pathway acts as a potent in vivo modulator of AHN and highlight the potential usefulness of pro-AHN strategies to treat aberrant cognition in those addicted to cocaine.
Collapse
Affiliation(s)
- David Ladrón de Guevara‐Miranda
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de PsicologíaUniversidad de Málaga Spain
| | - Román Darío Moreno‐Fernández
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de PsicologíaUniversidad de Málaga Spain
| | - Sara Gil‐Rodríguez
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de PsicologíaUniversidad de Málaga Spain
| | - Cristina Rosell‐Valle
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de PsicologíaUniversidad de Málaga Spain
- Unidad de Producción de Reprogramación CelularGMP‐Iniciativa Andaluza en Terapia Avanzadas, Junta de Andalucía Spain
| | - Guillermo Estivill‐Torrús
- Unidad de Gestión Clínica de Neurociencias, Instituto de Investigación Biomédica de Málaga (IBIMA)Hospital Regional Universitario de Málaga Spain
| | - Antonia Serrano
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA)Hospital Regional Universitario de Málaga Spain
| | - Francisco J. Pavón
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA)Hospital Regional Universitario de Málaga Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA)Hospital Regional Universitario de Málaga Spain
| | - Luis J. Santín
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de PsicologíaUniversidad de Málaga Spain
| | - Estela Castilla‐Ortega
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA)Hospital Regional Universitario de Málaga Spain
| |
Collapse
|
19
|
Rivera PD, Simmons SJ, Reynolds RP, Just AL, Birnbaum SG, Eisch AJ. Image-guided cranial irradiation-induced ablation of dentate gyrus neurogenesis impairs extinction of recent morphine reward memories. Hippocampus 2019; 29:726-735. [PMID: 30779299 DOI: 10.1002/hipo.23071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 12/10/2018] [Accepted: 12/17/2018] [Indexed: 12/25/2022]
Abstract
Dentate gyrus adult neurogenesis is implicated in the formation of hippocampal-dependent contextual associations. However, the role of adult neurogenesis during reward-based context-dependent paradigms-such as conditioned place preference (CPP)-is understudied. Therefore, we used image-guided, hippocampal-targeted X-ray irradiation (IG-IR) and morphine CPP to explore whether dentate gyrus adult neurogenesis plays a role in reward memories created in adult C57BL/6J male mice. In addition, as adult neurogenesis appears to participate to a greater extent in retrieval and extinction of recent (<48 hr posttraining) versus remote (>1 week posttraining) memories, we specifically examined the role of adult neurogenesis in reward-associated contextual memories probed at recent and remote timepoints. Six weeks post-IG-IR or Sham treatment, mice underwent morphine CPP. Using separate groups, retrieval of recent and remote reward memories was found to be similar between IG-IR and Sham treatments. Interestingly, IG-IR mice showed impaired extinction-or increased persistence-of the morphine-associated reward memory when it was probed 24-hr (recent) but not 3-weeks (remote) postconditioning relative to Sham mice. Taken together, these data show that hippocampal-directed irradiation and the associated decrease in dentate gyrus adult neurogenesis affect the persistence of recently-but not remotely-probed reward memory. These data indicate a novel role for adult neurogenesis in reward-based memories and particularly the extinction rate of these memories. Consideration of this work may lead to better understanding of extinction-based behavioral interventions for psychiatric conditions characterized by dysregulated reward processing.
