1
|
Cong Z, Yang L, Zhao Z, Zheng G, Bao C, Zhang P, Wang J, Zheng W, Yao Z, Hu B. Disrupted dynamic brain functional connectivity in male cocaine use disorder: Hyperconnectivity, strongly-connected state tendency, and links to impulsivity and borderline traits. J Psychiatr Res 2024; 176:218-231. [PMID: 38889552 DOI: 10.1016/j.jpsychires.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/28/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
Cocaine use is a major public health problem with serious negative consequences at both the individual and societal levels. Cocaine use disorder (CUD) is associated with cognitive and emotional impairments, often manifesting as alterations in brain functional connectivity (FC). This study employed resting-state functional magnetic resonance imaging (rs-fMRI) to examine dynamic FC in 38 male participants with CUD and 31 matched healthy controls. Using group spatial independent component analysis (group ICA) combined with sliding window approach, we identified two recurring distinct connectivity states: the strongly-connected state (state 1) and weakly-connected state (state 2). CUD patients exhibited significant increased mean dwell and fraction time in state 1, and increased transitions from state 2 to state 1, demonstrated significant strongly-connected state tendency. Our analysis revealed abnormal FC patterns that are state-dependent and state-shared in CUD patients. This study observed hyperconnectivity within the default mode network (DMN) and between DMN and other networks, which varied depending on the state. Furthermore, after adjustment for multiple comparisons, we found significant correlations between these altered dynamic FCs and clinical measures of impulsivity and borderline personality disorder. The disrupted FC and repetitive effects of precuneus and angular gyrus across correlations suggested that they might be the important hub of neural circuits related behaviorally and mentally in CUD. In summary, our study highlighted the potential of these disrupted FC as neuroimaging biomarkers and therapeutic targets, and provided new insights into the understanding of the neurophysiologic mechanisms of CUD.
Collapse
Affiliation(s)
- Zhaoyang Cong
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, China; State Key Laboratory of Digital Medical Engineering, School of Instrument Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Lin Yang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Ziyang Zhao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Guowei Zheng
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, China; School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150006, China
| | - Cong Bao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Pengfei Zhang
- Second Clinical School, Lanzhou University, Lanzhou, 730000, China
| | - Jun Wang
- Second Clinical School, Lanzhou University, Lanzhou, 730000, China
| | - Weihao Zheng
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, China.
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, China; School of Medical Technology, Beijing Institute of Technology, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China; Joint Research Center for Cognitive Neurosensor Technology of Lanzhou University & Institute of Semiconductors, Chinese Academy of Sciences, China.
| |
Collapse
|
2
|
Ballard T, Luckman A, Konstantinidis E. A systematic investigation into the reliability of inter-temporal choice model parameters. Psychon Bull Rev 2023; 30:1294-1322. [PMID: 36877362 PMCID: PMC10482820 DOI: 10.3758/s13423-022-02241-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2022] [Indexed: 03/07/2023]
Abstract
Decades of work have been dedicated to developing and testing models that characterize how people make inter-temporal choices. Although parameter estimates from these models are often interpreted as indices of latent components of the choice process, little work has been done to examine their reliability. This is problematic because estimation error can bias conclusions that are drawn from these parameter estimates. We examine the reliability of parameter estimates from 11 prominent models of inter-temporal choice by (a) fitting each model to data from three previous experiments with designs representative of those typically used to study inter-temporal choice, (b) examining the consistency of parameters estimated for the same person based on different choice sets, and (c) conducting a parameter recovery analysis. We find generally low correlations between parameters estimated for the same person from the different choice sets. Moreover, parameter recovery varies considerably between models and the experimental designs upon which parameter estimates are based. We conclude that many parameter estimates reported in previous research are likely unreliable and provide recommendations on how to enhance the reliability of inter-temporal choice models for measurement purposes.
Collapse
Affiliation(s)
- Timothy Ballard
- University of Queensland, School of Psychology, Brisbane, Australia.
| | | | | |
Collapse
|
3
|
Loganathan K, Tiego J. Value-based decision-making network functional connectivity correlates with substance use and delay discounting behaviour among young adults. Neuroimage Clin 2023; 38:103424. [PMID: 37141645 PMCID: PMC10300614 DOI: 10.1016/j.nicl.2023.103424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
Substance use disorders are characterized by reduced control over the quantity and frequency of psychoactive substance use and impairments in social and occupational functioning. They are associated with poor treatment compliance and high rates of relapse. Identification of neural susceptibility biomarkers that index risk for developing a substance use disorder can facilitate earlier identification and treatment. Here, we aimed to identify the neurobiological correlates of substance use frequency and severity amongst a sample of 1,200 (652 females) participants aged 22-37 years from the Human Connectome Project. Substance use behaviour across eight classes (alcohol, tobacco, marijuana, sedatives, hallucinogens, cocaine, stimulants, opiates) was measured using the Semi-Structured Assessment for the Genetics of Alcoholism. We explored the latent organization of substance use behaviour using a combination of exploratory structural equation modelling, latent class analysis, and factor mixture modelling to reveal a unidimensional continuum of substance use behaviour. Participants could be rank ordered along a unitary severity spectrum encompassing frequency of use of all eight substance classes, with factor score estimates generated to represent each participant's substance use severity. Factor score estimates and delay discounting scores were compared with functional connectivity in 650 participants with imaging data using the Network-based Statistic. This neuroimaging cohort excludes participants aged 31 and over. We identified brain regions and connections correlated with impulsive decision-making and poly-substance use, with the medial orbitofrontal, lateral prefrontal and posterior parietal cortices emerging as key hubs. Functional connectivity of these networks could serve as susceptibility biomarkers for substance use disorders, informing earlier identification and treatment.
Collapse
Affiliation(s)
- Kavinash Loganathan
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, Victoria, Australia.
| | - Jeggan Tiego
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Wang L, Hu F, Li W, Li Q, Li Y, Zhu J, Wei X, Yang J, Guo J, Qin Y, Shi H, Wang W, Wang Y. Relapse risk revealed by degree centrality and cluster analysis in heroin addicts undergoing methadone maintenance treatment. Psychol Med 2023; 53:2216-2228. [PMID: 34702384 DOI: 10.1017/s0033291721003937] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Based on hubs of neural circuits associated with addiction and their degree centrality (DC), this study aimed to construct the addiction-related brain networks for patients diagnosed with heroin dependence undertaking stable methadone maintenance treatment (MMT) and further prospectively identify the ones at high risk for relapse with cluster analysis. METHODS Sixty-two male MMT patients and 30 matched healthy controls (HC) underwent brain resting-state functional MRI data acquisition. The patients received 26-month follow-up for the monthly illegal-drug-use information. Ten addiction-related hubs were chosen to construct a user-defined network for the patients. Then the networks were discriminated with K-means-clustering-algorithm into different groups and followed by comparative analysis to the groups and HC. Regression analysis was used to investigate the brain regions significantly contributed to relapse. RESULTS Sixty MMT patients were classified into two groups according to their brain-network patterns calculated by the best clustering-number-K. The two groups had no difference in the demographic, psychological indicators and clinical information except relapse rate and total heroin consumption. The group with high-relapse had a wider range of DC changes in the cortical-striatal-thalamic circuit relative to HC and a reduced DC in the mesocorticolimbic circuit relative to the low-relapse group. DC activity in NAc, vACC, hippocampus and amygdala were closely related with relapse. CONCLUSION MMT patients can be identified and classified into two subgroups with significantly different relapse rates by defining distinct brain-network patterns even if we are blind to their relapse outcomes in advance. This may provide a new strategy to optimize MMT.
Collapse
Affiliation(s)
- Lei Wang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, P.R. China
- Department of Nuclear Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an, P.R. China
| | - Feng Hu
- Department of Radiology, The Hospital of Shaanxi Provincial Geology and Mineral Resources Bureau, Xi'an, P.R. China
| | - Wei Li
- Department of Radiology, Tangdu Hospital, Air Force Military Medical University, Xi'an, P.R. China
| | - Qiang Li
- Department of Radiology, Tangdu Hospital, Air Force Military Medical University, Xi'an, P.R. China
| | - Yongbin Li
- Department of Radiology, The Second Hospital of Xi'an Medical University, Xi'an, P.R. China
| | - Jia Zhu
- Department of Radiology, Tangdu Hospital, Air Force Military Medical University, Xi'an, P.R. China
| | - Xuan Wei
- Department of Radiology, Tangdu Hospital, Air Force Military Medical University, Xi'an, P.R. China
| | - Jian Yang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, P.R. China
| | - Jianxin Guo
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, P.R. China
| | - Yue Qin
- Department of Radiology, Xi'an Daxing Hospital, Xi'an, P.R. China
| | - Hong Shi
- Department of Radiology, Xi'an No.1 Hospital, Xi'an, P.R. China
| | - Wei Wang
- Department of Radiology, Tangdu Hospital, Air Force Military Medical University, Xi'an, P.R. China
| | - Yarong Wang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, P.R. China
| |
Collapse
|
5
|
Gibson BC, Claus ED, Sanguinetti J, Witkiewitz K, Clark VP. A review of functional brain differences predicting relapse in substance use disorder: Actionable targets for new methods of noninvasive brain stimulation. Neurosci Biobehav Rev 2022; 141:104821. [PMID: 35970417 DOI: 10.1016/j.neubiorev.2022.104821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022]
Abstract
Neuroimaging studies have identified a variety of brain regions whose activity predicts substance use (i.e., relapse) in patients with substance use disorder (SUD), suggesting that malfunctioning brain networks may exacerbate relapse. However, this knowledge has not yet led to a marked improvement in treatment outcomes. Noninvasive brain stimulation (NIBS) has shown some potential for treating SUDs, and a new generation of NIBS technologies offers the possibility of selectively altering activity in both superficial and deep brain structures implicated in SUDs. The goal of the current review was to identify deeper brain structures involved in relapse to SUD and give an account of innovative methods of NIBS that might be used to target them. Included studies measured fMRI in currently abstinent SUD patients and tracked treatment outcomes, and fMRI results were organized with the framework of the Addictions Neuroclinical Assessment (ANA). Four brain structures were consistently implicated: the anterior and posterior cingulate cortices, ventral striatum and insula. These four deeper brain structures may be appropriate future targets for the treatment of SUD using these innovative NIBS technologies.
