1
|
Holen B, Kutrolli G, Shadrin AA, Icick R, Hindley G, Rødevand L, O'Connell KS, Frei O, Parker N, Tesfaye M, Deak JD, Jahołkowski P, Dale AM, Djurovic S, Andreassen OA, Smeland OB. Genome-wide analyses reveal shared genetic architecture and novel risk loci between opioid use disorder and general cognitive ability. Drug Alcohol Depend 2024; 256:111058. [PMID: 38244365 DOI: 10.1016/j.drugalcdep.2023.111058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/09/2023] [Accepted: 12/03/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Opioid use disorder (OUD), a serious health burden worldwide, is associated with lower cognitive function. Recent studies have demonstrated a negative genetic correlation between OUD and general cognitive ability (COG), indicating a shared genetic basis. However, the specific genetic variants involved, and the underlying molecular mechanisms remain poorly understood. Here, we aimed to quantify and identify the genetic basis underlying OUD and COG. METHODS We quantified the extent of genetic overlap between OUD and COG using a bivariate causal mixture model (MiXeR) and identified specific genetic loci applying conditional/conjunctional FDR. Finally, we investigated biological function and expression of implicated genes using available resources. RESULTS We estimated that ~94% of OUD variants (4.8k out of 5.1k variants) also influence COG. We identified three novel OUD risk loci and one locus shared between OUD and COG. Loci identified implicated biological substrates in the basal ganglia. CONCLUSION We provide new insights into the complex genetic risk architecture of OUD and its genetic relationship with COG.
Collapse
Affiliation(s)
- Børge Holen
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo 0407, Norway.
| | - Gleda Kutrolli
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo 0407, Norway
| | - Alexey A Shadrin
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo 0407, Norway
| | - Romain Icick
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo 0407, Norway; INSERM UMR-S1144, Université Paris Cité, F-75006, France
| | - Guy Hindley
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo 0407, Norway
| | - Linn Rødevand
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo 0407, Norway
| | - Kevin S O'Connell
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo 0407, Norway
| | - Oleksandr Frei
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo 0407, Norway
| | - Nadine Parker
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo 0407, Norway
| | - Markos Tesfaye
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo 0407, Norway; NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Joseph D Deak
- Yale School of Medicine, New Haven, CT, USA; VA Connecticut Healthcare Center, West Haven, CT, USA
| | - Piotr Jahołkowski
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo 0407, Norway
| | - Anders M Dale
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA; Multimodal Imaging Laboratory, University of California San Diego, La Jolla, CA 92093, USA; Department of Cognitive Science, University of California San Diego, La Jolla, CA, USA; Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ole A Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo 0407, Norway
| | - Olav B Smeland
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo 0407, Norway.
| |
Collapse
|
2
|
Jaholkowski P, Hindley GFL, Shadrin AA, Tesfaye M, Bahrami S, Nerhus M, Rahman Z, O’Connell KS, Holen B, Parker N, Cheng W, Lin A, Rødevand L, Karadag N, Frei O, Djurovic S, Dale AM, Smeland OB, Andreassen OA. Genome-wide Association Analysis of Schizophrenia and Vitamin D Levels Shows Shared Genetic Architecture and Identifies Novel Risk Loci. Schizophr Bull 2023; 49:1654-1664. [PMID: 37163672 PMCID: PMC10686370 DOI: 10.1093/schbul/sbad063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Low vitamin D (vitD) levels have been consistently reported in schizophrenia (SCZ) suggesting a role in the etiopathology. However, little is known about the role of underlying shared genetic mechanisms. We applied a conditional/conjunctional false discovery rate approach (FDR) on large, nonoverlapping genome-wide association studies for SCZ (N cases = 53 386, N controls = 77 258) and vitD serum concentration (N = 417 580) to evaluate shared common genetic variants. The identified genomic loci were characterized using functional analyses and biological repositories. We observed cross-trait SNP enrichment in SCZ conditioned on vitD and vice versa, demonstrating shared genetic architecture. Applying the conjunctional FDR approach, we identified 72 loci jointly associated with SCZ and vitD at conjunctional FDR < 0.05. Among the 72 shared loci, 40 loci have not previously been reported for vitD, and 9 were novel for SCZ. Further, 64% had discordant effects on SCZ-risk and vitD levels. A mixture of shared variants with concordant and discordant effects with a predominance of discordant effects was in line with weak negative genetic correlation (rg = -0.085). Our results displayed shared genetic architecture between SCZ and vitD with mixed effect directions, suggesting overlapping biological pathways. Shared genetic variants with complex overlapping mechanisms may contribute to the coexistence of SCZ and vitD deficiency and influence the clinical picture.
