1
|
Yim WY, Li C, Tong F, Hou J, Chen Y, Liu Z, Wang Z, Geng B, Wang Y, Dong N. Circadian immune system in solid organ transplantation: a review article. Front Immunol 2025; 16:1556057. [PMID: 40098968 PMCID: PMC11911371 DOI: 10.3389/fimmu.2025.1556057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
The innate and adaptive immune systems are intricately regulated by the circadian clock machinery. Recent clinical investigations have shed light on the influence of timing in organ procurement and transplantation on graft survival. In this review, we explore various mechanisms of immunological functions associated with the steps involved in organ transplantation, spanning from surgical harvesting to reperfusion and linking to the circadian rhythm. A deeper understanding of these processes has the potential to extend the principles of chrono-immunotherapy to the realm of organ transplantation, with the aim of enhancing graft durability and improving patient outcomes. This review concludes with some perspectives on future directions in this exciting and still evolving field of research.
Collapse
Affiliation(s)
- Wai Yen Yim
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenghao Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuqiang Tong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jincheng Hou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqi Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zongtao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihao Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingchuan Geng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yixuan Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
2
|
Papa-Gobbi R, Stringa P, Gentilini MV, Ivanoff I, Machuca M, Arreola NM, Serradilla J, Estefanía-Fernández K, Talayero P, Velayos M, Sánchez—Zapardiel E, Gondolesi G, Andrés-Moreno A, Rumbo M, Hernández-Oliveros F. Low regulatory T-cells frequency is associated with graft rejection after small bowel transplantation: Clinical and experimental evidence. PLoS One 2025; 20:e0307534. [PMID: 39854413 PMCID: PMC11761612 DOI: 10.1371/journal.pone.0307534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 07/07/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Intestinal transplantation (ITx) represents the only curative option for patients with irreversible intestinal failure. Nevertheless, its rejection rate surpasses that of other solid organ transplants due to the heightened immunological load of the gut. Regulatory T-cells (Tregs) are key players in the induction and maintenance of peripheral tolerance, suggesting their potential involvement in modulating host vs. graft responses after ITx. Thus, we investigated the association of Tregs with allograft outcomes in pediatric patients and in an experimental model of small bowel transplantation. METHODS Treg frequency in human samples was analyzed by Flow cytometry (CD4+CD25highCD127-, blood samples) and immunohistochemistry (FoxP3, graft samples). Experimental allogenic-heterotopic small bowel transplantation was performed in rats and animals divided into 3 groups: non-immunosuppressant treatment, rapamycin (2 mg/kg), and tacrolimus (0.6 mg/kg) treatment. Acute cellular rejection (ACR) was diagnosed based on clinical and histological findings, graft gene expression of pro- and anti-inflammatory mediators assessed by RT-qPCR, serum IL-6 and IL-10 levels by Luminex, and Treg frequency analyzed by flow cytometry (CD4+CD25highFoxP3+). RESULTS Blood samples from patients undergoing ACR exhibited a significant reduction in the Treg number compared to those with normo-functional grafts. Similarly, a diminished number of FoxP3+ cells was observed in mucosa samples with ACR. In the experimental model, rapamycin-treated animals displayed clinical and histological findings resembling those not receiving immunosuppression treatment. Notably, ACR correlated with a high CD8/CD4 ratio, loss of T-cell chimerism, mRNA upregulation of pro-inflammatory genes and diminished graft Treg frequency. In contrast, tacrolimus treatment prevented ACR and facilitate blood and graft Treg expansion. Remarkably, recipients who achieved Treg expansion within the graft remained free of ACR even after discontinuation of the immunosuppressant treatment and this phenomenon was associated with increased levels of serum IL-10. CONCLUSION Our clinical and experimental findings underscore the association between Treg frequency and graft rejection after ITx, advocating for strategies that promote their expansion within the gut mucosa to enhance long-term outcomes.
Collapse
Affiliation(s)
- Rodrigo Papa-Gobbi
- Institute for Immunological and Pathophysiological Studies (IIFP), School of Exact Sciences, National University of La Plata, National Council of Scientific and Technical Research (CONICET), La Plata, Argentina
| | - Pablo Stringa
- Institute for Immunological and Pathophysiological Studies (IIFP), School of Exact Sciences, National University of La Plata, National Council of Scientific and Technical Research (CONICET), La Plata, Argentina
| | - Maria Virginia Gentilini
- Intestinal Failure, Rehabilitation and Transplant Unit, University Hospital Foundation Favaloro; Institute of Translational Medicine, Transplantation and Bioengineering (ImeTTyB), University Favaloro-CONICET, Buenos Aires, Argentina
| | - Ivana Ivanoff
- Institute for Immunological and Pathophysiological Studies (IIFP), School of Exact Sciences, National University of La Plata, National Council of Scientific and Technical Research (CONICET), La Plata, Argentina
| | - Mariana Machuca
- Special Pathology Laboratory, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Buenos Aires, Argentina
| | - Nidia Monserrat Arreola
- Transplant Group, La Paz University Hospital Health Research Institute (IdiPAZ), Madrid, Spain
- Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
| | - Javier Serradilla
- Transplant Group, La Paz University Hospital Health Research Institute (IdiPAZ), Madrid, Spain
- Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
| | - Karla Estefanía-Fernández
- Transplant Group, La Paz University Hospital Health Research Institute (IdiPAZ), Madrid, Spain
- Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
| | - Paloma Talayero
- Immunology Department, 12 de Octubre University Hospital, Madrid, Spain
| | - María Velayos
- Transplant Group, La Paz University Hospital Health Research Institute (IdiPAZ), Madrid, Spain
- Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
| | | | - Gabriel Gondolesi
- Intestinal Failure, Rehabilitation and Transplant Unit, University Hospital Foundation Favaloro; Institute of Translational Medicine, Transplantation and Bioengineering (ImeTTyB), University Favaloro-CONICET, Buenos Aires, Argentina
| | - Ane Andrés-Moreno
- Transplant Group, La Paz University Hospital Health Research Institute (IdiPAZ), Madrid, Spain
- Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
| | - Martin Rumbo
- Institute for Immunological and Pathophysiological Studies (IIFP), School of Exact Sciences, National University of La Plata, National Council of Scientific and Technical Research (CONICET), La Plata, Argentina
| | - Francisco Hernández-Oliveros
- Transplant Group, La Paz University Hospital Health Research Institute (IdiPAZ), Madrid, Spain
- Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
| |
Collapse
|
3
|
Assadiasl S, Nicknam MH. Intestinal transplantation: Significance of immune responses. Arab J Gastroenterol 2024; 25:330-337. [PMID: 39289083 DOI: 10.1016/j.ajg.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/06/2024] [Accepted: 08/02/2024] [Indexed: 09/19/2024]
Abstract
Intestinal allografts, with many resident immune cells and as a destination for circulating lymphocytes of the recipient, appear to be the most challenging solid organ transplants. The high incidence of acute rejection and frequent reports of fatal graft-versus-host disease (GvHD) after intestinal transplantation call for more research to describe the molecular mechanisms involved in the immunopathogenesis of post-transplant complications to define new therapeutic targets. In addition, according to the rapid development of immunosuppressive agents, it is time to consider novel therapeutic approaches in managing treatment-refractory patients with rejection or severe GvHD. Herein, the main immunological challenges before and after intestinal transplant including, brain-dead donor inflammation, acute rejection, antibody-mediated, and chronic rejections, as well as GvHD have been described. Besides, the new immune-based therapies used in experimental and clinical settings to improve tolerance toward intestinal allograft, and cases of operational tolerance have been reviewed.
Collapse
Affiliation(s)
- Sara Assadiasl
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Iranian Tissue Bank and Research Center, Tehran University of Medical Science, Tehran, Iran.
| | - Mohammad Hossein Nicknam
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Abstract
In this review, the authors outlined concepts and strategies to achieve immune tolerance through inducing hematopoietic chimerism after solid organ transplantation and introduced challenges and opportunities in harnessing two-way alloresponses to improve outcomes after intestinal transplantation (ITx). Next, the authors discussed the dynamics and phenotypes of peripheral blood and intestinal graft T-cell subset chimerism and their association with outcomes. The authors also summarized studies on other types of immune cells after ITx and their potential participation in chimerism-mediated tolerance. The authors further discussed strategies and future directions to promote chimerism-associated tolerance after ITx to overcome rejection and minimize immunosuppression.
Collapse
Affiliation(s)
- Kevin Crosby
- Columbia University Medical Center, New York, NY 10032, USA
| | - Katherine D Long
- Washington University School of Medicine in St. Louis, St Louis, MO 63110, USA
| | - Jianing Fu
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
5
|
Zhi Y, Qiu W, Tian G, Song S, Zhao W, Du X, Sun X, Chen Y, Huang H, Li J, Yu Y, Li M, Lv G. Donor and recipient hematopoietic stem and progenitor cells mobilization in liver transplantation patients. Stem Cell Res Ther 2024; 15:231. [PMID: 39075608 PMCID: PMC11288126 DOI: 10.1186/s13287-024-03855-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Hematopoietic stem and progenitor cells (HSPCs) mobilize from bone marrow to peripheral blood in response to stress. The impact of alloresponse-induced stress on HSPCs mobilization in human liver transplantation (LTx) recipients remains under-investigated. METHODS Peripheral blood mononuclear cell (PBMC) samples were longitudinally collected from pre- to post-LTx for one year from 36 recipients with acute rejection (AR), 74 recipients without rejection (NR), and 5 recipients with graft-versus-host disease (GVHD). 28 PBMC samples from age-matched healthy donors were collected as healthy control (HC). Multi-color flow cytometry (MCFC) was used to immunophenotype HSPCs and their subpopulations. Donor recipient-distinguishable major histocompatibility complex (MHC) antibodies determined cell origin. RESULTS Before LTx, patients who developed AR after transplant contained more HSPCs in PBMC samples than HC, while the NR group patients contained fewer HSPCs than HC. After LTx, the HSPC ratio in the AR group sharply decreased and became less than HC within six months, and dropped to a comparable NR level afterward. During the one-year follow-up period, myeloid progenitors (MPs) biased differentiation was observed in all LTx recipients who were under tacrolimus-based immunosuppressive treatment. During both AR and GVHD episodes, the recipient-derived and donor-derived HSPCs mobilized into the recipient's blood-circulation and migrated to the target tissue, respectively. The HSPCs percentage in blood reduced after the disease was cured. CONCLUSIONS A preoperative high HSPC ratio in blood characterizes recipients who developed AR after LTx. Recipients exhibited a decline in blood-circulating HSPCs after transplant, the cells mobilized into the blood and migrated to target tissue during alloresponse.
Collapse
Affiliation(s)
- Yao Zhi
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Wei Qiu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Guangyao Tian
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Shifei Song
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Wenchao Zhao
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xiaodong Du
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xiaodong Sun
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yuguo Chen
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Heyu Huang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jing Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Ying Yu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Mingqian Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
6
|
Dubois A, Jin X, Hooft C, Canovai E, Boelhouwer C, Vanuytsel T, Vanaudenaerde B, Pirenne J, Ceulemans LJ. New insights in immunomodulation for intestinal transplantation. Hum Immunol 2024; 85:110827. [PMID: 38805779 DOI: 10.1016/j.humimm.2024.110827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Tolerance is the Holy Grail of solid organ transplantation (SOT) and remains its primary challenge since its inception. In this topic, the seminal contributions of Thomas Starzl at Pittsburgh University outlined foundational principles of graft acceptance and tolerance, with chimerism emerging as a pivotal factor. Immunologically, intestinal transplantation (ITx) poses a unique hurdle due to the inherent characteristics and functions of the small bowel, resulting in increased immunogenicity. This necessitates heavy immunosuppression (IS) while IS drugs side effects cause significant morbidity. In addition, current IS therapies fall short of inducing clinical tolerance and their discontinuation has been proven unattainable in most cases. This underscores the unfulfilled need for immunological modulation to safely reduce IS-related burdens. To address this challenge, the Leuven Immunomodulatory Protocol (LIP), introduced in 2000, incorporates various pro-tolerogenic interventions in both the donor to the recipient, with the aim of facilitating graft acceptance and improving outcome. This review seeks to provide an overview of the current understanding of tolerance in ITx and outline recent advances in this domain.
Collapse
Affiliation(s)
- Antoine Dubois
- Unit of Abdominal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven, Belgium; Abdominal Transplant Surgery, Department of Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Xin Jin
- Unit of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium; Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Charlotte Hooft
- Unit of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Emilio Canovai
- Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven, Belgium; Oxford Transplant Centre, Churchill Hospital, Oxford, United Kingdom
| | - Caroline Boelhouwer
- Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven, Belgium; Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing (ChroMetA), KU Leuven, Leuven, Belgium; Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Bart Vanaudenaerde
- Unit of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Jacques Pirenne
- Unit of Abdominal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven, Belgium; Abdominal Transplant Surgery, Department of Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Laurens J Ceulemans
- Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven, Belgium; Unit of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium; Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Suek N, Young T, Fu J. Immune cell profiling in intestinal transplantation. Hum Immunol 2024; 85:110808. [PMID: 38762429 PMCID: PMC11283363 DOI: 10.1016/j.humimm.2024.110808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 05/20/2024]
Abstract
Since the first published case study of human intestinal transplantation in 1967, there have been significant studies of intestinal transplant immunology in both animal models and humans. An improved understanding of the profiles of different immune cell subsets is critical for understanding their contributions to graft outcomes. While different studies have focused on the contribution of one or a few subsets to intestinal transplant, no study has integrated these data for a comprehensive overview of immune dynamics after intestinal transplant. Here, we provide a systematic review of the literature on different immune subsets and discuss their roles in intestinal transplant outcomes on multiple levels, focusing on chimerism and graft immune reconstitution, clonal alloreactivity, and cell phenotype. In Sections 1, 2 and 3, we lay out a shared framework for understanding intestinal transplant, focusing on the mechanisms of rejection or tolerance in the context of mucosal immunology and illustrate the unique role of the bidirectional graft-versus-host (GvH) and host-versus-graft (HvG) alloresponse. In Sections 4, 5 and 6, we further expand upon these concepts as we discuss the contribution of different cell subsets to intestinal transplant. An improved understanding of intestinal transplantation immunology will bring us closer to maximizing the potential of this important treatment.
