1
|
Prosser AC, Klenerman P, Lucas M. Understanding Liver Transplantation Outcomes Through the Lens of Its Tissue-resident Immunobiome. Transplantation 2025:00007890-990000000-00973. [PMID: 39780303 DOI: 10.1097/tp.0000000000005303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Tissue-resident lymphocytes (TRLs) provide a front-line immunological defense mechanism uniquely placed to detect perturbations in tissue homeostasis. The heterogeneous TRL population spans the innate to adaptive immune continuum, with roles during normal physiology in homeostatic maintenance, tissue repair, pathogen detection, and rapid mounting of immune responses. TRLs are especially enriched in the liver, with every TRL subset represented, including liver-resident natural killer cells; tissue-resident memory B cells; conventional tissue-resident memory CD8, CD4, and regulatory T cells; and unconventional gamma-delta, natural killer, and mucosal-associated invariant T cells. The importance of donor- and recipient-derived TRLs after transplantation is becoming increasingly recognized, although it has not been examined in detail after liver transplantation. This review summarizes the evidence for the roles of TRLs in liver transplant immunology, focusing on their features, functions, and potential for their harnessing to improve transplant outcomes.
Collapse
Affiliation(s)
- Amy C Prosser
- Medical School, University of Western Australia, Perth, WA, Australia
| | - Paul Klenerman
- Translational Gastroenterology and Liver Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Michaela Lucas
- Medical School, University of Western Australia, Perth, WA, Australia
- Department of Immunology, PathWest Laboratory Medicine, Perth, WA, Australia
- Department of Immunology, Sir Charles Gairdner Hospital, Perth, WA, Australia
- Department of Immunology, Perth Children's Hospital, Perth, WA, Australia
| |
Collapse
|
2
|
Gorbacheva V, Fan R, Gaudette B, Baldwin WM, Fairchild RL, Valujskikh A. Marginal zone B cells are required for optimal humoral responses to allograft. Am J Transplant 2025; 25:48-59. [PMID: 39278625 PMCID: PMC11734443 DOI: 10.1016/j.ajt.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/18/2024]
Abstract
Antibody-mediated rejection (AMR) is among the leading causes of graft failure in solid organ transplantation. However, AMR treatment options are limited by an incomplete understanding of the mechanisms underlying de novo donor-specific antibody (DSA) generation. The development of pathogenic isotype-switched DSA in response to transplanted allografts is typically attributed to follicular B cells undergoing germinal center reaction whereas the contribution of other B cell subsets has not been previously addressed. The current study investigated the role of recipient marginal zone B cells (MZ B cells) in DSA responses using mouse models of heart and renal allotransplantation. MZ B cells rapidly differentiate into antibody-secreting cells in response to allotransplantation. Despite the selective depletion of follicular B cells in heart allograft recipients, MZ B cells are sufficient for T-dependent IgM and early IgG DSA production. Furthermore, the presence of intact MZ B cell subset is required to support the generation of pathogenic isotype-switched DSA in renal allograft recipients containing donor-reactive memory helper T cells. These findings are the first demonstration of the role of MZ B cells in humoral alloimmune responses following solid organ transplantation and identify MZ B cells as a potential therapeutic target for minimizing de novo DSA production and AMR in transplant recipients.
Collapse
Affiliation(s)
- Victoria Gorbacheva
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ran Fan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Brian Gaudette
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - William M Baldwin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Robert L Fairchild
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Anna Valujskikh
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
3
|
Ningoo M, Cruz-Encarnación P, Khilnani C, Heeger PS, Fribourg M. T-cell receptor sequencing reveals selected donor-reactive CD8 + T cell clones resist antithymocyte globulin depletion after kidney transplantation. Am J Transplant 2024; 24:755-764. [PMID: 38141722 PMCID: PMC11070313 DOI: 10.1016/j.ajt.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/21/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
High frequencies of donor-reactive memory T cells in the periphery of transplant candidates prior to transplantation are linked to the development of posttransplant acute rejection episodes and reduced allograft function. Rabbit antithymocyte globulin (rATG) effectively depletes naïve CD4+ and CD8+ T cells for >6 months posttransplant, but rATG's effects on human donor-reactive T cells have not been carefully determined. To address this, we performed T cell receptor β-chain sequencing on peripheral blood mononuclear cells aliquots collected pretransplant and serially posttransplant in 7 kidney transplant recipients who received rATG as induction therapy. We tracked the evolution of the donor-reactive CD4+ and CD8+ T cell repertoires and identified stimulated pretransplant, CTV-(surface dye)-labeled, peripheral blood mononuclear cells from each patient with donor cells or third-party cells. Our analyses showed that while rATG depleted CD4+ T cells in all tested subjects, a subset of donor-reactive CD8+ T cells that were present at high frequencies pretransplant, consistent with expanded memory cells, resisted rATG depletion, underwent posttransplant expansion and were functional. Together, our data support the conclusion that a subset of human memory CD8+ T cells specifically reactive to donor antigens expand in vivo despite induction therapy with rATG and thus have the potential to mediate allograft damage.
Collapse
Affiliation(s)
- Mehek Ningoo
- Translational Transplant Research Center, Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Pamela Cruz-Encarnación
- Translational Transplant Research Center, Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Calla Khilnani
- Translational Transplant Research Center, Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Peter S Heeger
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Miguel Fribourg
- Translational Transplant Research Center, Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
4
|
Ota T, Goto R, Harada T, Forgioni A, Kanazawa R, Ganchiku Y, Kawamura N, Watanabe M, Fukai M, Shimamura T, Taketomi A. TCF1highPD-1+Ly108+CD8+ T Cells Are Associated with Graft Preservation in Sensitized Mice Treated with Non-Fc Receptor-Binding CD3 Antibodies. Immunohorizons 2024; 8:295-306. [PMID: 38587418 PMCID: PMC11066723 DOI: 10.4049/immunohorizons.2300117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/27/2024] [Indexed: 04/09/2024] Open
Abstract
The non-Fc-binding anti-CD3 Ab [anti-CD3F(ab')2] can induce graft acceptance depending on the therapeutic window in a rodent heart transplant model. The delayed protocol allows for early graft infiltration of lymphocytes, which may behave in an inhibitory manner. We investigated the most effective protocol for anti-CD3F(ab')2 in sensitized conditions to confirm the evidence for clinical application. C57BL/6 mice were sensitized with BALB/c tail skin grafts and transplanted with BALB/c heart grafts at 8-12 wk after sensitization. Fifty micrograms of anti-CD3F(ab')2 was administered daily for 5 consecutive days on days 1-5 (day 1 protocol) or days 3-7 (delayed protocol). In nonsensitized mice, the delayed protocol significantly prolonged graft survival after transplantation from BALB/c to naive B6 (median survival time [MST], >100 d). In contrast, the delayed protocol was unable to prevent graft rejection in sensitized mice (MST, 5 d). A significantly increased percentage of granzyme B+ CD8+ T cells was observed in the graft on day 3 posttransplantation in sensitized conditions. Further, the day 1 protocol significantly prolonged graft survival (MST, 18 d), even in sensitized conditions. Day 1 treatment significantly increased the percentage of Foxp3+CD25+CD4+ T cells and phenotypically changed CD8+ T cells in the graft (i.e., caused a significant increase in the proportion of Ly108+TCF1highPD-1+CD8+ T cells). In conclusion, different timings of delayed anti-CD3F(ab')2 treatment promoted allograft preservation in association with phenotypic changes in CD4+ and CD8+ T cells in the graft under sensitized conditions.
