1
|
Zhu J, Hou Y, Li W, Wang X, Li F, Li N, Hu Y, Wang X, Ge SN. miR-181a expressed in the dorsal hippocampus regulates the reinstatement of cocaine CPP by targeting PRKAA1. Behav Brain Res 2024; 471:115097. [PMID: 38878971 DOI: 10.1016/j.bbr.2024.115097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Neuroadaptive changes in the hippocampus underlie addictive-like behaviors in humans or animals chronically exposed to cocaine. miR-181a, which is widely expressed in the hippocampus, acts as a regulator for synaptic plasticity, while its role in drug reinstatement is unclear. In this study, we found that miR-181a regulates the reinstatement of cocaine conditioned place preference(CPP), and altered miR-181a expression changes the complexity of hippocampal neurons and the density and morphology of dendritic spines. By using a luciferase gene reporter, we found that miR-181a targets PRKAA1, an upstream molecule in the mTOR pathway. High miR-181a expression reduced the expression of the PRKAA1 mRNA and promoted mTOR activity and the reinstatement of cocaine CPP. These results indicate that miR-181a is involved in neuronal structural plasticity induced by reinstatement of cocaine CPP, possibly through the activation of the mTOR signaling pathway. This study provides new microRNA targets and a theoretical foundation for the prevention of cocaine-induced reinstatement.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China; Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi 712046, China
| | - Yueru Hou
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China; Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi 712046, China
| | - Wan Li
- Xi'an Technological University, Xi'an 710021, China
| | - Xin Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Fei Li
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Nan Li
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Yan Hu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Xuelian Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China.
| | - Shun-Nan Ge
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China.
| |
Collapse
|
2
|
Sun M, Zheng Q, Wang L, Wang R, Cui H, Zhang X, Xu C, Yin F, Yan H, Qiao X. Alcohol Consumption During Adolescence Alters the Cognitive Function in Adult Male Mice by Persistently Increasing Levels of DUSP6. Mol Neurobiol 2024; 61:3161-3178. [PMID: 37978157 DOI: 10.1007/s12035-023-03794-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
Binge alcohol drinking during adolescence has long-term effects on the adult brain that alter brain structure and behaviors, but the underlying mechanisms remain poorly understood. Extracellular signal-regulated kinase (ERK) is involved in the synaptic plasticity and pathological brain injury by regulating the expression of cyclic adenosine monophosphate response element binding protein (CREB) and brain-derived neurotrophic factor (BDNF). Dual-specificity phosphatase 6 (DUSP6) is a critical effector that dephosphorylates ERK1/2 to control the basal tone, amplitude, and duration of ERK signaling. To explore DUSP6 as a regulator of ERK signaling in the mPFC and its impact on long-term effects of alcohol, a male mouse model of adolescent intermittent alcohol (AIA) exposure was established. Behavioral experiments showed that AIA did not affect anxiety-like behavior or sociability in adulthood, but significantly damaged new object recognition and social recognition memory. Molecular studies further found that AIA reduced the levels of pERK-pCREB-BDNF-PSD95/NR2A involved in synaptic plasticity, while DUSP6 was significantly increased. Intra-mPFC infusion of AAV-DUSP6-shRNA restored the dendritic spine density and postsynaptic density thickness by reversing the level of p-ERK and its downstream molecular expression, and ultimately repaired adult cognitive impairment caused by chronic alcohol exposure during adolescence. These findings indicate that AIA exposure inhibits ERK-CREB-BDNF-PSD95/NR2A by increasing DUSP6 in the mPFC in adulthood that may be associated with long-lasting cognitive deficits.