Collapse
Affiliation(s)
- Nathan Suek
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Tyla Young
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Jianing Fu
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
8
|
Fu J, Hsiao T, Waffarn E, Meng W, Long KD, Frangaj K, Jones R, Gorur A, Shtewe A, Li M, Muntnich CB, Rogers K, Jiao W, Velasco M, Matsumoto R, Kubota M, Wells S, Danzl N, Ravella S, Iuga A, Vasilescu ER, Griesemer A, Weiner J, Farber DL, Luning Prak ET, Martinez M, Kato T, Hershberg U, Sykes M. Dynamic establishment and maintenance of the human intestinal B cell population and repertoire following transplantation in a pediatric-dominated cohort. Front Immunol 2024; 15:1375486. [PMID: 39007142 PMCID: PMC11239347 DOI: 10.3389/fimmu.2024.1375486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction It is unknown how intestinal B cell populations and B cell receptor (BCR) repertoires are established and maintained over time in humans. Following intestinal transplantation (ITx), surveillance ileal mucosal biopsies provide a unique opportunity to map the dynamic establishment of recipient gut lymphocyte populations in immunosuppressed conditions. Methods Using polychromatic flow cytometry that includes HLA allele group-specific antibodies distinguishing donor from recipient cells along with high throughput BCR sequencing, we tracked the establishment of recipient B cell populations and BCR repertoire in the allograft mucosa of ITx recipients. Results We confirm the early presence of naïve donor B cells in the circulation (donor age range: 1-14 years, median: 3 years) and, for the first time, document the establishment of recipient B cell populations, including B resident memory cells, in the intestinal allograft mucosa (recipient age range at the time of transplant: 1-44 years, median: 3 years). Recipient B cell repopulation of the allograft was most rapid in infant (<1 year old)-derived allografts and, unlike T cell repopulation, did not correlate with rejection rates. While recipient memory B cell populations were increased in graft mucosa compared to circulation, naïve recipient B cells remained detectable in the graft mucosa for years. Comparisons of peripheral and intra-mucosal B cell repertoires in the absence of rejection (recipient age range at the time of transplant: 1-9 years, median: 2 years) revealed increased BCR mutation rates and clonal expansion in graft mucosa compared to circulating B cells, but these parameters did not increase markedly after the first year post-transplant. Furthermore, clonal mixing between the allograft mucosa and the circulation was significantly greater in ITx recipients, even years after transplantation, than in deceased adult donors. In available pan-scope biopsies from pediatric recipients, we observed higher percentages of naïve recipient B cells in colon allograft compared to small bowel allograft and increased BCR overlap between native colon vs colon allograft compared to that between native colon vs ileum allograft in most cases, suggesting differential clonal distribution in large intestine vs small intestine. Discussion Collectively, our data demonstrate intestinal mucosal B cell repertoire establishment from a circulating pool, a process that continues for years without evidence of stabilization of the mucosal B cell repertoire in pediatric ITx patients.
Collapse
Affiliation(s)
- Jianing Fu
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Thomas Hsiao
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Elizabeth Waffarn
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Wenzhao Meng
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Katherine D. Long
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Kristjana Frangaj
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Rebecca Jones
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Alaka Gorur
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Areen Shtewe
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Muyang Li
- Department of Pathology, Columbia University, New York, NY, United States
| | - Constanza Bay Muntnich
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Kortney Rogers
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Wenyu Jiao
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Monica Velasco
- Department of Pediatrics, Columbia University, New York, NY, United States
| | - Rei Matsumoto
- Department of Microbiology and Immunology, Columbia University, New York, NY, United States
| | - Masaru Kubota
- Department of Microbiology and Immunology, Columbia University, New York, NY, United States
| | - Steven Wells
- Department of Microbiology and Immunology, Columbia University, New York, NY, United States
| | - Nichole Danzl
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Shilpa Ravella
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, United States
| | - Alina Iuga
- Department of Pathology, Columbia University, New York, NY, United States
| | | | - Adam Griesemer
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
- Department of Surgery, Columbia University, New York, NY, United States
| | - Joshua Weiner
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
- Department of Surgery, Columbia University, New York, NY, United States
| | - Donna L. Farber
- Department of Microbiology and Immunology, Columbia University, New York, NY, United States
- Department of Surgery, Columbia University, New York, NY, United States
| | - Eline T. Luning Prak
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Mercedes Martinez
- Department of Pediatrics, Columbia University, New York, NY, United States
| | - Tomoaki Kato
- Department of Surgery, Columbia University, New York, NY, United States
| | - Uri Hershberg
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
- Department of Microbiology and Immunology, Columbia University, New York, NY, United States
- Department of Surgery, Columbia University, New York, NY, United States
| |
Collapse
|
9
|
Ravella S. Association between oral nutrition and inflammation after intestinal transplantation. Hum Immunol 2024; 85:110809. [PMID: 38724327 DOI: 10.1016/j.humimm.2024.110809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 06/04/2024]
Abstract
Intestinal transplantation (Itx) can be a life-saving treatment for certain patient populations, including those patients with intestinal failure (IF) who develop life-threatening complications due to the use of parenteral nutrition (PN). Most patients who have undergone Itx are eventually able to tolerate a full oral diet. However, little guidance or consensus exists regarding optimizing the specific components of an oral diet for Itx patients, including macronutrients, micronutrients and dietary patterns. While oral dietary prescriptions have moved to the forefront of primary and preventive care, this movement has yet to occur across the field of organ transplantation. Evidence to date points to the role of systemic chronic inflammation (SCI) in a wide variety of chronic diseases as well as post-transplant graft dysfunction. This review will discuss current trends in oral nutrition for Itx patients and also offer novel insights into nutritional management techniques that may help to decrease SCI and chronic disease risk as well as optimize graft function.
Collapse
|
10
|
Sykes M. Tolerance in intestinal transplantation. Hum Immunol 2024; 85:110793. [PMID: 38580539 PMCID: PMC11144570 DOI: 10.1016/j.humimm.2024.110793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
Intestinal transplantation (ITx) is highly immunogenic, resulting in the need for high levels of immunosuppression, with frequent complications along with high rejection rates. Tolerance induction would provide a solution to these limitations. Detailed studies of alloreactive T cell clones as well as multiparameter flow cytometry in the graft and peripheral tissues have provided evidence for several tolerance mechanisms that occur spontaneously following ITx, which might provide targets for further interventions. These include the frequent occurrence of macrochimerism and engraftment in the recipient bone marrow of donor hematopoietic stem and progenitor cells carried in the allograft. These phenomena are seen most frequently in recipients of multivisceral transplants and are associated with reduced rejection rates. They reflect powerful graft-vs-host responses that enter the peripheral lymphoid system and bone marrow after expanding within and emigrating from the allograft. Several mechanisms of tolerance that may result from this lymphohematopoietic graft-vs-host response are discussed. Transcriptional profiling in quiescent allografts reveals tolerization of pre-existing host-vs-graft-reactive T cells that enter the allograft mucosa and become tissue-resident memory cells. Dissection of the pathways driving and maintaining this tolerant tissue-resident state among donor-reactive T cells will allow controlled tolerance induction through specific therapeutic approaches.
Collapse
Affiliation(s)
- Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Department of Microbiology and Immunology and Department of Surgery, Columbia University, New York, NY, USA.
| |
Collapse
|
11
|
Jiao W, Martinez M, Muntnich CB, Zuber J, Parks C, Obradovic A, Tian G, Wang Z, Long KD, Waffarn E, Frangaj K, Jones R, Gorur A, Shonts B, Rogers K, Lv G, Velasco M, Ravella S, Weiner J, Kato T, Shen Y, Fu J, Sykes M. Dynamic establishment of recipient resident memory T cell repertoire after human intestinal transplantation. EBioMedicine 2024; 101:105028. [PMID: 38422982 PMCID: PMC10944178 DOI: 10.1016/j.ebiom.2024.105028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Understanding formation of the human tissue resident memory T cell (TRM) repertoire requires longitudinal access to human non-lymphoid tissues. METHODS By applying flow cytometry and next generation sequencing to serial blood, lymphoid tissue, and gut samples from 16 intestinal transplantation (ITx) patients, we assessed the origin, distribution, and specificity of human TRMs at phenotypic and clonal levels. FINDINGS Donor age ≥1 year and blood T cell macrochimerism (peak level ≥4%) were associated with delayed establishment of stable recipient TRM repertoires in the transplanted ileum. T cell receptor (TCR) overlap between paired gut and blood repertoires from ITx patients was significantly greater than that in healthy controls, demonstrating increased gut-blood crosstalk after ITx. Crosstalk with the circulating pool remained high for years of follow-up. TCR sequences identifiable in pre-Tx recipient gut but not those in lymphoid tissues alone were more likely to populate post-Tx ileal allografts. Clones detected in both pre-Tx gut and lymphoid tissue had distinct transcriptional profiles from those identifiable in only one tissue. Recipient T cells were distributed widely throughout the gut, including allograft and native colon, which had substantial repertoire overlap. Both alloreactive and microbe-reactive recipient T cells persisted in transplanted ileum, contributing to the TRM repertoire. INTERPRETATION Our studies reveal human intestinal TRM repertoire establishment from the circulation, preferentially involving lymphoid tissue counterparts of recipient intestinal T cell clones, including TRMs. We have described the temporal and spatial dynamics of this active crosstalk between the circulating pool and the intestinal TRM pool. FUNDING This study was funded by the National Institute of Allergy and Infectious Diseases (NIAID) P01 grant AI106697.
Collapse
Affiliation(s)
- Wenyu Jiao
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States; Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Jilin, China
| | - Mercedes Martinez
- Department of Pediatrics, Columbia University, New York, NY, United States
| | - Constanza Bay Muntnich
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Julien Zuber
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Christopher Parks
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Aleksandar Obradovic
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Guangyao Tian
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Jilin, China
| | - Zicheng Wang
- Center for Computational Biology and Bioinformatics, Department of Systems Biology, Columbia University, New York, NY, United States
| | - Katherine D Long
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Elizabeth Waffarn
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Kristjana Frangaj
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Rebecca Jones
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Alaka Gorur
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Brittany Shonts
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Kortney Rogers
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Jilin, China
| | - Monica Velasco
- School of Nursing, Columbia University, New York, NY, United States
| | - Shilpa Ravella
- Department of Medicine, Columbia University, New York, NY, United States
| | - Joshua Weiner
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States; Department of Surgery, Columbia University, New York, NY, United States
| | - Tomoaki Kato
- Department of Surgery, Columbia University, New York, NY, United States
| | - Yufeng Shen
- Center for Computational Biology and Bioinformatics, Department of Systems Biology, Columbia University, New York, NY, United States
| | - Jianing Fu
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States.
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States; Department of Surgery, Columbia University, New York, NY, United States; Department of Microbiology & Immunology, Columbia University, New York, NY, United States.
| |
Collapse
|
12
|
Oza K, Kang J, Patil D, Owen KL, Cui W, Khan K, Kaufman SS, Kroemer A. Current Advances in Graft-versus-host Disease After Intestinal Transplantation. Transplantation 2024; 108:399-408. [PMID: 37309025 DOI: 10.1097/tp.0000000000004703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Graft-versus-host disease (GvHD) remains a potentially fatal complication following intestinal transplant (ITx). Over the past decade, advances in the understanding of the pathophysiology of this complex immunological phenomenon have led to the reassessment of the host systemic immune response and have created a gateway for novel preventive and therapeutic strategies. Although sufficient evidence dictates the use of corticosteroids as a first-line option, the treatment for refractory disease remains contentious and lacks a standardized therapeutic approach. Timely diagnosis remains crucial, and the advent of chimerism detection and immunological biomarkers have transformed the identification, prognostication, and potential for survival after GvHD in ITx. The objectives of the following review aim to discuss the clinical and diagnostic features, pathophysiology, advances in immune biomarkers, as well as therapeutic opportunities in the prevention and treatment of GvHD in ITx.
Collapse
Affiliation(s)
- Kesha Oza
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC
- Department of General Surgery, MedStar Georgetown University Hospital, Washington, DC
| | - Jiman Kang
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC
| | - Digvijay Patil
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC
| | - Kathryn L Owen
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC
| | - Wanxing Cui
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC
| | - Khalid Khan
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC
| | - Stuart S Kaufman
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC
| | - Alexander Kroemer
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC
| |
Collapse
|
13
|
Fu J, Wang Z, Martinez M, Obradovic A, Jiao W, Frangaj K, Jones R, Guo XV, Zhang Y, Kuo WI, Ko HM, Iuga A, Bay Muntnich C, Prada Rey A, Rogers K, Zuber J, Ma W, Miron M, Farber DL, Weiner J, Kato T, Shen Y, Sykes M. Plasticity of intragraft alloreactive T cell clones in human gut correlates with transplant outcomes. J Exp Med 2024; 221:e20230930. [PMID: 38091025 PMCID: PMC10720543 DOI: 10.1084/jem.20230930] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/22/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
The site of transition between tissue-resident memory (TRM) and circulating phenotypes of T cells is unknown. We integrated clonotype, alloreactivity, and gene expression profiles of graft-repopulating recipient T cells in the intestinal mucosa at the single-cell level after human intestinal transplantation. Host-versus-graft (HvG)-reactive T cells were mainly distributed to TRM, effector T (Teff)/TRM, and T follicular helper compartments. RNA velocity analysis demonstrated a trajectory from TRM to Teff/TRM clusters in association with rejection. By integrating pre- and post-transplantation (Tx) mixed lymphocyte reaction-determined alloreactive repertoires, we observed that pre-existing HvG-reactive T cells that demonstrated tolerance in the circulation were dominated by TRM profiles in quiescent allografts. Putative de novo HvG-reactive clones showed a transcriptional profile skewed to cytotoxic effectors in rejecting grafts. Inferred protein regulon network analysis revealed upstream regulators that accounted for the effector and tolerant T cell states. We demonstrate Teff/TRM interchangeability for individual T cell clones with known (allo)recognition in the human gut, providing novel insight into TRM biology.