Collapse
Affiliation(s)
- Takuji Ota
- Department of Gastroenterological Surgery I, Hokkaido University, Sapporo, Japan
| | - Ryoichi Goto
- Department of Gastroenterological Surgery I, Hokkaido University, Sapporo, Japan
| | - Takuya Harada
- Department of Gastroenterological Surgery I, Hokkaido University, Sapporo, Japan
| | - Agustina Forgioni
- Department of Gastroenterological Surgery I, Hokkaido University, Sapporo, Japan
| | - Ryo Kanazawa
- Department of Gastroenterological Surgery I, Hokkaido University, Sapporo, Japan
| | - Yoshikazu Ganchiku
- Department of Gastroenterological Surgery I, Hokkaido University, Sapporo, Japan
| | - Norio Kawamura
- Department of Transplant Surgery, Hokkaido University, Sapporo, Japan
| | - Masaaki Watanabe
- Department of Transplant Surgery, Hokkaido University, Sapporo, Japan
| | - Moto Fukai
- Department of Gastroenterological Surgery I, Hokkaido University, Sapporo, Japan
| | - Tsuyoshi Shimamura
- Division of Organ Transplantation, Hokkaido University Hospital, Sapporo, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University, Sapporo, Japan
- Department of Transplant Surgery, Hokkaido University, Sapporo, Japan
| |
Collapse
|
5
|
Alexander KL, Ford ML. The Entangled World of Memory T Cells and Implications in Transplantation. Transplantation 2024; 108:137-147. [PMID: 37271872 PMCID: PMC10696133 DOI: 10.1097/tp.0000000000004647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Memory T cells that are specific for alloantigen can arise from a variety of stimuli, ranging from direct allogeneic sensitization from prior transplantation, blood transfusion, or pregnancy to the elicitation of pathogen-specific T cells that are cross-reactive with alloantigen. Regardless of the mechanism by which they arise, alloreactive memory T cells possess key metabolic, phenotypic, and functional properties that render them distinct from naive T cells. These properties affect the immune response to transplantation in 2 important ways: first, they can alter the speed, location, and effector mechanisms with which alloreactive T cells mediate allograft rejection, and second, they can alter T-cell susceptibility to immunosuppression. In this review, we discuss recent developments in understanding these properties of memory T cells and their implications for transplantation.
Collapse
Affiliation(s)
| | - Mandy L. Ford
- Emory Transplant Center, Emory University, Atlanta, GA
| |
Collapse
|
6
|
Nicosia M, Lee J, Beavers A, Kish D, Farr GW, McGuirk PR, Pelletier MF, Lathia JD, Fairchild RL, Valujskikh A. Water channel aquaporin 4 is required for T cell receptor mediated lymphocyte activation. J Leukoc Biol 2023; 113:544-554. [PMID: 36805947 PMCID: PMC10848298 DOI: 10.1093/jleuko/qiad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 12/16/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Aquaporins are a family of ubiquitously expressed transmembrane water channels implicated in a broad range of physiological functions. We have previously reported that aquaporin 4 (AQP4) is expressed on T cells and that treatment with a small molecule AQP4 inhibitor significantly delays T cell mediated heart allograft rejection. Using either genetic deletion or small molecule inhibitor, we show that AQP4 supports T cell receptor mediated activation of both mouse and human T cells. Intact AQP4 is required for optimal T cell receptor (TCR)-related signaling events, including nuclear translocation of transcription factors and phosphorylation of proximal TCR signaling molecules. AQP4 deficiency or inhibition impairs actin cytoskeleton rearrangements following TCR crosslinking, causing inferior TCR polarization and a loss of TCR signaling. Our findings reveal a novel function of AQP4 in T lymphocytes and identify AQP4 as a potential therapeutic target for preventing TCR-mediated T cell activation.
Collapse
Affiliation(s)
- Michael Nicosia
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Juyeun Lee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Ashley Beavers
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Danielle Kish
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - George W. Farr
- Aeromics Inc., 470 James Street Suite 007, New Haven, CT 06513, United States
| | - Paul R. McGuirk
- Aeromics Inc., 470 James Street Suite 007, New Haven, CT 06513, United States
| | - Marc F. Pelletier
- Aeromics Inc., 470 James Street Suite 007, New Haven, CT 06513, United States
| | - Justin D. Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Robert L. Fairchild
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Anna Valujskikh
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| |
Collapse
|
7
|
Habib JG, Liu D, Crepeau RM, Wagener ME, Ford ML. Selective CD28 blockade impacts T cell differentiation during homeostatic reconstitution following lymphodepletion. Front Immunol 2023; 13:1081163. [PMID: 36761170 PMCID: PMC9904166 DOI: 10.3389/fimmu.2022.1081163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/28/2022] [Indexed: 01/26/2023] Open
Abstract
Introduction Costimulation blockade targeting the CD28 pathway provides improved long-term renal allograft survival compared to calcineurin inhibitors but may be limited as CTLA-4-Ig (abatacept, belatacept) blocks both CD28 costimulation and CTLA-4 coinhibition. Directly targeting CD28 while leaving CTLA-4 intact may provide a mechanistic advantage. Fc-silent non-crosslinking CD28 antagonizing domain antibodies (dAb) are currently in clinical trials for renal transplantation. Given the current standard of care in renal transplantation at most US centers, it is likely that lymphodepletion via thymoglobulin induction therapy could be used in patients treated with CD28 antagonists. Thus, we investigated the impact of T cell depletion (TCD) on T cell phenotype following homeostatic reconstitution in a murine model of skin transplantation treated with anti-CD28dAb. Methods Skin from BALB/cJ donors was grafted onto C56BL/6 recipients which were treated with or without 0.2mg anti-CD4 and 10μg anti-CD8 one day prior to transplant and with or without 100μg anti-CD28dAb on days 0, 2, 4, 6, and weekly thereafter. Mice were euthanized six weeks post-transplant and lymphoid cells were analyzed by flow cytometry. Results Anti-CD28dAb reversed lymphopenia-induced differentiation of memory CD4+ T cells in the spleen and lymph node compared to TCD alone. Mice treated with TCD+anti-CD28dAb exhibited significantly improved skin graft survival compared to anti-CD28dAb alone, which was also improved compared to no treatment. In addition, the expression of CD69 was reduced on CD4+ and CD8+ T cells in the spleen and lymph node from mice that received TCD+anti-CD28dAb compared to TCD alone. While a reduced frequency of CD4+FoxP3+ T cells was observed in anti-CD28dAb treated mice relative to untreated controls, this was balanced by an increased frequency of CD8+Foxp3+ T cells that was observed in the blood and kidney of mice given TCD+anti-CD28dAb compared to TCD alone. Discussion These data demonstrate that CD28 signaling impacts the differentiation of both CD4+ and CD8+ T cells during homeostatic reconstitution following lymphodepletion, resulting in a shift towards fewer activated memory T cells and more CD8+FoxP3+ T cells, a profile that may underpin the observed prolongation in allograft survival.
Collapse
|
8
|
Hasgur S, Yamamoto Y, Fan R, Nicosia M, Gorbacheva V, Zwick D, Araki M, Fairchild RL, Valujskikh A. Macrophage-inducible C-type lectin activates B cells to promote T cell reconstitution in heart allograft recipients. Am J Transplant 2022; 22:1779-1790. [PMID: 35294793 PMCID: PMC9296143 DOI: 10.1111/ajt.17033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/21/2022] [Accepted: 03/12/2022] [Indexed: 01/25/2023]
Abstract
Diminishing homeostatic proliferation of memory T cells is essential for improving the efficacy of lymphoablation in transplant recipients. Our previous studies in a mouse heart transplantation model established that B lymphocytes secreting proinflammatory cytokines are critical for T cell recovery after lymphoablation. The goal of the current study was to identify mediators of B cell activation following lymphoablation in allograft recipients. Transcriptome analysis revealed that macrophage-inducible C-type lectin (Mincle, Clec4e) expression is up-regulated in B cells from heart allograft recipients treated with murine anti-thymocyte globulin (mATG). Recipient Mincle deficiency diminishes B cell production of pro-inflammatory cytokines and impairs T lymphocyte reconstitution. Mixed bone marrow chimeras lacking Mincle only in B lymphocytes have similar defects in T cell recovery. Conversely, treatment with a synthetic Mincle ligand enhances T cell reconstitution after lymphoablation in non-transplanted mice. Treatment with agonistic CD40 mAb facilitates T cell reconstitution in CD4 T cell-depleted, but not in Mincle-deficient, recipients indicating that CD40 signaling induces T cell proliferation via a Mincle-dependent pathway. These findings are the first to identify an important function of B cell Mincle as a sensor of damage-associated molecular patterns released by the graft and demonstrate its role in clinically relevant settings of organ transplantation.