Collapse
Affiliation(s)
- Mizhu Sun
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, No.100, Science Avenue, Zhengzhou, 450001, Henan, China
| | - Qingmeng Zheng
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, No.100, Science Avenue, Zhengzhou, 450001, Henan, China
| | - Lulu Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, No.100, Science Avenue, Zhengzhou, 450001, Henan, China
| | - Runzhi Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, No.100, Science Avenue, Zhengzhou, 450001, Henan, China
| | - Hengzhen Cui
- Basic Medicine, School of Medicine, Zhengzhou University, No.100, Science Avenue, Zhengzhou, 450001, Henan, China
| | - Xinlei Zhang
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, No.100, Science Avenue, Zhengzhou, 450001, Henan, China
| | - Chen Xu
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, No.100, Science Avenue, Zhengzhou, 450001, Henan, China
| | - Fangyuan Yin
- College of Forensic Science, School of Medicine, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Hongtao Yan
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, No.100, Science Avenue, Zhengzhou, 450001, Henan, China
| | - Xiaomeng Qiao
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, No.100, Science Avenue, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
3
|
Bernstein DL, Lewandowski SI, Besada C, Place D, España RA, Mortensen OV. Inactivation of ERK1/2 Signaling in Dopaminergic Neurons by Map Kinase Phosphatase MKP3 Regulates Dopamine Signaling and Motivation for Cocaine. J Neurosci 2024; 44:e0727232023. [PMID: 38296649 PMCID: PMC10860627 DOI: 10.1523/jneurosci.0727-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 10/27/2023] [Accepted: 11/28/2023] [Indexed: 02/02/2024] Open
Abstract
The mesolimbic dopamine system is a crucial component of reward and reinforcement processing, including the psychotropic effects of drugs of abuse such as cocaine. Drugs of abuse can activate intracellular signaling cascades that engender long-term molecular changes to brain reward circuitry, which can promote further drug use. However, gaps remain about how the activity of these signaling pathways, such as ERK1/2 signaling, can affect cocaine-induced neurochemical plasticity and cocaine-associated behaviors specifically within dopaminergic cells. To enable specific modulation of ERK1/2 signaling in dopaminergic neurons of the ventral tegmental area, we utilize a viral construct that Cre dependently expresses Map kinase phosphatase 3 (MKP3) to reduce the activity of ERK1/2, in combination with transgenic rats that express Cre in tyrosine hydroxylase (TH)-positive cells. Following viral transfection, we found an increase in the surface expression of the dopamine transporter (DAT), a protein associated with the regulation of dopamine signaling, dopamine transmission, and cocaine-associated behavior. We found that inactivation of ERK1/2 reduced post-translational phosphorylation of the DAT, attenuated the ability of cocaine to inhibit the DAT, and decreased motivation for cocaine without affecting associative learning as tested by conditioned place preference. Together, these results indicate that ERK1/2 signaling plays a critical role in shaping the dopamine response to cocaine and may provide additional insights into the function of dopaminergic neurons. Further, these findings lay important groundwork toward the assessment of how signaling pathways and their downstream effectors influence dopamine transmission and could ultimately provide therapeutic targets for treating cocaine use disorders.
Collapse
Affiliation(s)
- David L Bernstein
- Departments of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Stacia I Lewandowski
- Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Christina Besada
- Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Delaney Place
- Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Rodrigo A España
- Departments of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Ole V Mortensen
- Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| |
Collapse
|
4
|
Gaspar RS, Delafiori J, Zuccoli G, Carregari VC, Prado TP, Morari J, Sidarta-Oliveira D, Solon CS, Catharino RR, Araujo EP, Martins-de-Souza D, Velloso LA. Exogenous succinate impacts mouse brown adipose tissue mitochondrial proteome and potentiates body mass reduction induced by liraglutide. Am J Physiol Endocrinol Metab 2023; 324:E226-E240. [PMID: 36724126 DOI: 10.1152/ajpendo.00231.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Obesity is one of the leading noncommunicable diseases in the world. Despite intense efforts to develop strategies to prevent and treat obesity, its prevalence continues to rise worldwide. A recent study has shown that the tricarboxylic acid intermediate succinate increases body energy expenditure by promoting brown adipose tissue thermogenesis through the activation of uncoupling protein-1; this has generated interest surrounding its potential usefulness as an approach to treat obesity. It is currently unknown how succinate impacts brown adipose tissue protein expression, and how exogenous succinate impacts body mass reduction promoted by a drug approved to treat human obesity, the glucagon-like-1 receptor agonist, liraglutide. In the first