Collapse
Affiliation(s)
- Piotr Jaholkowski
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health
and Addiction, Oslo University Hospital, and Institute of Clinical Medicine,
University of Oslo, Oslo, Norway
| | - Guy F L Hindley
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health
and Addiction, Oslo University Hospital, and Institute of Clinical Medicine,
University of Oslo, Oslo, Norway
- Institute of Psychiatry, Psychology and Neuroscience, King’s College
London, London, UK
| | - Alexey A Shadrin
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health
and Addiction, Oslo University Hospital, and Institute of Clinical Medicine,
University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and
Oslo University Hospital, Oslo, Norway
| | - Markos Tesfaye
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health
and Addiction, Oslo University Hospital, and Institute of Clinical Medicine,
University of Oslo, Oslo, Norway
- Department of Psychiatry, St. Paul’s Hospital Millennium Medical
College, Addis Ababa, Ethiopia
| | - Shahram Bahrami
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health
and Addiction, Oslo University Hospital, and Institute of Clinical Medicine,
University of Oslo, Oslo, Norway
| | - Mari Nerhus
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health
and Addiction, Oslo University Hospital, and Institute of Clinical Medicine,
University of Oslo, Oslo, Norway
- Department of Special Psychiatry, Akershus University
Hospital, Lørenskog, Norway
- Division of Health Services Research and Psychiatry,
Institute of Clinical Medicine, Campus Ahus, University of Oslo,
Oslo, Norway
| | - Zillur Rahman
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health
and Addiction, Oslo University Hospital, and Institute of Clinical Medicine,
University of Oslo, Oslo, Norway
| | - Kevin S O’Connell
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health
and Addiction, Oslo University Hospital, and Institute of Clinical Medicine,
University of Oslo, Oslo, Norway
| | - Børge Holen
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health
and Addiction, Oslo University Hospital, and Institute of Clinical Medicine,
University of Oslo, Oslo, Norway
| | - Nadine Parker
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health
and Addiction, Oslo University Hospital, and Institute of Clinical Medicine,
University of Oslo, Oslo, Norway
| | - Weiqiu Cheng
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health
and Addiction, Oslo University Hospital, and Institute of Clinical Medicine,
University of Oslo, Oslo, Norway
| | - Aihua Lin
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health
and Addiction, Oslo University Hospital, and Institute of Clinical Medicine,
University of Oslo, Oslo, Norway
| | - Linn Rødevand
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health
and Addiction, Oslo University Hospital, and Institute of Clinical Medicine,
University of Oslo, Oslo, Norway
| | - Naz Karadag
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health
and Addiction, Oslo University Hospital, and Institute of Clinical Medicine,
University of Oslo, Oslo, Norway
| | - Oleksandr Frei
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health
and Addiction, Oslo University Hospital, and Institute of Clinical Medicine,
University of Oslo, Oslo, Norway
- Center for Bioinformatics, Department of Informatics, University of
Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital,
Oslo, Norway
- NORMENT Centre, Department of Clinical Science, University of
Bergen, Bergen, Norway
| | - Anders M Dale
- Department of Radiology, University of California, San Diego,
La Jolla, CA
- Multimodal Imaging Laboratory, University of California San
Diego, La Jolla, CA
- Department of Psychiatry, University of California, San
Diego, La Jolla, CA
- Department of Neurosciences, University of California San
Diego, La Jolla, CA
| | - Olav B Smeland
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health
and Addiction, Oslo University Hospital, and Institute of Clinical Medicine,
University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health
and Addiction, Oslo University Hospital, and Institute of Clinical Medicine,
University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and
Oslo University Hospital, Oslo, Norway
| |
Collapse
|
3
|
Rødevand L, Rahman Z, Hindley GFL, Smeland OB, Frei O, Tekin TF, Kutrolli G, Bahrami S, Hoseth EZ, Shadrin A, Lin A, Djurovic S, Dale AM, Steen NE, Andreassen OA. Characterizing the Shared Genetic Underpinnings of Schizophrenia and Cardiovascular Disease Risk Factors. Am J Psychiatry 2023; 180:815-826. [PMID: 37752828 PMCID: PMC11780279 DOI: 10.1176/appi.ajp.20220660] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
OBJECTIVE Schizophrenia is associated with increased risk of cardiovascular disease (CVD), although there is variation in risk among individuals. There are indications of shared genetic etiology between schizophrenia and CVD, but the nature of the overlap remains unclear. The aim of this study was to fill this gap in knowledge. METHODS Overlapping genetic architectures between schizophrenia and CVD risk factors were assessed by analyzing recent genome-wide association study (GWAS) results. The bivariate causal mixture model (MiXeR) was applied to estimate the number of shared variants and the conjunctional false discovery rate (conjFDR) approach was used to pinpoint specific shared loci. RESULTS Extensive genetic overlap was found between schizophrenia and CVD risk factors, particularly smoking initiation (N=8.6K variants) and body mass index (BMI) (N=8.1K variants). Several specific shared loci were detected between schizophrenia and BMI (N=304), waist-to-hip ratio (N=193), smoking initiation (N=293), systolic (N=294) and diastolic (N=259) blood pressure, type 2 diabetes (N=147), lipids (N=471), and coronary artery disease (N=35). The schizophrenia risk loci shared with smoking initiation had mainly concordant effect directions, and the risk loci shared with BMI had mainly opposite effect directions. The overlapping loci with lipids, blood pressure, waist-to-hip ratio, type 2 diabetes, and coronary artery disease had mixed effect directions. Functional analyses implicated mapped genes that are expressed in brain tissue and immune cells. CONCLUSIONS These findings indicate a genetic propensity to smoking and a reduced genetic risk of obesity among individuals with schizophrenia. The bidirectional effects of the shared loci with the other CVD risk factors may imply differences in genetic liability to CVD across schizophrenia subgroups, possibly underlying the variation in CVD comorbidity.