Collapse
Affiliation(s)
- Benjamin C Gibson
- Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA
| | - Eric D Claus
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jay Sanguinetti
- The Center for Consciousness Studies, University of Arizona, Tucson, AZ 85719, USA
| | - Katie Witkiewitz
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Vincent P Clark
- Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA.
| |
Collapse
|
6
|
Solé-Morata N, Baenas I, Etxandi M, Granero R, Forcales SV, Gené M, Barrot C, Gómez-Peña M, Menchón JM, Ramoz N, Gorwood P, Fernández-Aranda F, Jiménez-Murcia S. The role of neurotrophin genes involved in the vulnerability to gambling disorder. Sci Rep 2022; 12:6925. [PMID: 35484167 PMCID: PMC9051155 DOI: 10.1038/s41598-022-10391-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/07/2022] [Indexed: 01/16/2023] Open
Abstract
Evidence about the involvement of genetic factors in the development of gambling disorder (GD) has been assessed. Among studies assessing heritability and biological vulnerability for GD, neurotrophin (NTF) genes have emerged as promising targets, since a growing literature showed a possible link between NTF and addiction-related disorders. Thus, we aimed to explore the role of NTF genes and GD with the hypothesis that some NTF gene polymorphisms could constitute biological risk factors. The sample included 166 patients with GD and 191 healthy controls. 36 single nucleotide polymorphisms (SNPs) from NTFs (NGF, NGFR, NTRK1, BDNF, NTRK2, NTF3, NTRK3, NTF4, CNTF and CNTFR) were selected and genotyped. Linkage disequilibrium (LD) and haplotype constructions were analyzed, in relationship with the presence of GD. Finally, regulatory elements overlapping the identified SNPs variants associated with GD were searched. The between groups comparisons of allele frequencies indicated that 6 SNPs were potentially associated with GD. Single and multiple-marker analyses showed a strong association between both NTF3 and NTRK2 genes, and GD. The present study supports the involvement of the NTF family in the aetiopathogenesis of GD. An altered cross-regulation of different NTF members signalling pathways might be considered as a biological vulnerability factor for GD.
Collapse
Affiliation(s)
- Neus Solé-Morata
- Department of Psychiatry, Bellvitge University Hospital, c/Feixa Llarga S/N, Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Isabel Baenas
- Department of Psychiatry, Bellvitge University Hospital, c/Feixa Llarga S/N, Hospitalet de Llobregat, 08907, Barcelona, Spain.,Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain.,Ciber Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, Barcelona, Spain
| | - Mikel Etxandi
- Department of Psychiatry, Bellvitge University Hospital, c/Feixa Llarga S/N, Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Roser Granero
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain.,Ciber Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, Barcelona, Spain.,Department of Psychobiology and Methodology, Autonomous University of Barcelona, Bellaterra, Spain
| | - Sonia V Forcales
- Serra Húnter Programme, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, University of Barcelona, Hospitalet de Llobregat, 08907, Spain
| | - Manel Gené
- Genetic Lab, Forensic and Legal Medicine Unit, Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Carme Barrot
- Genetic Lab, Forensic and Legal Medicine Unit, Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Mónica Gómez-Peña
- Department of Psychiatry, Bellvitge University Hospital, c/Feixa Llarga S/N, Hospitalet de Llobregat, 08907, Barcelona, Spain.,Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | - José M Menchón
- Department of Psychiatry, Bellvitge University Hospital, c/Feixa Llarga S/N, Hospitalet de Llobregat, 08907, Barcelona, Spain.,Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Hospitalet del Llobregat, Spain.,Ciber of Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain.,Psychiatry and Mental Health Group, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet del Llobregat, Spain
| | - Nicolás Ramoz
- Psychiatry and Mental Health Group, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet del Llobregat, Spain.,Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team Vulnerability of Psychiatric and Addictive Disorders, Université de Paris, 75014, Paris, France
| | - Philip Gorwood
- Psychiatry and Mental Health Group, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet del Llobregat, Spain.,Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team Vulnerability of Psychiatric and Addictive Disorders, Université de Paris, 75014, Paris, France
| | - Fernando Fernández-Aranda
- Department of Psychiatry, Bellvitge University Hospital, c/Feixa Llarga S/N, Hospitalet de Llobregat, 08907, Barcelona, Spain.,Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain.,Ciber Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, Barcelona, Spain.,Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Hospitalet del Llobregat, Spain
| | - Susana Jiménez-Murcia
- Department of Psychiatry, Bellvitge University Hospital, c/Feixa Llarga S/N, Hospitalet de Llobregat, 08907, Barcelona, Spain. .,Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain. .,Ciber Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, Barcelona, Spain. .,Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Hospitalet del Llobregat, Spain.
| |
Collapse
|
7
|
Yang F, Li X, Hu P. The Resting-State Neural Network of Delay Discounting. Front Psychol 2022; 13:828929. [PMID: 35360605 PMCID: PMC8962669 DOI: 10.3389/fpsyg.2022.828929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Delay discounting is a common phenomenon in daily life, which refers to the subjective value of a future reward decreasing as a function of time. Previous studies have identified several cortical regions involved in delay discounting, but the neural network constructed by the cortical regions of delay discounting is less clear. In this study, we employed resting-state functional magnetic resonance imaging (RS-fMRI) to measure the spontaneous neural activity in a large sample of healthy young adults and used the Monetary Choice Questionnaire to directly measure participants’ level of delay discounting. To identify the neural network of delay discounting at rest, we used an individual difference approach to explore brain regions whose spontaneous activities were related to delay discounting across the whole brain. Then, these brain regions served as seeds to identify the neural network of delay discounting. We found that the fractional amplitude of low-frequency fluctuations (fALFF) of the left insula were positively correlated to delay discounting. More importantly, its connectivity to the anterior cingulate cortex was read out for participants’ behavioral performance in the task of delay discounting. In short, our study provides empirical evidence that insula-anterior cingulate cortex connectivity may serve as a part of the neural network for delay discounting.
Collapse
|
8
|
Tolomeo S, Yu R. Brain network dysfunctions in addiction: a meta-analysis of resting-state functional connectivity. Transl Psychiatry 2022; 12:41. [PMID: 35091540 PMCID: PMC8799706 DOI: 10.1038/s41398-022-01792-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 11/16/2022] Open
Abstract
Resting-state functional connectivity (rsFC) provides novel insights into variabilities in neural networks associated with the use of addictive drugs or with addictive behavioral repertoire. However, given the broad mix of inconsistent findings across studies, identifying specific consistent patterns of network abnormalities is warranted. Here we aimed at integrating rsFC abnormalities and systematically searching for large-scale functional brain networks in substance use disorder (SUD) and behavioral addictions (BA), through a coordinate-based meta-analysis of seed-based rsFC studies. A total of fifty-two studies are eligible in the meta-analysis, including 1911 SUD and BA patients and 1580 healthy controls. In addition, we performed multilevel kernel density analysis (MKDA) for the brain regions reliably involved in hyperconnectivity and hypoconnectivity in SUD and BA. Data from fifty-two studies showed that SUD was associated with putamen, caudate and middle frontal gyrus hyperconnectivity relative to healthy controls. Eight BA studies showed hyperconnectivity clusters within the putamen and medio-temporal lobe relative to healthy controls. Altered connectivity in salience or emotion-processing areas may be related to dysregulated affective and cognitive control-related networks, such as deficits in regulating elevated sensitivity to drug-related stimuli. These findings confirm that SUD and BA might be characterized by dysfunctions in specific brain networks, particularly those implicated in the core cognitive and affective functions. These findings might provide insight into the development of neural mechanistic biomarkers for SUD and BA.
Collapse
Affiliation(s)
- Serenella Tolomeo
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - Rongjun Yu
- Department of Management, Hong Kong Baptist University, Hong Kong, China.
- Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, China.