Collapse
Affiliation(s)
- Jianing Fu
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University, New York, NY, USA
| | - Zicheng Wang
- Department of Systems Biology, Center for Computational Biology and Bioinformatics, Columbia University, New York, NY, USA
| | | | - Aleksandar Obradovic
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University, New York, NY, USA
| | - Wenyu Jiao
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University, New York, NY, USA
| | - Kristjana Frangaj
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University, New York, NY, USA
| | - Rebecca Jones
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University, New York, NY, USA
| | - Xinzheng V. Guo
- Human Immune Monitoring Core, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Ya Zhang
- Human Immune Monitoring Core, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Wan-I Kuo
- Human Immune Monitoring Core, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Huaibin M. Ko
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Alina Iuga
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Constanza Bay Muntnich
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University, New York, NY, USA
| | - Adriana Prada Rey
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University, New York, NY, USA
| | - Kortney Rogers
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University, New York, NY, USA
| | - Julien Zuber
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University, New York, NY, USA
| | - Wenji Ma
- Department of Systems Biology, Center for Computational Biology and Bioinformatics, Columbia University, New York, NY, USA
| | - Michelle Miron
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | - Donna L. Farber
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
- Department of Surgery, Columbia University, New York, NY, USA
| | - Joshua Weiner
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University, New York, NY, USA
- Department of Surgery, Columbia University, New York, NY, USA
| | - Tomoaki Kato
- Department of Surgery, Columbia University, New York, NY, USA
| | - Yufeng Shen
- Department of Systems Biology, Center for Computational Biology and Bioinformatics, Columbia University, New York, NY, USA
| | - Megan Sykes
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University, New York, NY, USA
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
- Department of Surgery, Columbia University, New York, NY, USA
| |
Collapse
|
14
|
Fu J, Hsiao T, Waffarn E, Meng W, Long KD, Frangaj K, Jones R, Gorur A, Shtewe A, Li M, Muntnich CB, Rogers K, Jiao W, Velasco M, Matsumoto R, Kubota M, Wells S, Danzl N, Ravella S, Iuga A, Vasilescu ER, Griesemer A, Weiner J, Farber DL, Luning Prak ET, Martinez M, Kato T, Hershberg U, Sykes M. Dynamic establishment and maintenance of the human intestinal B cell population and repertoire following transplantation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.15.23298517. [PMID: 38014202 PMCID: PMC10680888 DOI: 10.1101/2023.11.15.23298517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
It is unknown how intestinal B cell populations and B cell receptor (BCR) repertoires are established and maintained over time in humans. Following intestinal transplantation (ITx), surveillance ileal mucosal biopsies provide a unique opportunity to map the dynamic establishment of gut lymphocyte populations. Using polychromatic flow cytometry that includes HLA allele group-specific mAbs distinguishing donor from recipient cells along with high throughput BCR sequencing, we tracked the establishment of recipient B cell populations and BCR repertoire in the allograft mucosa of ITx recipients. We confirm the early presence of naïve donor B cells in the circulation and, for the first time, document the establishment of recipient B cell populations, including B resident memory cells, in the intestinal allograft mucosa. Recipient B cell repopulation of the allograft was most rapid in infant (<1 year old)-derived allografts and, unlike T cell repopulation, did not correlate with rejection rates. While recipient memory B cell populations were increased in graft mucosa compared to circulation, naïve recipient B cells remained detectable in the graft mucosa for years. Comparisons of peripheral and intra-mucosal B cell repertoires in the absence of rejection revealed increased BCR mutation rates and clonal expansion in graft mucosa compared to circulating B cells, but these parameters did not increase markedly after the first year post-transplant. Furthermore, clonal mixing between the allograft mucosa and the circulation was significantly greater in ITx recipients, even years after transplantation, than in healthy control adults. Collectively, our data demonstrate intestinal mucosal B cell repertoire establishment from a circulating pool, a process that continues for years without evidence of establishment of a stable mucosal B cell repertoire.
Collapse
Affiliation(s)
- Jianing Fu
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA
| | - Thomas Hsiao
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Elizabeth Waffarn
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA
| | - Wenzhao Meng
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katherine D Long
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA
| | - Kristjana Frangaj
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA
| | - Rebecca Jones
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA
| | - Alaka Gorur
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA
| | - Areen Shtewe
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Muyang Li
- Department of Pathology, Columbia University, New York, NY, USA
| | - Constanza Bay Muntnich
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA
| | - Kortney Rogers
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA
| | - Wenyu Jiao
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA
| | - Monica Velasco
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Rei Matsumoto
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | - Masaru Kubota
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | - Steven Wells
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | - Nichole Danzl
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA
| | - Shilpa Ravella
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA
| | - Alina Iuga
- Department of Pathology, Columbia University, New York, NY, USA
| | | | - Adam Griesemer
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA
- Department of Surgery, Columbia University, New York, NY, USA
| | - Joshua Weiner
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA
- Department of Surgery, Columbia University, New York, NY, USA
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
- Department of Surgery, Columbia University, New York, NY, USA
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Tomoaki Kato
- Department of Surgery, Columbia University, New York, NY, USA
| | - Uri Hershberg
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
- Department of Surgery, Columbia University, New York, NY, USA
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW The role of intestinal transplant has expanded in recent years and is no longer only considered for patients with no other options remaining. 5 year survival in high-volume centres is over 80% for certain graft types. The aim of this review is to update the audience on the current state of intestinal transplant, with a focus on recent medical and surgical advances. RECENT FINDINGS There has been a greater understanding of the interplay and balance of host and graft immune responses, which may facilitate individualized immunosuppression. Some centres are now performing 'no-stoma' transplants, with preliminary data showing no adverse effects from this strategy and other surgical advances have lessened the physiological insult of the transplant operation. Earlier referrals are encouraged by transplant centres, such that vascular access or liver disease has not progressed too much to increase the technical and physiological challenge of the procedure. SUMMARY Clinicians should consider intestinal transplant as a viable option for patients with intestinal failure, benign unresectable abdominal tumours or acute abdominal catastrophes.
Collapse
Affiliation(s)
| | - Neil K Russell
- Department of Transplant Surgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
16
|
Long KD, Fu J. Chimerism and phenotypic analysis of intraepithelial and lamina propria T cells isolated from human ileal biopsies after intestinal transplantation. STAR Protoc 2023; 4:102192. [PMID: 36964907 PMCID: PMC10050767 DOI: 10.1016/j.xpro.2023.102192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/01/2023] [Accepted: 03/02/2023] [Indexed: 03/26/2023] Open
Abstract
Understanding immune cell dynamics after intestinal transplantation has provided new insights into human lymphocyte biology. However, isolating and characterizing such cells can be challenging. Here, we provide a protocol to isolate intraepithelial and lamina propria lymphocytes from human ileal biopsies. We describe techniques for flow cytometric analysis and determination of multilineage chimerism and T lymphocyte phenotypes. This protocol can be modified to isolate and analyze lymphocytes from other tissues. For complete details on the use and execution of this protocol, please refer to Fu et al. (2019)1 and Fu et al. (2021).2.
Collapse
Affiliation(s)
- Katherine D Long
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA.
| | - Jianing Fu
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
17
|
Cooper JP, Abkowitz JL. How I diagnose and treat acute graft-versus-host disease after solid organ transplantation. Blood 2023; 141:1136-1146. [PMID: 36395067 DOI: 10.1182/blood.2022015954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
Acute graft-versus-host disease (GVHD) is a rare complication after solid organ transplantation (SOT) that carries high mortality. Caused by immunocompetent donor leukocytes within the transplanted organ, which become activated against recipient tissues, GVHD typically develops 2 to 12 weeks after SOT and can affect the skin, gastrointestinal tract, liver, and bone marrow. Signs and symptoms are nonspecific and include a rash, nausea, appetite loss, diarrhea, and cytopenias. Pancytopenia from marrow-directed GVHD is the primary driver of mortality. The diagnosis of GVHD is often delayed but should be confirmed by biopsy of an affected organ. Evidence of donor chimerism in blood or marrow supports the diagnosis. When GVHD is diagnosed we initiate treatment with systemic corticosteroids. At that time, if GVHD only involves skin or oral mucosa we also decrease maintenance immunosuppression levels to allow the recipient to reject the donor immune cells. For GVHD involving the marrow we initiate an allogeneic hematopoietic cell donor search early. In this article, we describe 3 cases of GVHD after SOT, outline our approach to diagnosis and management, and then provide analysis of the 3 instructive cases.
Collapse
Affiliation(s)
- Jason P Cooper
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA
| | - Janis L Abkowitz
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
18
|
Meeting Report: The Fifth International Samuel Strober Workshop on Clinical Immune Tolerance. Transplantation 2023; 107:564-569. [PMID: 36808845 DOI: 10.1097/tp.0000000000004473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
19
|
Wu G, Liu C, Ma N, Zhou X, Zhao L, Zhang Y, Zhang W, Liang T. Successful combined auxiliary partial liver and intestinal transplantation in two highly sensitized, cross-match positive patients. Clin Transplant 2023; 37:e14865. [PMID: 36416299 DOI: 10.1111/ctr.14865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/09/2022] [Accepted: 10/29/2022] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Sensitization to human leukocyte antigen (HLA) creates an immunological barrier to intestinal transplantation (ITx). Current desensitization therapies are limited and ineffective in the most highly sensitized patients. A co-transplanted whole liver transplant can protect a kidney, heart, or intestinal allograft from antibody-mediated injury. Whether an auxiliary partial liver allograft provides effective protection for highly sensitized intestinal transplant recipients is unknown. METHODS Two patients with strong HLA donor-specific antibody at high titer against their deceased donors underwent combined auxiliary partial liver and ITx across a positive cross-match. The left lateral lobes from the combined-graft recipients and the right liver lobes from the deceased donors were transplanted as a domino procedure to other four patients. RESULTS Two combined-graft recipients have had an uneventful postoperative course without major complications at a 12- and 24-month follow-up, respectively. Intestinal graft function has been excellent with no evidence of humoral or cellular rejection. While a positive cross-match turned negative, titers of donor-specific HLA antibodies gradually declined over time after transplant. The left liver lobes procured from the combined-graft recipients were successfully transplanted into two pediatric patients (age 1.9, 2.4 years) and the right lobes from two deceased donors were successfully transplanted into two adult patients. All transplant procedures went well, without post-operative complications related to the splitting technique. CONCLUSION Our results indicate that an auxiliary liver transplant can effectively protect a co-transplanted intestinal allograft against rejection and suggest that this combined procedure may serve as a useful therapeutic adjunct for a highly sensitized intestinal transplant candidate.
Collapse
Affiliation(s)
- Guosheng Wu
- Intestinal Transplant Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chaoxu Liu
- Intestinal Transplant Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nan Ma
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xile Zhou
- Intestinal Transplant Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Long Zhao
- Intestinal Transplant Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuntao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wentong Zhang
- Intestinal Transplant Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Sobrino S, Abdo C, Neven B, Denis A, Gouge-Biebuyck N, Clave E, Charbonnier S, Blein T, Kergaravat C, Alcantara M, Villarese P, Berthaud R, Dehoux L, Albinni S, Karkeni E, Lagresle-Peyrou C, Cavazzana M, Salomon R, André I, Toubert A, Asnafi V, Picard C, Blanche S, Macintyre E, Boyer O, Six E, Zuber J. Human kidney-derived hematopoietic stem cells can support long-term multilineage hematopoiesis. Kidney Int 2023; 103:70-76. [PMID: 36108807 DOI: 10.1016/j.kint.2022.08.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/23/2022] [Accepted: 08/12/2022] [Indexed: 01/10/2023]
Abstract
Long-term multilineage hematopoietic donor chimerism occurs sporadically in patients who receive a transplanted solid organ enriched in lymphoid tissues such as the intestine or liver. There is currently no evidence for the presence of kidney-resident hematopoietic stem cells in any mammal species. Graft-versus-host-reactive donor T cells promote engraftment of graft-derived hematopoietic stem cells by making space in the bone marrow. Here, we report full (over 99%) multilineage, donor-derived hematopoietic chimerism in a pediatric kidney transplant recipient with syndromic combined immune deficiency that leads to transplant tolerance. Interestingly, we found that the human kidney-derived hematopoietic stem cells took up long-term residence in the recipient's bone marrow and gradually replaced their host counterparts, leading to blood type conversion and full donor chimerism of both lymphoid and myeloid lineages. Thus, our findings highlight the existence of human kidney-derived hematopoietic stem cells with a self-renewal ability able to support multilineage hematopoiesis.