Collapse
Affiliation(s)
- Suheyla Hasgur
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Yosuke Yamamoto
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Ran Fan
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Michael Nicosia
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Victoria Gorbacheva
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Daniel Zwick
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOhioUSA,Present address:
AutonomousTherapeutics, IncRockvilleMarylandUSA
| | - Motoo Araki
- Department of UrologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Robert L. Fairchild
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Anna Valujskikh
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOhioUSA
| |
Collapse
|
9
|
Crespo E, Vidal-Alabró A, Jouve T, Fontova P, Stein M, Mocka S, Meneghini M, Sefrin A, Hruba P, Gomà M, Torija A, Donadeu L, Favà A, Cruzado JM, Melilli E, Moreso F, Viklicky O, Bemelman F, Reinke P, Grinyó J, Lloberas N, Bestard O. Tacrolimus CYP3A Single-Nucleotide Polymorphisms and Preformed T- and B-Cell Alloimmune Memory Improve Current Pretransplant Rejection-Risk Stratification in Kidney Transplantation. Front Immunol 2022; 13:869554. [PMID: 35833145 PMCID: PMC9272702 DOI: 10.3389/fimmu.2022.869554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/23/2022] [Indexed: 11/19/2022] Open
Abstract
Achieving fast immunosuppression blood exposure after kidney transplantation is key to abrogating both preformed and de novo anti-donor humoral and cellular alloresponses. However, while tacrolimus (TAC) is the cornerstone immunosuppressant inhibiting adaptive alloimmunity, its blood exposure is directly impacted by different single-nucleotide polymorphisms (SNPs) in CYP3A TAC-metabolizing enzymes. Here, we investigated how functional TAC-CYP3A genetic variants (CYP3A4*22/CYP3A5*3) influence the main baseline clinical and immunological risk factors of biopsy-proven acute rejection (BPAR) by means of preformed donor-specific antibodies (DSAs) and donor-specific alloreactive T cells (DSTs) in a large European cohort of 447 kidney transplants receiving TAC-based immunosuppression. A total of 70 (15.7%) patients developed BPAR. Preformed DSAs and DSTs were observed in 12 (2.7%) and 227 (50.8%) patients, respectively. According to the different CYP3A4*22 and CYP3A5*3 functional allele variants, we found 4 differential new clusters impacting fasting TAC exposure after transplantation; 7 (1.6%) were classified as high metabolizers 1 (HM1), 71 (15.9%) as HM2, 324 (72.5%) as intermediate (IM), and 45 (10.1%) as poor metabolizers (PM1). HM1/2 showed significantly lower TAC trough levels and higher dose requirements than IM and PM (p < 0.001) and more frequently showed TAC underexposure (<5 ng/ml). Multivariate Cox regression analyses revealed that CYP3A HM1 and IM pharmacogenetic phenotypes (hazard ratio (HR) 12.566, 95% CI 1.99–79.36, p = 0.007, and HR 4.532, 95% CI 1.10–18.60, p = 0.036, respectively), preformed DSTs (HR 3.482, 95% CI 1.99–6.08, p < 0.001), DSAs (HR 4.421, 95% CI 1.63–11.98, p = 0.003), and delayed graft function (DGF) (HR 2.023, 95% CI 1.22–3.36, p = 0.006) independently predicted BPAR. Notably, a significant interaction between T-cell depletion and TAC underexposure was observed, showing a reduction of the BPAR risk (HR 0.264, 95% CI 0.08–0.92, p = 0.037). Such variables except for DSAs displayed a higher predictive risk for the development of T cell-mediated rejection (TCMR). Refinement of pretransplant monitoring by incorporating TAC CYP3A SNPs with preformed DSAs as well as DSTs may improve current rejection-risk stratification and help induction treatment decision-making.
Collapse
Affiliation(s)
- Elena Crespo
- Nephrology and Transplant Laboratory, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
- *Correspondence: Oriol Bestard, ; Elena Crespo,
| | - Anna Vidal-Alabró
- Experimental Nephrology and Transplantation Laboratory, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Thomas Jouve
- Nephrology and Transplant Laboratory, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
- Faculty of Health, Université Grenoble Alpes, Grenoble, France
- Institute for Advanced Biosciences, INSERM 1209, CNRS 5309, Grenoble, France
| | - Pere Fontova
- Experimental Nephrology and Transplantation Laboratory, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Maik Stein
- Berlin Center for Advanced Therapies (BeCAT), Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Sonila Mocka
- Experimental Nephrology and Transplantation Laboratory, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Maria Meneghini
- Nephrology and Transplant Laboratory, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
- Kidney Transplant Unit and Nephrology Department, Vall d’Hebron Hospital, Barcelona, Spain
| | - Anett Sefrin
- Berlin Center for Advanced Therapies (BeCAT), Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Petra Hruba
- Department of Nephrology, Institute for Clinical and Experimental Medicine (IKEM), Prague, Czechia
| | - Montserrat Gomà
- Pathology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Alba Torija
- Nephrology and Transplant Laboratory, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
| | - Laura Donadeu
- Nephrology and Transplant Laboratory, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
| | - Alex Favà
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Josep M. Cruzado
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Edoardo Melilli
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Francesc Moreso
- Kidney Transplant Unit and Nephrology Department, Vall d’Hebron Hospital, Barcelona, Spain
| | - Ondrej Viklicky
- Department of Nephrology, Institute for Clinical and Experimental Medicine (IKEM), Prague, Czechia
| | - Frederike Bemelman
- Renal Transplant Unit, Department of Internal Medicine, Amsterdam University Medical Centers, Academic Medical Center—University of Amsterdam, Amsterdam, Netherlands
| | - Petra Reinke
- Berlin Center for Advanced Therapies (BeCAT), Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Josep Grinyó
- Department of Clinical Sciences, Barcelona University, Barcelona, Spain
| | - Nuria Lloberas
- Experimental Nephrology and Transplantation Laboratory, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Oriol Bestard
- Nephrology and Transplant Laboratory, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
- Kidney Transplant Unit and Nephrology Department, Vall d’Hebron Hospital, Barcelona, Spain
- *Correspondence: Oriol Bestard, ; Elena Crespo,
| |
Collapse
|
10
|
Jagdale A, Nguyen H, Iwase H, Foote JB, Yamamoto T, Javed M, Ayares D, Anderson DJ, Eckhoff DE, Cooper DKC, Hara H. T and B lymphocyte dynamics after genetically-modified pig-to-baboon kidney xenotransplantation with an anti-CD40mAb-based immunosuppressive regimen. Transpl Immunol 2022; 71:101545. [PMID: 35114360 PMCID: PMC9395207 DOI: 10.1016/j.trim.2022.101545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/25/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND The aim was to monitor recovery of T/B lymphocytes in baboons after depletion by anti-thymocyte globulin (ATG) and anti-CD20mAb (Rituximab), followed by pig kidney transplantation and maintenance therapy with an anti-CD40mAb-based regimen. METHODS In baboons (n = 14), induction was with ATG and anti-CD20mAb, and maintenance with (i) anti-CD40mAb, (ii) rapamycin, and (iii) methylprednisolone. Follow-up was for 6 months, or until rejection or other complication developed. Baboon blood was collected at intervals to measure T/B cells and subsets by flow cytometry. In a separate study in baboons receiving the same immunosuppressive regimen (n = 10), the populations of T/B lymphocytes in PBMCs, lymph nodes, and spleen were examined. RESULTS After induction therapy, the total lymphocyte count and the absolute numbers of CD3+, CD4+, and CD8+T cells fell by >80%, and no CD22+B cells remained (all p < 0.001). T cell numbers began to recover early, but no CD22+B cells were present in the blood for 2 months. Recovery of both T and B cells remained at <30% of baseline (p < 0.001), even if rejection developed. At 6 months, effector memory CD8+T cells had increased more than other T cell subsets, but a greater percentage of B cells were naïve. In contrast to blood and spleen, T and B cells were not depleted in lymph nodes. CONCLUSIONS ATG and anti-CD20mAb effectively decreased T and B lymphocytes in the blood and, in the presence of anti-CD40mAb maintenance therapy, recovery of these cells was inhibited. The recovery of effector memory CD8+T cells may be detrimental to long-term graft survival.
