1
|
Gugula A, Sambak P, Trenk A, Drabik S, Nogaj A, Soltys Z, Gundlach AL, Blasiak A. Early-life adversity alters adult nucleus incertus neurons: implications for neuronal mechanisms of increased stress and compulsive behavior vulnerability. Neuropsychopharmacology 2025:10.1038/s41386-025-02089-0. [PMID: 40114019 DOI: 10.1038/s41386-025-02089-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
Early-life stress (ELS) arising from physical and emotional abuse disrupts normal brain development and impairs hypothalamic-pituitary-adrenal axis function, increasing the risk of psychopathological disorders and compulsive behaviors in adulthood. However, the underlying neural mechanisms remain unclear. The brainstem nucleus incertus (NI) is a highly stress-sensitive locus, involved in behavioral activation and stress-induced reward (food/alcohol) seeking, but its sensitivity to ELS remains unexplored. We used neonatal maternal separation stress in rats as a model for ELS and examined its impact on stress-related mRNA and neuropeptide expression in the NI, using fluorescent in situ hybridization and immunohistochemistry, respectively. Using whole-cell, patch-clamp recordings we determined the influence of ELS on the synaptic activity, excitability, and electrophysiological properties of NI neurons. Using c-Fos protein expression we also assessed the impact of ELS on the sensitivity of NI neurons to acute restraint stress in adulthood. ELS weakened the acute stress responsiveness of NI neurons, and caused dendritic shrinkage, impaired synaptic transmission and altered electrophysiological properties of NI neurons in a cell-type-specific manner. Additionally, ELS increased the expression of mRNA encoding corticotropin-releasing hormone receptor type 1 and the nerve-growth factor receptor, TrkA in adult NI. The multiple, cell-type specific changes in the expression of neuropeptides and molecules associated with stress and substance abuse in the NI, as well as impairments in NI neuron morphology and electrophysiology caused by ELS and observed in the adult brain, may contribute to the increased susceptibility to stress and compulsive behaviors observed in individuals with a history of ELS.
Collapse
Affiliation(s)
- Anna Gugula
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland.
| | - Patryk Sambak
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Aleksandra Trenk
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Sylwia Drabik
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Aleksandra Nogaj
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Zbigniew Soltys
- Laboratory of Experimental Neuropathology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, and Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Anna Blasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
2
|
Pearl AJ, Maddern XJ, Pinares-Garcia P, Ursich LT, Anversa RG, Shesham A, Brown RM, Reed FM, Giardino WJ, Lawrence AJ, Walker LC. Midbrain ghrelin receptor signalling regulates binge drinking in a sex specific manner. Nat Commun 2025; 16:2568. [PMID: 40089486 PMCID: PMC11910522 DOI: 10.1038/s41467-025-57880-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 03/03/2025] [Indexed: 03/17/2025] Open
Abstract
Risky drinking rates are rising, particularly in women, yet sex as a biological variable has only recently gained traction. The centrally projecting Edinger-Westphal (EWcp) nucleus has emerged as a key regulator of alcohol consumption. Here we found that EWcppeptidergic cells reduce binge drinking specifically in female mice. We show this effect is mediated by the ghrelin receptor (GHSR), with EWcppeptidergic inhibition blocking ghrelin-induced drinking and Ghsr knockdown in EWcppeptidergic, but not EWcpglutamatergic or ventral tegmental area cells, reducing binge drinking in females, independent of circulating sex hormones. Female mice showed higher EWcp Ghsr expression, and EWcppeptidergic neurons were more sensitive to ghrelin. Moreover, intra-EWcp delivery of GHSR inverse agonist and antagonist reduced binge drinking, suggesting direct actions of ghrelin. These findings highlight the EWcp as a critical mediator of excessive alcohol consumption via GHSR in female mice, offering insights into the ghrelin system's role in alcohol consumption.
Collapse
Affiliation(s)
- Amy J Pearl
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
| | - Xavier J Maddern
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Paulo Pinares-Garcia
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
| | - Lauren T Ursich
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Roberta G Anversa
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Arnav Shesham
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Robyn M Brown
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Felicia M Reed
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, Australia
| | - William J Giardino
- Dept. of Psychiatry and Behavioural Sciences, Stanford University School of Medicine, Stanford, CA, 94305-5453, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, 94305-5453, USA
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Leigh C Walker
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia.
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
3
|
Schneider P, Goldbaum D, Agarwal A, Taylor A, Sundberg P, Gardner EL, Ranaldi R, You ZB, Galaj E. Region-specific neuroadaptations of CRF1 and CRF2 expression following heroin exposure in female rats. Pharmacol Biochem Behav 2025; 247:173931. [PMID: 39626795 PMCID: PMC11769769 DOI: 10.1016/j.pbb.2024.173931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/13/2024] [Accepted: 11/29/2024] [Indexed: 01/30/2025]
Abstract
While stress increases vulnerability to development of addiction, the recruitment of corticotropin releasing factor (CRF) with excessive drug use heightens the risk of stress-induced relapse. CRF signaling is transmitted via CRF1 and CRF2 receptors, but the roles of these receptors in heroin self-administration and related neuroadaptations of the CRF system within mesolimbic brain loci are not well understood. In this study, we first investigated the causal role of CRF1 and CRF2 receptors in heroin self-administration. Intracerebroventricular (ICV) microinjections of antalarmin (a CRF1 antagonist) or astressin-2B (a CRF2 antagonist) caused brief, dose-dependent reductions in heroin self-administration in female rats, suggesting that these receptors play a critical role in heroin-motivated behaviors. We then used western blotting to examine neuroadaptive changes to CRF1 and CRF2 receptor expression in key forebrain and midbrain regions associated with opioid addiction. Female Long Evans rats treated with escalating doses of heroin for 16 days demonstrated significantly higher naloxone-precipitated withdrawal symptoms than saline-treated rats. Heroin-treated rats showed a significant decrease in CRF1 receptor protein expression in the ventral tegmental area (VTA) and an increase in the nucleus accumbens (NAc) but no changes in the prefrontal cortex (PFC), insula, dorsal striatum (dSTR), dorsal hippocampus (dHippo), anterior hypothalamus (HYPTH), amygdala, or substantia nigra (SN) as compared to saline-treated rats. After chronic heroin exposure, CRF2 receptor expression was significantly downregulated in the dHippo, VTA and HYPTH but not in the other brain regions we investigated. The results of this study suggest that: (1) CRF1 and CRF2 receptors play an important role in self-administration and (2) heroin exposure may lead to region-specific neuroadaptation of CRF1 and CRF2 receptors. Such neuroadaptations might in part contribute to the continuation of drug use and stress-induced relapse.
Collapse
Affiliation(s)
- Piper Schneider
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA
| | - Danielle Goldbaum
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA
| | - Ansh Agarwal
- Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Ashton Taylor
- Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Peyton Sundberg
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA
| | - Eliot L Gardner
- Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Robert Ranaldi
- The Graduate Center of the City University of New York, New York, NY, USA; Department of Psychology, Queens College of the City University of New York, Flushing, NY, USA
| | - Zhi-Bing You
- Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Ewa Galaj
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA.
| |
Collapse
|
4
|
Wang Q, Sun RY, Hu JX, Sun YH, Li CY, Huang H, Wang H, Li XM. Hypothalamic-hindbrain circuit for consumption-induced fear regulation. Nat Commun 2024; 15:7728. [PMID: 39231981 PMCID: PMC11375128 DOI: 10.1038/s41467-024-51983-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
To ensure survival, animals must sometimes suppress fear responses triggered by potential threats during feeding. However, the mechanisms underlying this process remain poorly understood. In the current study, we demonstrated that when fear-conditioned stimuli (CS) were presented during food consumption, a neural projection from lateral hypothalamic (LH) GAD2 neurons to nucleus incertus (NI) relaxin-3 (RLN3)-expressing neurons was activated, leading to a reduction in CS-induced freezing behavior in male mice. LHGAD2 neurons established excitatory connections with the NI. The activity of this neural circuit, including NIRLN3 neurons, attenuated CS-induced freezing responses during food consumption. Additionally, the lateral mammillary nucleus (LM), which received NIRLN3 projections, along with RLN3 signaling in the LM, mediated the decrease in freezing behavior. Collectively, this study identified an LHGAD2-NIRLN3-LM circuit involved in modulating fear responses during feeding, thereby enhancing our understanding of how animals coordinate nutrient intake with threat avoidance.