Collapse
Affiliation(s)
- Steicy Sobrino
- INSERM UMR_S1163, Institut IMAGINE, Paris, France; Université Paris Cité, Paris, France
| | - Chrystelle Abdo
- Université Paris Cité, Paris, France; Laboratoire d'Onco-Hématologie, Hôpital Necker, Assistance-Publique Hôpitaux de Paris, Paris, France
| | - Bénédicte Neven
- Université Paris Cité, Paris, France; Service d'Immuno-Hématologie Pédiatrique, Hôpital Necker, Assistance-Publique Hôpitaux de Paris, Paris, France
| | | | - Nathalie Gouge-Biebuyck
- Service de Néphrologie Pédiatrique, Hôpital Necker, Assistance-Publique Hôpitaux de Paris, Paris, France
| | - Emmanuel Clave
- INSERM UMR_S1160, Institut de Recherche Saint Louis, Paris, France
| | | | | | | | - Marion Alcantara
- Université Paris Cité, Paris, France; Laboratoire d'Onco-Hématologie, Hôpital Necker, Assistance-Publique Hôpitaux de Paris, Paris, France
| | - Patrick Villarese
- Laboratoire d'Onco-Hématologie, Hôpital Necker, Assistance-Publique Hôpitaux de Paris, Paris, France
| | - Romain Berthaud
- Université Paris Cité, Paris, France; Service de Néphrologie Pédiatrique, Hôpital Necker, Assistance-Publique Hôpitaux de Paris, Paris, France
| | - Laurène Dehoux
- Service de Néphrologie Pédiatrique, Hôpital Necker, Assistance-Publique Hôpitaux de Paris, Paris, France
| | - Souha Albinni
- Etablissement Français du Sang Ile-de-France, Hôpital Necker, Assistance-Publique Hôpitaux de Paris, Paris, France
| | - Esma Karkeni
- Cytometry and Biomarkers UTechS, Center for Translational Science, Institut Pasteur, Paris, France
| | | | - Marina Cavazzana
- INSERM UMR_S1163, Institut IMAGINE, Paris, France; Université Paris Cité, Paris, France
| | - Rémi Salomon
- Université Paris Cité, Paris, France; Service de Néphrologie Pédiatrique, Hôpital Necker, Assistance-Publique Hôpitaux de Paris, Paris, France
| | | | - Antoine Toubert
- Université Paris Cité, Paris, France; INSERM UMR_S1160, Institut de Recherche Saint Louis, Paris, France
| | - Vahid Asnafi
- Université Paris Cité, Paris, France; Laboratoire d'Onco-Hématologie, Hôpital Necker, Assistance-Publique Hôpitaux de Paris, Paris, France
| | - Capucine Picard
- INSERM UMR_S1163, Institut IMAGINE, Paris, France; Université Paris Cité, Paris, France; CEDI, Hôpital Necker, Assistance-Publique Hôpitaux de Paris, Paris, France
| | - Stéphane Blanche
- Université Paris Cité, Paris, France; Service d'Immuno-Hématologie Pédiatrique, Hôpital Necker, Assistance-Publique Hôpitaux de Paris, Paris, France
| | - Elizabeth Macintyre
- Université Paris Cité, Paris, France; Laboratoire d'Onco-Hématologie, Hôpital Necker, Assistance-Publique Hôpitaux de Paris, Paris, France
| | - Olivia Boyer
- Université Paris Cité, Paris, France; Service de Néphrologie Pédiatrique, Hôpital Necker, Assistance-Publique Hôpitaux de Paris, Paris, France
| | | | - Julien Zuber
- INSERM UMR_S1163, Institut IMAGINE, Paris, France; Université Paris Cité, Paris, France; Service des Maladies du Rein et Métabolisme, Transplantation et Immunologie Clinique, Hôpital Necker, Assistance-Publique Hôpitaux de Paris, Paris, France.
| |
Collapse
|
21
|
Remaley L, Ashokkumar C, Soltys KA, Mazariegos GV, Bond GJ, Khanna A, Ganoza A, Reyes-Mugica M, Zeevi A, Sindhi R. Operational tolerance after intestine re-transplantation in childhood and immunological correlates. Case report and review. Pediatr Transplant 2022; 27:e14455. [PMID: 36529933 DOI: 10.1111/petr.14455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/04/2022] [Accepted: 10/20/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Operational tolerance after retransplantation of the intestine has never been reported. PURPOSE To two recently described intestine transplant recipients with operational tolerance, we now add a third. METHODS Review of case record and immunological testing to confirm donor-specific hyporesponsiveness in multiple immune cell compartments. RESULTS Re-transplanted with a multivisceral liver- and kidney-inclusive intestine allograft at age 12 years, this recipient self-discontinued immunosuppression 14 years after the retransplant and has been rejection free for 2 years thereafter. As in the two previous reports, immunological testing demonstrated decreased donor-specific inflammatory response of T-cytotoxic memory cells and B-cells, decreased presentation of donor antigen by B-cells and monocytes, absence of donor-specific anti-HLA antibodies, circulating FOXP3 + T-helper cells, and intact cellular and humoral immunity to cytomegalovirus and Epstein-Barr virus. Additionally, our recipient demonstrated enhanced donor-activation-induced apoptosis of alloreactive T-cytotoxic memory cells. CONCLUSIONS Despite variable paths to tolerance which include graft versus host disease in two previous cases, and rejection-related loss of the primary isolated intestinal allograft in our recipient, the three cases with operational tolerance are bound by common themes: a relatively large donor antigenic load transmitted during intestine transplantation, and donor-specific hyporesponsiveness. Cell-based assays suggest enhanced donor-induced apoptosis of recipient T-cells and circulating T-regulatory cells as mechanistic links between antigenic load and donor-specific hyporesponsiveness.
Collapse
Affiliation(s)
- Lisa Remaley
- Hillman Center for Pediatric Transplantation, UPMC-Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chethan Ashokkumar
- Hillman Center for Pediatric Transplantation, UPMC-Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kyle A Soltys
- Hillman Center for Pediatric Transplantation, UPMC-Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - George Vincent Mazariegos
- Hillman Center for Pediatric Transplantation, UPMC-Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Geoffrey James Bond
- Hillman Center for Pediatric Transplantation, UPMC-Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ajai Khanna
- Hillman Center for Pediatric Transplantation, UPMC-Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Armando Ganoza
- Hillman Center for Pediatric Transplantation, UPMC-Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Miguel Reyes-Mugica
- Hillman Center for Pediatric Transplantation, UPMC-Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adriana Zeevi
- Hillman Center for Pediatric Transplantation, UPMC-Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rakesh Sindhi
- Hillman Center for Pediatric Transplantation, UPMC-Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
22
|
Abstract
Single-cell technologies open up new opportunities to explore the behavior of cells at the individual level. For solid organ transplantation, single-cell technologies can provide in-depth insights into the underlying mechanisms of the immunological processes involved in alloimmune responses after transplantation by investigating the role of individual cells in tolerance and rejection. Here, we review the value of single-cell technologies, including cytometry by time-of-flight and single-cell RNA sequencing, in the context of solid organ transplantation research. Various applications of single-cell technologies are addressed, such as the characterization and identification of immune cell subsets involved in rejection or tolerance. In addition, we explore the opportunities for analyzing specific alloreactive T- or B-cell clones by linking phenotype data to T- or B-cell receptor data, and for distinguishing donor- from recipient-derived immune cells. Moreover, we discuss the use of single-cell technologies in biomarker identification and risk stratification, as well as the remaining challenges. Together, this review highlights that single-cell approaches contribute to a better understanding of underlying immunological mechanisms of rejection and tolerance, thereby potentially accelerating the development of new or improved therapies to avoid allograft rejection.
Collapse
|
23
|
Characteristic Genes and Immune Infiltration Analysis for Acute Rejection after Kidney Transplantation. DISEASE MARKERS 2022; 2022:6575052. [PMID: 36393969 PMCID: PMC9646319 DOI: 10.1155/2022/6575052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Background Renal transplantation can significantly improve the survival rate and quality of life of patients with end-stage renal disease, but the probability of acute rejection (AR) in adult renal transplant recipients is still approximately 12.2%. Machine learning (ML) is superior to traditional statistical methods in various clinical scenarios. However, the current AR model is constructed only through simple difference analysis or a single queue, which cannot guarantee the accuracy of prediction. Therefore, this study identified and validated new gene sets that contribute to the early prediction of AR and the prognosis prediction of patients after renal transplantation by constructing a more accurate AR gene signature through ML technology. Methods Based on the Gene Expression Omnibus (GEO) database and multiple bioinformatic analyses, we identified differentially expressed genes (DEGs) and built a gene signature via LASSO regression and SVM analysis. Immune cell infiltration and immunocyte association analyses were also conducted. Furthermore, we investigated the relationship between AR genes and graft survival status. Results Twenty-four DEGs were identified. A 5 gene signature (CPA6, EFNA1, HBM, THEM5, and ZNF683) were obtained by LASSO analysis and SVM analysis, which had a satisfied ability to differentiate AR and NAR in the training cohort, internal validation cohort and external validation cohort. Additionally, ZNF683 was associated with graft survival. Conclusion A 5 gene signature, particularly ZNF683, provided insight into a precise therapeutic schedule and clinical applications for AR patients.
Collapse
|
24
|
Charmetant X, Chen CC, Hamada S, Goncalves D, Saison C, Rabeyrin M, Rabant M, Duong van Huyen JP, Koenig A, Mathias V, Barba T, Lacaille F, le Pavec J, Brugière O, Taupin JL, Chalabreysse L, Mornex JF, Couzi L, Graff-Dubois S, Jeger-Madiot R, Tran-Dinh A, Mordant P, Paidassi H, Defrance T, Morelon E, Badet L, Nicoletti A, Dubois V, Thaunat O. Inverted direct allorecognition triggers early donor-specific antibody responses after transplantation. Sci Transl Med 2022; 14:eabg1046. [PMID: 36130013 DOI: 10.1126/scitranslmed.abg1046] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The generation of antibodies against donor-specific major histocompatibility complex (MHC) antigens, a type of donor-specific antibodies (DSAs), after transplantation requires that recipient's allospecific B cells receive help from T cells. The current dogma holds that this help is exclusively provided by the recipient's CD4+ T cells that recognize complexes of recipient's MHC II molecules and peptides derived from donor-specific MHC alloantigens, a process called indirect allorecognition. Here, we demonstrated that, after allogeneic heart transplantation, CD3ε knockout recipient mice lacking T cells generate a rapid, transient wave of switched alloantibodies, predominantly directed against MHC I molecules. This is due to the presence of donor CD4+ T cells within the graft that recognize intact recipient's MHC II molecules expressed by B cell receptor-activated allospecific B cells. Indirect evidence suggests that this inverted direct pathway is also operant in patients after transplantation. Resident memory donor CD4+ T cells were observed in perfusion liquids of human renal and lung grafts and acquired B cell helper functions upon in vitro stimulation. Furthermore, T follicular helper cells, specialized in helping B cells, were abundant in mucosa-associated lymphoid tissue of lung and intestinal grafts. In the latter, more graft-derived passenger T cells correlated with the detection of donor T cells in recipient's circulation; this, in turn, was associated with an early transient anti-MHC I DSA response and worse transplantation outcomes. We conclude that this inverted direct allorecognition is a possible explanation for the early transient anti-MHC DSA responses frequently observed after lung or intestinal transplantations.
Collapse
Affiliation(s)
- Xavier Charmetant
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Chien-Chia Chen
- Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Sarah Hamada
- French National Blood Service (EFS), HLA Laboratory, 69150 Décines, France
| | - David Goncalves
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Carole Saison
- French National Blood Service (EFS), HLA Laboratory, 69150 Décines, France
| | - Maud Rabeyrin
- Department of Pathology, Hospices Civils de Lyon, Groupement Hospitalier Est, 69500 Bron, France
| | - Marion Rabant
- Pathology Department, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, 75015 Paris, France
| | | | - Alice Koenig
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), 69008 Lyon, France
- Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, 69003 Lyon, France
| | - Virginie Mathias
- French National Blood Service (EFS), HLA Laboratory, 69150 Décines, France
| | - Thomas Barba
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Florence Lacaille
- Pediatric Gastroenterology-Hepatology-Nutrition Unit, Hôpital Universitaire Necker-Enfants malades, 75015 Paris, France
| | - Jérôme le Pavec
- Department of Pulmonology and Lung Transplantation, Marie Lannelongue Hospital, 92350 Le Plessis Robinson, France
| | - Olivier Brugière
- Pulmonology Department, Adult Cystic Fibrosis Centre and Lung Transplantation Department, Foch Hospital, 92150 Suresnes, France
| | - Jean-Luc Taupin
- Laboratory of Immunology and Histocompatibility, Hôpital Saint-Louis APHP, 75010 Paris, France
- INSERM U976 Institut de Recherche Saint-Louis, Université Paris Diderot, 75010 Paris, France
| | - Lara Chalabreysse
- Department of Pathology, Hospices Civils de Lyon, Groupement Hospitalier Est, 69500 Bron, France
| | - Jean-François Mornex
- Université de Lyon, Université Lyon 1, INRAE, IVPC, UMR754, 69000 Lyon, France
- Department of Pneumology, GHE, Hospices Civils de Lyon, 69000 Lyon, France
| | - Lionel Couzi
- Department of Nephrology, Transplantation, Dialysis, Apheresis, Pellegrin Hospital, 33000 Bordeaux, France
| | - Stéphanie Graff-Dubois
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), 75013 Paris, France
| | - Raphaël Jeger-Madiot
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), 75013 Paris, France
| | - Alexy Tran-Dinh
- Université de Paris, LVTS, INSERM U1148, 75018 Paris, France
| | - Pierre Mordant
- Department of Vascular and Thoracic Surgery, Assistance Publique-Hôpitaux de Paris, Bichat-Claude Bernard Hospital, 75018 Paris, France
| | - Helena Paidassi
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Thierry Defrance
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Emmanuel Morelon
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), 69008 Lyon, France
- Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, 69003 Lyon, France
| | - Lionel Badet
- Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), 69008 Lyon, France
- Department of Urology and Transplantation Surgery, Hospices Civils de Lyon, Edouard Herriot Hospital, 69003 Lyon, France
| | | | - Valérie Dubois
- French National Blood Service (EFS), HLA Laboratory, 69150 Décines, France
| | - Olivier Thaunat
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), 69008 Lyon, France
- Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, 69003 Lyon, France
| |
Collapse
|
25
|
Dogra H, Hind J. Innovations in Immunosuppression for Intestinal Transplantation. Front Nutr 2022; 9:869399. [PMID: 35782951 PMCID: PMC9241336 DOI: 10.3389/fnut.2022.869399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
It has been 57 years since the first intestinal transplant. An increased incidence of graft rejection has been described compared to other solid organ transplants due to high immunogenicity of the bowel, which in health allows the balance between of dietary antigen with defense against pathogens. Expanding clinical experience, knowledge of gastrointestinal physiology and immunology have progress post-transplant immunosuppressive drug regimens. Current regimes aim to find the window between prevention of rejection and the risk of infection (the leading cause of death) and malignancy. The ultimate aim is to achieve graft tolerance. In this review we discuss advances in mucosal immunology and technologies informing the development of new anti-rejection strategies with the hope of improved survival in the next generation of transplant recipients.