part of this study, we used bottom-up shotgun proteomics to determine the acute impact of exogenous succinate on the brown adipose tissue. We show that succinate rapidly affects the expression of 177 brown adipose tissue proteins, which are mostly associated with mitochondrial structure and function. In the second part of this study, we performed a short-term preclinical pharmacological intervention, treating diet-induced obese mice with a combination of exogenous succinate and liraglutide. We show that the combination was more efficient than liraglutide alone in promoting body mass reduction, food energy efficiency reduction, food intake reduction, and an increase in body temperature. Using serum metabolomics analysis, we showed that succinate, but not liraglutide, promoted a significant increase in the blood levels of several medium and long-chain fatty acids. In conclusion, exogenous succinate promotes rapid changes in brown adipose tissue mitochondrial proteins, and when used in association with liraglutide, increases body mass reduction.NEW & NOTEWORTHY Exogenous succinate induces major changes in brown adipose tissue protein expression affecting particularly mitochondrial respiration and structural proteins. When given exogenously in drinking water, succinate mitigates body mass gain in a rodent model of diet-induced obesity; in addition, when given in association with the glucagon-like peptide-1 receptor agonist, liraglutide, succinate increases body mass reduction promoted by liraglutide alone.
Collapse
Affiliation(s)
- Rodrigo S Gaspar
- Laboratory of Cell Signaling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil
| | - Jeany Delafiori
- INNOVARE Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Giuliana Zuccoli
- Laboratory of Neuroproteomics, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | - Thais P Prado
- Laboratory of Cell Signaling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Joseane Morari
- Laboratory of Cell Signaling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Davi Sidarta-Oliveira
- Laboratory of Cell Signaling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Carina S Solon
- Laboratory of Cell Signaling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Rodrigo R Catharino
- INNOVARE Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Eliana P Araujo
- Laboratory of Cell Signaling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Institute of Biology, University of Campinas, Campinas, Brazil
- D'Or Institute for Research and Education, São Paulo, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, Brazil
- National Institute of Biomarkers in Neuropsychiatry, National Council for Scientific and Technological Development, São Paulo, Brazil
| | - Licio A Velloso
- Laboratory of Cell Signaling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Yin F, Zhang J, Liu Y, Zhai Y, Luo D, Yan X, Feng Y, Lai J, Zheng H, Wei S, Wang Y. Basolateral Amygdala SIRT1/PGC-1α Mitochondrial Biogenesis Pathway Mediates Morphine Withdrawal-Associated Anxiety in Mice. Int J Neuropsychopharmacol 2022; 25:774-785. [PMID: 35797010 PMCID: PMC9515130 DOI: 10.1093/ijnp/pyac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/08/2022] [Accepted: 07/06/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Anxiety is a negative emotion that contributes to craving and relapse during drug withdrawal. Sirtuins 1 (SIRT1) has been reported to be critical in both negative emotions and drug addiction. However, it remains incompletely elucidated whether SIRT1 is involved in morphine withdrawal-associated anxiety. METHODS We established a mouse model of anxiety-like behaviors induced by morphine withdrawal and then detected neuronal activity with immunofluorescence and mitochondrial morphology with electron microscopy, mitochondrial DNA contents with quantitative real-time PCR, and mitochondrial function with the ATP content detection kit and the Mitochondrial Complex IV Activity Kit in the basolateral amygdala (BLA). The mitochondrial molecules were detected by western blot. Then we used virus-mediated downregulation and overexpression of SIRT1 in BLA to investigate the effect of SIRT1 on anxiety and mitochondrial function. Finally, we examined the effects of pharmacological inhibition of SIRT1 on anxiety and mitochondrial function. RESULTS We found that BLA neuronal activity, mitochondrial function, and mtDNA content were significantly higher in morphine withdrawal mice. Furthermore, the expression levels of mitochondrial molecules increased in BLA cells. Virus-mediated downregulation of SIRT1 in BLA prevented anxiety-like behaviors in morphine withdrawal mice, whereas overexpression of SIRT1 in BLA facilitated anxiety-like behaviors in untreated mice through the SIRT1/ peroxisome proliferator activated receptor gamma coactivator 1-alpha pathway. Intra-BLA infusion of selective SIRT1 antagonist EX527 effectively ameliorated anxiety-like behaviors and mitochondrial dysfunction in mice with morphine withdrawal. CONCLUSION Our results implicate a causal role for SIRT1 in the regulation of anxiety through actions on mitochondrial biogenesis. Inhibitors targeting SIRT1 may have therapeutic potential for the treatment of opioid withdrawal-associated anxiety.