Collapse
Affiliation(s)
- Qin Wang
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui-Yue Sun
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia-Xue Hu
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan-Hui Sun
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chun-Yue Li
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huiqian Huang
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Wang
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Nanhu Brain-computer Interface Institute, Hangzhou, China.
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiao-Ming Li
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Nanhu Brain-computer Interface Institute, Hangzhou, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
- Center for Brain Science and Brain-Inspired Intelligence, Research Units for Emotion and Emotion Disorders, Chinese Academy of Medical Sciences, Hangzhou, China.
| |
Collapse
|
5
|
Favoretto CA, Bertagna NB, Miguel TT, Quadros IMH. The CRF/Urocortin systems as therapeutic targets for alcohol use disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 178:97-152. [PMID: 39523064 DOI: 10.1016/bs.irn.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Development and maintenance of alcohol use disorders have been proposed to recruit critical mechanisms involving Corticotropin Releasing Factor and Urocortins (CRF/Ucns). The CRF/Ucns system is comprised of a family of peptides (CRF, Ucn 1, Ucn 2, Ucn 3) which act upon two receptor subtypes, CRFR1 and CRFR2, each with different affinity profiles to the endogenous peptides and differential brain distribution. Activity of CRF/Ucn system is further modulated by CRF binding protein (CRF-BP), which regulates availability of CRF and Ucns to exert their actions. Extensive evidence in preclinical models support the involvement of CRF/Ucn targets in escalated alcohol drinking, as well as point to changes in CRF/Ucn brain function as a result of chronic alcohol exposure and/or withdrawal. It highlights the role of CRF and CRFR1-mediated signaling in conditions of excessive alcohol taking and seeking, including during various stages of withdrawal and relapse to alcohol. Besides its role in the hypothalamic-pituitary-adrenal (HPA) axis, the importance of extra-hypothalamic CRF pathways, especially in the extended amygdala, in the neurobiology of alcohol abuse and dependence is emphasized. Emerging roles for other targets of the CRF/Ucn system, such as CRF2 receptors, CRF-BP and Ucns in escalated alcohol drinking is also discussed. Finally, the limited translational value of CRF/Ucn interventions in stress-related and alcohol use disorders is discussed. So far, CRFR1 antagonists have shown little or no efficacy in human clinical trials, although a range of unexplored conditions and possibilities remain to be explored.
Collapse
Affiliation(s)
- Cristiane Aparecida Favoretto
- Molecular and Behavioral Neuroscience Laboratory, Pharmacology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp), SP, Brazil; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Natalia Bonetti Bertagna
- Molecular and Behavioral Neuroscience Laboratory, Pharmacology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp), SP, Brazil
| | | | - Isabel M H Quadros
- Psychobiology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp), SP, Brazil.
| |
Collapse
|
6
|
Maddern XJ, Ursich LT, Bailey G, Pearl A, Anversa RG, Lawrence AJ, Walker LC. Sex Differences in Alcohol Use: Is It All About Hormones? Endocrinology 2024; 165:bqae088. [PMID: 39018449 DOI: 10.1210/endocr/bqae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/19/2024]
Abstract
Risky alcohol use and alcohol use disorders (AUD) are a rising problem in women, yet a major disparity in our understanding of what drives alcohol consumption in women remains. Historically biomedical research has focused on male subjects; however, recent increases in reporting of females, have highlighted major differences between the sexes. Here we review the current literature of the effect of gonadal steroid hormones (estrogens, androgens, and progestins), neurosteriods, and neurobiological factors on alcohol use in clinical and preclinical studies of both sexes. Further, we briefly discuss how fundamental sex differences in genetics, metabolism, neuroimmune, and stress responses may influence sex differences in alcohol intake. Comparing the sexes could aid in the discovery of novel therapeutics to treat AUD, and implementation of current treatment options in women.
Collapse
Affiliation(s)
- Xavier J Maddern
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Lauren T Ursich
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Grace Bailey
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Amy Pearl
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
| | - Roberta G Anversa
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Leigh C Walker
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3052, Australia
| |
Collapse
|
7
|
Khalifa NE, Noreldin AE, Khafaga AF, El-Beskawy M, Khalifa E, El-Far AH, Fayed AHA, Zakaria A. Chia seeds oil ameliorate chronic immobilization stress-induced neurodisturbance in rat brains via activation of the antioxidant/anti-inflammatory/antiapoptotic signaling pathways. Sci Rep 2023; 13:22409. [PMID: 38104182 PMCID: PMC10725506 DOI: 10.1038/s41598-023-49061-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
Chronic immobilization stress plays a key role in several neuropsychiatric disorders. This investigation assessed the possible ameliorative effect of chia seed oil (CSO) against the neurodisturbance-induced in rats by chronic immobilization. Rats were randomly allocated into control, CSO (1 ml/kg b.wt./orally), restrained (6 h/day), CSO pre-restraint, and CSO post-restraint for 60 days. Results revealed a significant reduction in serum corticosterone level, gene expression of corticotrophin-releasing factor, pro-inflammatory cytokines, and oxidative biomarkers in restrained rats treated with CSO. The histopathological findings revealed restoring necrosis and neuronal loss in CSO-treated-restraint rats. The immunohistochemical evaluation revealed a significant reduction in the immuno-expression of caspase-3, nuclear factor kappa B, interleukin-6, and cyclooxygenase-2 (COX-2), and an elevation of calbindin-28k and synaptophysin expression compared to non-treated restraint rats. The molecular docking showed the CSO high affinity for several target proteins, including caspase-3, COX-2, corticotropin-releasing hormone binding protein, corticotropin-releasing factor receptors 1 and 2, interleukin-1 receptor types 1 and 2, interleukin-6 receptor subunits alpha and beta. In conclusion, CSO emerges as a promising candidate against stress-induced brain disruptions by suppressing inflammatory/oxidative/apoptotic signaling pathways due to its numerous antioxidant and anti-inflammatory components, mainly α-linolenic acid. Future studies are necessary to evaluate the CSO therapeutic impacts in human neurodisturbances.
Collapse
Affiliation(s)
- Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51511, Egypt.
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt.