Collapse
Affiliation(s)
- Linn Rødevand
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo (Rødevand, Rahman, Hindley, Smeland, Frei, Tekin, Kutrolli, Bahrami, Hoseth, Shadrin, Lin, Steen, Andreassen); Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Hindley); Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo (Frei); Division of Mental Health, Helse Møre Romsdal HF, Kristiansund, Norway (Hoseth); Department of Medical Genetics, Oslo University Hospital, Oslo, and NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway (Djurovic); Multimodal Imaging Laboratory and Departments of Radiology, Psychiatry, and Neurosciences, University of California San Diego, La Jolla (Dale)
| | - Zillur Rahman
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo (Rødevand, Rahman, Hindley, Smeland, Frei, Tekin, Kutrolli, Bahrami, Hoseth, Shadrin, Lin, Steen, Andreassen); Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Hindley); Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo (Frei); Division of Mental Health, Helse Møre Romsdal HF, Kristiansund, Norway (Hoseth); Department of Medical Genetics, Oslo University Hospital, Oslo, and NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway (Djurovic); Multimodal Imaging Laboratory and Departments of Radiology, Psychiatry, and Neurosciences, University of California San Diego, La Jolla (Dale)
| | - Guy F L Hindley
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo (Rødevand, Rahman, Hindley, Smeland, Frei, Tekin, Kutrolli, Bahrami, Hoseth, Shadrin, Lin, Steen, Andreassen); Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Hindley); Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo (Frei); Division of Mental Health, Helse Møre Romsdal HF, Kristiansund, Norway (Hoseth); Department of Medical Genetics, Oslo University Hospital, Oslo, and NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway (Djurovic); Multimodal Imaging Laboratory and Departments of Radiology, Psychiatry, and Neurosciences, University of California San Diego, La Jolla (Dale)
| | - Olav B Smeland
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo (Rødevand, Rahman, Hindley, Smeland, Frei, Tekin, Kutrolli, Bahrami, Hoseth, Shadrin, Lin, Steen, Andreassen); Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Hindley); Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo (Frei); Division of Mental Health, Helse Møre Romsdal HF, Kristiansund, Norway (Hoseth); Department of Medical Genetics, Oslo University Hospital, Oslo, and NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway (Djurovic); Multimodal Imaging Laboratory and Departments of Radiology, Psychiatry, and Neurosciences, University of California San Diego, La Jolla (Dale)
| | - Oleksandr Frei
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo (Rødevand, Rahman, Hindley, Smeland, Frei, Tekin, Kutrolli, Bahrami, Hoseth, Shadrin, Lin, Steen, Andreassen); Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Hindley); Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo (Frei); Division of Mental Health, Helse Møre Romsdal HF, Kristiansund, Norway (Hoseth); Department of Medical Genetics, Oslo University Hospital, Oslo, and NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway (Djurovic); Multimodal Imaging Laboratory and Departments of Radiology, Psychiatry, and Neurosciences, University of California San Diego, La Jolla (Dale)
| | - Tahir Filiz Tekin
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo (Rødevand, Rahman, Hindley, Smeland, Frei, Tekin, Kutrolli, Bahrami, Hoseth, Shadrin, Lin, Steen, Andreassen); Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Hindley); Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo (Frei); Division of Mental Health, Helse Møre Romsdal HF, Kristiansund, Norway (Hoseth); Department of Medical Genetics, Oslo University Hospital, Oslo, and NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway (Djurovic); Multimodal Imaging Laboratory and Departments of Radiology, Psychiatry, and Neurosciences, University of California San Diego, La Jolla (Dale)
| | - Gleda Kutrolli
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo (Rødevand, Rahman, Hindley, Smeland, Frei, Tekin, Kutrolli, Bahrami, Hoseth, Shadrin, Lin, Steen, Andreassen); Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Hindley); Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo (Frei); Division of Mental Health, Helse Møre Romsdal HF, Kristiansund, Norway (Hoseth); Department of Medical Genetics, Oslo University Hospital, Oslo, and NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway (Djurovic); Multimodal Imaging Laboratory and Departments of Radiology, Psychiatry, and Neurosciences, University of California San Diego, La Jolla (Dale)
| | - Shahram Bahrami
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo (Rødevand, Rahman, Hindley, Smeland, Frei, Tekin, Kutrolli, Bahrami, Hoseth, Shadrin, Lin, Steen, Andreassen); Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Hindley); Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo (Frei); Division of Mental Health, Helse Møre Romsdal HF, Kristiansund, Norway (Hoseth); Department of Medical Genetics, Oslo University Hospital, Oslo, and NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway (Djurovic); Multimodal Imaging Laboratory and Departments of Radiology, Psychiatry, and Neurosciences, University of California San Diego, La Jolla (Dale)
| | - Eva Z Hoseth
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo (Rødevand, Rahman, Hindley, Smeland, Frei, Tekin, Kutrolli, Bahrami, Hoseth, Shadrin, Lin, Steen, Andreassen); Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Hindley); Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo (Frei); Division of Mental Health, Helse Møre Romsdal HF, Kristiansund, Norway (Hoseth); Department of Medical Genetics, Oslo University Hospital, Oslo, and NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway (Djurovic); Multimodal Imaging Laboratory and Departments of Radiology, Psychiatry, and Neurosciences, University of California San Diego, La Jolla (Dale)
| | - Alexey Shadrin
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo (Rødevand, Rahman, Hindley, Smeland, Frei, Tekin, Kutrolli, Bahrami, Hoseth, Shadrin, Lin, Steen, Andreassen); Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Hindley); Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo (Frei); Division of Mental Health, Helse Møre Romsdal HF, Kristiansund, Norway (Hoseth); Department of Medical Genetics, Oslo University Hospital, Oslo, and NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway (Djurovic); Multimodal Imaging Laboratory and Departments of Radiology, Psychiatry, and Neurosciences, University of California San Diego, La Jolla (Dale)