- Department of Physics, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
9
|
Weinsztok S, Brassard S, Balodis I, Martin LE, Amlung M. Delay Discounting in Established and Proposed Behavioral Addictions: A Systematic Review and Meta-Analysis. Front Behav Neurosci 2021; 15:786358. [PMID: 34899207 PMCID: PMC8661136 DOI: 10.3389/fnbeh.2021.786358] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/03/2021] [Indexed: 11/14/2022] Open
Abstract
Steep delay discounting, or a greater preference for smaller-immediate rewards over larger-delayed rewards, is a common phenomenon across a range of substance use and psychiatric disorders. Non-substance behavioral addictions (e.g., gambling disorder, internet gaming disorder, food addiction) are of increasing interest in delay discounting research. Individual studies have reported steeper discounting in people exhibiting various behavioral addictions compared to controls or significant correlations between discounting and behavioral addiction scales; however, not all studies have found significant effects. To synthesize the published research in this area and identify priorities for future research, we conducted a pre-registered systematic review and meta-analysis (following PRISMA guidelines) of delay discounting studies across a range of behavioral addiction categories. The final sample included 78 studies, yielding 87 effect sizes for the meta-analysis. For studies with categorical designs, we found statistically significant, medium-to-large effect sizes for gambling disorder (Cohen’s d = 0.82) and IGD (d = 0.89), although the IGD effect size was disproportionately influenced by a single study (adjusted d = 0.53 after removal). Categorical internet/smartphone studies were non-significant (d = 0.16, p = 0.06). Aggregate correlations in dimensional studies were statistically significant, but generally small magnitude for gambling (r = 0.22), internet/smartphone (r = 0.13) and food addiction (r = 0.12). Heterogeneity statistics suggested substantial variability across studies, and publication bias indices indicated moderate impact of unpublished or small sample studies. These findings generally suggest that some behavioral addictions are associated with steeper discounting, with the most robust evidence for gambling disorder. Importantly, this review also highlighted several categories with notably smaller effect sizes or categories with too few studies to be included (e.g., compulsive buying, exercise addiction). Further research on delay discounting in behavioral addictions is warranted, particularly for categories with relatively few studies.
Collapse
Affiliation(s)
- Sarah Weinsztok
- Cofrin Logan Center for Addiction Research and Treatment, University of Kansas, Lawrence, KS, United States
| | - Sarah Brassard
- Peter Boris Centre for Addictions Research, McMaster University, Hamilton, ON, United States
| | - Iris Balodis
- Peter Boris Centre for Addictions Research, McMaster University, Hamilton, ON, United States
| | - Laura E Martin
- Cofrin Logan Center for Addiction Research and Treatment, University of Kansas, Lawrence, KS, United States.,Department of Population Health, University of Kansas Medical Center, Kansas City, KS, United States.,Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Michael Amlung
- Cofrin Logan Center for Addiction Research and Treatment, University of Kansas, Lawrence, KS, United States.,Department of Applied Behavioral Science, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
10
|
Costumero V, Rosell Negre P, Bustamante JC, Fuentes‐Claramonte P, Adrián‐Ventura J, Palomar‐García M, Miró‐Padilla A, Llopis JJ, Sepulcre J, Barrós‐Loscertales A. Distance disintegration characterizes node-level topological dysfunctions in cocaine addiction. Addict Biol 2021; 26:e13072. [PMID: 34137121 DOI: 10.1111/adb.13072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/07/2021] [Accepted: 06/08/2021] [Indexed: 11/30/2022]
Abstract
Previous investigations have used global graph theory measures in order to disentangle the complexity of the neural reorganizations occurring in cocaine use disorder (CUD). However, how these global topological alterations map into individual brain network areas remains unknown. In this study, we used resting state functional magnetic resonance imaging (fMRI) data to investigate node-level topological dysfunctions in CUD. The sample was composed of 32 individuals with CUD and 32 healthy controls, matched in age, years of education and intellectual functioning. Graph theory measures of optimal connectivity distance, node strength, nodal efficiency and clustering coefficient were estimated in each participant using voxel-wise functional connectivity connectomes. CUD individuals as compared with healthy controls showed higher optimal connectivity distances in ventral striatum, insula, cerebellum, temporal cortex, lateral orbitofrontal cortex, middle frontal cortex and left hippocampus. Furthermore, clinical measures quantifying severity of dependence were positively related with optimal connectivity distances in the right rolandic operculum and the right lateral orbitofrontal cortex, whereas length of abstinence was negatively associated with optimal connectivity distances in the right temporal pole and the left insula. Our results reveal a topological distancing of cognitive and affective related areas in addiction, suggesting an overall reduction in the communication capacity of these regions.
Collapse
Affiliation(s)
- Víctor Costumero
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology University Jaume I Castellón de la Plana Spain
| | - Patricia Rosell Negre
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology University Jaume I Castellón de la Plana Spain
| | | | | | - Jesús Adrián‐Ventura
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology University Jaume I Castellón de la Plana Spain
| | - María‐Ángeles Palomar‐García
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology University Jaume I Castellón de la Plana Spain
| | - Anna Miró‐Padilla
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology University Jaume I Castellón de la Plana Spain
| | - Juan José Llopis
- Addictive Behaviors Unit San Agustín Hospital General Universitario de Castellón Castellón de la Plana Spain
| | - Jorge Sepulcre
- Gordon Center for Medical Imaging, Department of Radiology Massachusetts General Hospital and Harvard Medical School Boston Massachusetts USA
| | - Alfonso Barrós‐Loscertales
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology University Jaume I Castellón de la Plana Spain
| |
Collapse
|
11
|
Roberts CA, Lorenzetti V, Albein-Urios N, Kowalczyk MA, Martinez-Gonzalez JM, Verdejo-Garcia A. Do comorbid personality disorders in cocaine dependence exacerbate neuroanatomical alterations? A structural neuroimaging study. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110298. [PMID: 33716043 DOI: 10.1016/j.pnpbp.2021.110298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 02/16/2021] [Accepted: 03/07/2021] [Indexed: 12/17/2022]
Abstract
Cocaine dependence (CD) is highly comorbid with personality disorders, with implications for poorer treatment response. The neurobiological mechanisms of this comorbidity are unclear. We aimed to test the role of comorbid personality disorders in the neuroanatomy of CD. We examined 4 groups using high-resolution structural neuroimaging, psychological questionnaires and cognitive tests: CD (n = 19), CD and personality disorder type B (CD + B, n = 21), CD and personality disorder C (CD + C, n = 13) and 21 controls. We compared groups in neuroanatomy and hypothesised that (i) CD would show altered striatal areas ascribed to reward processing (i.e., accumbens, caudate and putamen), (ii) CD + B and CD + C would show altered areas supporting emotional regulation/social valuation and anxiety/avoidance (i.e., OFC and amygdala). The CD + B group had larger caudate volumes than CD (p = .01, d = 0.94) and reduced lateral OFC thickness than CD + C (p = .056, d = 0.71). Exploratory correlations showed that altered neural integrity of the OFC and of the caudate nucleus in these groups exacerbated with worse personality disorder severity and impulsivity scores. CD with and without comorbid personality disorders may have partially distinct underlying mechanisms and targets for treatment.
Collapse
Affiliation(s)
- Carl A Roberts
- Department of Psychological Sciences, University of Liverpool, UK
| | - Valentina Lorenzetti
- Department of Psychological Sciences, University of Liverpool, UK; Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Fitzroy, VIC 3065, Australia
| | - Natalia Albein-Urios
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC 3220, Australia
| | - Magdalena A Kowalczyk
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Fitzroy, VIC 3065, Australia
| | | | - Antonio Verdejo-Garcia
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC 3220, Australia; Centro Provincial de Drogodependencias, Diputacion de Granada, 18001 Granada, Spain; School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
12
|
Chen Z, Becker B, Qin P, Lei W, Chen J, Liu P, Lin T, Zhang C, Zhang R, Wang M, Xu T, Yang Y, Feng P, Feng T. Neural networks during delay discounting as trans-disease marker: A meta-analytical review. J Psychiatr Res 2021; 139:62-70. [PMID: 34044265 DOI: 10.1016/j.jpsychires.2021.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/13/2021] [Accepted: 05/01/2021] [Indexed: 11/30/2022]
Abstract
Delay discounting reflects a devaluation of delayed long-term benefits but pursuing immediate rewards. Higher discounting rates (h-DR) are found ubiquitous in many diseases and unhealthy conditions, particularly in addiction disorder (AD), attention-deficit/hyperactivity disorder (ADHD), and obesity. Thus, h-DR was considered to be a common benchmark across many diseases facilitating to understand one disease to relevant others, which was called trans-disease process. However, the common and specific neural biomarkers associated with this process has not yet been studied well. We performed a voxel-wise task-related neuroimaging meta-analysis to clarify the neural pattern of trans-disease process across AD, ADHD and obesity. We recruited 19 eligible papers, including 9 AD papers (154 patients), 6 ADHD papers (106 patients) and 4 obesity studies (94 patients). Neuroimaging meta-analysis demonstrated the presence of neural biomarkers of trans-disease process: these patients showed inadequate brain response in caudate, ventromedial and dorsolateral prefrontal cortex (dlPFC) than do of healthy controls (HCs). Disease-specific neural patterns were also found, with prominent hypoactivation in parahippocampal-striatum network for AD, hyperactivation in dopamine-projection striatum network for ADHD and decreased activity in dorsal anterior cingulate cortex and dlPFC for obesity. This study provided robust evidence to reveal the neural substrates of trans-disease process, as well further promoted the triple brain network model in favor of the theoretical developments of these neuropsychiatric disorders.