Collapse
Affiliation(s)
- Fangyuan Yin
- College of Forensic Science, School of Medicine, Xi’an Jiaotong University, China
| | - Jinyu Zhang
- College of Forensic Science, School of Medicine, Xi’an Jiaotong University, China
| | - Yige Liu
- College of Forensic Science, School of Medicine, Xi’an Jiaotong University, China
| | - Yifang Zhai
- Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Danlei Luo
- Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xinyue Yan
- College of Forensic Science, School of Medicine, Xi’an Jiaotong University, China
| | - Yue Feng
- College of Forensic Science, School of Medicine, Xi’an Jiaotong University, China
| | - Jianghua Lai
- College of Forensic Science, School of Medicine, Xi’an Jiaotong University, China
| | - Haibo Zheng
- College of Forensic Science, School of Medicine, Xi’an Jiaotong University, China
| | | | - Yunpeng Wang
- Correspondence: Shuguang Wei, PhD, College of Forensic Science, Xi’an Jiaotong University, Xi’an, China or Yunpeng Wang, PhD, Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China ()
| |
Collapse
|
6
|
Deji C, Yan P, Ji Y, Yan X, Feng Y, Liu J, Liu Y, Wei S, Zhu Y, Lai J. The Basolateral Amygdala to Ventral Hippocampus Circuit Controls Anxiety-Like Behaviors Induced by Morphine Withdrawal. Front Cell Neurosci 2022; 16:894886. [PMID: 35726232 PMCID: PMC9205755 DOI: 10.3389/fncel.2022.894886] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/26/2022] [Indexed: 12/02/2022] Open
Abstract
Anxiety is one of the most common comorbid conditions reported in people with opioid dependence. The basolateral amygdala (BLA) and ventral hippocampus (vHip) are critical brain regions for fear and anxiety. The kappa opioid receptor (KOR) is present in the mesolimbic regions involved in emotions and addiction. However, the precise circuits and molecular basis underlying anxiety associated with chronic opioid use are poorly understood. Using a mouse model, we demonstrated that anxiety-like behaviors appeared in the first 2 weeks after morphine withdrawal. Furthermore, the BLA and vHip were activated in mice experiencing anxiety after morphine withdrawal (Mor-A). KORs in the BLA to vHip projections were significantly increased in the Mor-A group. Optogenetic/chemogenetic inhibition of BLA inputs ameliorated anxiety-like behaviors and facilitated conditioned place preference (CPP) extinction in Mor-A mice. Knockdown of the BLA to vHip circuit KOR alleviated the anxiety-like behaviors but did not affect CPP extinction or reinstatement. Furthermore, combined treatment of inhibition of the BLA to vHip circuit and KOR antagonists mitigated anxiety-like behaviors and prevented stress-induced CPP reinstatement after morphine withdrawal. These results revealed a previously unknown circuit associated with the emotional component of opioid withdrawal and indicated that restoration of synaptic deficits with KOR antagonists might be effective in the treatment of anxiety associated with morphine withdrawal.