Collapse
|
26
|
Abstract
In this review, we summarize and discuss recent advances in understanding the characteristics of tissue-resident memory T cells (TRMs) in the context of solid organ transplantation (SOT). We first introduce the traditionally understood noncirculating features of TRMs and the key phenotypic markers that define this population, then provide a detailed discussion of emerging concepts on the recirculation and plasticity of TRM in mice and humans. We comment on the potential heterogeneity of transient, temporary resident, and permanent resident T cells and potential interchangeable phenotypes between TRM and effector T cells in nonlymphoid tissues. We review the literature on the distribution of TRM in human nonlymphoid organs and association of clinical outcomes in different types of SOT, including intestine, lung, liver, kidney, and heart. We focus on both tissue-specific and organ-shared features of donor- and recipient-derived TRMs after transplantation whenever applicable. Studies with comprehensive sample collection, including longitudinal and cross-sectional controls, and applied advanced techniques such as multicolor flow cytometry to distinguish donor and recipient TRMs, bulk, and single-cell T-cell receptor sequencing to track clonotypes and define transcriptome profiles, and functional readouts to define alloreactivity and proinflammatory/anti-inflammatory activities are emphasized. We also discuss important findings on the tissue-resident features of regulatory αβ T cells and unconventional γδ T cells after transplantation. Understanding of TRM in SOT is a rapidly growing field that urges future studies to address unresolved questions regarding their heterogeneity, plasticity, longevity, alloreactivity, and roles in rejection and tolerance.
Collapse
Affiliation(s)
- Jianing Fu
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, United States
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, United States
- Department of Surgery, Columbia University, New York, United States
- Department of Microbiology & Immunology, Columbia University, New York, United States
| |
Collapse
|
27
|
Self-Centered Function of Adaptive Immunity in Regulation of Immune Responses and in Tolerance. J Immunol Res 2021; 2021:7507459. [PMID: 34950737 PMCID: PMC8692046 DOI: 10.1155/2021/7507459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/17/2021] [Indexed: 11/26/2022] Open
Abstract
The search for common mechanisms underlying the pathogenesis of chronic inflammatory conditions has crystalized the concept of continuous dual resetting of the immune repertoire (CDR) as a basic principle of the immune system function. Consequently, outlined was the first dynamic comprehensive picture of the immune system function. The goal of this study is to elaborate on regulation of immune responses and mechanisms of tolerance, particularly focusing on adaptive immunity. It is well established that the T/B cell repertoire is selected and maintained based on interactions with self. However, their activation also requires interaction with a self-specific major histocompatibility complex (MHC) “code,” i.e., the context of MHC molecules. Therefore, not only repertoire selection and maintenance but also the T/B cell activation and function are self-centered. Thus, adaptive effectors may be primarily focused on the state of self and maintenance of integrity of the self, and only to a certain degree on elimination of the foreign. As examples of such function are used immunologically poorly understood MHC-disparate settings typical for transplantation and pregnancy. Transplantation represents an extreme setting of strong systemic compartment-level adaptive/MHC-restricted immune responses. Described are clinically identified conditions for operational tolerance of MHC-disparate tissues/living systems in allotransplantation, which are in line with the CDR-proposed self-centered regulatory role of T/B cells. In contrast, normal pregnancy is coexistence of semiallogeneic or entirely allogeneic mother and fetus, but without alloreactivity akin to transplantation settings. Presented data support the notion that maintenance of pregnancy is a process that relies predominantly on innate/MHC-independent immune mechanisms. By the inception of hemotrophic stage of pregnancy (second and third trimester), both mother and child are individual living systems, with established adaptive immune repertoires. Although mother-fetus interactions at that point become indirect systemic compartment-level communications, their interactions throughout gestation remain within the innate realm of molecular-level adaptations.
Collapse
|
28
|
Fu J, Khosravi-Maharlooei M, Sykes M. High Throughput Human T Cell Receptor Sequencing: A New Window Into Repertoire Establishment and Alloreactivity. Front Immunol 2021; 12:777756. [PMID: 34804070 PMCID: PMC8604183 DOI: 10.3389/fimmu.2021.777756] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022] Open
Abstract
Recent advances in high throughput sequencing (HTS) of T cell receptors (TCRs) and in transcriptomic analysis, particularly at the single cell level, have opened the door to a new level of understanding of human immunology and immune-related diseases. In this article, we discuss the use of HTS of TCRs to discern the factors controlling human T cell repertoire development and how this approach can be used in combination with human immune system (HIS) mouse models to understand human repertoire selection in an unprecedented manner. An exceptionally high proportion of human T cells has alloreactive potential, which can best be understood as a consequence of the processes governing thymic selection. High throughput TCR sequencing has allowed assessment of the development, magnitude and nature of the human alloresponse at a new level and has provided a tool for tracking the fate of pre-transplant-defined donor- and host-reactive TCRs following transplantation. New insights into human allograft rejection and tolerance obtained with this method in combination with single cell transcriptional analyses are reviewed here.
Collapse
Affiliation(s)
- Jianing Fu
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Mohsen Khosravi-Maharlooei
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
- Department of Surgery, Columbia University, New York, NY, United States
- Department of Microbiology & Immunology, Columbia University, New York, NY, United States
| |
Collapse
|
29
|
Osborn J, Nathan JD, Tiao G, Alonso M, Kocoshis S. Operational tolerance after pediatric composite liver-pancreas-intestine transplantation following severe graft-versus-host disease. Pediatr Transplant 2021; 25:e14069. [PMID: 34125501 DOI: 10.1111/petr.14069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/09/2021] [Accepted: 05/24/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND While operational tolerance has been previously described in isolated intestinal transplant, reports of this phenomenon in combined liver-intestine transplant are lacking. CASE DESCRIPTION We detail a unique case of a patient who received a composite allograft including liver, pancreas, and small bowel due to short gut syndrome secondary to gastroschisis complicated by volvulus. The indication for transplantation was permanent dependence on total parenteral nutrition, end-stage liver disease, recurrent sepsis, and persistent stomal variceal hemorrhage. The patient developed severe graft-versus-host disease with grade 3 skin involvement, ophthalmic, and pulmonary involvement with 53% donor T-cell chimerism. She required aggressive therapy including high-dose methylprednisolone, rituximab, cyclophosphamide, and alemtuzumab. Due to infection concerns following depletion of her lymphocytes, immunosuppression was discontinued with close surveillance of her allograft. Nearly 10 years later, the patient has continued off all immunosuppression without evidence of rejection or graft dysfunction and demonstrates immunocompetence with normal functional immune assays and development of appropriate live vaccination titers. CONCLUSION This report of operational tolerance following pediatric composite liver-pancreas-intestine transplantation provides evidence that the complex immunologic balance in intestinal transplantation may on rare occasions favor immunosuppression reduction or even discontinuation. Future trials of immunosuppression minimization in this population may be warranted.
Collapse
Affiliation(s)
- Julie Osborn
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jaimie D Nathan
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Gregory Tiao
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Maria Alonso
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Samuel Kocoshis
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
30
|
Graft Versus Host Disease After Intestinal Transplantation: A Single-center Experience. Transplant Direct 2021; 7:e731. [PMID: 34291153 PMCID: PMC8291352 DOI: 10.1097/txd.0000000000001187] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 12/25/2022] Open
Abstract
Supplemental Digital Content is available in the text. Background. Graft versus host disease (GVHD) is an uncommon but highly morbid complication of intestinal transplantation (ITx). In this study, we reviewed our 17-y experience with GVHD focusing on factors predicting GVHD occurrence and survival. Methods. Retrospective review of 271 patients who received 1 or more ITx since program inception in 2003 with survival analysis using Cox proportional hazard modeling. Results. Of 271 patients, 28 developed GHVD 34 (18–66) d after ITx presenting with rash or rash with fever in 26, rectosigmoid disease in 1, and hemolysis in 1; other sites, mainly rectosigmoid colon, were involved in 13. Initial skin biopsy demonstrated classic findings in 6, compatible findings in 14, and no abnormalities in 2. Additional sites of GVHD later emerged in 14. Of the 28 patients, 16 died largely from sepsis, the only independent hazard for death (hazard ratio [HR], 37.4181; P = 0.0008). Significant (P < 0.0500) independent hazards for occurrence of GVHD in adults were pre-ITx functional intestinal failure (IF) (HR, 15.2448) and non-IF diagnosis (HR, 20.9952) and early post-ITx sirolimus therapy (HR, 0.0956); independent hazards in children were non-IF diagnosis (HR, 4.3990), retransplantation (HR, 4.6401), donor:recipient age ratio (HR, 7.3190), and graft colon omission (HR, 0.1886). Variant transplant operation was not an independent GVHD hazard. Conclusions. Initial diagnosis of GVHD after ITx remains largely clinical, supported but not often confirmed by skin biopsy. Although GVHD risk is mainly recipient-driven, changes in donor selection and immunosuppression practice may reduce incidence and improve survival.
Collapse
|
31
|
Fu J, Zuber J, Shonts B, Obradovic A, Wang Z, Frangaj K, Meng W, Rosenfeld AM, Waffarn EE, Liou P, Lau SP, Savage TM, Yang S, Rogers K, Danzl NM, Ravella S, Satwani P, Iuga A, Ho SH, Griesemer A, Shen Y, Prak ETL, Martinez M, Kato T, Sykes M. Lymphohematopoietic graft-versus-host responses promote mixed chimerism in patients receiving intestinal transplantation. J Clin Invest 2021; 131:141698. [PMID: 33630757 DOI: 10.1172/jci141698] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 02/23/2021] [Indexed: 12/22/2022] Open
Abstract
In humans receiving intestinal transplantation (ITx), long-term multilineage blood chimerism often develops. Donor T cell macrochimerism (≥4%) frequently occurs without graft-versus-host disease (GVHD) and is associated with reduced rejection. Here we demonstrate that patients with macrochimerism had high graft-versus-host (GvH) to host-versus-graft (HvG) T cell clonal ratios in their allografts. These GvH clones entered the circulation, where their peak levels were associated with declines in HvG clones early after transplant, suggesting that GvH reactions may contribute to chimerism and control HvG responses without causing GVHD. Consistently, donor-derived T cells, including GvH clones, and CD34+ hematopoietic stem and progenitor cells (HSPCs) were simultaneously detected in the recipients' BM more than 100 days after transplant. Individual GvH clones appeared in ileal mucosa or PBMCs before detection in recipient BM, consistent with an intestinal mucosal origin, where donor GvH-reactive T cells expanded early upon entry of recipient APCs into the graft. These results, combined with cytotoxic single-cell transcriptional profiles of donor T cells in recipient BM, suggest that tissue-resident GvH-reactive donor T cells migrated into the recipient circulation and BM, where they destroyed recipient hematopoietic cells through cytolytic effector functions and promoted engraftment of graft-derived HSPCs that maintain chimerism. These mechanisms suggest an approach to achieving intestinal allograft tolerance.
Collapse
Affiliation(s)
- Jianing Fu
- Columbia Center for Translational Immunology, Department of Medicine and
| | - Julien Zuber
- Columbia Center for Translational Immunology, Department of Medicine and
| | - Brittany Shonts
- Columbia Center for Translational Immunology, Department of Medicine and
| | | | - Zicheng Wang
- Center for Computational Biology and Bioinformatics, Department of Systems Biology, Columbia University, New York, New York, USA
| | - Kristjana Frangaj
- Columbia Center for Translational Immunology, Department of Medicine and
| | - Wenzhao Meng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Aaron M Rosenfeld
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - Sai-Ping Lau
- Columbia Center for Translational Immunology, Department of Medicine and
| | - Thomas M Savage
- Columbia Center for Translational Immunology, Department of Medicine and
| | - Suxiao Yang
- Columbia Center for Translational Immunology, Department of Medicine and
| | - Kortney Rogers
- Columbia Center for Translational Immunology, Department of Medicine and
| | - Nichole M Danzl
- Columbia Center for Translational Immunology, Department of Medicine and
| | - Shilpa Ravella
- Division of Digestive and Liver Diseases, Department of Medicine
| | | | - Alina Iuga
- Department of Pathology and Cell Biology, and
| | - Siu-Hong Ho
- Columbia Center for Translational Immunology, Department of Medicine and
| | - Adam Griesemer
- Columbia Center for Translational Immunology, Department of Medicine and.,Department of Surgery
| | - Yufeng Shen
- Center for Computational Biology and Bioinformatics, Department of Systems Biology, Columbia University, New York, New York, USA
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine and.,Department of Surgery.,Department of Microbiology and Immunology, Columbia University, New York, New York, USA
| |
Collapse
|
32
|
Kroemer A, Khan K, Kaufman SS, Kang J, Weiner J, Duttargi A, Belyayev L, Ashokkumar C, Sindhi R, Timofeeva OA, Zasloff M, Matsumoto CS, Fishbein TM. Operational tolerance in intestinal transplantation. Am J Transplant 2021; 21:876-882. [PMID: 32721092 PMCID: PMC8274367 DOI: 10.1111/ajt.16224] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/29/2020] [Accepted: 07/15/2020] [Indexed: 01/25/2023]
Abstract
By presenting the first case report of true operational tolerance in an intestinal transplant patient, we aim to demonstrate that tolerance is possible in a field that has been hampered by suboptimal outcomes. Although operational tolerance has been achieved in liver and kidney transplantation, and some intestinal transplant patients have been able to decrease immunosuppression, this is the first instance of true operational tolerance after complete cessation of immunosuppression. A patient received a deceased-donor small intestinal and colon allograft with standard immunosuppressive treatment, achieving excellent graft function after overcoming a graft-versus-host-disease episode 5 months posttransplant. Four years later, against medical advice, the patient discontinued all immunosuppression. During follow-up visits 2 and 3 years after cessation of immunosuppression, the patient exhibited normal graft function with full enteral autonomy and without histological or endoscopic signs of rejection. Mechanistic analysis demonstrated immune competence against third party antigen, with in vitro evidence of donor-specific hyporesponsiveness in the absence of donor macrochimerism. This proof of principle case can stimulate future mechanistic studies on diagnostic and therapeutic strategies, for example, cellular therapy trials, that can lead to minimization or elimination of immunosuppression and, it is hoped, help revitalize the field of intestinal transplantation.