Collapse
Affiliation(s)
- Zhiyi Chen
- Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Cognition and Personality, Ministry of Education, China
| | - Benjamin Becker
- The Clinical Hospital of the Chengdu Brain Science Institute, Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Pengmin Qin
- Center for Studies of Psychological Applications, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, Guangdong, China
| | - Wei Lei
- Psychiatry Department, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jing Chen
- Psychiatry Department, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Peiwei Liu
- Department of Psychology, University of Florida, Gainesville, USA
| | - Tian Lin
- Department of Psychology, University of Florida, Gainesville, USA
| | - Chenyan Zhang
- Cognitive Psychology Unit, The Institute of Psychology, Faculty of Social and Behavioural Sciences, Leiden University, Leiden, Netherlands
| | - Rong Zhang
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Mengmeng Wang
- School of Business and Management, Shanghai International Studies University, China
| | - Ting Xu
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Yaqi Yang
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Pan Feng
- Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Cognition and Personality, Ministry of Education, China
| | - Tingyong Feng
- Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Cognition and Personality, Ministry of Education, China.
| |
Collapse
|
13
|
Pierce JE, Péron J. The basal ganglia and the cerebellum in human emotion. Soc Cogn Affect Neurosci 2021; 15:599-613. [PMID: 32507876 PMCID: PMC7328022 DOI: 10.1093/scan/nsaa076] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 04/03/2020] [Accepted: 06/02/2020] [Indexed: 12/26/2022] Open
Abstract
The basal ganglia (BG) and the cerebellum historically have been relegated to a functional role in producing or modulating motor output. Recent research, however, has emphasized the importance of these subcortical structures in multiple functional domains, including affective processes such as emotion recognition, subjective feeling elicitation and reward valuation. The pathways through the thalamus that connect the BG and cerebellum directly to each other and with extensive regions of the cortex provide a structural basis for their combined influence on limbic function. By regulating cortical oscillations to guide learning and strengthening rewarded behaviors or thought patterns to achieve a desired goal state, these regions can shape the way an individual processes emotional stimuli. This review will discuss the basic structure and function of the BG and cerebellum and propose an updated view of their functional role in human affective processing.
Collapse
Affiliation(s)
- Jordan E Pierce
- Clinical and Experimental Neuropsychology Laboratory, University of Geneva, 1205 Geneva, Switzerland
| | - Julie Péron
- Clinical and Experimental Neuropsychology Laboratory, University of Geneva, 1205 Geneva, Switzerland.,Neuropsychology Unit, Neurology Department, University Hospitals of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
14
|
Irizar P, Albein-Urios N, Martínez-González JM, Verdejo-Garcia A, Lorenzetti V. Unpacking common and distinct neuroanatomical alterations in cocaine dependent versus pathological gambling. Eur Neuropsychopharmacol 2020; 33:81-88. [PMID: 32088112 DOI: 10.1016/j.euroneuro.2020.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/30/2019] [Accepted: 01/31/2020] [Indexed: 01/09/2023]
Abstract
Pathological gambling and cocaine dependence are highly pervasive disorders. Functional neuroimaging evidence implicates aberrant activity of prefrontal striatal pathways in both disorders. It is unclear if the neuroanatomy of these areas is also affected. Participants with pathological gambling (n = 18), cocaine dependence (n = 19) and controls (n = 21) underwent high-resolution structural MRI scan and cognitive assessments. In line with emerging functional neuroimaging findings, we hypothesised (i) lower volumes of corticostriatal areas ascribed to decision-making/inhibitory control, craving and reward processing (i.e., orbitofrontal cortex, inferior frontal gyrus, amygdala, striatum, insula) in both pathological gamblers and cocaine dependent participants versus controls; (ii) selected dopaminergic/glutamatergic pathways directly taxed by cocaine (i.e., superior, dorsolateral and anterior cingulate cortices) would be altered in cocaine dependent versus control participants only. Analyses were conducted with a bonferroni correction. Our results showed that both pathological gambling and cocaine dependent participants, compared to controls, had larger volumes of the right inferior frontal gyrus (ps <.01, ds = 0.66 and 0.62). Cocaine dependent participants had lower nucleus accumbens and medial orbitofrontal cortex volumes than pathological gamblers (ps <.05, ds = 0.51 and 0.72), with the latter being predicted by higher negative urgency scores. Inferior frontal gyrus volume may reflect common alterations of cocaine and gambling addictions, whereas cocaine dependence may be uniquely associated with reduced volume in dorsolateral and middle frontal regions. Cocaine's supra-physiological effects on mesolimbic neurons may explain reduced accumbens-orbitofrontal structure compared to gambling.
Collapse
Affiliation(s)
- Patricia Irizar
- Department of Psychological Sciences, Institute of Psychology Health and Society, the University of Liverpool, United Kingdom
| | - Natalia Albein-Urios
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
| | | | - Antonio Verdejo-Garcia
- School of Psychology, Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Victoria, Australia
| | - Valentina Lorenzetti
- School of Behavioural & Health Sciences, Faculty of Health Sciences, Australian Catholic University, Victoria, Australia.
| |
Collapse
|
15
|
Bickel WK, Athamneh LN, Snider SE, Craft WH, DeHart WB, Kaplan BA, Basso JC. Reinforcer Pathology: Implications for Substance Abuse Intervention. Curr Top Behav Neurosci 2020; 47:139-162. [PMID: 32462615 DOI: 10.1007/7854_2020_145] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The rate at which individuals discount future rewards (i.e., discounting rate) is strongly associated with their propensity for substance abuse as well as myriad other negative health behaviors. An excessive preference for immediately available rewards suggests a shortened time horizon in which immediate rewards are overvalued and future, potentially negative consequences are undervalued. This review outlines Reinforcer Pathology Theory (i.e., the interaction between excessive preference for immediately available rewards and the overvaluation of a particular commodity that offers brief, intense reinforcement), its neurobiological/behavioral underpinnings, and its implications for treating substance use disorders. In doing so, the current review provides an overview of a variety of ways in which interventions have been used to manipulate aspects of reinforcer pathology in an individual, including narrative theory, framing manipulations, and neuromodulation (e.g., working memory training, TMS) which may serve as promising avenues for the modulation of the temporal window and/or valuation of reinforcers.
Collapse
Affiliation(s)
- Warren K Bickel
- Addiction Recovery Research Center, Fralin Biomedical Research Institute, Roanoke, VA, USA. .,Center for Transformative Research on Health Behaviors, Fralin Biomedical Research Institute, Roanoke, VA, USA.
| | - Liqa N Athamneh
- Addiction Recovery Research Center, Fralin Biomedical Research Institute, Roanoke, VA, USA.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Sarah E Snider
- Addiction Recovery Research Center, Fralin Biomedical Research Institute, Roanoke, VA, USA
| | - William H Craft
- Addiction Recovery Research Center, Fralin Biomedical Research Institute, Roanoke, VA, USA.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - William B DeHart
- Addiction Recovery Research Center, Fralin Biomedical Research Institute, Roanoke, VA, USA
| | - Brent A Kaplan
- Addiction Recovery Research Center, Fralin Biomedical Research Institute, Roanoke, VA, USA
| | - Julia C Basso
- Addiction Recovery Research Center, Fralin Biomedical Research Institute, Roanoke, VA, USA
| |
Collapse
|
16
|
Kim HS, Hodgins DC. A Review of the Evidence for Considering Gambling Disorder (and Other Behavioral Addictions) as a Disorder Due to Addictive Behaviors in the ICD-11: a Focus on Case-Control Studies. CURRENT ADDICTION REPORTS 2019. [DOI: 10.1007/s40429-019-00256-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Bogenpohl JW, Smith ML, Farris SP, Dumur CI, Lopez MF, Becker HC, Grant KA, Miles MF. Cross-Species Co-analysis of Prefrontal Cortex Chronic Ethanol Transcriptome Responses in Mice and Monkeys. Front Mol Neurosci 2019; 12:197. [PMID: 31456662 PMCID: PMC6701453 DOI: 10.3389/fnmol.2019.00197] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
Despite recent extensive genomic and genetic studies on behavioral responses to ethanol, relatively few new therapeutic targets for the treatment of alcohol use disorder have been validated. Here, we describe a cross-species genomic approach focused on identifying gene networks associated with chronic ethanol consumption. To identify brain mechanisms underlying a chronic ethanol consumption phenotype highly relevant to human alcohol use disorder, and to elucidate potential future therapeutic targets, we conducted a genomic study in a non-human primate model of chronic open-access ethanol consumption. Microarray analysis of RNA expression in anterior cingulate and subgenual cortices from rhesus macaques was performed across multiple cohorts of animals. Gene networks correlating with ethanol consumption or showing enrichment for ethanol-regulated genes were identified, as were major ethanol-related hub genes within these networks. A subsequent consensus module analysis was used to co-analyze monkey data with expression data from a chronic intermittent ethanol vapor-exposure and consumption model in C57BL/6J mice. Ethanol-related gene networks conserved between primates and rodents were enriched for genes involved in discrete biological functions, including; myelination, synaptic transmission, chromatin modification, Golgi apparatus function, translation, cellular respiration, and RNA processing. The myelin-related network, in particular, showed strong correlations with ethanol consumption behavior and displayed marked network reorganization between control and ethanol-drinking animals. Further bioinformatics analysis revealed that these networks also showed highly significant overlap with other ethanol-regulated gene sets. Altogether, these studies provide robust primate and rodent cross-species validation of gene networks associated with chronic ethanol consumption. Our results also suggest potential novel focal points for future therapeutic interventions in alcohol use disorder.
