1
|
Caldwell M, Mendoza JC, Jiang XYZ, Alarcon C, Ayo-Jibunoh V, Louis S, Maronna D, Darwish R, Tomaio J, Mingote S, Yetnikoff L. Reorganization of dopamine circuitry in the anterior corpus callosum between early adolescence and adulthood in the mouse. Eur J Neurosci 2024; 59:2535-2548. [PMID: 38720367 DOI: 10.1111/ejn.16385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024]
Abstract
The maturation of forebrain dopamine circuitry occurs over multiple developmental periods, extending from early postnatal life until adulthood, with the precise timing of maturation defined by the target region. We recently demonstrated in the adult mouse brain that axon terminals arising from midbrain dopamine neurons innervate the anterior corpus callosum and that oligodendrocyte lineage cells in this white matter tract express dopamine receptor transcripts. Whether corpus callosal dopamine circuitry undergoes maturational changes between early adolescence and adulthood is unknown but may be relevant to understanding the dramatic micro- and macro-anatomical changes that occur in the corpus callosum of multiple species during early adolescence, including in the degree of myelination. Using quantitative neuroanatomy, we show that dopamine innervation in the forceps minor, but not the rostral genu, of the corpus callosum, is greater during early adolescence (P21) compared to adulthood (>P90) in wild-type mice. We further demonstrate with RNAscope that, as in the adult, Drd1 and Drd2 transcripts are expressed at higher levels in oligodendrocyte precursor cells (OPCs) and decline as these cells differentiate into oligodendrocytes. In addition, the number of OPCs that express Drd1 transcripts during early adolescence is double the number of those expressing the transcript during early adulthood. These data further implicate dopamine in axon myelination and myelin regulation. Moreover, because developmental (activity-independent) myelination peaks during early adolescence, with experience-dependent (activity-dependent) myelination greatest during early adulthood, our data suggest that potential roles of dopamine on callosal myelination shift between early adolescence and adulthood, from a developmental role to an experience-dependent role.
Collapse
Affiliation(s)
- Megan Caldwell
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, New York, NY, USA
| | - Josue Criollo Mendoza
- Department of Biology, College of Staten Island, City University of New York, Staten Island, NY, USA
| | - Xin Yan Zhu Jiang
- Department of Biology, College of Staten Island, City University of New York, Staten Island, NY, USA
| | - Colin Alarcon
- Department of Psychology, College of Staten Island, City University of New York, Staten Island, NY, USA
| | - Vanessa Ayo-Jibunoh
- Department of Psychology, College of Staten Island, City University of New York, Staten Island, NY, USA
| | - Shelby Louis
- Department of Psychology, College of Staten Island, City University of New York, Staten Island, NY, USA
| | - Daniel Maronna
- Department of Psychology, College of Staten Island, City University of New York, Staten Island, NY, USA
| | - Rania Darwish
- Department of Psychology, College of Staten Island, City University of New York, Staten Island, NY, USA
| | - Jaquelyn Tomaio
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, New York, NY, USA
- Neuroscience Initiative, Advanced Science Research Center, Graduate Center of The City University of New York, New York, NY, USA
| | - Susana Mingote
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, New York, NY, USA
- Neuroscience Initiative, Advanced Science Research Center, Graduate Center of The City University of New York, New York, NY, USA
| | - Leora Yetnikoff
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, New York, NY, USA
- Department of Psychology, College of Staten Island, City University of New York, Staten Island, NY, USA
| |
Collapse
|
2
|
Avramescu RG, Hernandez G, Flores C. Rewiring the future: drugs abused in adolescence may predispose to mental illness in adult life by altering dopamine axon growth. J Neural Transm (Vienna) 2024; 131:461-467. [PMID: 38036858 PMCID: PMC11055695 DOI: 10.1007/s00702-023-02722-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023]
Abstract
Adolescence is a period of increased exploration and novelty-seeking, which includes new social behaviors, as well as drug experimentation, often spurred on by peer pressure. This is unfortunate, as the immature state of the adolescent brain makes it particularly susceptible to the negative developmental impact of drug use. During adolescence, dopamine terminals, which have migrated from the ventral tegmental area, pause in the nucleus accumbens, before segregating by either forming local connections or growing towards the prefrontal cortex (PFC). This developmentally late and lengthy process renders adolescent dopamine axon pathfinding vulnerable to disruption by substance use. Indeed, exposure to stimulant drugs in adolescent male mice, but not females, triggers dopamine axons to mistarget the nucleus accumbens and to grow ectopically to the PFC. Some evidence suggests that at this novel site, the functional organization of the ectopic dopamine axons mirrors that of the intended target. The structural rewiring dysregulates local synaptic connectivity, leading to poor impulse control ability, deficits of which are a core symptom of substance-use disorders. In the present commentary, we argue that different substances of abuse induce dopamine mistargeting events with the off-target trajectory prescribed by the type of drug, leading to psychiatric outcomes later in life.