Collapse
Affiliation(s)
- Abhijit Jagdale
- Department of Surgery, University of Alabama at Birmingham, AL, USA
| | - Huy Nguyen
- Department of Surgery, University of Alabama at Birmingham, AL, USA
| | - Hayato Iwase
- Department of Surgery, University of Alabama at Birmingham, AL, USA
| | - Jeremy B Foote
- Department of Microbiology and Animal Resources Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Mariyam Javed
- Department of Surgery, University of Alabama at Birmingham, AL, USA
| | | | | | - Devin E Eckhoff
- Department of Surgery, University of Alabama at Birmingham, AL, USA; Department of Microbiology and Animal Resources Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David K C Cooper
- Department of Surgery, University of Alabama at Birmingham, AL, USA
| | - Hidetaka Hara
- Department of Surgery, University of Alabama at Birmingham, AL, USA.
| |
Collapse
|
11
|
Tran DT, Tu Z, Alawieh A, Mulligan J, Esckilsen S, Quinn K, Sundararaj K, Wallace C, Finnegan R, Allen P, Mehrotra S, Atkinson C, Nadig SN. Modulating donor mitochondrial fusion/fission delivers immunoprotective effects in cardiac transplantation. Am J Transplant 2022; 22:386-401. [PMID: 34714588 PMCID: PMC8813895 DOI: 10.1111/ajt.16882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/11/2021] [Accepted: 10/20/2021] [Indexed: 01/25/2023]
Abstract
Early insults associated with cardiac transplantation increase the immunogenicity of donor microvascular endothelial cells (ECs), which interact with recipient alloreactive memory T cells and promote responses leading to allograft rejection. Thus, modulating EC immunogenicity could potentially alter T cell responses. Recent studies have shown modulating mitochondrial fusion/fission alters immune cell phenotype. Here, we assess whether modulating mitochondrial fusion/fission reduces EC immunogenicity and alters EC-T cell interactions. By knocking down DRP1, a mitochondrial fission protein, or by using the small molecules M1, a fusion promoter, and Mdivi1, a fission inhibitor, we demonstrate that promoting mitochondrial fusion reduced EC immunogenicity to allogeneic CD8+ T cells, shown by decreased T cell cytotoxic proteins, decreased EC VCAM-1, MHC-I expression, and increased PD-L1 expression. Co-cultured T cells also displayed decreased memory frequencies and Ki-67 proliferative index. For in vivo significance, we used a novel murine brain-dead donor transplant model. Balb/c hearts pretreated with M1/Mdivi1 after brain-death induction were heterotopically transplanted into C57BL/6 recipients. We demonstrate that, in line with our in vitro studies, M1/Mdivi1 pretreatment protected cardiac allografts from injury, decreased infiltrating T cell production of cytotoxic proteins, and prolonged allograft survival. Collectively, our data show promoting mitochondrial fusion in donor ECs mitigates recipient T cell responses and leads to significantly improved cardiac transplant survival.
Collapse
Affiliation(s)
- Danh T. Tran
- Department of Microbiology & ImmunologyMedical University of South CarolinaCharlestonSouth CarolinaUSA,Department of SurgeryDivision of Transplant SurgeryLee Patterson Allen Transplant Immunobiology LaboratoryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Zhenxiao Tu
- Department of Microbiology & ImmunologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Ali Alawieh
- Department of Microbiology & ImmunologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Jennifer Mulligan
- Department of Otolaryngology‐Head & Neck SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Scott Esckilsen
- Department of SurgeryDivision of Transplant SurgeryLee Patterson Allen Transplant Immunobiology LaboratoryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Kristen Quinn
- Department of SurgeryDivision of Transplant SurgeryLee Patterson Allen Transplant Immunobiology LaboratoryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Kamala Sundararaj
- Department of SurgeryDivision of Transplant SurgeryLee Patterson Allen Transplant Immunobiology LaboratoryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Caroline Wallace
- Department of SurgeryDivision of Transplant SurgeryLee Patterson Allen Transplant Immunobiology LaboratoryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Ryan Finnegan
- Department of SurgeryDivision of Transplant SurgeryLee Patterson Allen Transplant Immunobiology LaboratoryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Patterson Allen
- Department of SurgeryDivision of Transplant SurgeryLee Patterson Allen Transplant Immunobiology LaboratoryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Shikhar Mehrotra
- Department of SurgeryDivision of Transplant SurgeryLee Patterson Allen Transplant Immunobiology LaboratoryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Carl Atkinson
- Department of Microbiology & ImmunologyMedical University of South CarolinaCharlestonSouth CarolinaUSA,Department of SurgeryDivision of Transplant SurgeryLee Patterson Allen Transplant Immunobiology LaboratoryMedical University of South CarolinaCharlestonSouth CarolinaUSA,South Carolina Investigators in TransplantationDepartment of SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Satish N. Nadig
- Department of Microbiology & ImmunologyMedical University of South CarolinaCharlestonSouth CarolinaUSA,Department of SurgeryDivision of Transplant SurgeryLee Patterson Allen Transplant Immunobiology LaboratoryMedical University of South CarolinaCharlestonSouth CarolinaUSA,South Carolina Investigators in TransplantationDepartment of SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| |
Collapse
|
12
|
Narula T, Khouzam S, Alvarez F, Erasmus D, Li Z, Abdelmoneim Y, Elrefaei M. Antithymocyte globulin is associated with a lower incidence of de novo donor-specific antibody detection in lung transplant recipients: A single-center experience. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:1418-1427. [PMID: 34310850 PMCID: PMC8589359 DOI: 10.1002/iid3.491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/09/2021] [Indexed: 11/06/2022]
Abstract
Purpose Induction immunosuppression has improved the long‐term outcomes after lung transplant. This is the first report exploring the association of induction immunosuppression with the development of de novo donor‐specific human leukocyte antigen (HLA) antibodies (DSA) in lung transplant recipients (LTR). Methods Sixty‐seven consecutive primary LTR were followed for 3 years posttransplant. A total of 41/67 (61%) LTR‐received induction immunosuppression using a single dose of rabbit Antithymocyte Globulin (rATG; 1.5 mg/kg) within 24 h of transplant. All recipients had a negative flow cytometry crossmatch on the day of transplant. Serum samples at 1, 3, 6, and 12 months posttransplant were assessed for the presence of de novo HLA DSA. Results De novo HLA DSA were detected in 22/67 (32.8%) LTR within 1‐year posttransplant. Of these, 9/41 (21.9%) occurred in the induction therapy group and 13/26 (50%) in the noninduction group. Class II DSA were detected in 3/41 (7.3%) LTR who received induction compared to 9/26 (34.6%) LTR without induction immunosuppression (p = .005). Differences in overall survival or freedom from chronic lung allograft dysfunction rates between the two groups were not statistically significant. Conclusion Induction immunosuppression utilizing a modified regimen of single‐dose rATG is associated with a significant reduction in de novo DSA production in LTR.
Collapse
Affiliation(s)
- Tathagat Narula
- Department of Transplantation, Mayo Clinic, Jacksonville, Florida, USA
| | - Samir Khouzam
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida, USA
| | - Francisco Alvarez
- Department of Transplantation, Mayo Clinic, Jacksonville, Florida, USA
| | - David Erasmus
- Department of Transplantation, Mayo Clinic, Jacksonville, Florida, USA
| | - Zhuo Li
- Health Sciences Research, Mayo Clinic, Jacksonville, Florida, USA
| | - Yousif Abdelmoneim
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida, USA
| | - Mohamed Elrefaei
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
13
|
Hasgur S, Fan R, Zwick DB, Fairchild RL, Valujskikh A. B cell-derived IL-1β and IL-6 drive T cell reconstitution following lymphoablation. Am J Transplant 2020; 20:2740-2754. [PMID: 32342598 PMCID: PMC7956246 DOI: 10.1111/ajt.15960] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/26/2020] [Accepted: 04/15/2020] [Indexed: 01/25/2023]
Abstract
Understanding the mechanisms of T cell homeostatic expansion is crucial for clinical applications of lymphoablative therapies. We previously established that T cell recovery in mouse heart allograft recipients treated with anti-thymocyte globulin (mATG) critically depends on B cells and is mediated by B cell-derived soluble factors. B cell production of interleukin (IL)-1β and IL-6 is markedly upregulated after heart allotransplantation and lymphoablation. Neutralizing IL-1β or IL-6 with mAb or the use of recipients lacking mature IL-1β, IL-6, IL-1R, MyD88, or IL-6R impair CD4+ and CD8+ T cell recovery and significantly enhance the graft-prolonging efficacy of lymphoablation. Adoptive co-transfer experiments demonstrate a direct effect of IL-6 but not IL-1β on T lymphocytes. Furthermore, B cells incapable of IL-1β or IL-6 production have diminished capacity to mediate T cell reconstitution and initiate heart allograft rejection upon adoptive transfer into mATG treated B cell deficient recipients. These findings reveal the essential role of B cell-derived IL-1β and IL-6 during homeostatic T cell expansion in a clinically relevant model of lymphoablation.