Collapse
Affiliation(s)
- James W Bogenpohl
- Department of Molecular Biology and Chemistry, Christopher Newport University, Newport News, VA, United States
| | - Maren L Smith
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States
| | - Sean P Farris
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, United States
| | - Catherine I Dumur
- Aurora Diagnostics-Sonic Healthcare, Bernhardt Laboratories, Jacksonville, FL, United States
| | - Marcelo F Lopez
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Howard C Becker
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Kathleen A Grant
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States.,Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Michael F Miles
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States.,Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States.,Department of Neurology, Virginia Commonwealth University, Richmond, VA, United States.,VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
18
|
Abstract
Gambling disorder is characterized by a persistent, recurrent pattern of gambling that is associated with substantial distress or impairment. The prevalence of gambling disorder has been estimated at 0.5% of the adult population in the United States, with comparable or slightly higher estimates in other countries. The aetiology of gambling disorder is complex, with implicated genetic and environmental factors. Neurobiological studies have implicated cortico-striato-limbic structures and circuits in the pathophysiology of this disorder. Individuals with gambling disorder often go unrecognized and untreated, including within clinical settings. Gambling disorder frequently co-occurs with other conditions, particularly other psychiatric disorders. Behavioural interventions, particularly cognitive-behavioural therapy but also motivational interviewing and Gamblers Anonymous, are supported in the treatment of gambling disorder. No pharmacological therapy has a formal indication for the treatment of gambling disorder, although placebo-controlled trials suggest that some medications, such as opioid-receptor antagonists, may be helpful. Given the associations with poor quality of life and suicide, improved identification, prevention, policy and treatment efforts are needed to help people with gambling disorder.
Collapse
|
19
|
Joseph JE, Vaughan BK, Camp CC, Baker NL, Sherman BJ, Moran-Santa Maria M, McRae-Clark A, Brady KT. Oxytocin-Induced Changes in Intrinsic Network Connectivity in Cocaine Use Disorder: Modulation by Gender, Childhood Trauma, and Years of Use. Front Psychiatry 2019; 10:502. [PMID: 31379621 PMCID: PMC6658612 DOI: 10.3389/fpsyt.2019.00502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 06/25/2019] [Indexed: 12/11/2022] Open
Abstract
Cocaine use disorder (CUD) is a major public health concern with devastating social, economic, and mental health implications. A better understanding of the underlying neurobiology and phenotypic variations in individuals with CUD is necessary for the development of effective and targeted treatments. In this study, 39 women and 54 men with CUD completed a 6-min resting-state functional magnetic resonance imaging scan after intranasal oxytocin (OXY) or placebo administration. Graph-theory network analysis was used to quantify functional connectivity changes caused by OXY in striatum, anterior cingulate cortex (ACC), insula, and amygdala nodes of interest. OXY increased connectivity in the right ACC and left amygdala in males, whereas OXY increased connectivity in the right ACC and right accumbens in females. Machine learning was then used to associate treatment response (placebo minus OXY) in nodes of interest with years of cocaine use and severity of childhood trauma separately for males and females. Childhood trauma and years of cocaine use were associated with OXY-induced changes in ACC connectivity for both men and women, but connectivity changes in the amygdala were associated with years of cocaine use in men and connectivity changes in the right insula were associated with years of cocaine use in women. These findings suggest that salience network nodes (ACC and insula) are potential OXY treatment targets in CUD, with the amygdala as a treatment target for men and the accumbens as a treatment target for women.
Collapse
Affiliation(s)
- Jane E. Joseph
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Brandon K. Vaughan
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Christopher C. Camp
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Nathaniel L. Baker
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Brian J. Sherman
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Megan Moran-Santa Maria
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Aimee McRae-Clark
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| | - Kathleen T. Brady
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| |
Collapse
|
20
|
Maltbie EA, Gopinath KS, Howell LL. Effects of ketamine treatment on cocaine-induced reinstatement and disruption of functional connectivity in unanesthetized rhesus monkeys. Psychopharmacology (Berl) 2019; 236:2105-2118. [PMID: 30879118 DOI: 10.1007/s00213-019-05204-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/18/2019] [Indexed: 01/28/2023]
Abstract
RATIONALE Substance use disorders are characterized by a loss of executive control over reward-based decision-making, and disruption of fronto-striatal connectivity has been implicated in this process. Sub-anesthetic ketamine has recently been shown to bolster fronto-striatal connectivity in drug-naïve subjects. OBJECTIVES The influence of ketamine treatment was examined on the disruptive effects of cocaine on functional connectivity (FC) and on cocaine-seeking behavior in female rhesus monkeys. METHODS Three female rhesus were trained for unanesthetized MRI scanning. Each received three drug-naïve/abstinent pharmacological MRI scans with acute injections of saline, cocaine (0.3 mg/kg i.v.), and cocaine (0.3 mg/kg i.v.) 48-h after a ketamine treatment (low dose = 0.345 mg/kg bolus + 0.256 mg/kg/h for 1 h; i.v.), and a fourth scan with saline injection following 2 months of daily cocaine self-administration. A separate cohort of five rhesus (4 female), all with extensive histories of cocaine exposure, underwent reinstatement testing 48 h after ketamine (or vehicle) treatment. Two sub-anesthetic doses were tested: low dose and high dose = 0.69 mg/kg + 0.512 mg/kg/h for 1 h. RESULTS Ketamine treatment attenuated the effects of cocaine on both global and fronto-striatal FC in drug-naïve/abstinent subjects. Two months of daily cocaine self-administration led to prolonged disruption of both global and fronto-striatal FC. Cocaine-seeking behavior during reinstatement was reduced following ketamine treatment at the low dose, but not high dose. CONCLUSION These findings illustrate the disruptive effects of cocaine on functional connectivity and provide evidence for the potential efficacy of ketamine as a treatment for stimulant use disorder.
Collapse
Affiliation(s)
- Eric A Maltbie
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, USA
| | - Kaundinya S Gopinath
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, USA.,Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, 30329, USA
| | - Leonard L Howell
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, USA. .,Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30329, USA.
| |
Collapse
|
21
|
Wilcox CE, Abbott CC, Calhoun VD. Alterations in resting-state functional connectivity in substance use disorders and treatment implications. Prog Neuropsychopharmacol Biol Psychiatry 2019; 91:79-93. [PMID: 29953936 PMCID: PMC6309756 DOI: 10.1016/j.pnpbp.2018.06.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/18/2018] [Accepted: 06/23/2018] [Indexed: 02/06/2023]
Abstract
Substance use disorders (SUD) are diseases of the brain, characterized by aberrant functioning in the neural circuitry of the brain. Resting state functional connectivity (rsFC) can illuminate these functional changes by measuring the temporal coherence of low-frequency fluctuations of the blood oxygenation level-dependent magnetic resonance imaging signal in contiguous or non-contiguous regions of the brain. Because this data is easy to obtain and analyze, and therefore fairly inexpensive, it holds promise for defining biological treatment targets in SUD, which could help maximize the efficacy of existing clinical interventions and develop new ones. In an effort to identify the most likely "treatment targets" obtainable with rsFC we summarize existing research in SUD focused on 1) the relationships between rsFC and functionality within important psychological domains which are believed to underlie relapse vulnerability 2) changes in rsFC from satiety to deprived or abstinent states 3) baseline rsFC correlates of treatment outcome and 4) changes in rsFC induced by treatment interventions which improve clinical outcomes and reduce relapse risk. Converging evidence indicates that likely "treatment target" candidates, emerging consistently in all four sections, are reduced connectivity within executive control network (ECN) and between ECN and salience network (SN). Other potential treatment targets also show promise, but the literature is sparse and more research is needed. Future research directions include data-driven prediction analyses and rsFC analyses with longitudinal datasets that incorporate time since last use into analysis to account for drug withdrawal. Once the most reliable biological markers are identified, they can be used for treatment matching, during preliminary testing of new pharmacological compounds to establish clinical potential ("target engagement") prior to carrying out costly clinical trials, and for generating hypotheses for medication repurposing.