Collapse
Affiliation(s)
| | - Giovanni Hernandez
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Cecilia Flores
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada.
- Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, QC, Canada.
| |
Collapse
|
3
|
Pantoja-Urbán AH, Richer S, Mittermaier A, Giroux M, Nouel D, Hernandez G, Flores C. Gains and Losses: Resilience to Social Defeat Stress in Adolescent Female Mice. Biol Psychiatry 2024; 95:37-47. [PMID: 37355003 PMCID: PMC10996362 DOI: 10.1016/j.biopsych.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/29/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Adolescence is a unique period of psychosocial growth during which social adversity can negatively influence mental health trajectories. Understanding how adolescent social stress impacts males and females and why some individuals are particularly affected is becoming increasingly urgent. Social defeat stress models for adolescent male mice have been effective in reproducing some physical/psychological aspects of bullying. Designing a model suitable for females has proven challenging. METHODS We report a version of the adolescent male accelerated social defeat stress (AcSD) paradigm adapted for females. Early adolescent C57BL/6J female mice (N = 107) were exposed to our modified AcSD procedure twice a day for 4 days and categorized as resilient or susceptible based on a social interaction test 24 hours later. Mice were then assessed for changes in Netrin-1/DCC guidance cue expression in dopamine systems, for inhibitory control in adulthood using the Go/No-Go task, or for alterations in dopamine connectivity organization in the matured prefrontal cortex. RESULTS Most adolescent females showed protection against stress-induced social avoidance, but in adulthood, these resilient females developed inhibitory control deficits and showed diminution of prefrontal cortex presynaptic dopamine sites. Female mice classified as susceptible were protected against cognitive and dopaminergic alterations. AcSD did not alter Netrin-1/DCC in early adolescent females, contrary to previous findings with males. CONCLUSIONS Preserving prosocial behavior in adolescent females may be important for survival advantage but seems to come at the price of developing persistent cognitive and dopamine deficiencies. The female AcSD paradigm produced findings comparable to those found in males, allowing mechanistic investigation in both sexes.
Collapse
Affiliation(s)
- Andrea Harée Pantoja-Urbán
- Integrated Program in Neuroscience, McGill University, Montreal, Québec, Canada; Douglas Mental Health University Institute, Montreal, Québec, Canada
| | - Samuel Richer
- Integrated Program in Neuroscience, McGill University, Montreal, Québec, Canada; Douglas Mental Health University Institute, Montreal, Québec, Canada
| | | | - Michel Giroux
- Douglas Mental Health University Institute, Montreal, Québec, Canada
| | - Dominique Nouel
- Douglas Mental Health University Institute, Montreal, Québec, Canada
| | | | - Cecilia Flores
- Douglas Mental Health University Institute, Montreal, Québec, Canada; Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Montreal, Québec, Canada.
| |
Collapse
|
4
|
Reynolds LM, Hernandez G, MacGowan D, Popescu C, Nouel D, Cuesta S, Burke S, Savell KE, Zhao J, Restrepo-Lozano JM, Giroux M, Israel S, Orsini T, He S, Wodzinski M, Avramescu RG, Pokinko M, Epelbaum JG, Niu Z, Pantoja-Urbán AH, Trudeau LÉ, Kolb B, Day JJ, Flores C. Amphetamine disrupts dopamine axon growth in adolescence by a sex-specific mechanism in mice. Nat Commun 2023; 14:4035. [PMID: 37419977 PMCID: PMC10329029 DOI: 10.1038/s41467-023-39665-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/21/2023] [Indexed: 07/09/2023] Open
Abstract
Initiating drug use during adolescence increases the risk of developing addiction or other psychopathologies later in life, with long-term outcomes varying according to sex and exact timing of use. The cellular and molecular underpinnings explaining this differential sensitivity to detrimental drug effects remain unexplained. The Netrin-1/DCC guidance cue system segregates cortical and limbic dopamine pathways in adolescence. Here we show that amphetamine, by dysregulating Netrin-1/DCC signaling, triggers ectopic growth of mesolimbic dopamine axons to the prefrontal cortex, only in early-adolescent male mice, underlying a male-specific vulnerability to enduring cognitive deficits. In adolescent females, compensatory changes in Netrin-1 protect against the deleterious consequences of amphetamine on dopamine connectivity and cognitive outcomes. Netrin-1/DCC signaling functions as a molecular switch which can be differentially regulated by the same drug experience as function of an individual's sex and adolescent age, and lead to divergent long-term outcomes associated with vulnerable or resilient phenotypes.