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Mohamed El-Beskawy
- Department of Animal Medicine, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51511, Egypt
| | - Eman Khalifa
- Department of Microbiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51511, Egypt
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Abdel-Hasseb A Fayed
- Department of Physiology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Abdeldayem Zakaria
- Department of Physiology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| |
Collapse
|
8
|
Mantsch JR. Corticotropin releasing factor and drug seeking in substance use disorders: Preclinical evidence and translational limitations. ADDICTION NEUROSCIENCE 2022; 4:100038. [PMID: 36531188 PMCID: PMC9757758 DOI: 10.1016/j.addicn.2022.100038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The neuropeptide, corticotropin releasing factor (CRF), has been an enigmatic target for the development of medications aimed at treating stress-related disorders. Despite a large body of evidence from preclinical studies in rodents demonstrating that CRF receptor antagonists prevent stressor-induced drug seeking, medications targeting the CRF-R1 have failed in clinical trials. Here, we provide an overview of the abundant findings from preclinical rodent studies suggesting that CRF signaling is involved in stressor-induced relapse. The scientific literature that has defined the receptors, mechanisms and neurocircuits through which CRF contributes to stressor-induced reinstatement of drug seeking following self-administration and conditioned place preference in rodents is reviewed. Evidence that CRF signaling is recruited with repeated drug use in a manner that heightens susceptibility to stressor-induced drug seeking in rodents is presented. Factors that may determine the influence of CRF signaling in substance use disorders, including developmental windows, biological sex, and genetics are examined. Finally, we discuss the translational failure of medications targeting CRF signaling as interventions for substance use disorders and other stress-related conditions. We conclude that new perspectives and research directions are needed to unravel the mysterious role of CRF in substance use disorders.
Collapse
Affiliation(s)
- John R Mantsch
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, United States
| |
Collapse
|
9
|
Curley DE, Vasaturo-Kolodner TR, Cannella N, Ciccocioppo R, Haass-Koffler CL. Yohimbine as a pharmacological probe for alcohol research: a systematic review of rodent and human studies. Neuropsychopharmacology 2022; 47:2111-2122. [PMID: 35760866 PMCID: PMC9556614 DOI: 10.1038/s41386-022-01363-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/12/2022] [Accepted: 06/02/2022] [Indexed: 11/08/2022]
Abstract
Alcohol use disorder (AUD) is a significant public health concern, contributing to a myriad of social, psychological, and physiological issues. Despite substantial efforts within the alcohol research field, promising preclinical findings have failed to translate to clinical use, highlighting the necessity to develop safe and effective pharmacological probes with the ability to be used in preclinical and clinical research. Yohimbine, an α2 adrenergic receptor antagonist, is a well-validated pharmacological tool that has been widely employed in alcohol studies to evaluate noradrenergic activation. This scoping systematic review examines published literature in rodent and human studies involving the use of yohimbine relevant to alcohol research. We conducted a systematic literature review of MEDLINE, Embase, Web of Science Core Collection, CINAHL, PsycInfo, and Cochrane Central Register of Controlled Trials to identify: (1) Experimental Characteristics and Methodology, (2) Sex Differences, (3) Neurochemical Systems and Brain Regions, and (4) Discussion of Applications for Medication Development. Sixty-seven (62 preclinical and 5 clinical) studies were identified meeting the stated criteria, comprising extensive evidence supporting the use of yohimbine as a safe, titratable pharmacological agent for translational alcohol research. Support for the use of yohimbine as a fully translational tool, however, is hindered by limited available findings from human laboratory studies, as well as a dearth of studies examining sex differences in yohimbine's mechanistic actions. Additional consideration should be given to further translational modeling, ideally allowing for parallel preclinical and clinical assessment of yohimbine, methodological assessment of neurochemical systems and brain regions.
Collapse
Affiliation(s)
- Dallece E Curley
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- Neuroscience Graduate Program, Department of Neuroscience, Brown University, Providence, RI, USA
| | - Talia R Vasaturo-Kolodner
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Nazzareno Cannella
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Carolina L Haass-Koffler
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA.
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA.
- Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI, USA.
- Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| |
Collapse
|
10
|
Eiden LE, Hernández VS, Jiang SZ, Zhang L. Neuropeptides and small-molecule amine transmitters: cooperative signaling in the nervous system. Cell Mol Life Sci 2022; 79:492. [PMID: 35997826 PMCID: PMC11072502 DOI: 10.1007/s00018-022-04451-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 12/17/2022]
Abstract
Neuropeptides are expressed in cell-specific patterns throughout mammalian brain. Neuropeptide gene expression has been useful for clustering neurons by phenotype, based on single-cell transcriptomics, and for defining specific functional circuits throughout the brain. How neuropeptides function as first messengers in inter-neuronal communication, in cooperation with classical small-molecule amine transmitters (SMATs) is a current topic of systems neurobiology. Questions include how neuropeptides and SMATs cooperate in neurotransmission at the molecular, cellular and circuit levels; whether neuropeptides and SMATs always co-exist in neurons; where neuropeptides and SMATs are stored in the neuron, released from the neuron and acting, and at which receptors, after release; and how neuropeptides affect 'classical' transmitter function, both directly upon co-release, and indirectly, via long-term regulation of gene transcription and neuronal plasticity. Here, we review an extensive body of data about the distribution of neuropeptides and their receptors, their actions after neuronal release, and their function based on pharmacological and genetic loss- and gain-of-function experiments, that addresses these questions, fundamental to understanding brain function, and development of neuropeptide-based, and potentially combinatorial peptide/SMAT-based, neurotherapeutics.
Collapse
Affiliation(s)
- Lee E Eiden
- Section On Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, 49 Convent Drive, Room 5A38, Bethesda, MD, 20892, USA.
| | - Vito S Hernández
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Sunny Z Jiang
- Section On Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, 49 Convent Drive, Room 5A38, Bethesda, MD, 20892, USA
| | - Limei Zhang
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.
| |
Collapse
|
11
|
Walker LC, Campbell EJ, Huckstep KL, Chen NA, Langmead CJ, Lawrence AJ. M 1 muscarinic receptor activation decreases alcohol consumption via a reduction in consummatory behavior. Pharmacol Res Perspect 2021; 10:e00907. [PMID: 34962108 PMCID: PMC8929368 DOI: 10.1002/prp2.907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/21/2021] [Indexed: 11/07/2022] Open
Abstract
Muscarinic acetylcholine receptors (mAChRs) have been shown to mediate alcohol consumption and seeking. Both M4 and M5 mAChRs have been highlighted as potential novel treatment targets for alcohol use disorders (AUD). Similarly, M1 mAChRs are expressed throughout reward circuitry, and their signaling has been implicated in cocaine consumption. However, whether the same effects are seen for alcohol consumption, or whether natural reward intake is inadvertently impacted is still unknown. To determine the role of M1 mAChRs in alcohol consumption, we tested operant self-administration of alcohol under both fixed ratio (FR3) and progressive ratio (PR3-4) schedules. Enhancing M1 mAChR signaling (via the M1 PAM-Agonist PF-06767832, 1 mg/kg, i.p.) reduced operant alcohol consumption on a fixed schedule but had no effect on motivation to acquire alcohol. To determine whether these actions were specific to alcohol, we examined the effects of M1 enhancement on natural reward (sucrose) self-administration. Systemic administration of PF-06767832 (1 mg/kg, i.p.) also reduced operant sucrose self-administration, suggesting the actions of the M1 receptor may be non-selective across drug and natural rewards. Finally, to understand whether this reduction extended to natural consummatory behaviors, we assessed home cage standard chow and water consumption. M1 enhancement via systemic PF-06767832 administration reduced food and water consumption. Together our results suggest the M1 PAM-agonist, PF-06767832, non-specifically reduces consummatory behaviors that are not associated with motivational strength for the reward. These data highlight the need to further characterize M1 agonists, PAMs, and PAM-agonists, which may have varying degrees of utility in the treatment of neuropsychiatric disorders including AUD.