Collapse
|
22
|
|
23
|
Food addiction linked to changes in ventral striatum functional connectivity between fasting and satiety. Appetite 2018; 133:18-23. [PMID: 30312737 DOI: 10.1016/j.appet.2018.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 01/07/2023]
Abstract
INTRODUCTION The concept of "food addiction" (FA) has gained popularity in view of clinical and neurobiological overlaps between excessive food intake and addictive disorders. However, no studies have examined the link between FA and striatocortical circuits involved in addictive disorders, or the influence of homeostatic status, which regulates the drive to eat, on these systems. This study aims to investigate changes in striatal functional connectivity between fasted and fed conditions among adults ranging in body mass index (BMI) and FA symptoms. METHODS Thirty adults were recruited from the general community and completed self-reported surveys including demographics, FA symptoms using the Yale Food Addiction Scale, as well as height and weight measures, used to determine BMI. Participants completed two 3-T MRI scans, one in a fasted state and one in a fed state. We conducted seed-based analyses to examine between-session ("fasted > fed") change in resting-state functional connectivity of the ventral and dorsal striatum, and its association with FA scores (controlling for BMI). RESULTS Higher symptoms of FA correlated with greater changes in ventral caudate-hippocampus connectivity between fasted and fed conditions. FA symptoms did not correlate with connectivity in the dorsal caudate circuit. Post-hoc analyses revealed that participants with higher symptoms of FA had ventral caudate-hippocampus hyperconnectivity in the fasted scan only, as well as a significant reduction of this connectivity between the fasted and fed scans. CONCLUSIONS Heightened connectivity in the ventral striatum during a fasted state, which has been linked to reward prediction signals, underpins symptoms of FA. In contrast, connectivity in the dorsal striatum or "habit" system is unrelated to homeostatic status and FA symptoms, and is thus less relevant for subclinical manifestations of FA.
Collapse
|
24
|
Kim B, Im HI. The role of the dorsal striatum in choice impulsivity. Ann N Y Acad Sci 2018; 1451:92-111. [PMID: 30277562 DOI: 10.1111/nyas.13961] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/11/2018] [Accepted: 08/06/2018] [Indexed: 01/25/2023]
Abstract
It has long been recognized that the dorsal striatum is an essential brain region for control of action selection based on action-outcome contingency learning, particularly when the available actions are bound to rewarding outcomes. In principle, intertemporal choice in the delay-discounting task-a validated measure of choice impulsivity-involves reward-associated actions that require the recruitment of the dorsal striatum. Here, we conjecture about ways the dorsal striatum is involved in choice impulsivity. Based on a selective body of studies, we begin with a brief history of research on choice impulsivity and the dorsal striatum, and then provide a comprehensive summary of contemporary studies utilizing human neuroimaging and animal models to search for links between choice impulsivity and the dorsal striatum. In particular, we discuss in-depth the converging evidence for the associations of choice impulsivity with the reward valuation coded by the caudate, a ventral-to-dorsal gradient in the dorsal striatum, the origins of striatal afferents, and developmental maturation of frontostriatal connectivity during adolescence.
Collapse
Affiliation(s)
- BaekSun Kim
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea.,Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Heh-In Im
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea.,Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Center for Neuroscience, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| |
Collapse
|
25
|
Ventral striatal dysfunction in cocaine dependence - difference mapping for subregional resting state functional connectivity. Transl Psychiatry 2018; 8:119. [PMID: 29915214 PMCID: PMC6006289 DOI: 10.1038/s41398-018-0164-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/13/2018] [Accepted: 04/22/2018] [Indexed: 12/21/2022] Open
Abstract
Research of dopaminergic deficits has focused on the ventral striatum (VS) with many studies elucidating altered resting state functional connectivity (rsFC) in individuals with cocaine dependence (CD). The VS comprises functional subregions and delineation of subregional changes in rsFC requires careful consideration of the differences between addicted and healthy populations. In the current study, we parcellated the VS using whole-brain rsFC differences between CD and non-drug-using controls (HC). Voxels with similar rsFC changes formed functional clusters. The results showed that the VS was divided into 3 subclusters, in the area of the dorsal-anterior VS (daVS), dorsal posterior VS (dpVS), and ventral VS (vVS), each in association with different patterns of rsFC. The three subregions shared reduced rsFC with bilateral hippocampal/parahippocampal gyri (HG/PHG) but also showed distinct changes, including reduced vVS rsFC with ventromedial prefrontal cortex (vmPFC) and increased daVS rsFC with visual cortex in CD as compared to HC. Across CD, daVS visual cortical connectivity was positively correlated with amount of prior-month cocaine use and cocaine craving, and vVS vmPFC connectivity was negatively correlated with the extent of depression and anxiety. These findings suggest a distinct pattern of altered VS subregional rsFC in cocaine dependence, and some of the changes have eluded analyses using the whole VS as a seed region. The findings may provide new insight to delineating VS circuit deficits in cocaine dependence and provide an alternative analytical framework to address functional dysconnectivity in other mental illnesses.
Collapse
|
26
|
Zhang Y, Zhang S, Ide JS, Hu S, Zhornitsky S, Wang W, Dong G, Tang X, Li CSR. Dynamic network dysfunction in cocaine dependence: Graph theoretical metrics and stop signal reaction time. NEUROIMAGE-CLINICAL 2018; 18:793-801. [PMID: 29876265 PMCID: PMC5988015 DOI: 10.1016/j.nicl.2018.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/09/2018] [Accepted: 03/14/2018] [Indexed: 01/04/2023]
Abstract
Graphic theoretical metrics have become increasingly popular in characterizing functional connectivity of neural networks and how network connectivity is compromised in neuropsychiatric illnesses. Here, we add to this literature by describing dynamic network connectivities of 78 cocaine dependent (CD) and 85 non-drug using healthy control (HC) participants who underwent fMRI during performance of a stop signal task (SST). Compared to HC, CD showed prolonged stop signal reaction time (SSRT), consistent with deficits in response inhibition. In graph theoretical analysis of dynamic functional connectivity, we examined temporal flexibility and spatiotemporal diversity of 14 networks covering the whole brain. Temporal flexibility quantifies how frequently a brain region interacts with regions of other communities across time, with high temporal flexibility indicating that a region interacts predominantly with regions outside its own community. Spatiotemporal diversity quantifies how uniformly a brain region interacts with regions in other communities over time, with high spatiotemporal diversity indicating that the interactions are more evenly distributed across communities. Compared to HC, CD exhibited decreased temporal flexibility and increased spatiotemporal diversity in the great majority of neural networks. The graph metric measures of the default mode network negatively correlated with SSRT in CD but not HC. The findings are consistent with diminished temporal flexibility and a compensatory increase in spatiotemporal diversity, in association with impairment of a critical executive function, in cocaine addiction. More broadly, the findings suggest that graph theoretical metrics provide new insights for connectivity analyses to elucidate network dysfunction that may elude conventional measures. Cocaine addiction (CA) is associated with prolonged stop signal reaction time (SSRT). CA is associated with decreased temporal flexibility (TF) of neural networks. CA is associated with increased spatial temporal diversity (STD) of neural networks. The TF and STD of default mode network correlated negatively with SSRT in CA. Dynamic connectivity captures network dysfunction in link with inhibition deficits in CA.
Collapse
Affiliation(s)
- Yihe Zhang
- Department of Biomedical engineering, School of Life Sciences, Beijing Institute of technology, Beijing, China; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Jaime S Ide
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Sien Hu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Psychology, State University of New York, Oswego, NY, USA
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Wuyi Wang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Guozhao Dong
- Department of Biomedical engineering, School of Life Sciences, Beijing Institute of technology, Beijing, China
| | - Xiaoying Tang
- Department of Biomedical engineering, School of Life Sciences, Beijing Institute of technology, Beijing, China.
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA; Beijing Huilongguan Hospital, Beijing, China.
| |
Collapse
|
27
|
Lopez-Guzman S, Konova AB, Louie K, Glimcher PW. Risk preferences impose a hidden distortion on measures of choice impulsivity. PLoS One 2018; 13:e0191357. [PMID: 29373590 PMCID: PMC5786295 DOI: 10.1371/journal.pone.0191357] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/03/2018] [Indexed: 12/31/2022] Open
Abstract
Measuring temporal discounting through the use of intertemporal choice tasks is now the gold standard method for quantifying human choice impulsivity (impatience) in neuroscience, psychology, behavioral economics, public health and computational psychiatry. A recent area of growing interest is individual differences in discounting levels, as these may predispose to (or protect from) mental health disorders, addictive behaviors, and other diseases. At the same time, more and more studies have been dedicated to the quantification of individual attitudes towards risk, which have been measured in many clinical and non-clinical populations using closely related techniques. Economists have pointed to interactions between measurements of time preferences and risk preferences that may distort estimations of the discount rate. However, although becoming standard practice in economics, discount rates and risk preferences are rarely measured simultaneously in the same subjects in other fields, and the magnitude of the imposed distortion is unknown in the assessment of individual differences. Here, we show that standard models of temporal discounting —such as a hyperbolic discounting model widely present in the literature which fails to account for risk attitudes in the estimation of discount rates— result in a large and systematic pattern of bias in estimated discounting parameters. This can lead to the spurious attribution of differences in impulsivity between individuals when in fact differences in risk attitudes account for observed behavioral differences. We advance a model which, when applied to standard choice tasks typically used in psychology and neuroscience, provides both a better fit to the data and successfully de-correlates risk and impulsivity parameters. This results in measures that are more accurate and thus of greater utility to the many fields interested in individual differences in impulsivity.