| | - Aihua Lin
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo (Rødevand, Rahman, Hindley, Smeland, Frei, Tekin, Kutrolli, Bahrami, Hoseth, Shadrin, Lin, Steen, Andreassen); Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Hindley); Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo (Frei); Division of Mental Health, Helse Møre Romsdal HF, Kristiansund, Norway (Hoseth); Department of Medical Genetics, Oslo University Hospital, Oslo, and NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway (Djurovic); Multimodal Imaging Laboratory and Departments of Radiology, Psychiatry, and Neurosciences, University of California San Diego, La Jolla (Dale)
| | - Srdjan Djurovic
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo (Rødevand, Rahman, Hindley, Smeland, Frei, Tekin, Kutrolli, Bahrami, Hoseth, Shadrin, Lin, Steen, Andreassen); Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Hindley); Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo (Frei); Division of Mental Health, Helse Møre Romsdal HF, Kristiansund, Norway (Hoseth); Department of Medical Genetics, Oslo University Hospital, Oslo, and NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway (Djurovic); Multimodal Imaging Laboratory and Departments of Radiology, Psychiatry, and Neurosciences, University of California San Diego, La Jolla (Dale)
| | - Anders M Dale
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo (Rødevand, Rahman, Hindley, Smeland, Frei, Tekin, Kutrolli, Bahrami, Hoseth, Shadrin, Lin, Steen, Andreassen); Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Hindley); Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo (Frei); Division of Mental Health, Helse Møre Romsdal HF, Kristiansund, Norway (Hoseth); Department of Medical Genetics, Oslo University Hospital, Oslo, and NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway (Djurovic); Multimodal Imaging Laboratory and Departments of Radiology, Psychiatry, and Neurosciences, University of California San Diego, La Jolla (Dale)
| | - Nils Eiel Steen
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo (Rødevand, Rahman, Hindley, Smeland, Frei, Tekin, Kutrolli, Bahrami, Hoseth, Shadrin, Lin, Steen, Andreassen); Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Hindley); Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo (Frei); Division of Mental Health, Helse Møre Romsdal HF, Kristiansund, Norway (Hoseth); Department of Medical Genetics, Oslo University Hospital, Oslo, and NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway (Djurovic); Multimodal Imaging Laboratory and Departments of Radiology, Psychiatry, and Neurosciences, University of California San Diego, La Jolla (Dale)
| | - Ole A Andreassen
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo (Rødevand, Rahman, Hindley, Smeland, Frei, Tekin, Kutrolli, Bahrami, Hoseth, Shadrin, Lin, Steen, Andreassen); Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Hindley); Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo (Frei); Division of Mental Health, Helse Møre Romsdal HF, Kristiansund, Norway (Hoseth); Department of Medical Genetics, Oslo University Hospital, Oslo, and NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway (Djurovic); Multimodal Imaging Laboratory and Departments of Radiology, Psychiatry, and Neurosciences, University of California San Diego, La Jolla (Dale)
| |
Collapse
|
4
|
Dragasek J, Minar M, Valkovic P, Pallayova M. Factors associated with psychiatric and physical comorbidities in bipolar disorder: a nationwide multicenter cross-sectional observational study. Front Psychiatry 2023; 14:1208551. [PMID: 37559916 PMCID: PMC10407573 DOI: 10.3389/fpsyt.2023.1208551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Bipolar disorder (BD) is a chronic and disabling affective disorder with significant morbidity and mortality. Despite the high rate of psychiatric and physical health comorbidity, little is known about the complex interrelationships between clinical features of bipolar illness and comorbid conditions. The present study sought to examine, quantify and characterize the cross-sectional associations of psychiatric and physical comorbidities with selected demographic and clinical characteristics of adults with BD. METHODS A nationwide multicenter cross-sectional observational epidemiological study conducted from October 2015 to March 2017 in Slovakia. RESULTS Out of 179 study participants [median age 49 years (interquartile range IQR 38-58); 57.5% females], 22.4% were free of comorbidity, 42.5% had both psychiatric and physical comorbidities, 53.6% at least one psychiatric comorbidity, and 66.5% at least one physical comorbidity. The most prevalent were the essential hypertension (33.5%), various psychoactive substance-related disorders (21.2%), specific personality disorders (14.6%), obesity (14.5%), and disorders of lipoprotein metabolism (14%). The presence of an at least one physical comorbidity, atypical symptoms of BD, and unemployed status were each associated with an at least one psychiatric comorbidity independent of sex, early onset of BD (age of onset <35 years), BD duration and pattern of BD illness progression (p < 0.001). The presence of various psychoactive substance-related disorders, BD duration, atypical symptoms of BD, unemployed status, pension, female sex, and not using antipsychotics were each associated with an at least one physical comorbidity independent of the pattern of BD illness progression (p < 0.001). In several other multiple regression models, the use of antipsychotics (in particular, olanzapine) was associated with a decreased probability of the essential hypertension and predicted the clinical phenotype of comorbidity-free BD (p < 0.05). CONCLUSION This cross-national study has reported novel estimates and clinical correlates related to both the comorbidity-free phenotype and the factors associated with psychiatric and physical comorbidities in adults with BD in Slovakia. The findings provide new insights into understanding of the clinical presentation of BD that can inform clinical practice and further research to continue to investigate potential mechanisms of BD adverse outcomes and disease complications onset.