Collapse
Affiliation(s)
- Lauren M Reynolds
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Montréal, QC, Canada
- Plasticité du Cerveau CNRS UMR8249, École supérieure de physique et de chimie industrielles de la Ville de Paris (ESPCI Paris), Paris, France
| | | | - Del MacGowan
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Christina Popescu
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Dominique Nouel
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Santiago Cuesta
- Douglas Mental Health University Institute, Montréal, QC, Canada
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Samuel Burke
- CNS Research Group, Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Katherine E Savell
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Janet Zhao
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Jose Maria Restrepo-Lozano
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Michel Giroux
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Sonia Israel
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Taylor Orsini
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Susan He
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | | | - Radu G Avramescu
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Matthew Pokinko
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Julia G Epelbaum
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Zhipeng Niu
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Andrea Harée Pantoja-Urbán
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Louis-Éric Trudeau
- CNS Research Group, Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Bryan Kolb
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Jeremy J Day
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cecilia Flores
- Douglas Mental Health University Institute, Montréal, QC, Canada.
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Montréal, Canada.
| |
Collapse
|
5
|
Seyednejad SA, Sartor GC. Noncoding RNA therapeutics for substance use disorder. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2022; 2:10807. [PMID: 36601439 PMCID: PMC9808746 DOI: 10.3389/adar.2022.10807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although noncoding RNAs (ncRNAs) have been shown to regulate maladaptive neuroadaptations that drive compulsive drug use, ncRNA-targeting therapeutics for substance use disorder (SUD) have yet to be clinically tested. Recent advances in RNA-based drugs have improved many therapeutic issues related to immune response, specificity, and delivery, leading to multiple successful clinical trials for other diseases. As the need for safe and effective treatments for SUD continues to grow, novel nucleic acid-based therapeutics represent an appealing approach to target ncRNA mechanisms in SUD. Here, we review ncRNA processes implicated in SUD, discuss recent therapeutic approaches for targeting ncRNAs, and highlight potential opportunities and challenges of ncRNA-targeting therapeutics for SUD.
Collapse
Affiliation(s)
- Seyed Afshin Seyednejad
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
- Connecticut Institute for the Brain and Cognitive Sciences (CT IBACS), Storrs, CT, United States
| | - Gregory C. Sartor
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
- Connecticut Institute for the Brain and Cognitive Sciences (CT IBACS), Storrs, CT, United States
| |
Collapse
|
6
|
Granata L, Gildawie KR, Ismail N, Brenhouse HC, Kopec AM. Immune signaling as a node of interaction between systems that sex-specifically develop during puberty and adolescence. Dev Cogn Neurosci 2022; 57:101143. [PMID: 35933922 PMCID: PMC9357835 DOI: 10.1016/j.dcn.2022.101143] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/08/2022] [Accepted: 08/01/2022] [Indexed: 01/18/2023] Open
Abstract
Adolescence is pivotal for neural and behavioral development across species. During this period, maturation occurs in several biological systems, the most well-recognized being activation of the hypothalamic-pituitary-gonadal axis marking pubertal onset. Increasing comparative studies of sex differences have enriched our understanding of systems integration during neurodevelopment. In recent years, immune signaling has emerged as a key node of interaction between a variety of biological signaling processes. Herein, we review the age- and sex-specific changes that occur in neural, hypothalamic-pituitary, and microbiome systems during adolescence. We then describe how immune signaling interacts with these systems, and review recent preclinical evidence indicating that immune signaling may play a central role in integrating changes in their typical and atypical development during adolescence. Finally, we discuss the translational relevance of these preclinical studies to human health and wellness.