Collapse
Affiliation(s)
- Leigh C. Walker
- Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneParkvilleAustralia
| | - Erin J. Campbell
- Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneParkvilleAustralia
| | - Kate L. Huckstep
- Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneParkvilleAustralia
| | - Nicola A. Chen
- Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneParkvilleAustralia
| | - Christopher J. Langmead
- Drug Discovery BiologyMonash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| | - Andrew J. Lawrence
- Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneParkvilleAustralia
| |
Collapse
|
12
|
Walker LC, Huckstep KL, Chen NA, Hand LJ, Lindsley CW, Langmead CJ, Lawrence AJ. Muscarinic M 4 and M 5 receptors in the ventral subiculum differentially modulate alcohol seeking versus consumption in male alcohol-preferring rats. Br J Pharmacol 2021; 178:3730-3746. [PMID: 33942300 DOI: 10.1111/bph.15513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/11/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Muscarinic acetylcholine receptors mediate alcohol consumption and seeking in rats. While M4 and M5 receptors have recently been implicated to mediate these behaviours in the striatum, their role in other brain regions remain unknown. The ventral tegmental area (VTA) and ventral subiculum (vSub) both densely express M4 and M5 receptors and modulate alcohol-seeking, via their projections to the nucleus accumbens shell (AcbSh). EXPERIMENTAL APPROACH In Indiana alcohol-preferring (iP) male rats, we examined Chrm4 (M4 ) and Chrm5 (M5 ) expression in the VTA and vSub following long-term alcohol consumption and abstinence using RT-qPCR. Using a combination of retrograde tracing and RNAscope, we examined the localisation of Chrm4 and Chrm5 on vSub cells that project to the AcbSh. Using selective allosteric modulators, we examined the functional role of M4 and M5 receptors within the vSub in alcohol consumption, context-induced alcohol-seeking, locomotor activity, and food/water consumption. KEY RESULTS Long-term alcohol and abstinence dysregulated the expression of genes for muscarinic receptors in the vSub, not in the VTA. Chrm4 was down-regulated following long-term alcohol and abstinence, while Chrm5 was up-regulated following long-term alcohol consumption. Consistent with these data, a positive allosteric modulator (VU0467154) of intra-vSub M4 receptors reduced context-induced alcohol-seeking, but not motivation for alcohol self-administration, while M5 receptor negative allosteric modulator (ML375) reduced initial motivation for alcohol self-administration, but not context-induced alcohol-seeking. CONCLUSION AND IMPLICATIONS Collectively, our data highlight alcohol-induced cholinergic dysregulation in the vSub and distinct roles for M4 and M5 receptor allosteric modulators to reduce alcohol consumption or seeking.
Collapse
Affiliation(s)
- Leigh C Walker
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Kate L Huckstep
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Nicola A Chen
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Lexi J Hand
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Craig W Lindsley
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Christopher J Langmead
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
13
|
Walker LC. A balancing act: the role of pro- and anti-stress peptides within the central amygdala in anxiety and alcohol use disorders. J Neurochem 2021; 157:1615-1643. [PMID: 33450069 DOI: 10.1111/jnc.15301] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/18/2020] [Accepted: 01/06/2021] [Indexed: 12/21/2022]
Abstract
The central nucleus of the amygdala (CeA) is widely implicated as a structure that integrates both appetitive and aversive stimuli. While intrinsic CeA microcircuits primarily consist of GABAergic neurons that regulate amygdala output, a notable feature of the CeA is the heterogeneity of neuropeptides and neuropeptide/neuromodulator receptors that it expresses. There is growing interest in the role of the CeA in mediating psychopathologies, including stress and anxiety states and their interactions with alcohol use disorders. Within the CeA, neuropeptides and neuromodulators often exert pro- or anti- stress actions, which can influence anxiety and alcohol associated behaviours. In turn, alcohol use can cause adaptions within the CeA, which may render an individual more vulnerable to stress which is a major trigger of relapse to alcohol seeking. This review examines the neurocircuitry, neurochemical phenotypes and how pro- and anti-stress peptide systems act within the CeA to regulate anxiety and alcohol seeking, focusing on preclinical observations from animal models. Furthermore, literature exploring the targeting of genetically defined populations or neuronal ensembles and the role of the CeA in mediating sex differences in stress x alcohol interactions are explored.
Collapse
Affiliation(s)
- Leigh C Walker
- Florey Institute of Neuroscience and Mental Health, Parkville, Vic, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Vic, Australia
| |
Collapse
|
14
|
Walker LC, Hand LJ, Letherby B, Huckstep KL, Campbell EJ, Lawrence AJ. Cocaine and amphetamine regulated transcript (CART) signalling in the central nucleus of the amygdala modulates stress-induced alcohol seeking. Neuropsychopharmacology 2021; 46:325-333. [PMID: 32826981 PMCID: PMC7852518 DOI: 10.1038/s41386-020-00807-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/19/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022]
Abstract
The central nucleus of the amygdala (CeA) is a key hub of the neural circuitry regulating alcohol and stress interactions. However, the exact neuronal populations that govern this interaction are not well defined. Here we examined the role of the neuropeptide cocaine and amphetamine regulated transcript (CART) within the CeA in stress-induced alcohol seeking. We found that CART-containing neurons are predominantly expressed in the capsular/lateral division of the CeA and are a subpopulation of protein kinase Cδ (PKCδ) cells, distinct from corticotrophin releasing factor (CRF)-expressing cells. Both stress (yohimbine) and stress-induced alcohol seeking activated CART cells within the CeA, while neutralisation of endogenous CeA CART signalling (via antibody administration) attenuated stress-induced alcohol, but not sucrose seeking. Further, blocking CART signalling within the CeA did not alter the motivation to obtain and consume alcohol but did attenuate stressor-induced anxiety-like behaviour during abstinence from alcohol. Together, these data identify CeA CART cells as a subpopulation of PKCδ cells that influence stress × alcohol interactions and mediate stress-induced alcohol seeking behaviours.
Collapse
Affiliation(s)
- Leigh C. Walker
- grid.418025.a0000 0004 0606 5526Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XFlorey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3052 Australia
| | - Lexi J. Hand
- grid.418025.a0000 0004 0606 5526Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XFlorey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3052 Australia
| | - Bethany Letherby
- grid.418025.a0000 0004 0606 5526Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XFlorey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3052 Australia
| | - Kate L. Huckstep
- grid.418025.a0000 0004 0606 5526Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XFlorey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3052 Australia
| | - Erin J. Campbell
- grid.418025.a0000 0004 0606 5526Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XFlorey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3052 Australia
| | - Andrew J. Lawrence
- grid.418025.a0000 0004 0606 5526Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XFlorey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3052 Australia
| |
Collapse
|
15
|
Eiden LE, Gundlach AL, Grinevich V, Lee MR, Mecawi AS, Chen D, Buijs RM, Hernandez VS, Fajardo-Dolci G, Zhang L. Regulatory peptides and systems biology: A new era of translational and reverse-translational neuroendocrinology. J Neuroendocrinol 2020; 32:e12844. [PMID: 32307768 DOI: 10.1111/jne.12844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/15/2022]
Abstract
Recently, there has been a resurgence in regulatory peptide science as a result of three converging trends. The first is the increasing population of the drug pipeline with peptide-based therapeutics, mainly in, but not restricted to, incretin-like molecules for treatment of metabolic disorders such as diabetes. The second is the development of genetic and optogenetic tools enabling new insights into how peptides actually function within brain and peripheral circuits to accomplish homeostatic and allostatic regulation. The third is the explosion in defined structures of the G-protein coupled receptors to which most regulatory peptides bind and exert their actions. These trends have closely wedded basic systems biology to drug discovery and development, creating a "two-way street" on which translational advances travel from basic research to the clinic, and, equally importantly, "reverse-translational" information is gathered, about the molecular, cellular and circuit-level mechanisms of action of regulatory peptides, comprising information required for the fine-tuning of drug development through testing in animal models. This review focuses on a small group of 'influential' peptides, including oxytocin, vasopressin, pituitary adenylate cyclase-activating polypeptide, ghrelin, relaxin-3 and glucagon-like peptide-1, and how basic discoveries and their application to therapeutics have intertwined over the past decade.