Collapse
Affiliation(s)
- Jozef Dragasek
- 1st Department of Psychiatry, University Hospital of Louis Pasteur and Pavol Jozef Safarik University Faculty of Medicine, Kosice, Slovakia
| | - Michal Minar
- 2nd Department of Neurology, Faculty of Medicine, Comenius University in Bratislava, University Hospital Bratislava, Bratislava, Slovakia
| | - Peter Valkovic
- 2nd Department of Neurology, Faculty of Medicine, Comenius University in Bratislava, University Hospital Bratislava, Bratislava, Slovakia
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Maria Pallayova
- 1st Department of Psychiatry, University Hospital of Louis Pasteur and Pavol Jozef Safarik University Faculty of Medicine, Kosice, Slovakia
- Department of Human Physiology, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia
| |
Collapse
|
5
|
Holen B, Shadrin AA, Icick R, Filiz TT, Hindley G, Rødevand L, O'Connell KS, Hagen E, Frei O, Bahrami S, Cheng W, Parker N, Tesfaye M, Jahołkowski P, Karadag N, Dale AM, Djurovic S, Smeland OB, Andreassen OA. Genome-wide analyses reveal novel opioid use disorder loci and genetic overlap with schizophrenia, bipolar disorder, and major depression. Addict Biol 2023; 28:e13282. [PMID: 37252880 DOI: 10.1111/adb.13282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/20/2023] [Accepted: 04/03/2023] [Indexed: 06/01/2023]
Abstract
Opioid use disorder (OUD) and mental disorders are often comorbid, with increased morbidity and mortality. The causes underlying this relationship are poorly understood. Although these conditions are highly heritable, their shared genetic vulnerabilities remain unaccounted for. We applied the conditional/conjunctional false discovery rate (cond/conjFDR) approach to analyse summary statistics from independent genome wide association studies of OUD, schizophrenia (SCZ), bipolar disorder (BD) and major depression (MD) of European ancestry. Next, we characterized the identified shared loci using biological annotation resources. OUD data were obtained from the Million Veteran Program, Yale-Penn and Study of Addiction: Genetics and Environment (SAGE) (15 756 cases, 99 039 controls). SCZ (53 386 cases, 77 258 controls), BD (41 917 cases, 371 549 controls) and MD (170 756 cases, 329 443 controls) data were provided by the Psychiatric Genomics Consortium. We discovered genetic enrichment for OUD conditional on associations with SCZ, BD, MD and vice versa, indicating polygenic overlap with identification of 14 novel OUD loci at condFDR < 0.05 and 7 unique loci shared between OUD and SCZ (n = 2), BD (n = 2) and MD (n = 7) at conjFDR < 0.05 with concordant effect directions, in line with estimated positive genetic correlations. Two loci were novel for OUD, one for BD and one for MD. Three OUD risk loci were shared with more than one psychiatric disorder, at DRD2 on chromosome 11 (BD and MD), at FURIN on chromosome 15 (SCZ, BD and MD) and at the major histocompatibility complex region (SCZ and MD). Our findings provide new insights into the shared genetic architecture between OUD and SCZ, BD and MD, indicating a complex genetic relationship, suggesting overlapping neurobiological pathways.
Collapse
Affiliation(s)
- Børge Holen
- NORMENT, Institute of Clinical Medicine, Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Alexey A Shadrin
- NORMENT, Institute of Clinical Medicine, Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Romain Icick
- NORMENT, Institute of Clinical Medicine, Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
- INSERM UMR-S1144, Paris University, Paris, France
| | - Tahir T Filiz
- NORMENT, Institute of Clinical Medicine, Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Guy Hindley
- NORMENT, Institute of Clinical Medicine, Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Linn Rødevand
- NORMENT, Institute of Clinical Medicine, Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Kevin S O'Connell
- NORMENT, Institute of Clinical Medicine, Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Espen Hagen
- NORMENT, Institute of Clinical Medicine, Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Oleksandr Frei
- NORMENT, Institute of Clinical Medicine, Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Shahram Bahrami
- NORMENT, Institute of Clinical Medicine, Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Weiqiu Cheng
- NORMENT, Institute of Clinical Medicine, Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Nadine Parker
- NORMENT, Institute of Clinical Medicine, Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Markos Tesfaye
- NORMENT, Institute of Clinical Medicine, Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Piotr Jahołkowski
- NORMENT, Institute of Clinical Medicine, Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Naz Karadag
- NORMENT, Institute of Clinical Medicine, Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Anders M Dale
- Department of Cognitive Science, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
- Multimodal Imaging Laboratory, University of California San Diego, La Jolla, California, USA
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Olav B Smeland
- NORMENT, Institute of Clinical Medicine, Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Institute of Clinical Medicine, Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Gano A, Deak T, Pautassi RM. A review on the reciprocal interactions between neuroinflammatory processes and substance use and misuse, with a focus on alcohol misuse. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2023; 49:269-282. [PMID: 37148274 PMCID: PMC10524510 DOI: 10.1080/00952990.2023.2201944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 05/08/2023]
Abstract
Background: The last decade has witnessed a surge of findings implicating neuroinflammatory processes as pivotal players in substance use disorders. The directionality of effects began with the expectation that the neuroinflammation associated with prolonged substance misuse contributes to long-term neuropathological consequences. As the literature grew, however, it became evident that the interactions between neuroinflammatory processes and alcohol and drug intake were reciprocal and part of a pernicious cycle in which disease-relevant signaling pathways contributed to an escalation of drug intake, provoking further inflammation-signaling and thereby exacerbating the neuropathological effects of drug misuse.Objectives: The goal of this review and its associated special issue is to provide an overview of the emergent findings relevant to understanding these reciprocal interactions. The review highlights the importance of preclinical and clinical studies in testing and validation of immunotherapeutics as viable targets for curtailing substance use and misuse, with a focus on alcohol misuse.Methods: A narrative review of the literature on drug and neuroinflammation was conducted, as well as articles published in this Special Issue on Alcohol- and Drug-induced Neuroinflammation: Insights from Pre-clinical Models and Clinical Research.Results: We argue that (a) demographic variables and genetic background contribute unique sensitivity to drug-related neuroinflammation; (b) co-morbidities between substance use disorders and affect dysfunction may share common inflammation-related signatures that predict the efficacy of immunotherapeutic drugs; and (c) examination of polydrug interactions with neuroinflammation is a critical area where greater research emphasis is needed.Conclusions: This review provides an accessible and example-driven review of the relationship between drug misuse, neuroinflammatory processes, and their resultant neuropathological outcomes.