Collapse
Affiliation(s)
- Lauren Granata
- Northeastern University, 125 Nightingale Hall, Boston, MA 02115, USA.
| | - Kelsea R Gildawie
- Tufts University Cummings School of Veterinary Medicine, 200 Westboro Rd. North Grafton, MA 01536, USA.
| | - Nafissa Ismail
- University of Ottawa, 136 Jean-Jacques Lussier, Vanier Hall 2076A, Ottawa, ON K1N 6N5 Canada.
| | | | - Ashley M Kopec
- Albany Medical College, 43 New Scotland Ave., Albany, NY 12208, USA.
| |
Collapse
|
7
|
Vázquez-Ágredos A, Gámiz F, Gallo M. MicroRNA Regulation of the Environmental Impact on Adolescent Neurobehavioral Development: A Systematic Review. Front Cell Neurosci 2022; 16:956609. [PMID: 35936504 PMCID: PMC9352948 DOI: 10.3389/fncel.2022.956609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Adolescence is a late developmental period marked by pronounced reorganization of brain networks in which epigenetic mechanisms play a fundamental role. This brain remodeling is associated with a peculiar behavior characterized by novelty seeking and risky activities such as alcohol and drug abuse, which is associated with increased susceptibility to stress. Hence, adolescence is a vulnerable postnatal period since short- and long-term deleterious effects of alcohol drinking and drug abuse are a serious worldwide public health concern. Among several other consequences, it has been proposed that exposure to stress, alcohol, or other drugs disrupts epigenetic mechanisms mediated by small non-coding microRNAs (miRNAs). During adolescence, this modifies the expression of a variety of genes involved in neurodevelopmental processes such as proliferation, differentiation, synaptogenesis, neural plasticity, and apoptosis. Hence, the effect of miRNAs dysregulation during adolescence might contribute to a long-term impact on brain function. This systematic review focuses on the miRNA expression patterns in the adolescent rodent brain with special interest in the impact of stress and drugs such as amphetamine, cocaine, nicotine, cannabis, and ketamine. The results point to a relevant and complex role of miRNAs in the regulation of the molecular processes involved in adolescent brain development as part of a dynamic epigenetic network sensitive to environmental events with distinctive changes across adolescence. Several miRNAs have been assessed evidencing changing expression profiles during the adolescent transition which are altered by exposure to stress and drug abuse. Since this is an emerging rapidly growing field, updating the present knowledge will contribute to improving our understanding of the epigenetic regulation mechanisms involved in the neurodevelopmental changes responsible for adolescent behavior. It can be expected that increased knowledge of the molecular mechanisms mediating the effect of environmental threats during the adolescent critical developmental period will improve understanding of psychiatric and addictive disorders emerging at this stage.
Collapse
Affiliation(s)
- Ana Vázquez-Ágredos
- Department of Psychobiology, Institute of Neurosciences (CIBM), University of Granada, Granada, Spain
| | - Fernando Gámiz
- Department of Psychobiology, Institute of Neurosciences (CIBM), University of Granada, Granada, Spain
| | - Milagros Gallo
- Department of Psychobiology, Institute of Neurosciences (CIBM), University of Granada, Granada, Spain
| |
Collapse
|
8
|
Transsynaptic cerebellin 4-neogenin 1 signaling mediates LTP in the mouse dentate gyrus. Proc Natl Acad Sci U S A 2022; 119:e2123421119. [PMID: 35544694 DOI: 10.1073/pnas.2123421119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
SignificanceSynapses are controlled by transsynaptic adhesion complexes that mediate bidirectional signaling between pre- and postsynaptic compartments. Long-term potentiation (LTP) of synaptic transmission is thought to enable synaptic modifications during memory formation, but the signaling mechanisms involved remain poorly understood. We show that binding of cerebellin-4 (Cbln4), a secreted ligand of presynaptic neurexin adhesion molecules, to neogenin-1, a postsynaptic surface protein known as a developmental netrin receptor, is essential for normal LTP at entorhinal cortex→dentate gyrus synapses in mice. Cbln4 and neogenin-1 are dispensable for basal synaptic transmission and not involved in establishing synaptic connections as such. Our data identify a netrin receptor as a postsynaptic organizer of synaptic plasticity that collaborates specifically with the presynaptic neurexin-ligand Cbln4.