Collapse
Affiliation(s)
- Alexander Kroemer
- Center for Translational Transplant Medicine, MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Khalid Khan
- Center for Translational Transplant Medicine, MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Stuart S Kaufman
- Center for Translational Transplant Medicine, MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Jiman Kang
- Center for Translational Transplant Medicine, MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Joshua Weiner
- Center for Translational Transplant Medicine, MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Anju Duttargi
- Center for Translational Transplant Medicine, MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Leonid Belyayev
- Center for Translational Transplant Medicine, MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Chethan Ashokkumar
- The Hillman Center for Pediatric Transplantation, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rakesh Sindhi
- The Hillman Center for Pediatric Transplantation, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Olga A Timofeeva
- Department of Pathology and Laboratory Medicine, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Michael Zasloff
- Center for Translational Transplant Medicine, MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Cal S Matsumoto
- Center for Translational Transplant Medicine, MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Thomas M Fishbein
- Center for Translational Transplant Medicine, MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Georgetown University Medical Center, Washington, District of Columbia, USA
| |
Collapse
|
33
|
FitzPatrick MEB, Provine NM, Garner LC, Powell K, Amini A, Irwin SL, Ferry H, Ambrose T, Friend P, Vrakas G, Reddy S, Soilleux E, Klenerman P, Allan PJ. Human intestinal tissue-resident memory T cells comprise transcriptionally and functionally distinct subsets. Cell Rep 2021; 34:108661. [PMID: 33472060 PMCID: PMC7816164 DOI: 10.1016/j.celrep.2020.108661] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 10/14/2020] [Accepted: 12/22/2020] [Indexed: 01/07/2023] Open
Abstract
Tissue-resident memory T (TRM) cells provide key adaptive immune responses in infection, cancer, and autoimmunity. However, transcriptional heterogeneity of human intestinal TRM cells remains undefined. Here, we investigate transcriptional and functional heterogeneity of human TRM cells through study of donor-derived TRM cells from intestinal transplant recipients. Single-cell transcriptional profiling identifies two transcriptional states of CD8+ TRM cells, delineated by ITGAE and ITGB2 expression. We define a transcriptional signature discriminating these populations, including differential expression of cytotoxicity- and residency-associated genes. Flow cytometry of recipient-derived cells infiltrating the graft, and lymphocytes from healthy gut, confirm these CD8+ TRM phenotypes. CD8+ CD69+CD103+ TRM cells produce interleukin-2 (IL-2) and demonstrate greater polyfunctional cytokine production, whereas β2-integrin+CD69+CD103− TRM cells have higher granzyme expression. Analysis of intestinal CD4+ T cells identifies several parallels, including a β2-integrin+ population. Together, these results describe the transcriptional, phenotypic, and functional heterogeneity of human intestinal CD4+ and CD8+ TRM cells. Human intestinal transplants were used to identify bona fide TRM cells Single-cell RNA sequencing identifies two distinct CD8+ TRM subsets CD103+CD69+ and CD103−CD69+ TRM cell subsets show distinct localization and function β2-integrin is highly expressed on CD103− TRM cells
Collapse
Affiliation(s)
- Michael E B FitzPatrick
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Nicholas M Provine
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Lucy C Garner
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Kate Powell
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
| | - Ali Amini
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Sophie L Irwin
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Helen Ferry
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Tim Ambrose
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Peter Friend
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK; Oxford Transplant Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, UK
| | - Georgios Vrakas
- Oxford Transplant Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, UK
| | - Srikanth Reddy
- Oxford Transplant Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, UK
| | - Elizabeth Soilleux
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Paul Klenerman
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK; Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK; NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK.
| | - Philip J Allan
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK; Oxford Transplant Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, UK; NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| |
Collapse
|
34
|
Zuber J, Boyer O, Neven B, Jollet I, Renac V, Berthaud R, Levy R, Lamarthée B, Visentin J, Marchal A, Gouge-Biebuyck N, Godron-Dubrasquet A, Aladjidi N, Rabah MO, Winter S, Léon J, Dussiot M, Rabant M, Krid S, Krug P, Charbit M, Lacaille F, André I, Cavazzana M, Llanas B, Allard L, Pirenne F, Gross S, Djoudi R, Tiberghien P, Taupin JL, Blanche S, Salomon R. Donor-targeted serotherapy as a rescue therapy for steroid-resistant acute GVHD after HLA-mismatched kidney transplantation. Am J Transplant 2020; 20:2243-2253. [PMID: 32065452 DOI: 10.1111/ajt.15827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023]
Abstract
Acute graft-versus-host disease (GVHD) is a rare but frequently lethal complication after solid organ transplantation. GVHD occurs in unduly immunocompromised hosts but requires the escalation of immunosuppression, which does not discriminate between host and donor cells. In contrast, donor-targeted therapy would ideally mitigate graft-versus-host reactivity while sparing recipient immune functions. We report two children with end-stage renal disease and severe primary immune deficiency (Schimke syndrome) who developed severe steroid-resistant acute GVHD along with full and sustained donor T cell chimerism after isolated kidney transplantation. Facing a therapeutic dead end, we used a novel strategy based on the adoptive transfer of anti-HLA donor-specific antibodies (DSAs) through the transfusion of highly selected plasma. After approval by the appropriate regulatory authority, an urgent nationwide search was launched among more than 3800 registered blood donors with known anti-HLA sensitization. Adoptively transferred DSAs bound to and selectively depleted circulating donor T cells. The administration of DSA-rich plasma was well tolerated and notably did not induce antibody-mediated rejection of the renal allografts. Acute GVHD symptoms promptly resolved in one child. This report provides a proof of concept for a highly targeted novel therapeutic approach for solid organ transplantation-associated GVHD.
Collapse
Affiliation(s)
- Julien Zuber
- Paris University, Paris, France.,Laboratory of Human Lymphohematopoiesis, Inserm UMR 1163, Imagine Institute, Paris, France.,Department of Adult Kidney Transplantation, Necker Hospital, Paris, France
| | - Olivia Boyer
- Paris University, Paris, France.,Department of Pediatric Nephrology and Kidney Transplantation, Necker Hospital, Paris, France
| | - Bénédicte Neven
- Paris University, Paris, France.,Department of Pediatric Immuno-hematology, Necker Hospital, Paris, France
| | - Isabelle Jollet
- Etablissement Français du Sang Nouvelle Aquitaine, HLA Laboratory, Poitiers, France
| | - Virginie Renac
- Etablissement Français du Sang Bretagne, HLA Laboratory, Rennes, France
| | - Romain Berthaud
- Paris University, Paris, France.,Department of Pediatric Nephrology and Kidney Transplantation, Necker Hospital, Paris, France
| | - Romain Levy
- Paris University, Paris, France.,Department of Pediatric Immuno-hematology, Necker Hospital, Paris, France
| | - Baptiste Lamarthée
- Laboratory of Human Lymphohematopoiesis, Inserm UMR 1163, Imagine Institute, Paris, France
| | - Jonathan Visentin
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Bordeaux, France.,Immuno ConcEpT, UMR CNRS 5164, Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| | - Armance Marchal
- Laboratory of Human Lymphohematopoiesis, Inserm UMR 1163, Imagine Institute, Paris, France
| | - Nathalie Gouge-Biebuyck
- Department of Pediatric Nephrology and Kidney Transplantation, Necker Hospital, Paris, France
| | - Astrid Godron-Dubrasquet
- Department of Pediatric Nephrology and Kidney Transplantation, Pellegrin Hospital, Bordeaux, France
| | - Nathalie Aladjidi
- Department of Pediatric Onco-Hematology, Pellegrin Hospital, Bordeaux, France
| | - Melissa O Rabah
- Paris University, Paris, France.,Department of Pediatric Nephrology and Kidney Transplantation, Necker Hospital, Paris, France
| | - Sarah Winter
- Paris University, Paris, France.,Department of Pediatric Immuno-hematology, Necker Hospital, Paris, France
| | - Juliette Léon
- Department of Pathology, Necker Hospital, Paris, France
| | - Michael Dussiot
- Laboratory of Molecular Mechanisms of Hematologic Disorders and Therapeutic Implications, Inserm UMRS 1163, Imagine Institute, Paris, France
| | - Marion Rabant
- Paris University, Paris, France.,Department of Pathology, Necker Hospital, Paris, France
| | - Saoussen Krid
- Department of Pediatric Nephrology and Kidney Transplantation, Necker Hospital, Paris, France
| | - Pauline Krug
- Department of Pediatric Nephrology and Kidney Transplantation, Necker Hospital, Paris, France
| | - Marina Charbit
- Department of Pediatric Nephrology and Kidney Transplantation, Necker Hospital, Paris, France
| | - Florence Lacaille
- Department of Pediatric Gastroenterology-Hepatology-Nutrition Unit, Necker Hospital, Paris, France
| | - Isabelle André
- Laboratory of Human Lymphohematopoiesis, Inserm UMR 1163, Imagine Institute, Paris, France
| | - Marina Cavazzana
- Paris University, Paris, France.,Laboratory of Human Lymphohematopoiesis, Inserm UMR 1163, Imagine Institute, Paris, France.,Biotherapy Clinical Investigation Center, Necker Hospital, Paris, France
| | - Brigitte Llanas
- Department of Pediatric Nephrology and Kidney Transplantation, Pellegrin Hospital, Bordeaux, France
| | - Lise Allard
- Department of Pediatric Nephrology and Kidney Transplantation, Pellegrin Hospital, Bordeaux, France
| | - France Pirenne
- Etablissement Français du Sang, Ile-de-France, Créteil, France.,Etablissement Français du Sang, St. Denis, France
| | - Sylvie Gross
- Etablissement Français du Sang, St. Denis, France
| | | | - Pierre Tiberghien
- Etablissement Français du Sang, St. Denis, France.,Etablissement Français du Sang, UMR 1098, Inserm, Université de Franche-Comté, Besançon, France
| | - Jean-Luc Taupin
- Laboratory of Immunology and Histocompatibility, Saint Louis Hospital, Paris, France
| | - Stéphane Blanche
- Paris University, Paris, France.,Department of Pediatric Immuno-hematology, Necker Hospital, Paris, France
| | - Rémi Salomon
- Paris University, Paris, France.,Department of Pediatric Nephrology and Kidney Transplantation, Necker Hospital, Paris, France
| |
Collapse
|
35
|
Snyder ME, Finlayson MO, Connors TJ, Dogra P, Senda T, Bush E, Carpenter D, Marboe C, Benvenuto L, Shah L, Robbins H, Hook JL, Sykes M, D'Ovidio F, Bacchetta M, Sonett JR, Lederer DJ, Arcasoy S, Sims PA, Farber DL. Generation and persistence of human tissue-resident memory T cells in lung transplantation. Sci Immunol 2020; 4:4/33/eaav5581. [PMID: 30850393 DOI: 10.1126/sciimmunol.aav5581] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/28/2019] [Indexed: 12/20/2022]
Abstract
Tissue-resident memory T cells (TRM) maintain immunity in diverse sites as determined in mouse models, whereas their establishment and role in human tissues have been difficult to assess. Here, we investigated human lung TRM generation, maintenance, and function in airway samples obtained longitudinally from human leukocyte antigen (HLA)-disparate lung transplant recipients, where donor and recipient T cells could be localized and tracked over time. Donor T cells persist specifically in the lungs (and not blood) of transplant recipients and express high levels of TRM signature markers including CD69, CD103, and CD49a, whereas lung-infiltrating recipient T cells gradually acquire TRM phenotypes over months in vivo. Single-cell transcriptome profiling of airway T cells reveals that donor T cells comprise two TRM-like subsets with varying levels of expression of TRM-associated genes, whereas recipient T cells comprised non-TRM and similar TRM-like subpopulations, suggesting de novo TRM generation. Transplant recipients exhibiting higher frequencies of persisting donor TRM experienced fewer adverse clinical events such as primary graft dysfunction and acute cellular rejection compared with recipients with low donor TRM persistence, suggesting that monitoring TRM dynamics could be clinically informative. Together, our results provide spatial and temporal insights into how human TRM develop, function, persist, and affect tissue integrity within the complexities of lung transplantation.