Collapse
Affiliation(s)
- Suheyla Hasgur
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Ran Fan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Daniel B. Zwick
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Robert L. Fairchild
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Anna Valujskikh
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| |
Collapse
|
14
|
Schachtner T, Stein M, Otto NM, Reinke P. Preformed donor‐reactive T cells that persist after ABO desensitization predict severe T cell‐mediated rejection after living donor kidney transplantation – a retrospective study. Transpl Int 2019; 33:288-297. [DOI: 10.1111/tri.13551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/17/2019] [Accepted: 11/03/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Thomas Schachtner
- Department of Nephrology and Internal Intensive Care Charité University Medicine Berlin Berlin Germany
- Berlin‐Brandenburg Center of Regenerative Therapies (BCRT) Berlin Germany
- Department of Nephrology University Hospital Zurich Zurich Switzerland
| | - Maik Stein
- Berlin‐Brandenburg Center of Regenerative Therapies (BCRT) Berlin Germany
| | - Natalie M. Otto
- Department of Nephrology and Internal Intensive Care Charité University Medicine Berlin Berlin Germany
- Berlin‐Brandenburg Center of Regenerative Therapies (BCRT) Berlin Germany
| | - Petra Reinke
- Department of Nephrology and Internal Intensive Care Charité University Medicine Berlin Berlin Germany
- Berlin‐Brandenburg Center of Regenerative Therapies (BCRT) Berlin Germany
| |
Collapse
|
15
|
Podestà MA, Remuzzi G, Casiraghi F. Mesenchymal Stromal Cells for Transplant Tolerance. Front Immunol 2019; 10:1287. [PMID: 31231393 PMCID: PMC6559333 DOI: 10.3389/fimmu.2019.01287] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/21/2019] [Indexed: 12/18/2022] Open
Abstract
In solid organ transplantation lifelong immunosuppression exposes transplant recipients to life-threatening complications, such as infections and malignancies, and to severe side effects. Cellular therapy with mesenchymal stromal cells (MSC) has recently emerged as a promising strategy to regulate anti-donor immune responses, allowing immunosuppressive drug minimization and tolerance induction. In this review we summarize preclinical data on MSC in solid organ transplant models, focusing on potential mechanisms of action of MSC, including down-regulation of effector T-cell response and activation of regulatory pathways. We will also provide an overview of available data on safety and feasibility of MSC therapy in solid organ transplant patients, highlighting the issues that still need to be addressed before establishing MSC as a safe and effective tolerogenic cell therapy in transplantation.
Collapse
Affiliation(s)
- Manuel Alfredo Podestà
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy.,Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giuseppe Remuzzi
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Federica Casiraghi
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
16
|
Ayasoufi K, Zwick DB, Fan R, Hasgur S, Nicosia M, Gorbacheva V, Keslar KS, Min B, Fairchild RL, Valujskikh A. Interleukin-27 promotes CD8+ T cell reconstitution following antibody-mediated lymphoablation. JCI Insight 2019; 4:125489. [PMID: 30944247 DOI: 10.1172/jci.insight.125489] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/26/2019] [Indexed: 12/14/2022] Open
Abstract
Antibody-mediated lymphoablation is used in solid organ and stem cell transplantation and autoimmunity. Using murine anti-thymocyte globulin (mATG) in a mouse model of heart transplantation, we previously reported that the homeostatic recovery of CD8+ T cells requires help from depletion-resistant memory CD4+ T cells delivered through CD40-expressing B cells. This study investigated the mechanisms by which B cells mediate CD8+ T cell proliferation in lymphopenic hosts. While CD8+ T cell recovery required MHC class I expression in the host, the reconstitution occurred independently of MHC class I, MHC class II, or CD80/CD86 expression on B cells. mATG lymphoablation upregulated the B cell expression of several cytokine genes, including IL-15 and IL-27, in a CD4-dependent manner. Neither treatment with anti-CD122 mAb nor the use of IL-15Rα-/- recipients altered CD8+ T cell recovery after mATG treatment, indicating that IL-15 may be dispensable for T cell proliferation in our model. Instead, IL-27 neutralization or the use of IL-27Rα-/- CD8+ T cells inhibited CD8+ T cell proliferation and altered the phenotype and cytokine profile of reconstituted CD8+ T cells. Our findings uncover what we believe is a novel role of IL-27 in lymphopenia-induced CD8+ T cell proliferation and suggest that targeting B cell-derived cytokines may increase the efficacy of lymphoablation and improve transplant outcomes.
Collapse
|
17
|
Does Rabbit Antithymocyte Globulin (Thymoglobuline®) Have a Role in Avoiding Delayed Graft Function in the Modern Era of Kidney Transplantation? J Transplant 2018; 2018:4524837. [PMID: 30112193 PMCID: PMC6077603 DOI: 10.1155/2018/4524837] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/20/2018] [Indexed: 12/16/2022] Open
Abstract
Delayed graft function (DGF) increases the risk of graft loss by up to 40%, and recent developments in kidney donation have increased the risk of its occurrence. Lowering the risk of DGF, however, is challenging due to a complicated etiology in which ischemia-reperfusion injury (IRI) leads to acute tubular necrosis. Among various strategies explored, the choice of induction therapy is one consideration. Rabbit antithymocyte globulin (rATG [Thymoglobuline]) has complex immunomodulatory effects that are relevant to DGF. In addition to a rapid and profound T-cell depletion, rATG inhibits leukocyte migration and adhesion. Experimental studies of rATG have demonstrated attenuated IRI-related tissue damage in reperfused tissues, consistent with histological evidence from transplant recipients. Starting rATG intraoperatively instead of postoperatively can improve kidney graft function and reduce the incidence of DGF. rATG is effective in preventing acute rejection in kidney transplant recipients at high immunological risk, supporting delayed calcineurin inhibitor (CNI) introduction which protects the graft from early insults. A reduced rate of DGF has been reported with rATG (started intraoperatively) and delayed CNI therapy compared to IL-2RA induction with immediate CNI in patients at high immunological risk, but not in lower-risk patients. Overall, induction with rATG induction is the preferred choice for supporting delayed introduction of CNI therapy to avoid DGF in high-risk patients but shows no benefit versus IL-2RA in lower-risk individuals. Evidence is growing that intraoperative rATG ameliorates IRI, and it seems reasonable to routinely start rATG before reperfusion.
Collapse
|
18
|
Ayasoufi K, Kohei N, Nicosia M, Fan R, Farr GW, McGuirk PR, Pelletier MF, Fairchild RL, Valujskikh A. Aquaporin 4 blockade improves survival of murine heart allografts subjected to prolonged cold ischemia. Am J Transplant 2018; 18:1238-1246. [PMID: 29243390 PMCID: PMC5910181 DOI: 10.1111/ajt.14624] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/30/2017] [Accepted: 12/03/2017] [Indexed: 01/25/2023]
Abstract
Prolonged cold ischemia storage (CIS) is a leading risk factor for poor transplant outcome. Existing strategies strive to minimize ischemia-reperfusion injury in transplanted organs, yet there is a need for novel approaches to improve outcomes of marginal allografts and expand the pool of donor organs suitable for transplantation. Aquaporins (AQPs) are a family of water channels that facilitate homeostasis, tissue injury, and inflammation. We tested whether inhibition of AQP4 improves the survival of fully MHC-mismatched murine cardiac allografts subjected to 8 hours of CIS. Administration of a small molecule AQP4 inhibitor during donor heart collection and storage and for a short-time posttransplantation improves the viability of donor graft cells, diminishes donor-reactive T cell responses, and extends allograft survival in the absence of other immunosuppression. Furthermore, AQP4 inhibition is synergistic with cytotoxic T lymphocyte-associated antigen 4-Ig in prolonging survival of 8-hour CIS heart allografts. AQP4 blockade markedly reduced T cell proliferation and cytokine production in vitro, suggesting that the improved graft survival is at least in part mediated through direct effects on donor-reactive T cells. These results identify AQPs as a promising target for diminishing donor-specific alloreactivity and improving the survival of high-risk organ transplants.