Collapse
|
9
|
Restrepo-Lozano JM, Pokhvisneva I, Wang Z, Patel S, Meaney MJ, Silveira PP, Flores C. Corticolimbic DCC gene co-expression networks as predictors of impulsivity in children. Mol Psychiatry 2022; 27:2742-2750. [PMID: 35388180 PMCID: PMC9156406 DOI: 10.1038/s41380-022-01533-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/04/2022] [Accepted: 03/16/2022] [Indexed: 12/16/2022]
Abstract
Inhibitory control deficits are prevalent in multiple neuropsychiatric conditions. The communication- as well as the connectivity- between corticolimbic regions of the brain are fundamental for eliciting inhibitory control behaviors, but early markers of vulnerability to this behavioral trait are yet to be discovered. The gradual maturation of the prefrontal cortex (PFC), in particular of the mesocortical dopamine innervation, mirrors the protracted development of inhibitory control; both are present early in life, but reach full maturation by early adulthood. Evidence suggests the involvement of the Netrin-1/DCC signaling pathway and its associated gene networks in corticolimbic development. Here we investigated whether an expression-based polygenic score (ePRS) based on corticolimbic-specific DCC gene co-expression networks associates with impulsivity-related phenotypes in community samples of children. We found that lower ePRS scores associate with higher measurements of impulsive choice in 6-year-old children tested in the Information Sampling Task and with impulsive action in 6- and 10-year-old children tested in the Stop Signal Task. We also found the ePRS to be a better overall predictor of impulsivity when compared to a conventional PRS score comparable in size to the ePRS (4515 SNPs in our discovery cohort) and derived from the latest GWAS for ADHD. We propose that the corticolimbic DCC-ePRS can serve as a novel type of marker for impulsivity-related phenotypes in children. By adopting a systems biology approach based on gene co-expression networks and genotype-gene expression (rather than genotype-disease) associations, these results further validate our methodology to construct polygenic scores linked to the overall biological function of tissue-specific gene networks.
Collapse
Affiliation(s)
- Jose M. Restrepo-Lozano
- grid.14709.3b0000 0004 1936 8649Integrated Program in Neuroscience, McGill University, Montreal, QC Canada ,grid.412078.80000 0001 2353 5268Douglas Mental Health University Institute, Montreal, QC Canada
| | - Irina Pokhvisneva
- grid.412078.80000 0001 2353 5268Douglas Mental Health University Institute, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, QC Canada
| | - Zihan Wang
- grid.412078.80000 0001 2353 5268Douglas Mental Health University Institute, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, QC Canada
| | - Sachin Patel
- grid.412078.80000 0001 2353 5268Douglas Mental Health University Institute, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, QC Canada
| | - Michael J. Meaney
- grid.412078.80000 0001 2353 5268Douglas Mental Health University Institute, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC Canada ,grid.452264.30000 0004 0530 269XSingapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine, Singapore, Singapore
| | - Patricia P. Silveira
- grid.412078.80000 0001 2353 5268Douglas Mental Health University Institute, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC Canada
| | - Cecilia Flores
- Douglas Mental Health University Institute, Montreal, QC, Canada. .,Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada. .,Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
10
|
Vassilev P, Fonseca E, Hernandez G, Pantoja-Urban AH, Giroux M, Nouel D, Van Leer E, Flores C. Custom-Built Operant Conditioning Setup for Calcium Imaging and Cognitive Testing in Freely Moving Mice. eNeuro 2022; 9:ENEURO.0430-21.2022. [PMID: 35105659 PMCID: PMC8856704 DOI: 10.1523/eneuro.0430-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 11/21/2022] Open
Abstract
Operant chambers are widely used in animal research to study cognition, motivation, and learning processes. Paired with the rapidly developing technologies for brain imaging and manipulations of brain activity, operant conditioning chambers are a powerful tool for neuroscience research. The behavioral testing and imaging setups that are commercially available are often quite costly. Here, we present a custom-built operant chamber that can be constructed in a few days by an unexperienced user with relatively inexpensive, widely available materials. The advantages of our operant setup compared with other open-source and closed-source solutions are its relatively low cost, its support of complex behavioral tasks, its user-friendly setup, and its validated functionality with video imaging of behavior and calcium imaging using the UCLA Miniscope. Using this setup, we replicate our previously published findings showing that mice exposed to social defeat stress in adolescence have inhibitory control impairments in the Go/No-Go task when they reach adulthood. We also present calcium imaging data of medial prefrontal cortex (mPFC) neuronal activity acquired during Go/No-Go testing in freely moving mice and show that neuronal population activity increases from day 1 to day 14 of the task. We propose that our operant chamber is a cheaper alternative to its commercially available counterparts and offers a better balance between versatility and user-friendly setup than other open-source alternatives.