Collapse
Affiliation(s)
- Phillip D Rivera
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
| | - Steven J Simmons
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Ryan P Reynolds
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas.,Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Alanna L Just
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
| | - Shari G Birnbaum
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
| | - Amelia J Eisch
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas.,Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
20
|
Rivera PD, Hanamsagar R, Kan MJ, Tran PK, Stewart D, Jo YC, Gunn M, Bilbo SD. Removal of microglial-specific MyD88 signaling alters dentate gyrus doublecortin and enhances opioid addiction-like behaviors. Brain Behav Immun 2019; 76:104-115. [PMID: 30447281 PMCID: PMC6348129 DOI: 10.1016/j.bbi.2018.11.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022] Open
Abstract
Drugs of abuse promote a potent immune response in central nervous system (CNS) via the activation of microglia and astrocytes. However, the molecular mechanisms underlying microglial activation during addiction are not well known. We developed and functionally characterized a novel transgenic mouse (Cx3cr1-CreBTtg/0:MyD88f/f [Cretg/0]) wherein the immune signaling adaptor gene, MyD88, was specifically deleted in microglia. To test the downstream effects of loss of microglia-specific MyD88 signaling in morphine addiction, Cretg/0 and Cre0/0 mice were tested for reward learning, extinction, and reinstatement using a conditioned place preference (CPP) paradigm. There were no differences in drug acquisition, but Cretg/0 mice had prolonged extinction and enhanced reinstatement compared to Cre0/0 controls. Furthermore, morphine-treated Cretg/0 mice showed increased doublecortin (DCX) signal relative to Cre0/0 control mice in the hippocampus, indicative of increased number of immature neurons. Additionally, there was an increase in colocalization of microglial lysosomal marker CD68 with DCX+cells in morphine-treated Cretg/0 mice but not in Cre0/0 or drug-naїve mice, suggesting a specific role for microglial MyD88 signaling in neuronal phagocytosis in the hippocampus. Our results show that MyD88 deletion in microglia may negatively impact maturing neurons within the adult hippocampus and thus reward memories, suggesting a novel protective role for microglia in opioid addiction.
Collapse
Affiliation(s)
- Phillip D Rivera
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA; Department of Pediatrics, Lurie Center for Autism, MassGeneral Hospital for Children, Boston, MA, USA; Department of Psychology & Neuroscience, Duke University, Durham, NC, USA; Department of Biology, Hope College, Holland, MI, USA
| | - Richa Hanamsagar
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA; Department of Pediatrics, Lurie Center for Autism, MassGeneral Hospital for Children, Boston, MA, USA; Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - Matthew J Kan
- Department of Immunology, Duke University Medical Center, Durham, NC, USA; Department of Medicine, Duke University Medical Center, Durham, NC, USA; Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Phuong K Tran
- Department of Pediatrics, Lurie Center for Autism, MassGeneral Hospital for Children, Boston, MA, USA; Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - David Stewart
- Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - Young Chan Jo
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA; Department of Pediatrics, Lurie Center for Autism, MassGeneral Hospital for Children, Boston, MA, USA
| | - Michael Gunn
- Department of Immunology, Duke University Medical Center, Durham, NC, USA; Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Staci D Bilbo
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA; Department of Pediatrics, Lurie Center for Autism, MassGeneral Hospital for Children, Boston, MA, USA; Department of Psychology & Neuroscience, Duke University, Durham, NC, USA.
| |
Collapse
|
21
|
Neurogenesis within the hippocampus after chronic methylphenidate exposure. J Neural Transm (Vienna) 2018; 126:201-209. [PMID: 30370451 DOI: 10.1007/s00702-018-1949-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/23/2018] [Indexed: 12/21/2022]
Abstract
Methylphenidate is a psychostimulant used to treat attention deficit hyperactivity disorder. Neurogenesis occurs throughout adulthood within the dentate gyrus of the hippocampus and can be altered by psychoactive medications; however, the impact of methylphenidate on neurogenesis is not fully understood. We investigated the effects of chronic low (1 mg/kg) and high (10 mg/kg) intraperitoneal doses of methylphenidate on neurogenesis in mouse hippocampus following 28 days and 56 days of treatment. Interestingly, methylphenidate, at both doses, increased neurogenesis. However, if methylphenidate treatment was not continued, the newly generated cells did not survive after 28 days. If treatment was continued, the newly generated neurons survived only in the mice receiving low-dose methylphenidate. To investigate the mechanism for this effect, we examined levels of proteins linked to cell proliferation in the hippocampus, including brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), vascular endothelial growth factor (VEGF), tropomyosin receptor kinase B (TrkB), and beta-catenin. BDNF or GDNF levels were not significantly different between groups. However, hippocampal VEGF, TrkB, and beta-catenin were significantly increased in mice receiving low-dose methylphenidate for 28 days compared to controls. Interestingly, high-dose methylphenidate significantly decreased beta-catenin after 28 days and decreased VEGF, beta-catenin, and TrkB after 56 days compared to controls. Thus, low-dose methylphenidate appears to increase cell proliferation and cell survival in the hippocampus, and these effects may be mediated by increase in VEGF, TrkB, and beta-catenin. While high dose methylphenidate may initially increase neuronal proliferation, newly generated neurons are unable to survive long-term, possibly due to decrease in VEGF, TrkB and beta-catenin.