Collapse
Affiliation(s)
- Silvia Lopez-Guzman
- Center for Neural Science, New York University, New York, United States of America
- * E-mail:
| | - Anna B. Konova
- Center for Neural Science, New York University, New York, United States of America
| | - Kenway Louie
- Center for Neural Science, New York University, New York, United States of America
| | - Paul W. Glimcher
- Center for Neural Science, New York University, New York, United States of America
- Institute for the Study of Decision Making, New York University, New York, United States of America
| |
Collapse
|
28
|
Zhang S, Wang W, Zhornitsky S, Li CSR. Resting State Functional Connectivity of the Lateral and Medial Hypothalamus in Cocaine Dependence: An Exploratory Study. Front Psychiatry 2018; 9:344. [PMID: 30100886 PMCID: PMC6072838 DOI: 10.3389/fpsyt.2018.00344] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/09/2018] [Indexed: 12/21/2022] Open
Abstract
The role of dopamine in cocaine misuse has been extensively documented for the mesocorticolimbic circuit. Preclinical work from earlier lesion studies to recent multidisciplinary investigations has suggested that the hypothalamus is critically involved in motivated behavior, with the lateral and medial hypothalamus each involved in waking/feeding and resting/satiety. However, little is known of hypothalamus function and dysfunction in cocaine misuse. Here, we examined resting state functional connectivity of the lateral and medial hypothalamus in 70 individuals with cocaine dependence (CD) and 70 age as well as gender matched healthy controls (HC). Image pre-processing and analyses followed published work. Compared to HC, CD showed increased lateral hypothalamic connectivity with dorsolateral prefrontal cortex and decreased functional connectivity with the ventral precuneus. CD showed increased medial hypothalamic connectivity with the inferior parietal lobule and decreased connectivity with the ventromedial prefrontal cortex, temporal gyrus, fusiform gyrus, and ventral striatum. Further, at trend level significance, the connectivity strength between lateral hypothalamus and dorsolateral prefrontal cortex was positively correlated with total amount of cocaine use in the past month (p = 0.004, r = 0.35) and the connectivity strength between medial hypothalamus and ventral striatum was negatively correlated with cocaine craving as assessed by the Tiffany Cocaine Craving Questionnaire (p = 0.008, r = -0.33). Together, the findings demonstrated altered resting state functional connectivity of the hypothalamus and may provide new insight on circuit level deficits in cocaine dependence.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Wuyi Wang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States.,Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States.,Beijing Huilongguan Hospital, Beijing, China
| |
Collapse
|
29
|
Zhang JT, Ma SS, Li CSR, Liu L, Xia CC, Lan J, Wang LJ, Liu B, Yao YW, Fang XY. Craving behavioral intervention for internet gaming disorder: remediation of functional connectivity of the ventral striatum. Addict Biol 2018; 23:337-346. [PMID: 27894158 DOI: 10.1111/adb.12474] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 12/14/2022]
Abstract
Psychobehavioral intervention is an effective treatment of Internet addiction, including Internet gaming disorder (IGD). However, the neural mechanisms underlying its efficacy remain unclear. Cortical-ventral striatum (VS) circuitry is a common target of psychobehavioral interventions in drug addiction, and cortical-VS dysfunction has been reported in IGD; hence, the primary aim of the study was to investigate how the VS circuitry responds to psychobehavioral interventions in IGD. In a cross-sectional study, we examined resting-state functional connectivity of the VS in 74 IGD subjects (IGDs) and 41 healthy controls (HCs). In a follow-up craving behavioral intervention (CBI) study, of the 74 IGD subjects, 20 IGD subjects received CBI (CBI+) and 16 IGD subjects did not (CBI-). All participants were scanned twice with similar time interval to assess the effects of CBI. IGD subjects showed greater resting-state functional connectivity of the VS to left inferior parietal lobule (lIPL), right inferior frontal gyrus and left middle frontal gyrus, in positive association with the severity of IGD. Moreover, compared with CBI-, CBI+ showed significantly greater decrease in VS-lIPL connectivity, along with amelioration in addiction severity following the intervention. These findings demonstrated that functional connectivity between VS and lIPL, each presumably mediating gaming craving and attentional bias, may be a potential biomarker of the efficacy of psychobehavioral intervention. These results also suggested that non-invasive techniques such as transcranial magnetic or direct current stimulation targeting the VS-IPL circuitry may be used in the treatment of Internet gaming disorders.
Collapse
Affiliation(s)
- Jin-Tao Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research; Beijing Normal University; Beijing China
- Center for Collaboration and Innovation in Brain and Learning Sciences; Beijing Normal University; Beijing China
| | - Shan-Shan Ma
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research; Beijing Normal University; Beijing China
| | - Chiang-Shan R. Li
- Department of Psychiatry and Neuroscience; Yale University School of Medicine; New Haven CT USA
| | - Lu Liu
- Institute of Developmental Psychology; Beijing Normal University; Beijing China
| | - Cui-Cui Xia
- Students Counselling Center; Beijing Normal University; Beijing China
| | - Jing Lan
- Institute of Developmental Psychology; Beijing Normal University; Beijing China
| | - Ling-Jiao Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research; Beijing Normal University; Beijing China
| | - Ben Liu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research; Beijing Normal University; Beijing China
| | - Yuan-Wei Yao
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research; Beijing Normal University; Beijing China
| | - Xiao-Yi Fang
- Institute of Developmental Psychology; Beijing Normal University; Beijing China
| |
Collapse
|
30
|
Moreno-López L, Albein-Urios N, Martínez-González JM, Soriano-Mas C, Verdejo-García A. Neural correlates of impaired self-awareness of apathy, disinhibition and dysexecutive deficits in cocaine-dependent individuals. Addict Biol 2017; 22:1438-1448. [PMID: 27397847 DOI: 10.1111/adb.12422] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/14/2016] [Accepted: 05/31/2016] [Indexed: 12/20/2022]
Abstract
Cocaine addiction is characterized by impaired self-awareness about cognitive and motivational deficits, leading to poor treatment outcomes. However, there is still limited understanding of the neurophysiological underpinnings of this impairment. We aimed to establish if impaired self-awareness is underpinned by brain structural phenotypes among cocaine-dependent individuals (CDI). Sixty-five CDI and 65 designated informants completed the Frontal Systems Behavior Scale, and a subsample of 40 CDI were scanned via magnetic resonance imaging. We applied multiple regression models to establish the association between levels of self-awareness indexed by Frontal Systems Behavior Scale's discrepancy scores (i.e. informant ratings minus self-reports of apathy, disinhibition and dysexecutive deficits) and gray matter volumes indexed by magnetic resonance imaging voxel-based measures within five brain regions of interest: anterior cingulate cortex, orbitofrontal cortex (OFC), striatum, insula and dorsolateral prefrontal cortex (DLPFC). We also examined the neural underpinnings of underestimation versus overestimation of deficits, by splitting the CDI group according to the positive or negative value of their discrepancy scores. We found that poorer self-awareness of apathy deficits was associated with greater gray matter volume in the dorsal striatum, and poorer self-awareness of disinhibition deficits was associated with greater gray matter volume in the OFC in the whole sample. More underestimation and more overestimation of executive deficits were linked to lower DLPFC volume. We show that impaired self-awareness of cognitive and motivational deficits in cocaine addiction has a neural underpinning, implicating striatum, OFC and DLPFC structural phenotypes.
Collapse
Affiliation(s)
- Laura Moreno-López
- Institute of Neuroscience F. Oloriz and Department of Clinical Psychology; University of Granada; Spain
- Division of Anaesthesia; University of Cambridge; UK
| | | | | | - Carles Soriano-Mas
- Department of Psychiatry; Bellvitge University Hospital-IDIBELL; Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM); Spain
- Department of Psychobiology and Methodology of Health Sciences; Universitat Autònoma de Barcelona; Spain
| | - Antonio Verdejo-García
- Institute of Neuroscience F. Oloriz and Department of Clinical Psychology; University of Granada; Spain
- Red de Trastornos Adictivos; Universidad de Granada; Spain
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neuroscience; Monash University; Australia
| |
Collapse
|
31
|
Wang S, Zhou M, Chen T, Yang X, Chen G, Gong Q. Delay discounting is associated with the fractional amplitude of low-frequency fluctuations and resting-state functional connectivity in late adolescence. Sci Rep 2017; 7:10276. [PMID: 28860514 PMCID: PMC5579001 DOI: 10.1038/s41598-017-11109-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 08/18/2017] [Indexed: 02/05/2023] Open
Abstract
As a component of self-regulation, delay discounting (DD) refers to an individual’s tendency to prefer smaller-but-sooner rewards over larger-but-later rewards and plays an essential role in many aspects of human behavior. Although numerous studies have examined the neural underpinnings of DD in adults, there are far fewer studies focusing on the neurobiological correlates underlying DD in adolescents. Here, we investigated the associations between individual differences in DD and the fractional amplitude of low-frequency fluctuations (fALFF) and resting-state functional connectivity (RSFC) in 228 high school students using resting-state functional magnetic resonance imaging (RS-fMRI). At the regional level, we found an association between higher DD and greater fALFF in the dorsal anterior cingulate cortex (dACC), which is involved in conflict monitoring and strategy adaptation. At the connectivity level, DD was positively correlated with the RSFC between the dACC and the left dorsolateral prefrontal cortex (DLPFC), a critical functional circuit in the cognitive control network. Furthermore, these effects persisted even after adjusting for the influences of general intelligence and trait impulsivity. Overall, this study reveals the fALFF and RSFC as the functional brain basis of DD in late adolescents, aiding to strengthen and corroborate our understanding of the neural underpinnings of DD.