Collapse
Affiliation(s)
- Katayoun Ayasoufi
- Glickman Urological Institute and Department of Immunology, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Naoki Kohei
- Glickman Urological Institute and Department of Immunology, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Michael Nicosia
- Glickman Urological Institute and Department of Immunology, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Ran Fan
- Glickman Urological Institute and Department of Immunology, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | - Robert L. Fairchild
- Glickman Urological Institute and Department of Immunology, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Anna Valujskikh
- Glickman Urological Institute and Department of Immunology, Cleveland Clinic, Cleveland, Ohio 44195, USA
| |
Collapse
|
19
|
STRANAVOVA L, HRUBA P, GIRMANOVA E, TYCOVA I, SLAVCEV A, FRONEK J, SLATINSKA J, REINKE P, VOLK HD, VIKLICKY O. The Effect of Induction Therapy on Established CMV Specific T Cell Immunity in Living Donor Kidney Transplantation. Physiol Res 2018; 67:251-260. [DOI: 10.33549/physiolres.933736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cytomegalovirus (CMV) infection influences both short and long term outcomes in immunosuppressed organ transplant recipients. The aim of this study was to evaluate the effect of different induction immunosuppression regimens on CMV specific T cell response in patients with already established CMV immunity. In 24 seropositive living donor kidney recipients, the frequency of CMV specific T cells was determined by ELISPOT (Enzyme-Linked ImmunoSpot) assay prior and 6 months after transplantation. Recipients’ peripheral blood mononuclear cells were stimulated with immediate-early (IE1) and phosphoprotein 65 (pp65) CMV-derived peptide pools and the number of cells producing interferon gamma (IFN-γ) was assessed. Patients received quadruple immunosuppression based either on depletive rabbit antithymocyte globulin (rATG) or non-depletive basiliximab induction and tacrolimus/mycophenolate mofetil/steroids. Patients with rATG induction received valgancyclovir prophylaxis. No effects of different induction agents on CMV specific T cell immunity were found at sixth month after kidney transplantation. There were no associations among dialysis vintage, pretransplant CMV specific T cell immunity, and later CMV DNAemia. Similarly, no effect of CMV prophylaxis on CMV specific T cell immunity was revealed. This study shows no effect of posttransplant immunosuppression on CMV specific T cell immunity in living donor kidney transplant recipients with CMV immunity already established, regardless of lymphocyte depletion and CMV prophylaxis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - O. VIKLICKY
- Department of Nephrology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
20
|
Fuchs E. Haploidentical Hematopoietic Cell Transplantation. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00106-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
21
|
Casiraghi F, Perico N, Remuzzi G. Mesenchymal stromal cells for tolerance induction in organ transplantation. Hum Immunol 2017; 79:304-313. [PMID: 29288697 DOI: 10.1016/j.humimm.2017.12.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/06/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022]
Abstract
The primary challenge in organ transplantation continues to be the need to suppress the host immune system long-term to ensure prolonged allograft survival. Long-term non-specific immunosuppression can, however, result in life-threatening complications. Thus, efforts have been pursued to explore novel strategies that would allow minimization of maintenance immunosuppression, eventually leading to transplant tolerance. In this scenario, bone marrow-derived mesenchymal stromal cells (MSC), given their unique immunomodulatory properties to skew the balance between regulatory and memory T cells, have emerged as potential candidates for cell-based therapy to promote immune tolerance. Here, we review our initial clinical experience with bone marrow-derived MSC in living-donor kidney transplant recipients and provide an overview of the available results of other clinical programs with MSC in kidney and liver transplantation, highlighting hurdles and success of this innovative cell-based therapy.
Collapse
Affiliation(s)
| | - Norberto Perico
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Giuseppe Remuzzi
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy; Unit of Nephrology and Dialysis, Azienda Socio Sanitaria Territoriale (ASST), Papa Giovanni XXIII, Bergamo, Italy; L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
22
|
Ayasoufi K, Fan R, Valujskikh A. Depletion-Resistant CD4 T Cells Enhance Thymopoiesis During Lymphopenia. Am J Transplant 2017; 17:2008-2019. [PMID: 28397358 PMCID: PMC5519419 DOI: 10.1111/ajt.14309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/08/2017] [Accepted: 04/01/2017] [Indexed: 01/25/2023]
Abstract
Lymphoablation is routinely used in transplantation, and its success is defined by the balance of pathogenic versus protective T cells within reconstituted repertoire. While homeostatic proliferation and thymopoiesis may both cause T cell recovery during lymphopenia, the relative contributions of these mechanisms remain unclear. The goal of this study was to investigate the role of the thymus during T cell reconstitution in adult allograft recipients subjected to lymphoablative induction therapy. Compared with euthymic mice, thymectomized heart allograft recipients demonstrated severely impaired CD4 and CD8 T cell recovery and prolonged heart allograft survival after lymphoablation with murine anti-thymocyte globulin (mATG). The injection with agonistic anti-CD40 mAb or thymus transplantation only partially restored T cell reconstitution in mATG-treated thymectomized mice. After mATG depletion, residual CD4 T cells migrated into the thymus and enhanced thymopoiesis. Conversely, depletion of CD4 T cells before lymphoablation inhibited thymopoiesis at the stage of CD4- CD8- CD44hi CD25+ immature thymocytes. This is the first demonstration that the thymus and peripheral CD4 T cells cooperate to ensure optimal T cell reconstitution after lymphoablation. Targeting thymopoiesis through manipulating functions of depletion-resistant helper T cells may thus improve therapeutic benefits and minimize the risks of lymphoablation in clinical settings.
Collapse
Affiliation(s)
- Katayoun Ayasoufi
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH
| | - Ran Fan
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Anna Valujskikh
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
23
|
Nicosia M, Valujskikh A. Total Recall: Can We Reshape T Cell Memory by Lymphoablation? Am J Transplant 2017; 17:1713-1718. [PMID: 27888576 DOI: 10.1111/ajt.14144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/01/2016] [Accepted: 11/15/2016] [Indexed: 01/25/2023]
Abstract
Despite recent advances in immunosuppression, donor-reactive memory T cells remain a serious threat to successful organ transplantation. To alleviate damaging effects of preexisting immunologic memory, lymphoablative induction therapies are used as part of standard care in sensitized recipients. However, accumulating evidence suggests that memory T cells have advantages over their naive counterparts in surviving depletion and expanding under lymphopenic conditions. This may at least partially explain the inability of existing lymphoablative strategies to improve long-term allograft outcome in sensitized recipients, despite the well-documented decrease in the frequency of early acute rejection episodes. This minireview summarizes the insights gained from both experimental and clinical transplantation as to the effects of existing lymphoablative strategies on memory T cells and discusses the latest research developments aimed at improving the efficacy and safety of lymphoablation.
Collapse
Affiliation(s)
- M Nicosia
- Glickman Urological Institute and Department of Immunology, Cleveland Clinic, Cleveland, OH
| | - A Valujskikh
- Glickman Urological Institute and Department of Immunology, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
24
|
Benichou G, Gonzalez B, Marino J, Ayasoufi K, Valujskikh A. Role of Memory T Cells in Allograft Rejection and Tolerance. Front Immunol 2017; 8:170. [PMID: 28293238 PMCID: PMC5328996 DOI: 10.3389/fimmu.2017.00170] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/02/2017] [Indexed: 12/30/2022] Open
Abstract
Memory T cells are characterized by their low activation threshold, robust effector functions, and resistance to conventional immunosuppression and costimulation blockade. Unlike their naïve counterparts, memory T cells reside in and recirculate through peripheral non-lymphoid tissues. Alloreactive memory T cells are subdivided into different categories based on their origins, phenotypes, and functions. Recipients whose immune systems have been directly exposed to allogeneic major histocompatibility complex (MHC) molecules display high affinity alloreactive memory T cells. In the absence of any prior exposure to allogeneic MHC molecules, endogenous alloreactive memory T cells are regularly generated through microbial infections (heterologous immunity). Regardless of their origin, alloreactive memory T cells represent an essential element of the allograft rejection process and a major barrier to tolerance induction in clinical transplantation. This article describes the different subsets of alloreactive memory T cells involved in transplant rejection and examine their generation, functional properties, and mechanisms of action. In addition, we discuss strategies developed to target deleterious allospecific memory T cells in experimental animal models and clinical settings.