Collapse
|
22
|
Fan W, Wang H, Zhang Y, Loh HH, Law PY, Xu C. Morphine regulates adult neurogenesis and contextual memory extinction via the PKCε/Prox1 pathway. Neuropharmacology 2018; 141:126-138. [PMID: 30170081 DOI: 10.1016/j.neuropharm.2018.08.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/21/2018] [Accepted: 08/24/2018] [Indexed: 02/08/2023]
Abstract
We have previously reported that the miR-181a/Prox1/Notch1 pathway mediates the effect of morphine on modulating lineage-specific differentiation of adult neural stem/progenitor cells (NSPCs) via a PKCε-dependent pathway, whereas fentanyl shows no such effect. However, the role of the PKCε/Prox1 pathway in mediating drug-associated contextual memory remains unknown. The current study investigated the effect of PKCε/Prox1 on morphine-induced inhibition of adult neurogenesis and drug-associated contextual memory in mice, while the effect of fentanyl was tested simultaneously. By using BrdU labeling, we were able to examine the lineages of differentiated NSPCs in adult DG. PKCε knockout blocked morphine's effects on inducing in vivo astrocyte-preferential differentiation of NSPCs, but did not alter NSPC lineages upon fentanyl treatment. Inhibited adult neurogenesis further resulted in prolonged extinction and enhanced reinstatement of morphine-induced CPP, as well as prolonged extinction of space reference memory indicated by the Morris water maze paradigm. However, after fentanyl administration, no significant changes were found between wild-type and PKCε knockout mice, during either CPP or water maze tasks. When the lentivirus encoding Nestin-promoter-controlled Prox1 cDNA was injected into hippocampi of wildtype and PKCε knockout adult mice to modulate PKCε/Prox1 activity, similar effects were discovered in adult mice injected with lentivirus encoding Prox1, and more dramatic effects were found in PKCε knockout mice with concurrent Prox1 overexpression. In conclusion, morphine mediates lineage-specific NSPC differentiation, inhibits adult neurogenesis and regulates contextual memory retention via the PKCε/Prox1 pathway, which are implicated in the eventual context-associated relapse.
Collapse
Affiliation(s)
- Wenxiang Fan
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Helei Wang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Yue Zhang
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN, 55455, USA
| | - Horace H Loh
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN, 55455, USA
| | - Ping-Yee Law
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN, 55455, USA
| | - Chi Xu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, 210009, People's Republic of China.