Collapse
Affiliation(s)
- Lee E Eiden
- Section on Molecular Neuroscience, National Institute of Mental Heath-Intramural Research Program, NIH, Bethesda, MD, USA
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, University Heidelberg, Mannheim, Germany
| | - Mary R Lee
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, NIAAA and NIDA, NIH, Bethesda, MD, USA
| | - André S Mecawi
- Laboratory of Neuroendocrinology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Duan Chen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ruud M Buijs
- Department of Cell Biology and Physiology, Institute for Biomedical Research, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Vito S Hernandez
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Germán Fajardo-Dolci
- School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Limei Zhang
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
16
|
Walker LC, Kastman HE, Lawrence AJ. Pattern of neural activation following yohimbine‐induced reinstatement of alcohol seeking in rats. Eur J Neurosci 2020; 51:706-720. [DOI: 10.1111/ejn.14431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/25/2019] [Accepted: 04/23/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Leigh C. Walker
- The Florey Institute of Neuroscience and Mental Health Parkville Victoria Australia
- Florey Department of Neuroscience and Mental Health The University of Melbourne Melbourne Victoria Australia
| | - Hanna E. Kastman
- The Florey Institute of Neuroscience and Mental Health Parkville Victoria Australia
| | - Andrew J. Lawrence
- The Florey Institute of Neuroscience and Mental Health Parkville Victoria Australia
- Florey Department of Neuroscience and Mental Health The University of Melbourne Melbourne Victoria Australia
| |
Collapse
|
17
|
Benson MJ, Lauková M, Borges K, Velíšková J, Velíšek L. Prenatal betamethasone exposure increases corticotropin-releasing hormone expression along with increased hippocampal slice excitability in the developing hippocampus. Epilepsy Res 2020; 160:106276. [PMID: 31954921 DOI: 10.1016/j.eplepsyres.2020.106276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/31/2019] [Accepted: 01/14/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND The objective of this study was to determine whether prenatal exposure to betamethasone alters hippocampal expression of corticotropin-releasing hormone (CRH) and resultant hippocampal circuit excitability. METHODS Real time (RT)-PCR and western blots were used to determine CRH mRNA and protein expression levels, respectively, in hippocampal extracts of two-week old rat pups prenatally primed with betamethasone or saline on gestational day 15. The data were compared to changes in epileptiform activity induced by kainic acid (KA) or depletion of [Mg2+]0 in combined hippocampus-entorhinal cortex slices. RESULTS RT-PCR analysis showed 3-fold increased levels of CRH mRNA in hippocampal extracts from prenatally betamethasone-primed pups compared to saline controls (p < 0.05), but no changes in mRNA expression of CRH receptors (1 and 2). Changes in CRH protein isoform ratio in hippocampal extracts suggest 30 % increase in mature CRH levels in betamethasone-primed hippocampi (p < 0.05). No changes in mRNA expression in CRH feedback loop associated genes, GR and FKBP51, were found. Compared to saline-exposed pups, slices from betamethasone-primed pups had faster onset of epileptiform-like activity (inter-ictal discharges and seizure-like-events) after bath application of 4 μM KA (p < 0.05) suggesting a "more hyperexcitable" state. The epileptiform-like activity after KA application was significantly reduced following bath application of a CRH R2 antagonist (p < 0.05) but CRH R1 antagonist had no effect (p > 0.05). Also in the low-Mg2+-induced epileptiform activity, there was increased excitability, in the form of enhanced inter-ictal discharges, in slices from betamethasone primed compared to saline exposed rat pups (p < 0.05). CONCLUSIONS Our study suggests a possible mechanistic link to prenatal betamethasone priming-induced increase in postnatal hippocampal excitability that involves enhanced expression of CRH acting at CRH R2. This is important in regards to the links between prenatal stress/corticosteroid-exposure and syndromes, such as epilepsy, autism spectrum disorders and other psychiatric disorders associated with neuronal hyperexcitability.
Collapse
Affiliation(s)
- Melissa J Benson
- Departments of Cell Biology & Anatomy, Valhalla, NY, USA; Department of Pharmacology, School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Marcela Lauková
- Department of Environmental Health Science, School of Health Sciences and Practice, Institute of Public Health, New York Medical College, Valhalla, NY, USA; Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Karin Borges
- Department of Pharmacology, School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Jana Velíšková
- Departments of Cell Biology & Anatomy, Valhalla, NY, USA; Departments of Obstetrics & Gynecology, Valhalla, NY, USA; Departments of Neurology, Valhalla, NY, USA
| | - Libor Velíšek
- Departments of Cell Biology & Anatomy, Valhalla, NY, USA; Departments of Obstetrics & Gynecology, Valhalla, NY, USA; Departments of Pediatrics, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
18
|
Wykes AD, Ma S, Bathgate RAD, Gundlach AL. Targeted viral vector transduction of relaxin-3 neurons in the rat nucleus incertus using a novel cell-type specific promoter. IBRO Rep 2019; 8:1-10. [PMID: 31890981 PMCID: PMC6928288 DOI: 10.1016/j.ibror.2019.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022] Open
Abstract
Extensive, ascending relaxin-3-containing neural networks are present throughout the rat forebrain. Relaxin-3 signalling modulates complex behaviours and cognitive processes including feeding, anxiety and memory. We tested a 1736 bp promoter sequence for specific transgene expression in relaxin-3 neurons of rat nucleus incertus (NI). This promoter restricted m-Cherry marker expression to NI relaxin-3 neurons with 98% specificity. This targeted transgene delivery offers a versatile method for ongoing preclinical studies of relaxin-3 circuitry.
Modern neuroscience utilizes transgenic techniques extensively to study the activity and function of brain neural networks. A key feature of this approach is its compatibility with molecular methods for selective transgene expression in neuronal circuits of interest. Until now, such targeted transgenic approaches have not been applied to the extensive circuitry involving the neuropeptide, relaxin-3. Pharmacological and gene knock-out studies have revealed relaxin-3 signalling modulates interrelated behaviours and cognitive processes, including stress and anxiety, food and alcohol consumption, and spatial and social memory, highlighting the potential of this system as a therapeutic target. In the present study, we aimed to identify a promoter sequence capable of regulating cell-type specific transgene expression from an adeno-associated viral (AAV) vector in relaxin-3 neurons of the rat nucleus incertus (NI). In parallel to relaxin-3 promoter sequences, we also tested an AAV vector containing promoter elements for the tropomyosin receptor kinase A (TrkA) gene, as TrkA is co-expressed with relaxin-3 in rat NI neurons. Stereotaxic injection of an mCherry-expressing AAV vector revealed widespread non-specific TrkA promoter (880 bp) activity in and adjacent to the NI at 8 weeks post-treatment. In contrast, mCherry expression was successfully restricted to relaxin-3 NI neurons with 98% specificity using a 1736 bp relaxin-3 promoter. In addition to detailed anatomical mapping of NI relaxin-3 networks, illustrated here in association with GABAergic medial septum neurons, this method for targeted transgene delivery offers a versatile tool for ongoing preclinical studies of relaxin-3 circuitry.