Collapse
Affiliation(s)
- Philip Vassilev
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Montréal, QC, H3A 1A1, Canada
- Douglas Mental Health University Institute, Montreal, QC, H4H 1R3, Canada
| | - Esmeralda Fonseca
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540
| | - Giovanni Hernandez
- Douglas Mental Health University Institute, Montreal, QC, H4H 1R3, Canada
| | | | - Michel Giroux
- Douglas Mental Health University Institute, Montreal, QC, H4H 1R3, Canada
| | - Dominique Nouel
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540
| | - Elise Van Leer
- Douglas Mental Health University Institute, Montreal, QC, H4H 1R3, Canada
| | - Cecilia Flores
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Montréal, QC, H3A 1A1, Canada
- Douglas Mental Health University Institute, Montreal, QC, H4H 1R3, Canada
| |
Collapse
|
11
|
Reynolds LM, Flores C. Mesocorticolimbic Dopamine Pathways Across Adolescence: Diversity in Development. Front Neural Circuits 2021; 15:735625. [PMID: 34566584 PMCID: PMC8456011 DOI: 10.3389/fncir.2021.735625] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/17/2021] [Indexed: 12/26/2022] Open
Abstract
Mesocorticolimbic dopamine circuity undergoes a protracted maturation during adolescent life. Stable adult levels of behavioral functioning in reward, motivational, and cognitive domains are established as these pathways are refined, however, their extended developmental window also leaves them vulnerable to perturbation by environmental factors. In this review, we highlight recent advances in understanding the mechanisms underlying dopamine pathway development in the adolescent brain, and how the environment influences these processes to establish or disrupt neurocircuit diversity. We further integrate these recent studies into the larger historical framework of anatomical and neurochemical changes occurring during adolescence in the mesocorticolimbic dopamine system. While dopamine neuron heterogeneity is increasingly appreciated at molecular, physiological, and anatomical levels, we suggest that a developmental facet may play a key role in establishing vulnerability or resilience to environmental stimuli and experience in distinct dopamine circuits, shifting the balance between healthy brain development and susceptibility to psychiatric disease.
Collapse
Affiliation(s)
- Lauren M Reynolds
- Plasticité du Cerveau CNRS UMR8249, École supérieure de physique et de chimie industrielles de la Ville de Paris (ESPCI Paris), Paris, France.,Neuroscience Paris Seine CNRS UMR 8246 INSERM U1130, Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Cecilia Flores
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Douglas Mental Health University Institute, Montréal, QC, Canada
| |
Collapse
|
12
|
Vassilev P, Pantoja-Urban AH, Giroux M, Nouel D, Hernandez G, Orsini T, Flores C. Unique effects of social defeat stress in adolescent male mice on the Netrin-1/DCC pathway, prefrontal cortex dopamine and cognition (Social stress in adolescent vs. adult male mice). eNeuro 2021; 8:ENEURO.0045-21.2021. [PMID: 33619036 PMCID: PMC8051112 DOI: 10.1523/eneuro.0045-21.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
For some individuals, social stress is a risk factor for psychiatric disorders characterised by adolescent onset, prefrontal cortex (PFC) dysfunction and cognitive impairments. Social stress may be particularly harmful during adolescence when dopamine (DA) axons are still growing to the PFC, rendering them sensitive to environmental influences. The guidance cue Netrin-1 and its receptor, DCC, coordinate to control mesocorticolimbic DA axon targeting and growth during this age. Here we adapted the accelerated social defeat (AcSD) paradigm to expose male mice to social stress in either adolescence or adulthood and categorised them as "resilient" or "susceptible" based on social avoidance behaviour. We examined whether stress would alter the expression of DCC and Netrin-1 in mesolimbic dopamine regions and would have enduring consequences on PFC dopamine connectivity and cognition. While in adolescence the majority of mice are resilient but exhibit risk-taking behaviour, AcSD in adulthood leads to a majority of susceptible mice without altering anxiety-like traits. In adolescent, but not adult mice, AcSD dysregulates DCC and Netrin-1 expression in mesolimbic DA regions. These molecular changes in adolescent mice are accompanied by changes in PFC DA connectivity. Following AcSD in adulthood, cognitive function remains unaffected, but all mice exposed to AcSD in adolescence show deficits in inhibitory control when they reach adulthood. These findings indicate that exposure to AcSD in adolescence vs. adulthood has substantially different effects on brain and behaviour and that stress-induced social avoidance in adolescence does not predict vulnerability to deficits in cognitive performance.Significance statement During adolescence, dopamine circuitries undergo maturational changes which may render them particularly vulnerable to social stress. While social stress can be detrimental to adolescents and adults, it may engage different mechanisms and impact different domains, depending on age. The accelerated social defeat (AcSD) model implemented here allows exposing adolescent and adult male mice to comparable social stress levels. AcSD in adulthood leads to a majority of socially avoidant mice. However, the predominance of AcSD-exposed adolescent mice does not develop social avoidance, and these resilient mice show risk-taking behaviour. Nonetheless, in adolescence only, AcSD dysregulates Netrin-1/DCC expression in mesolimbic dopamine regions, possibly disrupting mesocortical dopamine and cognition. The unique adolescent responsiveness to stress may explain increased psychopathology risk at this age.