Collapse
Affiliation(s)
- Anny Gano
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY 13902-6000, United States of America
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY 13902-6000, United States of America
| | - Ricardo Marcos Pautassi
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigación Médica M. y M. Ferreyra (INIMEC – CONICET-Universidad Nacional de Córdoba), Córdoba, 5000, Argentina
| |
Collapse
|
7
|
Ying J, Chew QH, McIntyre RS, Sim K. Treatment-Resistant Schizophrenia, Clozapine Resistance, Genetic Associations, and Implications for Precision Psychiatry: A Scoping Review. Genes (Basel) 2023; 14:689. [PMID: 36980961 PMCID: PMC10048540 DOI: 10.3390/genes14030689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Treatment-resistant schizophrenia (TRS) is often associated with severe burden of disease, poor quality of life and functional impairment. Clozapine is the gold standard for the treatment of TRS, although it is also known to cause significant side effects in some patients. In view of the burgeoning interest in the role of genetic factors in precision psychiatry, we conducted a scoping review to narratively summarize the current genetic factors associated with TRS, clozapine resistance and side effects to clozapine treatment. We searched PubMed from inception to December 2022 and included 104 relevant studies in this review. Extant evidence comprised associations between TRS and clozapine resistance with genetic factors related to mainly dopaminergic and serotoninergic neurotransmitter systems, specifically, TRS and rs4680, rs4818 within COMT, and rs1799978 within DRD2; clozapine resistance and DRD3 polymorphisms, CYP1A2 polymorphisms; weight gain with LEP and SNAP-25 genes; and agranulocytosis risk with HLA-related polymorphisms. Future studies, including replication in larger multi-site samples, are still needed to elucidate putative risk genes and the interactions between different genes and their correlations with relevant clinical factors such as psychopathology, psychosocial functioning, cognition and progressive changes with treatment over time in TRS and clozapine resistance.
Collapse
Affiliation(s)
- Jiangbo Ying
- East Region, Institute of Mental Health, Singapore 539747, Singapore
| | - Qian Hui Chew
- Research Division, Institute of Mental Health, Singapore 539747, Singapore
| | - Roger S. McIntyre
- Department of PsychiSatry, University of Toronto, Toronto, ON M5R 0A3, Canada
- Brain and Cognition Discovery Foundation Toronto, Toronto, ON M4W 3W4, Canada
| | - Kang Sim
- West Region, Institute of Mental Health, Singapore 539747, Singapore
| |
Collapse
|
8
|
Andreassen OA, Hindley GFL, Frei O, Smeland OB. New insights from the last decade of research in psychiatric genetics: discoveries, challenges and clinical implications. World Psychiatry 2023; 22:4-24. [PMID: 36640404 PMCID: PMC9840515 DOI: 10.1002/wps.21034] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/07/2022] [Indexed: 01/15/2023] Open
Abstract
Psychiatric genetics has made substantial progress in the last decade, providing new insights into the genetic etiology of psychiatric disorders, and paving the way for precision psychiatry, in which individual genetic profiles may be used to personalize risk assessment and inform clinical decision-making. Long recognized to be heritable, recent evidence shows that psychiatric disorders are influenced by thousands of genetic variants acting together. Most of these variants are commonly occurring, meaning that every individual has a genetic risk to each psychiatric disorder, from low to high. A series of large-scale genetic studies have discovered an increasing number of common and rare genetic variants robustly associated with major psychiatric disorders. The most convincing biological interpretation of the genetic findings implicates altered synaptic function in autism spectrum disorder and schizophrenia. However, the mechanistic understanding is still incomplete. In line with their extensive clinical and epidemiological overlap, psychiatric disorders appear to exist on genetic continua and share a large degree of genetic risk with one another. This provides further support to the notion that current psychiatric diagnoses do not represent distinct pathogenic entities, which may inform ongoing attempts to reconceptualize psychiatric nosology. Psychiatric disorders also share genetic influences with a range of behavioral and somatic traits and diseases, including brain structures, cognitive function, immunological phenotypes and cardiovascular disease, suggesting shared genetic etiology of potential clinical importance. Current polygenic risk score tools, which predict individual genetic susceptibility to illness, do not yet provide clinically actionable information. However, their precision is likely to improve in the coming years, and they may eventually become part of clinical practice, stressing the need to educate clinicians and patients about their potential use and misuse. This review discusses key recent insights from psychiatric genetics and their possible clinical applications, and suggests future directions.
Collapse
Affiliation(s)
- Ole A Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Guy F L Hindley
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Oleksandr Frei
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Olav B Smeland
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
9
|
Weiss F, Tidona S, Carli M, Perugi G, Scarselli M. Triple Diagnosis of Attention-Deficit/Hyperactivity Disorder with Coexisting Bipolar and Alcohol Use Disorders: Clinical Aspects and Pharmacological Treatments. Curr Neuropharmacol 2023; 21:1467-1476. [PMID: 36306451 PMCID: PMC10472804 DOI: 10.2174/1570159x20666220830154002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/13/2022] [Accepted: 08/03/2022] [Indexed: 11/22/2022] Open
Abstract
Attention-Deficit/Hyperactivity Disorder (ADHD), Bipolar Disorder (BD) and Alcohol Use Disorder (AUD) are common medical conditions often coexisting and exerting mutual influence on disease course and pharmacological treatment response. Each disorder, when considered separately, relies on different therapeutic approaches, making it crucial to detect the plausible association between them. Treating solely the emerging condition (e.g., alcoholism) and disregarding the patient's whole psychopathological ground often leads to treatment failure and relapse. Clinical experience and scientific evidence rather show that tailoring treatments for these three conditions considering their co-occurrence as a sole complex disorder yields more fulfilling and durable clinical outcomes. In light of the above considerations, the purpose of the present review is to critically discuss the pharmacological strategies in the personalized treatment of complex conditions defined by ADHD-bipolarityalcoholism coexistence.