Collapse
Affiliation(s)
- Gilles Benichou
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bruno Gonzalez
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jose Marino
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Katayoun Ayasoufi
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Anna Valujskikh
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
25
|
Guo H, Lu L, Wang R, Perez-Gutierrez A, Abdulkerim H, Zahorchak A, Sumpter T, Reimann KA, Thomson A, Ezzelarab M. Impact of Human Mutant TGFβ1/Fc Protein on Memory and Regulatory T Cell Homeostasis Following Lymphodepletion in Nonhuman Primates. Am J Transplant 2016; 16:2994-3006. [PMID: 27217298 PMCID: PMC5121100 DOI: 10.1111/ajt.13883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 04/29/2016] [Accepted: 05/07/2016] [Indexed: 01/25/2023]
Abstract
Transforming growth factor β1 (TGFβ1) plays a key role in T cell homeostasis and peripheral tolerance. We evaluated the influence of a novel human mutant TGFβ1/Fc (human IgG4 Fc) fusion protein on memory CD4+ and CD8+ T cell (Tmem) responses in vitro and their recovery following antithymocyte globulin (ATG)-mediated lymphodepletion in monkeys. TGFβ1/Fc induced Smad2/3 protein phosphorylation in rhesus and human peripheral blood mononuclear cells and augmented the suppressive effect of rapamycin on rhesus Tmem proliferation after either alloactivation or anti-CD3/CD28 stimulation. In combination with IL-2, the incidence of CD4+ CD25hi Foxp3hi regulatory T cells (Treg) and Treg:Th17 ratios were increased. In lymphodepleted monkeys, whole blood trough levels of infused TGFβ1/Fc were maintained between 2 and 7 μg/mL for 35 days. Following ATG administration, total T cell numbers were reduced markedly. In those given TGFβ1/Fc infusion, CD8+ T cell recovery to predepletion levels was delayed compared to controls. Additionally, numbers of CD4+ CD25hi CD127lo Treg increased at 4-6 weeks after depletion but subsequently declined to predepletion levels by 12 weeks. In all monkeys, CD4+ CD25hi Foxp3hi Treg/CD4+ IL-17+ cell ratios were reduced, particularly after stopping TGFβ1/Fc infusion. Thus, human TGFβ1/Fc infusion may delay Tmem recovery following lymphodepletion in nonhuman primates. Combined (low-dose) IL-2 infusion may be required to improve the Treg:Th17 ratio following lymphodepletion.
Collapse
Affiliation(s)
- H. Guo
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - L. Lu
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - R. Wang
- MassBiologics, University of Massachusetts Medical School, Boston, MA
| | - A. Perez-Gutierrez
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - H.S. Abdulkerim
- MassBiologics, University of Massachusetts Medical School, Boston, MA
| | - A.F. Zahorchak
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - T.L. Sumpter
- Department of Dermatology, University of Pittsburgh School of Medicine
| | - K. A. Reimann
- MassBiologics, University of Massachusetts Medical School, Boston, MA
| | - A.W. Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - M.B. Ezzelarab
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA,Corresponding author: Mohamed B. Ezzelarab, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, 200 Lothrop Street, E1558 BST, Pittsburgh, PA 15261,
| |
Collapse
|
26
|
Rabbit antithymocyte globulin and donor-specific antibodies in kidney transplantation — A review. Transplant Rev (Orlando) 2016; 30:85-91. [DOI: 10.1016/j.trre.2015.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/22/2015] [Indexed: 01/28/2023]
|
27
|
Gorbacheva V, Fan R, Fairchild RL, Baldwin WM, Valujskikh A. Memory CD4 T Cells Induce Antibody-Mediated Rejection of Renal Allografts. J Am Soc Nephrol 2016; 27:3299-3307. [PMID: 27020853 DOI: 10.1681/asn.2015080848] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 02/15/2016] [Indexed: 01/14/2023] Open
Abstract
Despite advances in immunosuppression, antibody-mediated rejection is a serious threat to allograft survival. Alloreactive memory helper T cells can induce potent alloantibody responses and often associate with poor graft outcome. Nevertheless, the ability of memory T cells to elicit well characterized manifestations of antibody-mediated rejection has not been tested. We investigated helper functions of memory CD4 T cells in a mouse model of renal transplantation. Whereas the majority of unsensitized C57Bl/6 recipients spontaneously accepted fully MHC-mismatched A/J renal allografts, recipients containing donor-reactive memory CD4 T cells rapidly lost allograft function. Increased serum creatinine levels, high serum titers of donor-specific alloantibody, minimal T cell infiltration, and intense C4d deposition in the grafts of sensitized recipients fulfilled all diagnostic criteria for acute renal antibody-mediated rejection in humans. IFNγ neutralization did not prevent the renal allograft rejection induced by memory helper T cells, and CD8 T cell depletion at the time of transplantation or depletion of both CD4 and CD8 T cells also did not prevent the renal allograft rejection induced by memory helper T cells starting at day 4 after transplantation. However, B cell depletion inhibited alloantibody generation and significantly extended allograft survival, indicating that donor-specific alloantibodies (not T cells) were the critical effector mechanism of renal allograft rejection induced by memory CD4 T cells. Our studies provide direct evidence that recipient T cell sensitization may result in antibody-mediated rejection of renal allografts and introduce a physiologically relevant animal model with which to investigate mechanisms of antibody-mediated rejection and novel therapeutic approaches for its prevention and treatment.
Collapse
Affiliation(s)
- Victoria Gorbacheva
- Glickman Urological Institute and Department of Immunology, Cleveland Clinic, Cleveland, Ohio
| | - Ran Fan
- Glickman Urological Institute and Department of Immunology, Cleveland Clinic, Cleveland, Ohio
| | - Robert L Fairchild
- Glickman Urological Institute and Department of Immunology, Cleveland Clinic, Cleveland, Ohio
| | - William M Baldwin
- Glickman Urological Institute and Department of Immunology, Cleveland Clinic, Cleveland, Ohio
| | - Anna Valujskikh
- Glickman Urological Institute and Department of Immunology, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
28
|
Ayasoufi K, Fan R, Fairchild RL, Valujskikh A. CD4 T Cell Help via B Cells Is Required for Lymphopenia-Induced CD8 T Cell Proliferation. THE JOURNAL OF IMMUNOLOGY 2016; 196:3180-90. [PMID: 26912319 DOI: 10.4049/jimmunol.1501435] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 02/01/2016] [Indexed: 11/19/2022]
Abstract
Ab-mediated lymphoablation is commonly used in solid organ and hematopoietic cell transplantation. However, these strategies fail to control pathogenic memory T cells efficiently and to improve long-term transplant outcomes significantly. Understanding the mechanisms of T cell reconstitution is critical for enhancing the efficacy of Ab-mediated depletion in sensitized recipients. Using a murine analog of anti-thymocyte globulin (mATG) in a mouse model of cardiac transplantation, we previously showed that peritransplant lymphocyte depletion induces rapid memory T cell proliferation and only modestly prolongs allograft survival. We now report that T cell repertoire following depletion is dominated by memory CD4 T cells. Additional depletion of these residual CD4 T cells severely impairs the recovery of memory CD8 T cells after mATG treatment. The CD4 T cell help during CD8 T cell recovery depends on the presence of B cells expressing CD40 and intact CD40/CD154 interactions. The requirement for CD4 T cell help is not limited to the use of mATG in heart allograft recipients, and it is observed in nontransplanted mice and after CD8 T cell depletion with mAb instead of mATG. Most importantly, limiting helper signals increases the efficacy of mATG in controlling memory T cell expansion and significantly extends heart allograft survival in sensitized recipients. Our findings uncover the novel role for helper memory CD4 T cells during homeostatic CD8 T cell proliferation and open new avenues for optimizing lymphoablative therapies in allosensitized patients.