Collapse
Affiliation(s)
- Philip Vassilev
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Montreal, QC, Canada
| | | | - Michel Giroux
- Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Dominique Nouel
- Douglas Mental Health University Institute, Montreal, QC, Canada
| | | | - Taylor Orsini
- Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Cecilia Flores
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada.
- Douglas Mental Health University Institute, Montreal, QC, Canada
| |
Collapse
|
13
|
Torres-Berrío A, Hernandez G, Nestler EJ, Flores C. The Netrin-1/DCC Guidance Cue Pathway as a Molecular Target in Depression: Translational Evidence. Biol Psychiatry 2020; 88:611-624. [PMID: 32593422 PMCID: PMC7529861 DOI: 10.1016/j.biopsych.2020.04.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/14/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022]
Abstract
The Netrin-1/DCC guidance cue pathway plays a critical role in guiding growing axons toward the prefrontal cortex during adolescence and in the maturational organization and adult plasticity of prefrontal cortex connectivity. In this review, we put forward the idea that alterations in prefrontal cortex architecture and function, which are intrinsically linked to the development of major depressive disorder, originate in part from the dysregulation of the Netrin-1/DCC pathway by a mechanism that involves microRNA-218. We discuss evidence derived from mouse models of stress and from human postmortem brain and genome-wide association studies indicating an association between the Netrin-1/DCC pathway and major depressive disorder. We propose a potential role of circulating microRNA-218 as a biomarker of stress vulnerability and major depressive disorder.
Collapse
Affiliation(s)
- Angélica Torres-Berrío
- Integrated Program in Neuroscience, Montreal, Quebec, Canada; Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Cecilia Flores
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada.
| |
Collapse
|
14
|
Areal LB, Blakely RD. Neurobehavioral changes arising from early life dopamine signaling perturbations. Neurochem Int 2020; 137:104747. [PMID: 32325191 PMCID: PMC7261509 DOI: 10.1016/j.neuint.2020.104747] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022]
Abstract
Dopamine (DA) signaling is critical to the modulation of multiple brain functions including locomotion, reinforcement, attention and cognition. The literature provides strong evidence that altered DA availability and actions can impact normal neurodevelopment, with both early and enduring consequences on anatomy, physiology and behavior. An appreciation for the developmental contributions of DA signaling to brain development is needed to guide efforts to preclude and remedy neurobehavioral disorders, such as attention-deficit/hyperactivity disorder, addiction, bipolar disorder, schizophrenia and autism spectrum disorder, each of which exhibits links to DA via genetic, cellular and/or pharmacological findings. In this review, we highlight research pursued in preclinical models that use genetic and pharmacological approaches to manipulate DA signaling at sensitive developmental stages, leading to changes at molecular, circuit and/or behavioral levels. We discuss how these alterations can be aligned with traits displayed by neuropsychiatric diseases. Lastly, we review human studies that evaluate contributions of developmental perturbations of DA systems to increased risk for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Lorena B Areal
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Randy D Blakely
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, 33458, USA; Brain Institute, Florida Atlantic University, Jupiter, FL, 33458, USA.