Collapse
|
7
|
Convergence of case-specific epigenetic alterations identify a confluence of genetic vulnerabilities tied to opioid overdose. Mol Psychiatry 2022; 27:2158-2170. [PMID: 35301427 PMCID: PMC9133127 DOI: 10.1038/s41380-022-01477-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 01/19/2022] [Accepted: 02/08/2022] [Indexed: 11/08/2022]
Abstract
Opioid use disorder is a highly heterogeneous disease driven by a variety of genetic and environmental risk factors which have yet to be fully elucidated. Opioid overdose, the most severe outcome of opioid use disorder, remains the leading cause of accidental death in the United States. We interrogated the effects of opioid overdose on the brain using ChIP-seq to quantify patterns of H3K27 acetylation in dorsolateral prefrontal cortical neurons isolated from 51 opioid-overdose cases and 51 accidental death controls. Among opioid cases, we observed global hypoacetylation and identified 388 putative enhancers consistently depleted for H3K27ac. Machine learning on H3K27ac patterns predicted case-control status with high accuracy. We focused on case-specific regulatory alterations, revealing 81,399 hypoacetylation events, uncovering vast inter-patient heterogeneity. We developed a strategy to decode this heterogeneity based on convergence analysis, which leveraged promoter-capture Hi-C to identify five genes over-burdened by alterations in their regulatory network or "plexus": ASTN2, KCNMA1, DUSP4, GABBR2, ENOX1. These convergent loci are enriched for opioid use disorder risk genes and heritability for generalized anxiety, number of sexual partners, and years of education. Overall, our multi-pronged approach uncovers neurobiological aspects of opioid use disorder and captures genetic and environmental factors perpetuating the opioid epidemic.
Collapse
|
8
|
Bird MF, McDonald J, Horley B, O’Doherty JP, Fraser B, Gibson CL, Guerrini R, Caló G, Lambert DG. MOP and NOP receptor interaction: Studies with a dual expression system and bivalent peptide ligands. PLoS One 2022; 17:e0260880. [PMID: 35061679 PMCID: PMC8782398 DOI: 10.1371/journal.pone.0260880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/18/2021] [Indexed: 11/28/2022] Open
Abstract
Opioids targeting mu;μ (MOP) receptors produce analgesia in the peri-operative period and palliative care. They also produce side effects including respiratory depression, tolerance/dependence and addiction. The N/OFQ opioid receptor (NOP) also produces analgesia but is devoid of the major MOP side effects. Evidence exists for MOP-NOP interaction and mixed MOP-NOP ligands produce analgesia with reduced side effects. We have generated a HEKMOP/NOP human expression system and used bivalent MOP-NOP and fluorescent ligands to (i) probe for receptor interaction and (ii) consequences of that interaction. We used HEKMOP/NOP cells and two bivalent ligands; Dermorphin-N/OFQ (MOP agonist-NOP agonist; DeNO) and Dermorphin-UFP101 (MOP agonist-NOP antagonist; De101). We have determined receptor binding profiles, GTPγ[35S] binding, cAMP formation and ERK1/2 activation. We have also probed MOP and NOP receptor interactions in HEK cells and hippocampal neurones using the novel MOP fluorescent ligand, DermorphinATTO488 and the NOP fluorescent ligand N/OFQATTO594. In HEKMOP/NOP MOP ligands displaced NOP binding and NOP ligands displaced MOP binding. Using fluorescent probes in HEKMOP/NOP cells we demonstrated MOP-NOP probe overlap and a FRET signal indicating co-localisation. MOP-NOP were also co-localised in hippocampal tissue. In GTPγ[35S] and cAMP assays NOP stimulation shifted the response to MOP rightwards. At ERK1/2 the response to bivalent ligands generally peaked later. We provide evidence for MOP-NOP interaction in recombinant and native tissue. NOP activation reduces responsiveness of MOP activation; this was shown with conventional and bivalent ligands.