Collapse
Affiliation(s)
- Alexander D Wykes
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Sherie Ma
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Ross A D Bathgate
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Department of Biochemistry and Molecular Biology, The University of Melbourne, Victoria, Australia
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| |
Collapse
|
19
|
Ch'ng SS, Fu J, Brown RM, Smith CM, Hossain MA, McDougall SJ, Lawrence AJ. Characterization of the relaxin family peptide receptor 3 system in the mouse bed nucleus of the stria terminalis. J Comp Neurol 2019; 527:2615-2633. [PMID: 30947365 DOI: 10.1002/cne.24695] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 03/19/2019] [Accepted: 03/27/2019] [Indexed: 01/17/2023]
Abstract
The bed nucleus of the stria terminalis (BNST) is a critical node involved in stress and reward-related behaviors. Relaxin family peptide receptor 3 (RXFP3) signaling in the BNST has been implicated in stress-induced alcohol seeking behavior. However, the neurochemical phenotype and connectivity of BNST RXFP3-expressing (RXFP3+) cells have yet to be elucidated. We interrogated the molecular signature and electrophysiological properties of BNST RXFP3+ neurons using a RXFP3-Cre reporter mouse line. BNST RXFP3+ cells are circumscribed to the dorsal BNST (dBNST) and are neurochemically heterogeneous, comprising a mix of inhibitory and excitatory neurons. Immunohistochemistry revealed that ~48% of BNST RXFP3+ neurons are GABAergic, and a quarter of these co-express the calcium-binding protein, calbindin. A subset of BNST RXFP3+ cells (~41%) co-express CaMKIIα, suggesting this subpopulation of BNST RXFP3+ neurons are excitatory. Corroborating this, RNAscope® revealed that ~35% of BNST RXFP3+ cells express vVGluT2 mRNA, indicating a subpopulation of RXFP3+ neurons are glutamatergic. RXFP3+ neurons show direct hyperpolarization to bath application of a selective RXFP3 agonist, RXFP3-A2, while around 50% of cells were depolarised by exogenous corticotrophin releasing factor. In behaviorally naive mice the majority of RXFP3+ neurons were Type II cells exhibiting Ih and T type calcium mediated currents. However, chronic swim stress caused persistent plasticity, decreasing the proportion of neurons that express these channels. These studies are the first to characterize the BNST RXFP3 system in mouse and lay the foundation for future functional studies appraising the role of the murine BNST RXFP3 system in more complex behaviors.
Collapse
Affiliation(s)
- Sarah S Ch'ng
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Jingjing Fu
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Robyn M Brown
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Craig M Smith
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | | | - Stuart J McDougall
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| |
Collapse
|
20
|
Rytova V, Ganella DE, Hawkes D, Bathgate RAD, Ma S, Gundlach AL. Chronic activation of the relaxin-3 receptor on GABA neurons in rat ventral hippocampus promotes anxiety and social avoidance. Hippocampus 2019; 29:905-920. [PMID: 30891856 DOI: 10.1002/hipo.23089] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 12/24/2022]
Abstract
Anxiety disorders are highly prevalent in modern society and better treatments are required. Key brain areas and signaling systems underlying anxiety include prefrontal cortex, hippocampus, and amygdala, and monoaminergic and peptidergic systems, respectively. Hindbrain GABAergic projection neurons that express the peptide, relaxin-3, broadly innervate the forebrain, particularly the septum and hippocampus, and relaxin-3 acts via a Gi/o -protein-coupled receptor known as the relaxin-family peptide 3 receptor (RXFP3). Thus, relaxin-3/RXFP3 signaling is implicated in modulation of arousal, motivation, mood, memory, and anxiety. Ventral hippocampus (vHip) is central to affective and cognitive processing and displays a high density of relaxin-3-positive nerve fibers and RXFP3 binding sites, but the identity of target neurons and associated effects on behavior are unknown. Therefore, in adult, male rats, we assessed the neurochemical nature of hippocampal RXFP3 mRNA-expressing neurons and anxiety-like and social behavior following chronic RXFP3 activation in vHip by viral vector expression of an RXFP3-selective agonist peptide, R3/I5. RXFP3 mRNA detected by fluorescent in situ hybridization was topographically distributed across the hippocampus in somatostatin- and parvalbumin-mRNA expressing GABA neurons. Chronic RXFP3 activation in vHip increased anxiety-like behavior in the light-dark box and elevated-plus maze, but not the large open-field test, and reduced social interaction with a conspecific stranger. Our data reveal disruptive effects of persistent RXFP3 signaling on hippocampal GABA networks important in anxiety; and identify a potential therapeutic target for anxiety disorders that warrants further investigation in relevant preclinical models.
Collapse
Affiliation(s)
- Valeria Rytova
- Discovery Science, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Despina E Ganella
- Discovery Science, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - David Hawkes
- Discovery Science, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Ross A D Bathgate
- Discovery Science, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Sherie Ma
- Discovery Science, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew L Gundlach
- Discovery Science, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia.,Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
21
|
Walker LC, Cornish LC, Lawrence AJ, Campbell EJ. The effect of acute or repeated stress on the corticotropin releasing factor system in the CRH-IRES-Cre mouse: A validation study. Neuropharmacology 2018; 154:96-106. [PMID: 30266597 DOI: 10.1016/j.neuropharm.2018.09.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/31/2018] [Accepted: 09/22/2018] [Indexed: 12/18/2022]
Abstract
Corticotropin releasing factor (CRF) is a key component of stress responsivity, modulating related behaviors including anxiety and reward. Difficulties identifying CRF neurons, using traditional approaches including immunohistochemistry, has led to the development of a number of transgenic CRF reporter mice. The Crh-IRES-Cre::Ai14 (tdTomato) reporter mouse is increasing in popularity as a useful tool to assess the localization, connectivity and function of CRF neurons in various stress-related behaviors. However, without proper characterization of reporter expression, the in vivo and in vitro manifestations resulting from the manipulation of these cells must be interpreted with caution. Here we mapped the distribution of tdTomato-expressing CRF cells throughout the rostro-caudal extent of the Crh-IRES-Cre::Ai14 mouse brain. To determine if reporter expression faithfully reproduced native CRF expression, we assessed the colocalization of CRF expression with tdTomato reporter expression across several brain regions. Good concordance was observed in the extended amygdala and paraventricular nucleus of the hypothalamus (PVN), while discrepancies were observed within the lateral hypothalamus and hippocampus. Finally, we examined the activation of CRF neurons in Crh-IRES-Cre::Ai14 mice in response to different types of stressors using Fos immunohistochemistry. Acute psychological (swim) and pharmacological (yohimbine) stress stimulated Fos-protein expression in PVN CRF neurons. Interestingly though, exposure to four daily restraint stress sessions followed by a novel acute stressor did not further recruit CRF neurons across any brain region examined. Our results highlight the importance of thoroughly characterizing reporter mice before use and suggest that acute versus repeated stress may differentially impact the CRF system. This article is part of the Special Issue entitled 'Hypothalamic Control of Homeostasis'.