Collapse
Affiliation(s)
- Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China.,Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, 610031, China
| | - Ming Zhou
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Taolin Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xun Yang
- School of Sociality and Psychology, Southwest University for Nationalities, Chengdu, 610041, China
| | - Guangxiang Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China. .,Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, 610031, China. .,Department of Psychology, School of Public Administration, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
32
|
Contreras-Rodríguez O, Martín-Pérez C, Vilar-López R, Verdejo-Garcia A. Ventral and Dorsal Striatum Networks in Obesity: Link to Food Craving and Weight Gain. Biol Psychiatry 2017; 81:789-796. [PMID: 26809248 DOI: 10.1016/j.biopsych.2015.11.020] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 11/15/2015] [Accepted: 11/16/2015] [Indexed: 01/15/2023]
Abstract
BACKGROUND The food addiction model proposes that obesity overlaps with addiction in terms of neurobiological alterations in the striatum and related clinical manifestations (i.e., craving and persistence of unhealthy habits). Therefore, we aimed to examine the functional connectivity of the striatum in excess-weight versus normal-weight subjects and to determine the extent of the association between striatum connectivity and individual differences in food craving and changes in body mass index (BMI). METHODS Forty-two excess-weight participants (BMI > 25) and 39 normal-weight participants enrolled in the study. Functional connectivity in the ventral and dorsal striatum was indicated by seed-based analyses on resting-state data. Food craving was indicated with subjective ratings of visual cues of high-calorie food. Changes in BMI between baseline and 12 weeks follow-up were assessed in 28 excess-weight participants. Measures of connectivity in the ventral striatum and dorsal striatum were compared between groups and correlated with craving and BMI change. RESULTS Participants with excess weight displayed increased functional connectivity between the ventral striatum and the medial prefrontal and parietal cortices and between the dorsal striatum and the somatosensory cortex. Dorsal striatum connectivity correlated with food craving and predicted BMI gains. CONCLUSIONS Obesity is linked to alterations in the functional connectivity of dorsal striatal networks relevant to food craving and weight gain. These neural alterations are associated with habit learning and thus compatible with the food addiction model of obesity.
Collapse
Affiliation(s)
- Oren Contreras-Rodríguez
- Red de Trastornos Adictivos, Universidad de Granada, Granada; Psychiatry Department, Bellvitge University Hospital, Bellvitge Biomedical Research Institute-IDIBELL, and Centro de Investigación Biomédica en Red de Salud Mental, Barcelona
| | - Cristina Martín-Pérez
- Red de Trastornos Adictivos, Universidad de Granada, Granada; Institute of Neuroscience F. Oloriz, Universidad de Granada, Granada, Spain
| | - Raquel Vilar-López
- Red de Trastornos Adictivos, Universidad de Granada, Granada; Mind, Brain and Behavior Research Center, Universidad de Granada, Granada, Spain
| | - Antonio Verdejo-Garcia
- Red de Trastornos Adictivos, Universidad de Granada, Granada; Institute of Neuroscience F. Oloriz, Universidad de Granada, Granada, Spain; School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, Australia.
| |
Collapse
|
33
|
Cognitive training for substance use disorders: Neuroscientific mechanisms. Neurosci Biobehav Rev 2016; 68:270-281. [DOI: 10.1016/j.neubiorev.2016.05.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 04/13/2016] [Accepted: 05/19/2016] [Indexed: 12/11/2022]
|
34
|
Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry 2016; 3:760-773. [PMID: 27475769 PMCID: PMC6135092 DOI: 10.1016/s2215-0366(16)00104-8] [Citation(s) in RCA: 1934] [Impact Index Per Article: 241.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/09/2016] [Accepted: 03/11/2016] [Indexed: 12/17/2022]
Abstract
Drug addiction represents a dramatic dysregulation of motivational circuits that is caused by a combination of exaggerated incentive salience and habit formation, reward deficits and stress surfeits, and compromised executive function in three stages. The rewarding effects of drugs of abuse, development of incentive salience, and development of drug-seeking habits in the binge/intoxication stage involve changes in dopamine and opioid peptides in the basal ganglia. The increases in negative emotional states and dysphoric and stress-like responses in the withdrawal/negative affect stage involve decreases in the function of the dopamine component of the reward system and recruitment of brain stress neurotransmitters, such as corticotropin-releasing factor and dynorphin, in the neurocircuitry of the extended amygdala. The craving and deficits in executive function in the so-called preoccupation/anticipation stage involve the dysregulation of key afferent projections from the prefrontal cortex and insula, including glutamate, to the basal ganglia and extended amygdala. Molecular genetic studies have identified transduction and transcription factors that act in neurocircuitry associated with the development and maintenance of addiction that might mediate initial vulnerability, maintenance, and relapse associated with addiction.
Collapse
Affiliation(s)
- George F Koob
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA.
| | - Nora D Volkow
- National Institute on Drug Abuse, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
35
|
Hanlon CA, Dowdle LT, Jones JL. Biomarkers for Success: Using Neuroimaging to Predict Relapse and Develop Brain Stimulation Treatments for Cocaine-Dependent Individuals. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 129:125-56. [PMID: 27503451 DOI: 10.1016/bs.irn.2016.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cocaine dependence is one of the most difficult substance use disorders to treat. While the powerful effects of cocaine use on behavior were documented in the 19th century, it was not until the late 20th century that we realized cocaine use was affecting brain tissue and function. Following a brief introduction (Section 1), this chapter will summarize our current knowledge regarding alterations in neural circuit function typically observed in chronic cocaine users (Section 2) and highlight an emerging body of literature which suggests that pretreatment limbic circuit activity may be a reliable predictor of clinical outcomes among individuals seeking treatment for cocaine (Section 3). Finally, as the field of addiction research strives to translate this neuroimaging data into something clinically meaningful, we will highlight several new brain stimulation approaches which utilize functional brain imaging data to design noninvasive brain stimulation interventions for individuals seeking treatment for substance dependence disorders (Section 4).
Collapse
Affiliation(s)
- C A Hanlon
- Medical University of South Carolina, Charleston, SC, United States.
| | - L T Dowdle
- Medical University of South Carolina, Charleston, SC, United States
| | - J L Jones
- Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
36
|
Lorenzetti V, Cousijn J, Solowij N, Garavan H, Suo C, Yücel M, Verdejo-García A. The Neurobiology of Cannabis Use Disorders: A Call for Evidence. Front Behav Neurosci 2016; 10:86. [PMID: 27242457 PMCID: PMC4861711 DOI: 10.3389/fnbeh.2016.00086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/18/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Valentina Lorenzetti
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash UniversityMelbourne, VIC, Australia
| | - Janna Cousijn
- Addiction Development and Psychopathology Lab, Department of Psychology, University of AmsterdamAmsterdam, Netherlands
| | - Nadia Solowij
- School of Psychology, Centre for Health Initiatives and Illawarra Health and Medical Research Institute, University of WollongongWollongong, NSW, Australia
| | - Hugh Garavan
- Department of Psychological Science, College of Arts and Sciences, The University of VermontBurlington, VT, USA
| | - Chao Suo
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash UniversityMelbourne, VIC, Australia
| | - Murat Yücel
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash UniversityMelbourne, VIC, Australia
| | - Antonio Verdejo-García
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash UniversityMelbourne, VIC, Australia
| |
Collapse
|
37
|
Moeller SJ, London ED, Northoff G. Neuroimaging markers of glutamatergic and GABAergic systems in drug addiction: Relationships to resting-state functional connectivity. Neurosci Biobehav Rev 2016; 61:35-52. [PMID: 26657968 PMCID: PMC4731270 DOI: 10.1016/j.neubiorev.2015.11.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/05/2015] [Accepted: 11/21/2015] [Indexed: 12/29/2022]
Abstract
Drug addiction is characterized by widespread abnormalities in brain function and neurochemistry, including drug-associated effects on concentrations of the excitatory and inhibitory neurotransmitters glutamate and gamma-aminobutyric acid (GABA), respectively. In healthy individuals, these neurotransmitters drive the resting state, a default condition of brain function also disrupted in addiction. Here, our primary goal was to review in vivo magnetic resonance spectroscopy and positron emission tomography studies that examined markers of glutamate and GABA abnormalities in human drug addiction. Addicted individuals tended to show decreases in these markers compared with healthy controls, but findings also varied by individual characteristics (e.g., abstinence length). Interestingly, select corticolimbic brain regions showing glutamatergic and/or GABAergic abnormalities have been similarly implicated in resting-state functional connectivity deficits in drug addiction. Thus, our secondary goals were to provide a brief review of this resting-state literature, and an initial rationale for the hypothesis that abnormalities in glutamatergic and/or GABAergic neurotransmission may underlie resting-state functional deficits in drug addiction. In doing so, we suggest future research directions and possible treatment implications.
Collapse
Affiliation(s)
- Scott J Moeller
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Edythe D London
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Departments of Psychiatry and Biobehavioral Sciences, and Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| | - Georg Northoff
- Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, Ottawa, Canada.
| |
Collapse
|