Collapse
Affiliation(s)
- Mark E Snyder
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA.,Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Michael O Finlayson
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Thomas J Connors
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA.,Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Pranay Dogra
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA.,Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Takashi Senda
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA.,Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - Erin Bush
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Dustin Carpenter
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA.,Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - Charles Marboe
- Department of Pathology, Columbia University Medical Center, New York, NY 10032, USA
| | - Luke Benvenuto
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Lori Shah
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Hilary Robbins
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Jaime L Hook
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Megan Sykes
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA.,Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA.,Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Frank D'Ovidio
- Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - Matthew Bacchetta
- Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - Joshua R Sonett
- Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - David J Lederer
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA.,Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Selim Arcasoy
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA.,Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Peter A Sims
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Donna L Farber
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA. .,Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA.,Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
36
|
Crepeau RL, Ford ML. Programmed T cell differentiation: Implications for transplantation. Cell Immunol 2020; 351:104099. [PMID: 32247511 DOI: 10.1016/j.cellimm.2020.104099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 12/27/2022]
Abstract
While T cells play a critical role in protective immunity against infection, they are also responsible for graft rejection in the setting of transplantation. T cell differentiation is regulated by both intrinsic transcriptional pathways as well as extrinsic factors such as antigen encounter and the cytokine milieu. Herein, we review recent discoveries in the transcriptional regulation of T cell differentiation and their impact on the field of transplantation. Recent studies uncovering context-dependent differentiation programs that differ in the setting of infection or transplantation will also be discussed. Understanding the key transcriptional pathways that underlie T cell responses in transplantation has important clinical implications, including development of novel therapeutic agents to mitigate graft rejection.
Collapse
Affiliation(s)
- Rebecca L Crepeau
- Emory Transplant Center, Department of Surgery, Emory University, 101 Woodruff Circle, Suite 5208, Atlanta, GA 30322, United States
| | - Mandy L Ford
- Emory Transplant Center, Department of Surgery, Emory University, 101 Woodruff Circle, Suite 5208, Atlanta, GA 30322, United States.
| |
Collapse
|
37
|
Kenyon NS. We Could Use More Tolerance: Role of Intestinal-Allograft-Derived Human Stem Cells. Cell Stem Cell 2019; 24:197-198. [PMID: 30735643 DOI: 10.1016/j.stem.2019.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mixed chimerism is associated with allograft acceptance and tolerance. In this issue of Cell Stem Cell, Fu et al. (2019) provide evidence that functional, donor-derived hematopoietic stem and progenitor cells in the intestinal allograft can persist long-term, contribute to multi-lineage chimerism in the circulation, and result in T cell tolerance through host lymphoid organ selection.
Collapse
Affiliation(s)
- Norma Sue Kenyon
- Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
38
|
Stobutzki N, Schlickeiser S, Streitz M, Stanko K, Truong KL, Akyuez L, Vogt K, Appelt C, Pascher A, Blau O, Gerlach UA, Sawitzki B. Long-Term Signs of T Cell and Myeloid Cell Activation After Intestinal Transplantation With Cellular Rejections Contributing to Further Increase of CD16 + Cell Subsets. Front Immunol 2019; 10:866. [PMID: 31134051 PMCID: PMC6514047 DOI: 10.3389/fimmu.2019.00866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/04/2019] [Indexed: 02/06/2023] Open
Abstract
The intestine mediates a delicate balance between tolerogenic and inflammatory immune responses. The continuous pathogen encounter might also augment immune cell responses contributing to complications observed upon intestinal transplantation (ITx). We thus hypothesized that ITx patients show persistent signs of immune cell activation affecting both the adaptive and innate immune cell compartment. Information on the impact of intestinal grafts on immune cell composition, however, especially in the long-term is sparse. We here assessed activated and differentiated adaptive and innate immune subsets according to time, previous experience of cellular or antibody-mediated rejections or type of transplant after ITx applying multi-parametric flow cytometry, gene expression, serum cytokine and chemokine profiling. ITx patients showed an increase in CD16 expressing monocytes and myeloid dendritic cells (DCs) compared to healthy controls. This was even detectable in patients who were transplanted more than 10 years ago. Also, conventional CD4+ and CD8+ T cells showed persistent signs of activation counterbalanced by increased activated CCR4+ regulatory T cells. Patients with previous cellular rejections had even higher proportions of CD16+ monocytes and DCs, whereas transplanting higher donor mass with multi-visceral grafts was associated with increased T cell activation. The persistent inflammation and innate immune cell activation might contribute to unsatisfactory results after ITx.
Collapse
Affiliation(s)
- Nadja Stobutzki
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Stephan Schlickeiser
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Mathias Streitz
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Katarina Stanko
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Kim-Long Truong
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Levent Akyuez
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Katrin Vogt
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Christine Appelt
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Andreas Pascher
- Department of Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Olga Blau
- Department for Hematology, Oncology and Tumor Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Undine A Gerlach
- Department of Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Birgit Sawitzki
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
39
|
Characterization of donor and recipient CD8+ tissue-resident memory T cells in transplant nephrectomies. Sci Rep 2019; 9:5984. [PMID: 30979940 PMCID: PMC6461670 DOI: 10.1038/s41598-019-42401-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/29/2019] [Indexed: 12/12/2022] Open
Abstract
Tissue-resident memory T (TRM) cells are characterized by their surface expression of CD69 and can be subdivided in CD103+ and CD103− TRM cells. The origin and functional characteristics of TRM cells in the renal allograft are largely unknown. To determine these features we studied TRM cells in transplant nephrectomies. TRM cells with a CD103+ and CD103− phenotype were present in all samples (n = 13) and were mainly CD8+ T cells. Of note, donor-derived TRM cells were only detectable in renal allografts that failed in the first month after transplantation. Grafts, which failed later, mainly contained recipient derived TRM cells. The gene expression profiles of the recipient derived CD8+ TRM cells were studied in more detail and showed a previously described signature of tissue residence within both CD103+ and CD103− TRM cells. All CD8+ TRM cells had strong effector abilities through the production of IFNγ and TNFα, and harboured high levels of intracellular granzyme B and low levels of perforin. In conclusion, our results demonstrate that donor and recipient TRM cells reside in the rejected renal allograft. Over time, the donor-derived TRM cells are replaced by recipient TRM cells which have features that enables these cells to aggressively respond to the allograft.
Collapse
|
40
|
Stanley K, Ranganathan S, Mazariegos G, Bond G, Soltys K, Ganoza A, Jones K, Cieply K, Sindhi R. Donor mucosal immunocytes perpetuate refractory GVHD after intestinal transplantation without engrafting in recipient bone marrow: Case report and review of the literature. Pediatr Transplant 2019; 23:e13350. [PMID: 30672115 DOI: 10.1111/petr.13350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/31/2018] [Accepted: 12/16/2018] [Indexed: 11/30/2022]
Abstract
GVHD as a complication of SOT presents both a diagnostic and therapeutic challenge. Typically affecting the skin, gastrointestinal tract, and liver, GVHD occurs when donor lymphocytes engrafted in recipient tissues are activated by host antigen-presenting cells resulting in cytokine release and donor cell-mediated cytotoxicity to host tissue. Here, we describe a 5-year-old girl who developed fatal, refractory GVHD after isolated intestinal transplantation when recipient immune cells failed to repopulate the allograft in the setting of CMV viremia. Persistence of the donor immune cells in the allograft mucosa, rather than engraftment in the recipient bone marrow, likely perpetuated this refractory GVHD. Early diagnosis and intervention are critical to reduce morbidity and mortality. Thus, periodic monitoring of peripheral blood and allograft mucosal chimerism with sensitive detection methods may allow early detection and potentially curative enterectomy in similar cases of refractory GVHD.
Collapse
Affiliation(s)
- Kaitlin Stanley
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - George Mazariegos
- Hillman Center for Pediatric Transplantation, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Geoffrey Bond
- Hillman Center for Pediatric Transplantation, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kyle Soltys
- Hillman Center for Pediatric Transplantation, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Armando Ganoza
- Hillman Center for Pediatric Transplantation, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Katie Jones
- Hillman Center for Pediatric Transplantation, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kathleen Cieply
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Rakesh Sindhi
- Hillman Center for Pediatric Transplantation, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
41
|
Fu J, Zuber J, Martinez M, Shonts B, Obradovic A, Wang H, Lau SP, Xia A, Waffarn EE, Frangaj K, Savage TM, Simpson MT, Yang S, Guo XV, Miron M, Senda T, Rogers K, Rahman A, Ho SH, Shen Y, Griesemer A, Farber DL, Kato T, Sykes M. Human Intestinal Allografts Contain Functional Hematopoietic Stem and Progenitor Cells that Are Maintained by a Circulating Pool. Cell Stem Cell 2019; 24:227-239.e8. [PMID: 30503142 PMCID: PMC6398344 DOI: 10.1016/j.stem.2018.11.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/20/2018] [Accepted: 11/02/2018] [Indexed: 01/09/2023]
Abstract
Human intestinal transplantation often results in long-term mixed chimerism of donor and recipient blood in transplant patients. We followed the phenotypes of chimeric peripheral blood cells in 21 patients receiving intestinal allografts over 5 years. Donor lymphocyte phenotypes suggested a contribution of hematopoietic stem and progenitor cells (HSPCs) from the graft. Surprisingly, we detected donor-derived HSPCs in intestinal mucosa, Peyer's patches, mesenteric lymph nodes, and liver. Human gut HSPCs are phenotypically similar to bone marrow HSPCs and have multilineage differentiation potential in vitro and in vivo. Analysis of circulating post-transplant donor T cells suggests that they undergo selection in recipient lymphoid organs to acquire immune tolerance. Our longitudinal study of human HSPCs carried in intestinal allografts demonstrates their turnover kinetics and gradual replacement of donor-derived HSPCs from a circulating pool. Thus, we have demonstrated the existence of functioning HSPCs in human intestines with implications for promoting tolerance in transplant recipients.
Collapse
Affiliation(s)
- Jianing Fu
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Julien Zuber
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Mercedes Martinez
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Brittany Shonts
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Aleksandar Obradovic
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Hui Wang
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Sai-Ping Lau
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Amy Xia
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Elizabeth E Waffarn
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Kristjana Frangaj
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Thomas M Savage
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Michael T Simpson
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Suxiao Yang
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Xinzheng V Guo
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michelle Miron
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA; Department of Microbiology & Immunology, Columbia University, New York, NY 10032, USA
| | - Takashi Senda
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA; Department of Surgery, Columbia University, New York, NY 10032, USA
| | - Kortney Rogers
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Adeeb Rahman
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Siu-Hong Ho
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Yufeng Shen
- Center for Computational Biology and Bioinformatics, Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Adam Griesemer
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA; Department of Surgery, Columbia University, New York, NY 10032, USA
| | - Donna L Farber
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA; Department of Microbiology & Immunology, Columbia University, New York, NY 10032, USA; Department of Surgery, Columbia University, New York, NY 10032, USA
| | - Tomoaki Kato
- Department of Surgery, Columbia University, New York, NY 10032, USA
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA; Department of Microbiology & Immunology, Columbia University, New York, NY 10032, USA; Department of Surgery, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
42
|
Okano S, Abu-Elmagd K, Kish DD, Keslar K, Baldwin WM, Fairchild RL, Fujiki M, Khanna A, Osman M, Costa G, Fung J, Miller C, Kayashima H, Hashimoto K. Myeloid-derived suppressor cells increase and inhibit donor-reactive T cell responses to graft intestinal epithelium in intestinal transplant patients. Am J Transplant 2018; 18:2544-2558. [PMID: 29509288 PMCID: PMC6127002 DOI: 10.1111/ajt.14718] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 02/04/2018] [Accepted: 02/25/2018] [Indexed: 01/25/2023]
Abstract
Recent advances in immunosuppressive regimens have decreased acute cellular rejection (ACR) rates and improved intestinal and multivisceral transplant (ITx) recipient survival. We investigated the role of myeloid-derived suppressor cells (MDSCs) in ITx. We identified MDSCs as CD33+ CD11b+ lineage(CD3/CD56/CD19)- HLA-DR-/low cells with 3 subsets, CD14- CD15- (e-MDSCs), CD14+ CD15- (M-MDSCs), and CD14- CD15+ (PMN-MDSCs), in peripheral blood mononuclear cells (PBMCs) and mononuclear cells in the grafted intestinal mucosa. Total MDSC numbers increased in PBMCs after ITx; among MDSC subsets, M-MDSC numbers were maintained at a high level after 2 months post ITx. The MDSC numbers decreased in ITx recipients with ACR. MDSC numbers were positively correlated with serum interleukin (IL)-6 levels and the glucocorticoid administration index. IL-6 and methylprednisolone enhanced the differentiation of bone marrow cells to MDSCs in vitro. M-MDSCs and e-MDSCs expressed CCR1, -2, and -3; e-MDSCs and PMN-MDSCs expressed CXCR2; and intestinal grafts expressed the corresponding chemokine ligands after ITx. Of note, the percentage of MDSCs among intestinal mucosal CD45+ cells increased after ITx. A novel in vitro assay demonstrated that MDSCs suppressed donor-reactive T cell-mediated destruction of donor intestinal epithelial organoids. Taken together, our results suggest that MDSCs accumulate in the recipient PBMCs and the grafted intestinal mucosa in ITx, and may regulate ACR.