| |
Collapse
|
23
|
Malloul H, Bennis M, Ba-M'hamed S. Positive reinforcement and c-Fos expression following abuse-like thinner inhalation in mice: Behavioural and immunohistochemical assessment. Eur J Neurosci 2018; 48:2182-2198. [PMID: 30070747 DOI: 10.1111/ejn.14095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/01/2018] [Accepted: 07/18/2018] [Indexed: 01/11/2023]
Abstract
Thinners are organic solvents widely used in industrial applications, but they have also been subject to abuse by inhalation for their psychoactive and rewarding properties. In spite of the prevalence of inhalant abuse, the addictive potential and pathways mediating their reinforcing effects are not yet fully understood and thus still subject of further investigations. Here, we assessed in mice the locomotor activity and the ability of paint thinner to reinforce the conditioning in the place preference paradigm following acute (1 day), subchronic (6 weeks) and chronic (12 weeks) exposures to 300 and 600 ppm of thinner vapor. While locomotor activity was unaffected by the different thinner treatments, a positive conditioned place preference to inhaled thinner was found upon subchronic and chronic exposures. To investigate the activated brain structures underlying such behavioural changes, we analyzed the distribution of c-Fos immunoreactivity, a marker for neuronal activation, following acute and repeated exposures to 600 ppm of thinner. Notably, thinner exposure increased the number of c-Fos immunoreactive neurons with increasing duration of exposure in the majority of structures examined; including those typically involved in the processing of rewarding or emotionally stimuli (e.g., ventral tegmental area, core and shell of nucleus accumbens, amygdala, bed nucleus of the stria terminalis, and cingulate cortex), and olfactory stimuli (e.g., piriform cortex and olfactory tubercle). Moreover, prolonged, but not acute thinner inhalation significantly increased c-Fos immunoreactivity in all hippocampal subregions. Taken together, the expanded distribution of thinner-induced c-Fos expression may underlie the observed positive reinforcement upon long-term thinner inhalation.
Collapse
Affiliation(s)
- Hanaa Malloul
- Laboratory of Pharmacology, Neurobiology and Behavior (URAC-37), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Mohammed Bennis
- Laboratory of Pharmacology, Neurobiology and Behavior (URAC-37), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Saadia Ba-M'hamed
- Laboratory of Pharmacology, Neurobiology and Behavior (URAC-37), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| |
Collapse
|
24
|
Pereira-Caixeta AR, Guarnieri LO, Medeiros DC, Mendes EMAM, Ladeira LCD, Pereira MT, Moraes MFD, Pereira GS. Inhibiting constitutive neurogenesis compromises long-term social recognition memory. Neurobiol Learn Mem 2018; 155:92-103. [PMID: 29964163 DOI: 10.1016/j.nlm.2018.06.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/20/2018] [Accepted: 06/27/2018] [Indexed: 01/14/2023]
Abstract
Although the functional role for newborn neurons in neural circuits is still matter of investigation, there is no doubt that neurogenesis modulates learning and memory in rodents. In general, boosting neurogenesis before learning, using genetic-target tools or drugs, improves hippocampus-dependent memories. However, inhibiting neurogenesis may yield contradictory results depending on the type of memory evaluated. Here we tested the hypothesis that inhibiting constitutive neurogenesis would compromise social recognition memory (SRM). Male Swiss mice were submitted to three distinct procedures to inhibit neurogenesis: (1) intra-cerebral infusion of Cystosine-β-D-Arabinofuranoside (AraC); (2) intra-peritoneal injection of temozolomide (TMZ) and (3) cranial gamma irradiation. All three methods decreased cell proliferation and neurogenesis in the dentate gyrus of the dorsal (dDG) and ventral hippocampus (vDG), and the olfactory bulb (OB). However, the percentage inhibition diverged between methods and brain regions. Ara-C, TMZ and gamma irradiation impaired SRM, though only gamma irradiation did not cause side effects on weight gain, locomotor activity and anxiety. Finally, we examined the contribution of cell proliferation in vDG, dDG and OB to SRM. The percent of inhibition in the dDG correlates with SRM, independently of the method utilized. This correlation was observed for granular cell layer of OB and vDG, only when the inhibition was induced by gamma irradiation. Animal's performance was restrained by the inhibition of dDG cell proliferation, suggesting that cell proliferation in the dDG has a greater contribution to SRM. Altogether, our results demonstrate that SRM, similarly to other hippocampus-dependent memories, has its formation impaired by reducing constitutive neurogenesis.