| |
Collapse
|
15
|
Cuesta S, Nouel D, Reynolds LM, Morgunova A, Torres-Berrío A, White A, Hernandez G, Cooper HM, Flores C. Dopamine Axon Targeting in the Nucleus Accumbens in Adolescence Requires Netrin-1. Front Cell Dev Biol 2020; 8:487. [PMID: 32714924 PMCID: PMC7344302 DOI: 10.3389/fcell.2020.00487] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022] Open
Abstract
The fine arrangement of neuronal connectivity during development involves the coordinated action of guidance cues and their receptors. In adolescence, the dopamine circuitry is still developing, with mesolimbic dopamine axons undergoing target-recognition events in the nucleus accumbens (NAcc), while mesocortical projections continue to grow toward the prefrontal cortex (PFC) until adulthood. This segregation of mesolimbic versus mesocortical dopamine pathways is mediated by the guidance cue receptor DCC, which signals dopamine axons intended to innervate the NAcc to recognize this region as their final target. Whether DCC-dependent mesolimbic dopamine axon targeting in adolescence requires the action of its ligand, Netrin-1, is unknown. Here we combined shRNA strategies, quantitative analysis of pre- and post-synaptic markers of neuronal connectivity, and pharmacological manipulations to address this question. Similar to DCC levels in the ventral tegmental area, Netrin-1 expression in the NAcc is dynamic across postnatal life, transitioning from high to low expression across adolescence. Silencing Netrin-1 in the NAcc in adolescence results in an increase in the expanse of the dopamine input to the PFC in adulthood, with a corresponding increase in the number of presynaptic dopamine sites. This manipulation also results in altered dendritic spine density and morphology of medium spiny neurons in the NAcc in adulthood and in reduced sensitivity to the behavioral activating effects of the stimulant drug of abuse, amphetamine. These cellular and behavioral effects mirror those induced by Dcc haploinsufficiency within dopamine neurons in adolescence. Dopamine targeting in adolescence requires the complementary interaction between DCC receptors in mesolimbic dopamine axons and Netrin-1 in the NAcc. Factors regulating either DCC or Netrin-1 in adolescence can disrupt mesocorticolimbic dopamine development, rendering vulnerability or protection to phenotypes associated with psychiatric disorders.
Collapse
Affiliation(s)
- Santiago Cuesta
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Dominique Nouel
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Lauren M Reynolds
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Alice Morgunova
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Angélica Torres-Berrío
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Amanda White
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Giovanni Hernandez
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Helen M Cooper
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Cecilia Flores
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
16
|
Vassilev P, Salim M, Popescu C, Flores C, Hernandez G. Low-cost conditioned place preference setup including video recording and analysis of behaviour. MethodsX 2020; 7:100899. [PMID: 32405466 PMCID: PMC7210589 DOI: 10.1016/j.mex.2020.100899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/16/2020] [Indexed: 11/17/2022] Open
Abstract
The conditioned place preference (CPP) paradigm is widely used in rodent research to test the rewarding and aversive properties of different stimuli. Despite its relative simplicity, commercially available CPP systems are often costly. Here we describe the construction of a CPP setup and a behavioral data analysis pipeline incorporating: • a CPP box which can be built in a single day by using widely available and affordable materials. • an open source computer system for data acquisition (based on Raspberry Pi). • a freely available behavioural analysis software. The behavioural analysis allows for measurement of both locomotor activity and time spent in a zone of interest. Including all components, our setup costs ~1/10 of the cost of the least expensive commercially available CPP boxes alone (not including data acquisition and analysis). We validated the setup by showing that a 4 mg/kg dose of amphetamine increases locomotor activity acutely in adolescent male mice and induces conditioned preference for the drug-paired compartment in the CPP test.
Collapse
|
17
|
Vosberg DE, Leyton M, Flores C. The Netrin-1/DCC guidance system: dopamine pathway maturation and psychiatric disorders emerging in adolescence. Mol Psychiatry 2020; 25:297-307. [PMID: 31659271 PMCID: PMC6974431 DOI: 10.1038/s41380-019-0561-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/01/2019] [Accepted: 08/19/2019] [Indexed: 02/02/2023]
Abstract
Axon guidance molecules direct growing axons toward their targets, assembling the intricate wiring of the nervous system. One of these molecules, Netrin-1, and its receptor, DCC (deleted in colorectal cancer), has profound effects, in laboratory animals, on the adolescent expansion of mesocorticolimbic pathways, particularly dopamine. Now, a rapidly growing literature suggests that (1) these same alterations could occur in humans, and (2) genetic variants in Netrin-1 and DCC are associated with depression, schizophrenia, and substance use. Together, these findings provide compelling evidence that Netrin-1 and DCC influence mesocorticolimbic-related psychopathological states that emerge during adolescence.
Collapse
Affiliation(s)
- Daniel E Vosberg
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience (IPN), McGill University, Montreal, QC, Canada
- Population Neuroscience and Developmental Neuroimaging, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Marco Leyton
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Integrated Program in Neuroscience (IPN), McGill University, Montreal, QC, Canada.
- Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
| | - Cecilia Flores
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Integrated Program in Neuroscience (IPN), McGill University, Montreal, QC, Canada.
- Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Douglas Mental Health University Institute, Montreal, QC, Canada.
| |
Collapse
|