Collapse
Affiliation(s)
- Francesco Weiss
- Psychiatry Unit 2, Department of Clinical and Experimental Medicine, Faculty of Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Simone Tidona
- Psychiatry Unit 2, Department of Clinical and Experimental Medicine, Faculty of Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Marco Carli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56126, Italy
| | - Giulio Perugi
- Psychiatry Unit 2, Department of Clinical and Experimental Medicine, Faculty of Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56126, Italy
| |
Collapse
|
10
|
Icick R, Shadrin A, Holen B, Karadag N, Lin A, Hindley G, O'Connell K, Frei O, Bahrami S, Høegh MC, Cheng W, Fan CC, Djurovic S, Dale AM, Lagerberg TV, Smeland OB, Andreassen OA. Genetic overlap between mood instability and alcohol-related phenotypes suggests shared biological underpinnings. Neuropsychopharmacology 2022; 47:1883-1891. [PMID: 35953530 PMCID: PMC9485134 DOI: 10.1038/s41386-022-01401-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/20/2022] [Accepted: 07/16/2022] [Indexed: 11/09/2022]
Abstract
Alcohol use disorder (AUD) is a pervasive and devastating mental illness with high comorbidity rates with other mental disorders. Understanding the genetic architecture of this comorbidity could be improved by focusing on intermediate traits that show positive genetic correlation with the disorders. Thus, we aimed to characterize the shared vs. unique polygenicity of AUD, alcohol consumption (AC) and mood instability (MOOD) -beyond genetic correlation, and boost discovery for jointly-associated loci. Summary statistics for MOOD (a binary measure of the tendency to report frequent mood swings), AC (number of standard drinks over a typical consumption week) and AUD GWASs (Ns > 200,000) were analyzed to characterize the cross-phenotype associations between MOOD and AC, MOOD and AUD and AC and AUD. To do so, we used a newly established pipeline that combines (i) the bivariate causal mixture model (MiXeR) to quantify polygenic overlap and (ii) the conjunctional false discovery rate (conjFDR) to discover specific jointly associated genomic loci, which were mapped to genes and biological functions. MOOD was highly polygenic (10.4k single nucleotide polymorphisms, SNPs, SD = 2k) compared to AC (4.9k SNPs, SD = 0.6k) and AUD (4.3k SNPs, SD = 2k). The polygenic overlap of MOOD and AC was twice that of MOOD and AUD (98% vs. 49%), with opposite genetic correlation (-0.2 vs. 0.23), as confirmed in independent samples. MOOD&AUD associated SNPs were significantly enriched for brain genes, conversely to MOOD&AC. Among 38 jointly associated loci, fifteen were novel for MOOD, AC and AUD. MOOD, AC and AUD were also strongly associated at the phenotypic level. Overall, using multilevel polygenic quantification, joint loci discovery and functional annotation methods, we evidenced that the polygenic overlap between MOOD and AC/AUD implicated partly shared biological underpinnings, yet, clearly distinct functional patterns between MOOD&AC and MOOD&AUD, suggesting new mechanisms for the comorbidity of AUD with mood disorders.
Collapse
Affiliation(s)
- Romain Icick
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway.
- Université de Paris Cité, INSERM UMR-S1144, F-75006, Paris, France.
| | - Alexey Shadrin
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Børge Holen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Naz Karadag
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Aihua Lin
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Guy Hindley
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Kevin O'Connell
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Oleksandr Frei
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
- Center for Bioinformatics, Department of Informatics, University of Oslo, PO box 1080, Blindern, 0316, Oslo, Norway
| | - Shahram Bahrami
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Margrethe Collier Høegh
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Weiqiu Cheng
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Chun C Fan
- Department of Radiology, University of California, San Diego, La Jolla, CA, 92093, USA
- Multimodal Imaging Laboratory, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
- KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway
| | - Anders M Dale
- Department of Radiology, University of California, San Diego, La Jolla, CA, 92093, USA
- Multimodal Imaging Laboratory, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Trine Vik Lagerberg
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Olav B Smeland
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Ole A Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway
| |
Collapse
|
11
|
van der Meer D, Shadrin AA, O'Connell K, Bettella F, Djurovic S, Wolfers T, Alnæs D, Agartz I, Smeland OB, Melle I, Sánchez JM, Linden DEJ, Dale AM, Westlye LT, Andreassen OA, Frei O, Kaufmann T. Boosting Schizophrenia Genetics by Utilizing Genetic Overlap With Brain Morphology. Biol Psychiatry 2022; 92:291-298. [PMID: 35164939 DOI: 10.1016/j.biopsych.2021.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Schizophrenia is a complex polygenic disorder with subtle, distributed abnormalities in brain morphology. There are indications of shared genetic architecture between schizophrenia and brain measures despite low genetic correlations. Through the use of analytical methods that allow for mixed directions of effects, this overlap may be leveraged to improve our understanding of underlying mechanisms of schizophrenia and enrich polygenic risk prediction outcome. METHODS We ran a multivariate genome-wide analysis of 175 brain morphology measures using data from 33,735 participants of the UK Biobank and analyzed the results in a conditional false discovery rate together with schizophrenia genome-wide association study summary statistics of the Psychiatric Genomics Consortium (PGC) Wave 3. We subsequently created a pleiotropy-enriched polygenic score based on the loci identified through the conditional false discovery rate approach and used this to predict schizophrenia in a nonoverlapping sample of 743 individuals with schizophrenia and 1074 healthy controls. RESULTS We found that 20% of the loci and 50% of the genes significantly associated with schizophrenia were also associated with brain morphology. The conditional false discovery rate analysis identified 428 loci, including 267 novel loci, significantly associated with brain-linked schizophrenia risk, with functional annotation indicating high relevance for brain tissue. The pleiotropy-enriched polygenic score explained more variance in liability than conventional polygenic scores across several scenarios. CONCLUSIONS Our results indicate strong genetic overlap between schizophrenia and brain morphology with mixed directions of effect. The results also illustrate the potential of exploiting polygenetic overlap between brain morphology and mental disorders to boost discovery of brain tissue-specific genetic variants and its use in polygenic risk frameworks.