Collapse
Affiliation(s)
- Ana Raquel Pereira-Caixeta
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leonardo O Guarnieri
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniel C Medeiros
- Centro de Tecnologia e Pesquisa em Magneto Ressonância, Programa de Pós-Graduação em Engenharia Elétrica - Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eduardo M A M Mendes
- Centro de Tecnologia e Pesquisa em Magneto Ressonância, Programa de Pós-Graduação em Engenharia Elétrica - Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiz C D Ladeira
- Laboratório de Irradiação Gama, Centro de Desenvolvimento da Tecnologia Nuclear/Comissão Nacional de Energia Nuclear, Brazil
| | - Márcio T Pereira
- Laboratório de Irradiação Gama, Centro de Desenvolvimento da Tecnologia Nuclear/Comissão Nacional de Energia Nuclear, Brazil
| | - Márcio F D Moraes
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Centro de Tecnologia e Pesquisa em Magneto Ressonância, Programa de Pós-Graduação em Engenharia Elétrica - Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Grace S Pereira
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
25
|
Training memory without aversion: Appetitive hole-board spatial learning increases adult hippocampal neurogenesis. Neurobiol Learn Mem 2018; 151:35-42. [DOI: 10.1016/j.nlm.2018.03.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/10/2018] [Accepted: 03/30/2018] [Indexed: 11/19/2022]
|
26
|
Yanovich C, Kirby ML, Michaelevski I, Yadid G, Pinhasov A. Social rank-associated stress vulnerability predisposes individuals to cocaine attraction. Sci Rep 2018; 8:1759. [PMID: 29379100 PMCID: PMC5789078 DOI: 10.1038/s41598-018-19816-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/03/2018] [Indexed: 12/15/2022] Open
Abstract
Studies of personality have suggested that dissimilarities in ability to cope with stressful situations results in differing tendency to develop addictive behaviors. The present study used selectively bred stress-resilient, socially-dominant (Dom) and stress-vulnerable, socially-submissive (Sub) mice to investigate the interaction between environmental stress and inbred predisposition to develop addictive behavior to cocaine. In a Conditioned Place Preference (CPP) paradigm using cocaine, Sub mice displayed an aversion to drug, whereas Dom mice displayed drug attraction. Following a 4-week regimen of Chronic Mild Stress (CMS), Sub mice in CPP displayed a marked increase (>400%) in cocaine attraction, whereas Dom mice did not differ in attraction from their non-stressed state. Examination of hippocampal gene expression revealed in Sub mice, exposure to external stimuli, stress or cocaine, increased CRH expression (>100%), which was evoked in Dom mice only by cocaine exposure. Further, stress-induced decreases in DRD1 (>60%) and DRD2 (>50%) expression in Sub mice differed markedly from a complete lack of change in Dom mice. From our findings, we propose that social stratification dictates vulnerability to stress-induced attraction that may lead to addiction via differential regulation of hippocampal response to dopaminergic input, which in turn may influence differing tendency to develop addictive behaviors.
Collapse
Affiliation(s)
- Chen Yanovich
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Michael L Kirby
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | | | - Gal Yadid
- Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center and the Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| | - Albert Pinhasov
- Department of Molecular Biology, Ariel University, Ariel, Israel.