Collapse
Affiliation(s)
- Leigh C Walker
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, 3052, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, 3010, Australia
| | - Lara C Cornish
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, 3052, Australia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, 3052, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, 3010, Australia
| | - Erin J Campbell
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, 3052, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
22
|
Sabetghadam A, Grabowiecka-Nowak A, Kania A, Gugula A, Blasiak E, Blasiak T, Ma S, Gundlach AL, Blasiak A. Melanin-concentrating hormone and orexin systems in rat nucleus incertus: Dual innervation, bidirectional effects on neuron activity, and differential influences on arousal and feeding. Neuropharmacology 2018; 139:238-256. [DOI: 10.1016/j.neuropharm.2018.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/20/2018] [Accepted: 07/04/2018] [Indexed: 12/24/2022]
|
23
|
Berizzi AE, Perry CJ, Shackleford DM, Lindsley CW, Jones CK, Chen NA, Sexton PM, Christopoulos A, Langmead CJ, Lawrence AJ. Muscarinic M 5 receptors modulate ethanol seeking in rats. Neuropsychopharmacology 2018; 43:1510-1517. [PMID: 29483658 PMCID: PMC5983544 DOI: 10.1038/s41386-017-0007-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/26/2017] [Accepted: 12/29/2017] [Indexed: 12/16/2022]
Abstract
Despite the cost to both individual and society, alcohol use disorders (AUDs) remain a major health risk within society, and both relapse and heavy drinking are still poorly controlled with current medications. Here we demonstrate for the first time that a centrally active and selective negative allosteric modulator for the rat M5 muscarinic acetylcholine receptor (mAChR), ML375, decreases ethanol self-administration and attenuates cue-induced reinstatement of ethanol seeking in ethanol-preferring (iP) rats. Importantly, ML375 did not affect sucrose self-administration or general locomotor activity indicative of a selective effect on ethanol seeking. Based on the expression profile of M5 mAChRs in the brain and the distinct roles different aspects of the dorsal striatum have on long-term and short-term ethanol use, we studied whether intra-striatal microinjection of ML375 modulated ethanol intake in rats. We show in iP rats with an extensive history of ethanol intake that intra-dorsolateral (DL), but not intra-dorsomedial, striatal injections of ML375 reduced ethanol self-administration to a similar extent as the nicotinic acetylcholine receptor ligand varenicline, which has preclinical and clinical efficacy in reducing the reinforcing effects of ethanol. These data implicate the DL striatum as a locus for the effects of cholinergic-acting drugs on ethanol seeking in rats with a history of long-term ethanol use. Accordingly, we demonstrate in rats that selectively targeting the M5 mAChR can modulate both voluntary ethanol intake and cue-induced ethanol seeking and thereby provide direct evidence that the M5 mAChR is a potential novel target for pharmacotherapies aimed at treating AUDs.
Collapse
Affiliation(s)
- Alice E. Berizzi
- 0000 0004 1936 7857grid.1002.3Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052 Australia
| | - Christina J. Perry
- 0000 0004 0606 5526grid.418025.aThe Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052 Australia
| | - David M. Shackleford
- 0000 0004 1936 7857grid.1002.3Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052 Australia
| | - Craig W. Lindsley
- 0000 0001 2264 7217grid.152326.1Departments of Pharmacology and Chemistry, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232 USA
| | - Carrie K. Jones
- 0000 0001 2264 7217grid.152326.1Departments of Pharmacology and Chemistry, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232 USA
| | - Nicola A. Chen
- 0000 0004 0606 5526grid.418025.aThe Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052 Australia
| | - Patrick M. Sexton
- 0000 0004 1936 7857grid.1002.3Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052 Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| | - Christopher J. Langmead
- 0000 0004 1936 7857grid.1002.3Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052 Australia
| | - Andrew J. Lawrence
- 0000 0004 0606 5526grid.418025.aThe Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052 Australia ,0000 0001 2179 088Xgrid.1008.9Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010 Australia
| |
Collapse
|
24
|
Olucha-Bordonau FE, Albert-Gascó H, Ros-Bernal F, Rytova V, Ong-Pålsson EKE, Ma S, Sánchez-Pérez AM, Gundlach AL. Modulation of forebrain function by nucleus incertus and relaxin-3/RXFP3 signaling. CNS Neurosci Ther 2018; 24:694-702. [PMID: 29722152 DOI: 10.1111/cns.12862] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/22/2018] [Accepted: 03/28/2018] [Indexed: 01/05/2023] Open
Abstract
The nucleus incertus (NI) in the pontine tegmentum sends ascending projections to the midbrain, hypothalamus, amygdala, basal forebrain, hippocampus, and prefrontal cortex, and has a postulated role in modulating several forebrain functions. A substantial population of GABAergic NI neurons expresses the neuropeptide, relaxin-3, which acts via the Gi/o -protein-coupled receptor, RXFP3, present throughout the forebrain target regions. Broad and specific manipulations of these systems by activation or inhibition of the NI or modulating RXFP3 signaling have revealed key insights into the likely influence of the NI/relaxin-3/RXFP3 system on modalities including arousal, feeding, stress responses, anxiety and addiction, and attention and memory. This range of actions corresponds to a likely impact of NI/(relaxin-3) projections on multiple integrated circuits, but makes it difficult to draw conclusions about a generalized function for this network. This review will focus on the key physiological process of oscillatory theta rhythm and the neural circuits that promote it during behavioral activation, highlighting the ability of NI and relaxin-3/RXFP3 signaling systems to modulate these circuits. A better understanding of these mechanisms may provide a way to therapeutically adjust malfunction of forebrain activity present in several pathological conditions.
Collapse
Affiliation(s)
| | - Héctor Albert-Gascó
- Department of Medicine, School of Health Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Francisco Ros-Bernal
- Department of Medicine, School of Health Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Valeria Rytova
- The Florey Institute of Neuroscience and Mental Health, Parkville, Vic., Australia
| | - Emma K E Ong-Pålsson
- The Florey Institute of Neuroscience and Mental Health, Parkville, Vic., Australia
| | - Sherie Ma
- The Florey Institute of Neuroscience and Mental Health, Parkville, Vic., Australia
| | - Ana M Sánchez-Pérez
- Department of Medicine, School of Health Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, Vic., Australia
| |
Collapse
|
25
|
Ma S, Hangya B, Leonard CS, Wisden W, Gundlach AL. Dual-transmitter systems regulating arousal, attention, learning and memory. Neurosci Biobehav Rev 2018; 85:21-33. [PMID: 28757457 PMCID: PMC5747977 DOI: 10.1016/j.neubiorev.2017.07.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/16/2017] [Indexed: 01/12/2023]
Abstract
An array of neuromodulators, including monoamines and neuropeptides, regulate most behavioural and physiological traits. In the past decade, dramatic progress has been made in mapping neuromodulatory circuits, in analysing circuit dynamics, and interrogating circuit function using pharmacogenetic, optogenetic and imaging methods This review will focus on several distinct neural networks (acetylcholine/GABA/glutamate; histamine/GABA; orexin/glutamate; and relaxin-3/GABA) that originate from neural hubs that regulate wakefulness and related attentional and cognitive processes, and highlight approaches that have identified dual transmitter roles in these behavioural functions. Modulation of these different neural networks might be effective treatments of diseases related to arousal/sleep dysfunction and of cognitive dysfunction in psychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Sherie Ma
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| | - Balázs Hangya
- 'Lendület' Laboratory of Systems Neuroscience, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - William Wisden
- Department of Life Sciences, Imperial College London, London, UK
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
26
|
Corticotropin-Releasing Factor (CRF) Neurocircuitry and Neuropharmacology in Alcohol Drinking. Handb Exp Pharmacol 2018; 248:435-471. [PMID: 29374836 DOI: 10.1007/164_2017_86] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alcohol use is pervasive in the United States. In the transition from nonhazardous drinking to hazardous drinking and alcohol use disorder, neuroadaptations occur within brain reward and brain stress systems. One brain signaling system that has received much attention in animal models of excessive alcohol drinking and alcohol dependence is corticotropin-releasing factor (CRF). The CRF system is composed of CRF, the urocortins, CRF-binding protein, and two receptors - CRF type 1 and CRF type 2. This review summarizes how acute, binge, and chronic alcohol dysregulates CRF signaling in hypothalamic and extra-hypothalamic brain regions and how this dysregulation may contribute to changes in alcohol reinforcement, excessive alcohol consumption, symptoms of negative affect during withdrawal, and alcohol relapse. In addition, it summarizes clinical work examining CRF type 1 receptor antagonists in humans and discusses why the brain CRF system is still relevant in alcohol research.