Collapse
Affiliation(s)
- Dennis van der Meer
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands.
| | - Alexey A Shadrin
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kevin O'Connell
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Francesco Bettella
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Thomas Wolfers
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Olav B Smeland
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Melle
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jennifer Monereo Sánchez
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - David E J Linden
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Oleksandr Frei
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Tobias Kaufmann
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| |
Collapse
|
12
|
Oliva V, De Prisco M, Pons-Cabrera MT, Guzmán P, Anmella G, Hidalgo-Mazzei D, Grande I, Fanelli G, Fabbri C, Serretti A, Fornaro M, Iasevoli F, de Bartolomeis A, Murru A, Vieta E, Fico G. Machine Learning Prediction of Comorbid Substance Use Disorders among People with Bipolar Disorder. J Clin Med 2022; 11:3935. [PMID: 35887699 PMCID: PMC9315469 DOI: 10.3390/jcm11143935] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 02/05/2023] Open
Abstract
Substance use disorder (SUD) is a common comorbidity in individuals with bipolar disorder (BD), and it is associated with a severe course of illness, making early identification of the risk factors for SUD in BD warranted. We aimed to identify, through machine-learning models, the factors associated with different types of SUD in BD. We recruited 508 individuals with BD from a specialized unit. Lifetime SUDs were defined according to the DSM criteria. Random forest (RF) models were trained to identify the presence of (i) any (SUD) in the total sample, (ii) alcohol use disorder (AUD) in the total sample, (iii) AUD co-occurrence with at least another SUD in the total sample (AUD+SUD), and (iv) any other SUD among BD patients with AUD. Relevant variables selected by the RFs were considered as independent variables in multiple logistic regressions to predict SUDs, adjusting for relevant covariates. AUD+SUD could be predicted in BD at an individual level with a sensitivity of 75% and a specificity of 75%. The presence of AUD+SUD was positively associated with having hypomania as the first affective episode (OR = 4.34 95% CI = 1.42-13.31), and the presence of hetero-aggressive behavior (OR = 3.15 95% CI = 1.48-6.74). Machine-learning models might be useful instruments to predict the risk of SUD in BD, but their efficacy is limited when considering socio-demographic or clinical factors alone.
Collapse
Affiliation(s)
- Vincenzo Oliva
- Bipolar and Depressive Disorders Unit, Institute of Neurosciences, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, 170 Villarroel St., 12-0, 08036 Barcelona, Catalonia, Spain; (V.O.); (M.D.P.); (G.A.); (D.H.-M.); (I.G.); (A.M.); (G.F.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40123 Bologna, Italy; (G.F.); (C.F.); (A.S.)
| | - Michele De Prisco
- Bipolar and Depressive Disorders Unit, Institute of Neurosciences, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, 170 Villarroel St., 12-0, 08036 Barcelona, Catalonia, Spain; (V.O.); (M.D.P.); (G.A.); (D.H.-M.); (I.G.); (A.M.); (G.F.)
- Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, 80131 Naples, Italy; (M.F.); (F.I.); (A.d.B.)
| | - Maria Teresa Pons-Cabrera
- Addictions Unit, Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, 170 Villarroel St., 12-0, 08036 Barcelona, Catalonia, Spain; (M.T.P.-C.); (P.G.)
| | - Pablo Guzmán
- Addictions Unit, Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, 170 Villarroel St., 12-0, 08036 Barcelona, Catalonia, Spain; (M.T.P.-C.); (P.G.)
| | - Gerard Anmella
- Bipolar and Depressive Disorders Unit, Institute of Neurosciences, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, 170 Villarroel St., 12-0, 08036 Barcelona, Catalonia, Spain; (V.O.); (M.D.P.); (G.A.); (D.H.-M.); (I.G.); (A.M.); (G.F.)
| | - Diego Hidalgo-Mazzei
- Bipolar and Depressive Disorders Unit, Institute of Neurosciences, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, 170 Villarroel St., 12-0, 08036 Barcelona, Catalonia, Spain; (V.O.); (M.D.P.); (G.A.); (D.H.-M.); (I.G.); (A.M.); (G.F.)
| | - Iria Grande
- Bipolar and Depressive Disorders Unit, Institute of Neurosciences, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, 170 Villarroel St., 12-0, 08036 Barcelona, Catalonia, Spain; (V.O.); (M.D.P.); (G.A.); (D.H.-M.); (I.G.); (A.M.); (G.F.)
| | - Giuseppe Fanelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40123 Bologna, Italy; (G.F.); (C.F.); (A.S.)
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, 6525 GD Nijmegen, The Netherlands
| | - Chiara Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40123 Bologna, Italy; (G.F.); (C.F.); (A.S.)
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 9NU, UK
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40123 Bologna, Italy; (G.F.); (C.F.); (A.S.)
| | - Michele Fornaro
- Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, 80131 Naples, Italy; (M.F.); (F.I.); (A.d.B.)
| | - Felice Iasevoli
- Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, 80131 Naples, Italy; (M.F.); (F.I.); (A.d.B.)
| | - Andrea de Bartolomeis
- Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, 80131 Naples, Italy; (M.F.); (F.I.); (A.d.B.)
| | - Andrea Murru
- Bipolar and Depressive Disorders Unit, Institute of Neurosciences, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, 170 Villarroel St., 12-0, 08036 Barcelona, Catalonia, Spain; (V.O.); (M.D.P.); (G.A.); (D.H.-M.); (I.G.); (A.M.); (G.F.)
| | - Eduard Vieta
- Bipolar and Depressive Disorders Unit, Institute of Neurosciences, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, 170 Villarroel St., 12-0, 08036 Barcelona, Catalonia, Spain; (V.O.); (M.D.P.); (G.A.); (D.H.-M.); (I.G.); (A.M.); (G.F.)
| | - Giovanna Fico
- Bipolar and Depressive Disorders Unit, Institute of Neurosciences, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, 170 Villarroel St., 12-0, 08036 Barcelona, Catalonia, Spain; (V.O.); (M.D.P.); (G.A.); (D.H.-M.); (I.G.); (A.M.); (G.F.)
| |
Collapse
|