| |
Collapse
|
27
|
Extinction of Contextual Cocaine Memories Requires Ca v1.2 within D1R-Expressing Cells and Recruits Hippocampal Ca v1.2-Dependent Signaling Mechanisms. J Neurosci 2017; 37:11894-11911. [PMID: 29089442 DOI: 10.1523/jneurosci.2397-17.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/03/2017] [Accepted: 10/25/2017] [Indexed: 11/21/2022] Open
Abstract
Exposure to cocaine-associated contextual cues contributes significantly to relapse. Extinction of these contextual associations, which involves a new form of learning, reduces cocaine-seeking behavior; however, the molecular mechanisms underlying this process remain largely unknown. We report that extinction, but not acquisition, of cocaine conditioned place preference (CPP) in male mice increased Cav1.2 L-type Ca2+ channel mRNA and protein in postsynaptic density (PSD) fractions of the hippocampus, a brain region involved in drug-context associations. Moreover, viral-mediated deletion of Cav1.2 in the dorsal hippocampus attenuated extinction of cocaine CPP. Molecular studies examining downstream Cav1.2 targets revealed that extinction recruited calcium/calmodulin (Ca2+/CaMK)-dependent protein kinase II (CaMKII) to the hippocampal PSD. This occurred in parallel with an increase in phosphorylation of the AMPA GluA1 receptor subunit at serine 831 (S831), a CaMKII site, along with an increase in total PSD GluA1. The necessity of S831 GluA1 was further demonstrated by the lack of extinction in S831A GluA1 phosphomutant mice. Of note hippocampal GluA1 levels remained unaltered at the PSD, but were reduced near the PSD and at perisynaptic sites of dendritic spines in extinction-resistant S831A mutant mice. Finally, conditional knock-out of Cav1.2 in dopamine D1 receptor (D1R)-expressing cells resulted in attenuation of cocaine CPP extinction and lack of extinction-dependent changes in hippocampal PSD CaMKII expression and S831 GluA1 phosphorylation. In summary, we demonstrate an essential role for the hippocampal Cav1.2/CaMKII/S831 GluA1 pathway in cocaine CPP extinction, with data supporting contribution of hippocampal D1R-expressing cells in this process. These findings demonstrate a novel role for Cav1.2 channels in extinction of contextual cocaine-associated memories.SIGNIFICANCE STATEMENT Continued drug-seeking behavior, a defining characteristic of cocaine addiction, can be precipitated by contextual cues, yet the molecular mechanisms required for extinction of these context-specific memories remain poorly understood. Here, we have uncovered a novel and selective role of the Cav1.2 L-type Ca2+ channel and its downstream signaling pathway in the hippocampus that mediate extinction of cocaine conditioned place preference (CPP). We additionally provide evidence that supports a role of Cav1.2 within dopamine D1 receptor-expressing cells of the hippocampus for extinction of cocaine CPP. Therefore, these findings reveal a previously unknown role of Cav1.2 channels within the hippocampus and in D1 receptor-expressing cells in extinction of cocaine-associated memories, providing a framework for further exploration of mechanisms underlying extinction of cocaine-seeking behavior.
Collapse
|
28
|
Castilla-Ortega E, Ladrón de Guevara-Miranda D, Serrano A, Pavón FJ, Suárez J, Rodríguez de Fonseca F, Santín LJ. The impact of cocaine on adult hippocampal neurogenesis: Potential neurobiological mechanisms and contributions to maladaptive cognition in cocaine addiction disorder. Biochem Pharmacol 2017; 141:100-117. [DOI: 10.1016/j.bcp.2017.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/03/2017] [Indexed: 12/14/2022]
|
29
|
García-Fuster MJ, Parsegian A, Watson SJ, Akil H, Flagel SB. Adolescent cocaine exposure enhances goal-tracking behavior and impairs hippocampal cell genesis selectively in adult bred low-responder rats. Psychopharmacology (Berl) 2017; 234:1293-1305. [PMID: 28210781 PMCID: PMC5792824 DOI: 10.1007/s00213-017-4566-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/06/2017] [Indexed: 12/14/2022]
Abstract
RATIONALE Environmental challenges during adolescence, such as drug exposure, can cause enduring behavioral and molecular changes that contribute to life-long maladaptive behaviors, including addiction. Selectively bred high-responder (bHR) and low-responder (bLR) rats represent a unique model for assessing the long-term impact of adolescent environmental manipulations, as they inherently differ on a number of addiction-related traits. bHR rats are considered "addiction-prone," whereas bLR rats are "addiction-resilient," at least under baseline conditions. Moreover, relative to bLRs, bHR rats are more likely to attribute incentive motivational value to reward cues, or to "sign-track." OBJECTIVES We utilized bHR and bLR rats to determine whether adolescent cocaine exposure can alter their inborn behavioral and neurobiological profiles, with a specific focus on Pavlovian conditioned approach behavior (i.e., sign- vs. goal-tracking) and hippocampal neurogenesis. METHODS bHR and bLR rats were administered cocaine (15 mg/kg) or saline for 7 days during adolescence (postnatal day, PND 33-39) and subsequently tested for Pavlovian conditioned approach behavior in adulthood (PND 62-75), wherein an illuminated lever (conditioned stimulus) was followed by the response-independent delivery of a food pellet (unconditioned stimulus). Behaviors directed toward the lever and the food cup were recorded as sign- and goal-tracking, respectively. Hippocampal cell genesis was evaluated on PND 77 by immunohistochemistry. RESULTS Adolescent cocaine exposure impaired hippocampal cell genesis (proliferation and survival) and enhanced the inherent propensity to goal-track in adult bLR, but not bHR, rats. CONCLUSIONS Adolescent cocaine exposure elicits long-lasting changes in stimulus-reward learning and enduring deficits in hippocampal neurogenesis selectively in adult bLR rats.