Collapse
|
27
|
Walker LC, Kastman HE, Krstew EV, Gundlach AL, Lawrence AJ. Central amygdala relaxin-3/relaxin family peptide receptor 3 signalling modulates alcohol seeking in rats. Br J Pharmacol 2017; 174:3359-3369. [PMID: 28726252 PMCID: PMC5595761 DOI: 10.1111/bph.13955] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/21/2017] [Accepted: 07/13/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Alcohol use disorders are a leading cause of preventable deaths worldwide, and stress is a major trigger of relapse. The neuropeptide relaxin-3 and its cognate receptor, relaxin family peptide receptor 3 (RXFP3), modulate stress-induced relapse to alcohol seeking in rats, and while the bed nucleus of the stria terminalis has been implicated in this regard, the central nucleus of the amygdala (CeA) also receives a relaxin-3 innervation and CeA neurons densely express RXFP3 mRNA. Moreover, the CeA is consistently implicated in both stress and addictive disorders. Yohimbine precipitates relapse-like behaviour in rodents, although exactly how yohimbine induces relapse is unknown, possibly by increasing stress levels and inducing heightened cue reactivity. EXPERIMENTAL APPROACH In the current study, we examined the effects of yohimbine (1 mg·kg-1 , i.p.) on anxiety-like behaviour in alcohol-experienced rats. Furthermore, we assessed CeA neuronal activation following yohimbine-induced reinstatement of alcohol seeking and the role of the relaxin-3/RXFP3 signalling within the CeA in yohimbine-induced reinstatement to alcohol seeking. KEY RESULTS Low-dose yohimbine was anxiogenic in rats with a history of alcohol use. Furthermore, yohimbine-induced reinstatement of alcohol seeking increased Fos activation in CeA corticotrophin-releasing factor, dynorphin and GABA neurons compared with naïve and vehicle controls. Bilateral intra-CeA injections of the selective RXFP3 antagonist, R3(B1-22)R, attenuated yohimbine-induced reinstatement of alcohol seeking. CONCLUSIONS Collectively, these data suggest that the CeA is a node where yohimbine acts to induce reinstatement of alcohol seeking and implicate the relaxin-3/RXFP3 system within the CeA in this process.
Collapse
Affiliation(s)
- Leigh C Walker
- The Florey Institute of Neuroscience and Mental HealthParkvilleVICAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneParkvilleVICAustralia
| | - Hanna E Kastman
- The Florey Institute of Neuroscience and Mental HealthParkvilleVICAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneParkvilleVICAustralia
| | - Elena V Krstew
- The Florey Institute of Neuroscience and Mental HealthParkvilleVICAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneParkvilleVICAustralia
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental HealthParkvilleVICAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneParkvilleVICAustralia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental HealthParkvilleVICAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneParkvilleVICAustralia
| |
Collapse
|
28
|
Blasiak A, Gundlach AL, Hess G, Lewandowski MH. Interactions of Circadian Rhythmicity, Stress and Orexigenic Neuropeptide Systems: Implications for Food Intake Control. Front Neurosci 2017; 11:127. [PMID: 28373831 PMCID: PMC5357634 DOI: 10.3389/fnins.2017.00127] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/01/2017] [Indexed: 12/23/2022] Open
Abstract
Many physiological processes fluctuate throughout the day/night and daily fluctuations are observed in brain and peripheral levels of several hormones, neuropeptides and transmitters. In turn, mediators under the “control” of the “master biological clock” reciprocally influence its function. Dysregulation in the rhythmicity of hormone release as well as hormone receptor sensitivity and availability in different tissues, is a common risk-factor for multiple clinical conditions, including psychiatric and metabolic disorders. At the same time circadian rhythms remain in a strong, reciprocal interaction with the hypothalamic-pituitary-adrenal (HPA) axis. Recent findings point to a role of circadian disturbances and excessive stress in the development of obesity and related food consumption and metabolism abnormalities, which constitute a major health problem worldwide. Appetite, food intake and energy balance are under the influence of several brain neuropeptides, including the orexigenic agouti-related peptide, neuropeptide Y, orexin, melanin-concentrating hormone and relaxin-3. Importantly, orexigenic neuropeptide neurons remain under the control of the circadian timing system and are highly sensitive to various stressors, therefore the potential neuronal mechanisms through which disturbances in the daily rhythmicity and stress-related mediator levels contribute to food intake abnormalities rely on reciprocal interactions between these elements.
Collapse
Affiliation(s)
- Anna Blasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University Krakow, Poland
| | - Andrew L Gundlach
- Neuropeptides Division, The Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia; Florey Department of Neuroscience and Mental Health, The University of MelbourneParkville, VIC, Australia
| | - Grzegorz Hess
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian UniversityKrakow, Poland; Institute of Pharmacology, Polish Academy of SciencesKrakow, Poland
| | - Marian H Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University Krakow, Poland
| |
Collapse
|
29
|
Wiet S. Origins of Addiction Predictably Embedded in Childhood Trauma: A Neurobiological Review. Soa Chongsonyon Chongsin Uihak 2017. [DOI: 10.5765/jkacap.2017.28.1.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Susie Wiet
- General, Child and Adolescent Psychiatrist, Addiction Medicine, Holistic Treament for Psychiatry Trauma Addiction, University of Utah-Adjunct Volunteer Faculty, Salt Lake City, UT, USA
| |
Collapse
|
30
|
Ma S, Smith CM, Blasiak A, Gundlach AL. Distribution, physiology and pharmacology of relaxin-3/RXFP3 systems in brain. Br J Pharmacol 2016; 174:1034-1048. [PMID: 27774604 DOI: 10.1111/bph.13659] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 01/29/2023] Open
Abstract
Relaxin-3 is a member of a superfamily of structurally-related peptides that includes relaxin and insulin-like peptide hormones. Soon after the discovery of the relaxin-3 gene, relaxin-3 was identified as an abundant neuropeptide in brain with a distinctive topographical distribution within a small number of GABAergic neuron populations that is well conserved across species. Relaxin-3 is thought to exert its biological actions through a single class-A GPCR - relaxin-family peptide receptor 3 (RXFP3). Class-A comprises GPCRs for relaxin-3 and insulin-like peptide-5 and other peptides such as orexin and the monoamine transmitters. The RXFP3 receptor is selectively activated by relaxin-3, whereas insulin-like peptide-5 is the cognate ligand for the related RXFP4 receptor. Anatomical and pharmacological evidence obtained over the last decade supports a function of relaxin-3/RXFP3 systems in modulating responses to stress, anxiety-related and motivated behaviours, circadian rhythms, and learning and memory. Electrophysiological studies have identified the ability of RXFP3 agonists to directly hyperpolarise thalamic neurons in vitro, but there are no reports of direct cell signalling effects in vivo. This article provides an overview of earlier studies and highlights more recent research that implicates relaxin-3/RXFP3 neural network signalling in the integration of arousal, motivation, emotion and related cognition, and that has begun to identify the associated neural substrates and mechanisms. Future research directions to better elucidate the connectivity and function of different relaxin-3 neuron populations and their RXFP3-positive target neurons in major experimental species and humans are also identified. LINKED ARTICLES This article is part of a themed section on Recent Progress in the Understanding of Relaxin Family Peptides and their Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.10/issuetoc.
Collapse
Affiliation(s)
- Sherie Ma
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Craig M Smith
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Anna Blasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, Australia
| |
Collapse
|
31
|
Walker LC, Lawrence AJ. CRF and the nucleus incertus: a node for integration of stress signals. Nat Rev Neurosci 2016; 18:158. [DOI: 10.1038/nrn.2016.158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|