Collapse
Affiliation(s)
- Shinji Okano
- Transplant Center, Dept. General Surgery, Digestive Disease & Surgery Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA,Dept. Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA,Address for correspondence: Shinji Okano M.D., Ph.D., Department of Immunology, Lerner Research Institutes, Cleveland Clinic, 2070 East 90th Street, NB3-30, Cleveland, Ohio 44195, USA. Fax number: +1 216 444 3146, Telephone number: +1 216 444 1230, or
| | - Kareem Abu-Elmagd
- Transplant Center, Dept. General Surgery, Digestive Disease & Surgery Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Danielle D Kish
- Dept. Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Karen Keslar
- Dept. Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - William M. Baldwin
- Dept. Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Robert L. Fairchild
- Dept. Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Masato Fujiki
- Transplant Center, Dept. General Surgery, Digestive Disease & Surgery Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Ajai Khanna
- Transplant Center, Dept. General Surgery, Digestive Disease & Surgery Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Mohammed Osman
- Transplant Center, Dept. General Surgery, Digestive Disease & Surgery Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Guilherme Costa
- Transplant Center, Dept. General Surgery, Digestive Disease & Surgery Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - John Fung
- Transplant Center, Dept. General Surgery, Digestive Disease & Surgery Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Charles Miller
- Transplant Center, Dept. General Surgery, Digestive Disease & Surgery Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Hiroto Kayashima
- Transplant Center, Dept. General Surgery, Digestive Disease & Surgery Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Koji Hashimoto
- Transplant Center, Dept. General Surgery, Digestive Disease & Surgery Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| |
Collapse
|
43
|
Brockmann JG, Broering DC, Raza SM, Rasheed W, Hashmi SK, Chaudhri N, Nizami IY, Alburaiki JAH, Shagrani MA, Ali T, Aljurf M. Solid organ transplantation following allogeneic haematopoietic cell transplantation: experience from a referral organ transplantation center and systematic review of literature. Bone Marrow Transplant 2018; 54:190-203. [PMID: 30082851 PMCID: PMC7092162 DOI: 10.1038/s41409-018-0255-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 05/20/2018] [Indexed: 01/08/2023]
Abstract
Solid organ transplantation (SOT) following haematopoietic cell transplantation (HCT) is a rare event. Uncertainty exists whether such recipients are at higher risk of relapse of underlying haematological disease or at increased risk of developing infectious or immunological complications and malignancies following SOT. The experience at our referral organ transplantation center and the present literature of SOT (n = 198) in recipients following previous HCT was systematically reviewed. Outcome analysis of 206 SOT recipients following HCT challenges the validity of the frequently stated comparable outcome with recipients without prior HCT. SOT recipients after HCT are younger and have a higher mortality and morbidity in comparison with "standard" recipients. Rejection rates for SOT recipients following HCT appear to be lower for all organs, except for liver transplantation. In the setting of liver transplantation following HCT, mortality for recipients of deceased donor grafts appears to be exceptionally high, although experience with grafts of living donors are favourable. Morbidity was mostly associated with infectious and malignant complications. Of note some SOT recipients who received solid organ donation from the same HCT donor were able to achieve successful withdrawal of immune suppression. Despite limited follow-up, recipients with prior HCT show a different course after SOT, necessitating attention and closer follow-up.
Collapse
Affiliation(s)
- Jens G Brockmann
- Department of Surgery, Organ Transplant Center, All King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| | - Dieter C Broering
- Department of Surgery, Organ Transplant Center, All King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Syed M Raza
- Department of Surgery, Organ Transplant Center, All King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Walid Rasheed
- Department of Medical Oncology, All King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Shahrukh K Hashmi
- Department of Medical Oncology, All King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Naeem Chaudhri
- Department of Medical Oncology, All King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Imran Y Nizami
- Organ Transplant Centre, Lung Transplant Medicine, All King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Jehad A H Alburaiki
- Department of Cardiology, All King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohamed A Shagrani
- Organ Transplant Center, Department of Paediatric Transplant Hepatology, Organ Transplant Center, All King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Tariq Ali
- Organ Transplant Center, Department of Kidney and Pancreas Transplant Nephrology, Organ Transplant Center, All King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mahmoud Aljurf
- Department of Medical Oncology, All King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
44
|
Sharkey LM, Peacock S, Russell NK, Middleton SJ, Butler AJ. Graft versus host disease after multivisceral transplantation: A UK center experience and update on management. Clin Transplant 2018. [PMID: 29543344 DOI: 10.1111/ctr.13239] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lisa M. Sharkey
- Department of Gastroenterology; Cambridge University Hospitals NHS Foundation Trust; Cambridge UK
| | - Sarah Peacock
- Tissue Typing Laboratory; Cambridge University Hospitals NHS Foundation Trust; Cambridge UK
| | - Neil K. Russell
- Department of Transplant Surgery; Cambridge University Hospitals NHS Foundation Trust; Cambridge UK
| | - Stephen J. Middleton
- Department of Gastroenterology; Cambridge University Hospitals NHS Foundation Trust; Cambridge UK
| | - Andrew J. Butler
- Department of Transplant Surgery; Cambridge University Hospitals NHS Foundation Trust; Cambridge UK
- Department of Surgery and the NIHR Cambridge Biomedical Research Centre; University of Cambridge; Addenbrooke's Hospital; Cambridge UK
| |
Collapse
|
45
|
Wu G, Cruz RJ. Liver-inclusive intestinal transplantation results in decreased alloimmune-mediated rejection but increased infection. Gastroenterol Rep (Oxf) 2017; 6:29-37. [PMID: 29479440 PMCID: PMC5806397 DOI: 10.1093/gastro/gox043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 11/21/2017] [Indexed: 12/15/2022] Open
Abstract
Background and aims A co-transplanted liver allograft has been thought to protect other organs from rejection-mediated injury; however, detailed analyses of co-transplanted liver on intestinal allograft outcomes have not been conducted to date. The aim of the study was to compare immune-mediated injury, causes of graft failure and clinical outcomes between recipients who underwent either a liver-inclusive intestinal transplant (LITx) or liver-exclusive intestinal transplant (LETx). Methods Between May 2000 and May 2010, 212 adult patients undergoing LITx (n =76) and LETx (n =136) were included. LITx underwent either liver combined intestinal or full multivisceral transplantation. LETx underwent either isolated intestinal or modified multivisceral transplantation. Results During 44.9 ± 31.4 months of follow-up, death-censored intestinal graft survival was significantly higher for LITx than LETx (96.9%, 93.2% and 89.9% vs 91.4%, 69.3% and 60.0% at 1, 3 and 5 years; p =0.0001). Incidence of graft loss due to rejection was higher in LETx than in LITx (30.9% vs 6.6%; p <0.0001), while infection was the leading cause of graft loss due to patient death in LITx (25.0% vs 5.1%; p <0.0001). Despite similar immunosuppression, the average number (0.87 vs 1.42, p =0.02) and severity of acute cellular rejection episode (severe grade: 7.9% vs 21.3%; p =0.01) were lower in LITx than in LETx. Incidence of acute antibody-mediated rejection was also significantly lower in LITx than in LETx (3.6% vs 15.2%; p =0.03). Incidence of chronic rejection was reduced in LITx (3.9% vs 24.3%; p =0.0002). Conclusions Intestinal allografts with a liver component appear to decrease risk of rejection but increase risk of infection. Our findings emphasize that LITx has characteristic immunologic and clinical features. Lower immunosuppression may need to be considered for patients who undergo LITx to attenuate increased risk of infection.
Collapse
Affiliation(s)
- Guosheng Wu
- Department of Gastrointestinal Surgery, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shannxi, China
| | - Ruy J Cruz
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
46
|
Zuber J, Sykes M. Mechanisms of Mixed Chimerism-Based Transplant Tolerance. Trends Immunol 2017; 38:829-843. [PMID: 28826941 PMCID: PMC5669809 DOI: 10.1016/j.it.2017.07.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/24/2017] [Accepted: 07/19/2017] [Indexed: 02/06/2023]
Abstract
Immune responses to allografts represent a major barrier in organ transplantation. Immune tolerance to avoid chronic immunosuppression is a critical goal in the field, recently achieved in the clinic by combining bone marrow transplantation (BMT) with kidney transplantation following non-myeloablative conditioning. At high levels of chimerism such protocols can permit central deletional tolerance, but with a significant risk of graft-versus-host (GVH) disease (GVHD). By contrast, transient chimerism-based tolerance is devoid of GVHD risk and appears to initially depend on regulatory T cells (Tregs) followed by gradual, presumably peripheral, clonal deletion of donor-reactive T cells. Here we review recent mechanistic insights into tolerance and the development of more robust and safer protocols for tolerance induction that will be guided by innovative immune monitoring tools.
Collapse
Affiliation(s)
- Julien Zuber
- Service de Transplantation Rénale, Hôpital Necker, Université Paris Descartes, Paris, France; INSERM UMRS_1163, IHU Imagine, Paris, France.
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA; Department of Surgery, Columbia University, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University Center, New York, NY 10032, USA.
| |
Collapse
|
47
|
Weiner J, Zuber J, Shonts B, Yang S, Fu J, Martinez M, Farber D, Kato T, Sykes M. Long-term Persistence of Innate Lymphoid Cells in the Gut After Intestinal Transplantation. Transplantation 2017; 101:2449-2454. [PMID: 27941430 PMCID: PMC5462871 DOI: 10.1097/tp.0000000000001593] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Little is known about innate lymphoid cell (ILC) populations in the human gut, and the turnover of these cells and their subsets after transplantation has not been described. METHODS Intestinal samples were taken from 4 isolated intestine and 3 multivisceral transplant recipients at the time of any operative resection, such as stoma closure or revision. ILCs were isolated and analyzed by flow cytometry. The target population was defined as being negative for lineage markers and double-positive for CD45/CD127. Cells were further stained to define ILC subsets and a donor-specific or recipient-specific HLA marker to analyze chimerism. RESULTS Donor-derived ILCs were found to persist greater than 8 years after transplantation. Additionally, the percentage of cells thought to be lymphoid tissue inducer cells among donor ILCs was far higher than that among recipient ILCs. CONCLUSIONS Our findings demonstrate that donor-derived ILCs persist long-term after transplantation and support the notion that human lymphoid tissue inducer cells may form in the fetus and persist throughout life, as hypothesized in rodents. Correlation between chimerism and rejection, graft failure, and patient survival requires further study.
Collapse
Affiliation(s)
- Joshua Weiner
- Columbia Center for Translational Immunology, 650 West 168 Street, 17 Floor, New York, NY 10032, USA
- Department of Surgery, Center for Liver Disease and Transplantation, 622 West 168 Street, 14 Floor, New York, NY 10032, USA
| | - Julien Zuber
- Columbia Center for Translational Immunology, 650 West 168 Street, 17 Floor, New York, NY 10032, USA
| | - Brittany Shonts
- Columbia Center for Translational Immunology, 650 West 168 Street, 17 Floor, New York, NY 10032, USA
| | - Suxiao Yang
- Columbia Center for Translational Immunology, 650 West 168 Street, 17 Floor, New York, NY 10032, USA
| | - Jianing Fu
- Columbia Center for Translational Immunology, 650 West 168 Street, 17 Floor, New York, NY 10032, USA
| | - Mercedes Martinez
- Department of Pediatrics, Columbia University Medical Center, 622 West 168 Street, 17 Floor, New York, NY 10032, USA
| | - Donna Farber
- Columbia Center for Translational Immunology, 650 West 168 Street, 17 Floor, New York, NY 10032, USA
| | - Tomoaki Kato
- Department of Surgery, Center for Liver Disease and Transplantation, 622 West 168 Street, 14 Floor, New York, NY 10032, USA
| | - Megan Sykes
- Columbia Center for Translational Immunology, 650 West 168 Street, 17 Floor, New York, NY 10032, USA
| |
Collapse
|
48
|
Abstract
Alloimmune T cells are central mediators of rejection and graft-versus-host disease in both solid organ and hematopoietic stem cell transplantation. Unique among immune responses in terms of its strength and diversity, the T cell alloresponse reflects extensive genetic polymorphisms between allogeneic donors and recipients, most prominently within the major histocompatibility complex (MHC), which encodes human leukocyte antigens (HLAs) in humans. The repertoire of alloreactive T cell clones is distinct for every donor-recipient pair and includes potentially thousands of unique HLA/peptide specificities. The extraordinary magnitude of the primary alloresponse and diversity of the T cell population mediating it have presented technical challenges to its study in humans. High-throughput T cell receptor sequencing approaches have opened up new possibilities for tackling many fundamental questions about this important immunologic phenomenon.
Collapse
|
49
|
Zuber J. Tolérance en transplantation par chimérisme mixte. Nephrol Ther 2017; 13 Suppl 1:S127-S130. [DOI: 10.1016/j.nephro.2017.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/24/2017] [Accepted: 01/30/2017] [Indexed: 10/19/2022]
|
50
|
Cromvik J, Varkey J, Herlenius G, Johansson JE, Wennerås C. Graft-versus-host Disease After Intestinal or Multivisceral Transplantation: A Scandinavian Single-center Experience. Transplant Proc 2016; 48:185-90. [PMID: 26915866 DOI: 10.1016/j.transproceed.2015.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 11/11/2015] [Indexed: 01/06/2023]
Abstract
BACKGROUND Graft-versus-host disease (GVHD) that develops after intestinal or multivisceral transplantation is difficult to diagnose and is associated with high morbidity and mortality. MATERIAL AND METHODS The objectives of this study were to investigate the incidence, clinical picture, risk factors, and outcome of GVHD in a Scandinavian cohort of patients who underwent intestinal or multivisceral transplantation during a period of 16 years (1998-2014). All transplanted patients (n = 26) were retrospectively analyzed with respect to donor- and recipient-derived risk factors. The diagnosis of GVHD was based on clinical signs, chimerism analyses of leukocytes, and histopathologic findings in biopsy specimens. RESULTS Five of 26 patients (19%) were diagnosed with GVHD, of which three had skin GVHD, one had skin and bone marrow GVHD, and one had passenger leukocyte syndrome. Only multivisceral-transplanted patients developed GVHD. Risk factors for development of GVHD were an underlying tumor diagnosis and neoadjuvant chemo- or brachytherapy administered before intestinal transplantation. All patients were given high-dose corticosteroids as first line treatment for their GVHD, and all survived their episodes of GVHD. CONCLUSIONS The risk of GVHD appears to be increased in recipients of multivisceral transplantations who received chemotherapy due to an underlying malignancy. The reasons may be the large amount of lymphoid tissue in these types of grafts, and the cytotoxic effects of the malignancy and chemotherapy on healthy recipient tissues. These patients should be monitored closely for the development of GVHD.
Collapse
Affiliation(s)
- J Cromvik
- Department of Hematology and Coagulation, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - J Varkey
- Department of Gastroenterology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - G Herlenius
- Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - J-E Johansson
- Department of Hematology and Coagulation, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - C Wennerås
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|