Collapse
Affiliation(s)
- M. Julia García-Fuster
- IUNICS/IdISPa, University of the Balearic Islands, Palma de Mallorca, Spain,Corresponding author: M. Julia García-Fuster. IUNICS/IdISPa, University of the Balearic Islands, Cra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain. Phone: +34 971 259992. Fax: +34 971 259501.
| | - Aram Parsegian
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, USA
| | - Stanley J. Watson
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, USA,Department of Psychiatry, University of Michigan, Ann Arbor, USA
| | - Huda Akil
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, USA,Department of Psychiatry, University of Michigan, Ann Arbor, USA
| | - Shelly B. Flagel
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, USA,Department of Psychiatry, University of Michigan, Ann Arbor, USA
| |
Collapse
|
30
|
Egeland M, Guinaudie C, Du Preez A, Musaelyan K, Zunszain PA, Fernandes C, Pariante CM, Thuret S. Depletion of adult neurogenesis using the chemotherapy drug temozolomide in mice induces behavioural and biological changes relevant to depression. Transl Psychiatry 2017; 7:e1101. [PMID: 28440814 PMCID: PMC5416706 DOI: 10.1038/tp.2017.68] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 02/15/2017] [Accepted: 02/18/2017] [Indexed: 12/17/2022] Open
Abstract
Numerous studies have examined links between postnatal neurogenesis and depression using a range of experimental methods to deplete neurogenesis. The antimitotic drug temozolomide (TMZ) has previously been used successfully as an experimental tool in animals to deplete adult neurogenesis and is used regularly on human patients as a standard chemotherapy for brain cancer. In this study, we wanted to evaluate whether TMZ as a model for chemotherapy treatment could affect parameters related to depression in an animal model. Prevalence rates of depression in patients is thought to be highly underdiagnosed, with some studies reporting rates as high as 90%. Results from this study in mice, treated with a regimen of TMZ similar to humans, exhibited behavioural and biochemical changes that have relevance to the development of depression. In particular, behavioural results demonstrated robust deficits in processing novelty and a significant increase in the corticosterone response. Quantification of neurogenesis using a novel sectioning method, which clearly evaluates dorsal and ventral neurogenesis separately, showed a significant correlation between the level of ventral neurogenesis and the corticosterone response. Depression is a complex disorder with discoveries regarding its neurobiology and how it relates to behaviour being only in their infancy. The findings presented in this study demonstrate that chemotherapy-induced decreases in neurogenesis results in previously unreported behavioural and biochemical consequences. These results, we argue, are indicative of a biological mechanism, which may contribute to the development of depression in patients being treated with chemotherapy and is separate from the mental distress resulting from a cancer diagnosis.