Collapse
Affiliation(s)
- Katayoun Ayasoufi
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; and
| | - Ran Fan
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; and
| | - Robert L Fairchild
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; and Glickman Urological Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Anna Valujskikh
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; and Glickman Urological Institute, Cleveland Clinic, Cleveland, OH 44195
| |
Collapse
|
29
|
Lin K, Chen S, Chen G. Role of Memory T Cells and Perspectives for Intervention in Organ Transplantation. Front Immunol 2015; 6:473. [PMID: 26441978 PMCID: PMC4568416 DOI: 10.3389/fimmu.2015.00473] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 08/31/2015] [Indexed: 12/12/2022] Open
Abstract
Memory T cells are necessary for protective immunity against invading pathogens, especially under conditions of immunosuppression. However, their presence also threatens transplant survival, making transplantation a great challenge. Significant progress has been achieved in recent years in advancing our understanding of the role that memory T cells play in transplantation. This review focuses on the latest advances in our understanding of the involvement of memory T cells in graft rejection and transplant tolerance and discusses potential strategies for targeting memory T cells in order to minimize allograft rejection and optimize clinical outcomes.
Collapse
Affiliation(s)
- Kailin Lin
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology , Wuhan , China
| | - Song Chen
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology , Wuhan , China ; Key Laboratory of Organ Transplantation, Ministry of Education , Wuhan , China ; Key Laboratory of Organ Transplantation, Ministry of Public Health , Wuhan , China
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology , Wuhan , China ; Key Laboratory of Organ Transplantation, Ministry of Education , Wuhan , China ; Key Laboratory of Organ Transplantation, Ministry of Public Health , Wuhan , China
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Experimental models have contributed enormously to basic immunology. However, the use of reductionist experiments has produced results that are not always successfully translated into the clinic. Recently, incorporation of more realistic clinical parameters in experimental designs has produced new insights relevant to cardiac transplantation. RECENT FINDINGS Experiments in mice have provided crucial insights into the concept that T cell responses to pathogens generate memory cells with cross-reactive specificities for histocompatibility antigens. These memory T cells are resistant to current immunosuppressive strategies. Memory T cells infiltrate grafts within hours after transplantation, and grafts subjected to clinically relevant periods of cold ischemia are more susceptible to injury by this cellular infiltrate. Early immune responses now can be investigated with improved 'humanized' mice. Mice with multiple knock-in genes for human cytokines support development of human monocytes, macrophages and natural killer cells in increased numbers and with better function. SUMMARY Better and more clinically relevant experimental designs are providing animal models tailored to address clinic exigencies.
Collapse
|
31
|
Antithymocyte globulin is associated with a lower incidence of de novo donor-specific antibodies in moderately sensitized renal transplant recipients. Transplantation 2014; 97:612-7. [PMID: 24531846 DOI: 10.1097/tp.0000000000000031] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Recent evidence suggests that de novo donor-specific antibodies (dnDSA) are associated with antibody-mediated rejection (ABMR) and graft failure after kidney transplantation. The effects of induction immunosuppression on dnDSA are unknown. METHODS The study population comprised 114 consecutive moderately sensitized (positive DSA and negative flow crossmatch) recipients who received deceased donor renal transplants between December 2009 and November 2011. Patients were divided into two groups based on induction immunosuppression: antithymocyte globulin (ATG) (n=85) or basiliximab (n=29) and were followed up for 36 months. RESULTS Patients in the ATG group received a mean dose of 4.98 mg/kg ± 7.9 mg/kg, had a significantly higher PRA, and received more plasmapheresis and IVIG at the time of transplant. The incidence of dnDSA (P=0.02, HR=0.33, 95% CI 0.09-1.24) and ABMR (P=0.002, HR=0.2, 95% CI 0.04-0.87) was significantly lower in the ATG group. In multivariate regression analyses, ATG induction was the single most important variable associated with both ABMR and dnDSA. CONCLUSIONS In moderately sensitized deceased donor renal transplant recipients, induction with ATG is associated with a reduction in the occurrence of dnDSA and ABMR when compared with basiliximab.
Collapse
|
32
|
Abstract
Following infections and environmental exposures, memory T cells are generated that provide long-term protective immunity. Compared to their naïve T cell counterparts, memory T cells possess unique characteristics that endow them with the ability to quickly and robustly respond to foreign antigens. While such memory T cells are beneficial in protecting their hosts from recurrent infection, memory cells reactive to donor antigens pose a major barrier to successful transplantation and tolerance induction. Significant progress has been made over the past several decades contributing to our understanding of memory T cell generation, their distinct biology, and their detrimental impact in clinical and animal models of transplantation. This review focuses on the unique features which make memory T cells relevant to the transplant community and discusses potential therapies targeting memory T cells which may ameliorate allograft rejection.
Collapse
Affiliation(s)
- Charles A Su
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106 ; Glickman Urological and Kidney Institute and Department of Immunology, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Robert L Fairchild
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106 ; Glickman Urological and Kidney Institute and Department of Immunology, Cleveland Clinic Foundation, Cleveland, OH 44195
| |
Collapse
|
33
|
Abstract
Tolerance induction and alloreactivity can be applied to the clinic for the transplantation of solid organs and in the treatment of human cancers respectively. Hematopoietic chimerism, the stable coexistence of host and donor blood cells, guarantees that a solid organ from the same donor will be tolerated without a requirement for maintenance immunosuppression, and it also serves as a platform for the adoptive immunotherapy of hematologic malignancies using donor lymphocyte infusions. This review focuses on clinically relevant methods for inducing hematopoietic chimerism and transplantation tolerance, with a special emphasis on reduced intensity transplantation conditioning and high dose, post-transplantation cyclophosphamide to prevent graft rejection and graft-versus-host disease (GVHD). Reduced intensity transplantation regimens permit a transient cooperation between donor and host immune systems to eradicate malignancy without producing GVHD. Their favorable toxicity profile also enables the application of allogeneic stem cell transplantation to treat non-malignant disorders of hematopoiesis and to induce tolerance for solid organ transplantation.
Collapse
Affiliation(s)
- Ephraim J. Fuchs
- Division of Hematologic Malignancies, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| |
Collapse
|
34
|
Marco MRL, Dons EM, van der Windt DJ, Bhama JK, Lu LT, Zahorchak AF, Lakkis FG, Cooper DKC, Ezzelarab MB, Thomson AW. Post-transplant repopulation of naïve and memory T cells in blood and lymphoid tissue after alemtuzumab-mediated depletion in heart-transplanted cynomolgus monkeys. Transpl Immunol 2013; 29:88-98. [PMID: 24120957 DOI: 10.1016/j.trim.2013.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/02/2013] [Accepted: 10/02/2013] [Indexed: 11/19/2022]
Abstract
Repopulation of memory T cells (Tmem) in allograft recipients after lymphodepletion is a major barrier to transplant tolerance induction. Ineffective depletion of naïve T cells (Tn) and Tmem may predispose to repopulation of Tmem after transplantation. Cynomolgus macaque monkeys given heart allografts were lymphodepleted using Alemtuzumab (Campath-1H; anti-CD52). Peripheral blood (PB) and lymph nodes (LN) were analyzed for CD95(-) (Tn) and CD95(+) cells (Tmem), one day, one month and up to three months after Alemtuzumab infusion. CD52 expression, susceptibility to Alemtuzumab cytotoxicity and pro-apoptotic caspase-3 were evaluated in Tn and Tmem. In vivo, Alemtuzumab induction profoundly depleted lymphocytes in PB (99% reduction) but exerted a lesser effect in LN (70% reduction), with similar depletion of Tn and Tmem subsets. After transplantation, Tmem comprised the majority of lymphocytes in PB and LN. In vitro, LN T cells were more resistant to Alemtuzumab-mediated cytotoxicity than PB lymphocytes. CD4(+) Tn and Tmem were equally susceptible to Alemtuzumab-mediated cytotoxicity, whereas CD8(+) Tn were more resistant than CD8(+) Tmem. However, no significant differences in CD52 expression between lymphocyte subsets in PB and LN were observed. Caspase-3 expression was higher in PB than LN T cells. CD4(+) and CD8(+) Tn expressed lower levels of Caspase-3 than Tmem, in both PB and LN. Thus, after Alemtuzumab infusion, residual Tn in secondary lymphoid tissue may predispose to rapid recovery of Tmem in allograft recipients.
Collapse
Affiliation(s)
- M R L Marco
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|