Collapse
Affiliation(s)
- M. F. Bird
- Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain Management, University of Leicester, Leicester, United Kingdom
| | - J. McDonald
- Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain Management, University of Leicester, Leicester, United Kingdom
| | - B. Horley
- Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain Management, University of Leicester, Leicester, United Kingdom
| | - J. P. O’Doherty
- Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain Management, University of Leicester, Leicester, United Kingdom
| | - B. Fraser
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | - C. L. Gibson
- School of Psychology, University of Nottingham, Psychology Building, University Park, Nottingham, United Kingdom
| | - R. Guerrini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - G. Caló
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - D. G. Lambert
- Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain Management, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
9
|
Tianeptine induces expression of dual specificity phosphatases and evokes rebound emergence of cortical slow wave electrophysiological activity. Neurosci Lett 2021; 764:136200. [PMID: 34464676 DOI: 10.1016/j.neulet.2021.136200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The precise mechanism governing the antidepressant effects of tianeptine is unknown. Modulation of brain glutamatergic neurotransmission has been however implicated, suggesting potential shared features with rapid-acting antidepressants targeting N-methyl-D-aspartate receptors (NMDAR). Our recent studies suggest that a single subanesthetic dose of NMDAR antagonists ketamine or nitrous oxide (N2O) gradually evoke 1-4 Hz electrophysiological activity (delta-rhythm) of cerebral cortex that is accompanied by molecular signaling associated with synaptic plasticity (e.g. activation of tropomyosin receptor kinase B (TrkB) and inhibition of glycogen synthase kinase 3β (GSK3β)). METHODS We have here investigated the time-dependent effects of tianeptine (30 mg/kg, i.p.) on electrocorticogram, focusing on potential biphasic regulation of the delta-rhythm. Selected molecular markers associated with ketamine's antidepressant effects were analyzed in the medial prefrontal cortex after the treatment using quantitative polymerase chain reaction and western blotting. RESULTS An acute tianeptine treatment induced changes of electrocorticogram typical for active wakefulness that lasted for 2-2.5 h, which was followed by high amplitude delta-activity rebound. The levels of Arc and Homer1a, but not c-Fos, BdnfIV and Zif268, were increased by tianeptine. Phosphorylation of mitogen-activated protein kinase (MAPK), TrkB and GSK3β remained unaltered at 2-hours and at 3-hours post-treatment. Notably, tianeptine also increased the level of mRNA of several dual specificity phosphatases (Duspss) - negative regulators of MAPK. CONCLUSION Tianeptine produces acute changes of electrocorticogram resembling rapid-acting antidepressants ketamine and N2O. Concomitant regulation of Dusps may hamper the effects of tianeptine on MAPK pathway and influence the magnitude of homeostatic emergence of delta-activity and TrkB-GSK3β signaling.
Collapse
|
10
|
Reyes-García SE, Escobar ML. Calcineurin Participation in Hebbian and Homeostatic Plasticity Associated With Extinction. Front Cell Neurosci 2021; 15:685838. [PMID: 34220454 PMCID: PMC8242195 DOI: 10.3389/fncel.2021.685838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/25/2021] [Indexed: 12/21/2022] Open
Abstract
In nature, animals need to adapt to constant changes in their environment. Learning and memory are cognitive capabilities that allow this to happen. Extinction, the reduction of a certain behavior or learning previously established, refers to a very particular and interesting type of learning that has been the basis of a series of therapies to diminish non-adaptive behaviors. In recent years, the exploration of the cellular and molecular mechanisms underlying this type of learning has received increasing attention. Hebbian plasticity (the activity-dependent modification of the strength or efficacy of synaptic transmission), and homeostatic plasticity (the homeostatic regulation of plasticity) constitute processes intimately associated with memory formation and maintenance. Particularly, long-term depression (LTD) has been proposed as the underlying mechanism of extinction, while the protein phosphatase calcineurin (CaN) has been widely related to both the extinction process and LTD. In this review, we focus on the available evidence that sustains CaN modulation of LTD and its association with extinction. Beyond the classic view, we also examine the interconnection among extinction, Hebbian and homeostatic plasticity, as well as emergent evidence of the participation of kinases and long-term potentiation (LTP) on extinction learning, highlighting the importance of the balance between kinases and phosphatases in the expression of extinction. Finally, we also integrate data that shows the association between extinction and less-studied phenomena, such as synaptic silencing and engram formation that open new perspectives in the field.
Collapse
Affiliation(s)
- Salma E Reyes-García
- Laboratorio de Neurobiología del Aprendizaje y la Memoria, División de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Martha L Escobar
- Laboratorio de Neurobiología del Aprendizaje y la Memoria, División de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|