Collapse
Affiliation(s)
- M Egeland
- Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK,Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK,Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Cutcombe Road, London SE5 9RT, UK. E-mail: or
| | - C Guinaudie
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - A Du Preez
- Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK,MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - K Musaelyan
- Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK,Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK,MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - P A Zunszain
- Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - C Fernandes
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - C M Pariante
- Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - S Thuret
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK,Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Cutcombe Road, London SE5 9RT, UK. E-mail: or
| |
Collapse
|
31
|
The GSK-3-inhibitor VP2.51 produces antidepressant effects associated with adult hippocampal neurogenesis. Neuropharmacology 2017; 116:174-187. [DOI: 10.1016/j.neuropharm.2016.12.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 12/14/2016] [Accepted: 12/20/2016] [Indexed: 11/20/2022]
|
32
|
Ladrón de Guevara-Miranda D, Millón C, Rosell-Valle C, Pérez-Fernández M, Missiroli M, Serrano A, Pavón FJ, Rodríguez de Fonseca F, Martínez-Losa M, Álvarez-Dolado M, Santín LJ, Castilla-Ortega E. Long-lasting memory deficits in mice withdrawn from cocaine are concomitant with neuroadaptations in hippocampal basal activity, GABAergic interneurons and adult neurogenesis. Dis Model Mech 2017; 10:323-336. [PMID: 28138095 PMCID: PMC5374316 DOI: 10.1242/dmm.026682] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 01/23/2017] [Indexed: 01/01/2023] Open
Abstract
Cocaine addiction disorder is notably aggravated by concomitant cognitive and emotional pathology that impedes recovery. We studied whether a persistent cognitive/emotional dysregulation in mice withdrawn from cocaine holds a neurobiological correlate within the hippocampus, a limbic region with a key role in anxiety and memory but that has been scarcely investigated in cocaine addiction research. Mice were submitted to a chronic cocaine (20 mg/kg/day for 12 days) or vehicle treatment followed by 44 drug-free days. Some mice were then assessed on a battery of emotional (elevated plus-maze, light/dark box, open field, forced swimming) and cognitive (object and place recognition memory, cocaine-induced conditioned place preference, continuous spontaneous alternation) behavioral tests, while other mice remained in their home cage. Relevant hippocampal features [basal c-Fos activity, GABA+, parvalbumin (PV)+ and neuropeptide Y (NPY)+ interneurons and adult neurogenesis (cell proliferation and immature neurons)] were immunohistochemically assessed 73 days after the chronic cocaine or vehicle protocol. The cocaine-withdrawn mice showed no remarkable exploratory or emotional alterations but were consistently impaired in all the cognitive tasks. All the cocaine-withdrawn groups, independent of whether they were submitted to behavioral assessment or not, showed enhanced basal c-Fos expression and an increased number of GABA+ cells in the dentate gyrus. Moreover, the cocaine-withdrawn mice previously submitted to behavioral training displayed a blunted experience-dependent regulation of PV+ and NPY+ neurons in the dentate gyrus, and neurogenesis in the hippocampus. Results highlight the importance of hippocampal neuroplasticity for the ingrained cognitive deficits present during chronic cocaine withdrawal.
Collapse
Affiliation(s)
- David Ladrón de Guevara-Miranda
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, 29071 Málaga, Spain
| | - Carmelo Millón
- Departamento de Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain
| | - Cristina Rosell-Valle
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, 29071 Málaga, Spain
| | - Mercedes Pérez-Fernández
- Laboratory of Cell-based Therapy for Neuropathologies, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), 41092 Sevilla, Spain
| | - Michele Missiroli
- Laboratory of Cell-based Therapy for Neuropathologies, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), 41092 Sevilla, Spain
| | - Antonia Serrano
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Francisco J Pavón
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Magdalena Martínez-Losa
- Laboratory of Cell-based Therapy for Neuropathologies, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), 41092 Sevilla, Spain
| | - Manuel Álvarez-Dolado
- Laboratory of Cell-based Therapy for Neuropathologies, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), 41092 Sevilla, Spain
| | - Luis J Santín
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, 29071 Málaga, Spain
| | - Estela Castilla-Ortega
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| |
Collapse
|