1
|
Jung M, Lee S, Park S, Hong J, Kim C, Cho I, Sohn HS, Kim K, Park IW, Yoon S, Kwon S, Shin J, Lee D, Kang M, Go S, Moon S, Chung Y, Kim Y, Kim BS. A Therapeutic Nanovaccine that Generates Anti-Amyloid Antibodies and Amyloid-specific Regulatory T Cells for Alzheimer's Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207719. [PMID: 36329674 DOI: 10.1002/adma.202207719] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Alzheimer's disease (AD), the most common cause of dementia, is a complex condition characterized by multiple pathophysiological mechanisms including amyloid-β (Aβ) plaque accumulation and neuroinflammation in the brain. The current immunotherapy approaches, such as anti-Aβ monoclonal antibody (mAb) therapy, Aβ vaccines, and adoptive regulatory T (Treg) cell transfer, target a single pathophysiological mechanism, which may lead to unsatisfactory therapeutic efficacy. Furthermore, Aβ vaccines often induce T helper 1 (Th1) cell-mediated inflammatory responses. Here, a nanovaccine composed of lipid nanoparticles loaded with Aβ peptides and rapamycin is developed, which targets multiple pathophysiological mechanisms, exhibits the combined effects of anti-Aβ antibody therapy and adoptive Aβ-specific Treg cell transfer, and can overcome the limitations of current immunotherapy approaches for AD. The Nanovaccine effectively delivers rapamycin and Aβ peptides to dendritic cells, produces both anti-Aβ antibodies and Aβ-specific Treg cells, removes Aβ plaques in the brain, alleviates neuroinflammation, prevents Th1 cell-mediated excessive immune responses, and inhibits cognitive impairment in mice. The nanovaccine shows higher efficacy in cognitive recovery than an Aβ vaccine. Unlike anti-Aβ mAb therapy and adoptive Treg cell transfer, both of which require complicated and costly manufacturing processes, the nanovaccine is easy-to-prepare and cost-effective. The nanovaccines can represent a novel treatment option for AD.
Collapse
Affiliation(s)
- Mungyo Jung
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Songmin Lee
- Department of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | - Sohui Park
- Department of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | - Jihye Hong
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Cheesue Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Illhwan Cho
- Department of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | - Hee Su Sohn
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyunghwan Kim
- Department of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | - In Wook Park
- Department of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | - Soljee Yoon
- Department of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
- Department of Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon, 21983, Republic of Korea
| | - Sungpil Kwon
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jisu Shin
- Department of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | - Donghee Lee
- Department of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | - Mikyung Kang
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seokhyung Go
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangjun Moon
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - YoungSoo Kim
- Department of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
- Department of Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon, 21983, Republic of Korea
| | - Byung-Soo Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Chemical Processes, Institute of Engineering Research, BioMAX, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
2
|
Louis K, Macedo C, Metes D. Targeting T Follicular Helper Cells to Control Humoral Allogeneic Immunity. Transplantation 2021; 105:e168-e180. [PMID: 33909968 PMCID: PMC8484368 DOI: 10.1097/tp.0000000000003776] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Humoral allogeneic immunity driven by anti-HLA donor-specific antibodies and antibody-mediated rejection (AMR) significantly impede prolonged survival of organ allografts after transplantation. Although the importance of T follicular helper (TFH) cells in controlling antibody responses has been long established, their role in directing donor-specific antibody generation leading to AMR was only recently appreciated in the clinical setting of organ transplantation. In this review, we provide a comprehensive summary of the current knowledge on the biology of human TFH cells as well as their circulating counterparts and describe their pivotal role in driving humoral alloimmunity. In addition, we discuss the intrinsic effects of current induction therapies and maintenance immunosuppressive drugs as well as of biotherapies on TFH cells and provide future directions and novel opportunities of biotherapeutic targeting of TFH cells that have the potential of bringing the prophylactic and curative treatments of AMR toward personalized and precision medicine.
Collapse
Affiliation(s)
- Kevin Louis
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Human Immunology and Immunopathology, Inserm UMR 976, Université de Paris, Paris, France
- Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Camila Macedo
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Diana Metes
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Bracamonte-Baran W, Gilotra NA, Won T, Rodriguez KM, Talor MV, Oh BC, Griffin J, Wittstein I, Sharma K, Skinner J, Johns RA, Russell SD, Anders RA, Zhu Q, Halushka MK, Brandacher G, Čiháková D. Endothelial Stromal PD-L1 (Programmed Death Ligand 1) Modulates CD8 + T-Cell Infiltration After Heart Transplantation. Circ Heart Fail 2021; 14:e007982. [PMID: 34555935 PMCID: PMC8550427 DOI: 10.1161/circheartfailure.120.007982] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND The role of checkpoint axes in transplantation has been partially addressed in animal models but not in humans. Occurrence of fulminant myocarditis with allorejection-like immunologic features in patients under anti-PD1 (programmed death cell protein 1) treatment suggests a key role of the PD1/PD-L1 (programmed death ligand 1) axis in cardiac immune homeostasis. METHODS We cross-sectionally studied 23 heart transplant patients undergoing surveillance endomyocardial biopsy. Endomyocardial tissue and peripheral blood mononuclear cells were analyzed by flow cytometry. Multivariate logistic regression analyses including demographic, clinical, and hemodynamic parameters were performed. Murine models were used to evaluate the impact of PD-L1 endothelial graft expression in allorejection. RESULTS We found that myeloid cells dominate the composition of the graft leukocyte compartment in most patients, with variable T-cell frequencies. The CD (cluster of differentiation) 4:CD8 T-cell ratios were between 0 and 1.5. The proportion of PD-L1 expressing cells in graft endothelial cells, fibroblasts, and myeloid leukocytes ranged from negligible up to 60%. We found a significant inverse logarithmic correlation between the proportion of PD-L1+HLA (human leukocyte antigen)-DR+ endothelial cells and CD8+ T cells (slope, -18.3 [95% CI, -35.3 to -1.3]; P=0.030). PD-L1 expression and leukocyte patterns were independent of demographic, clinical, and hemodynamic parameters. We confirmed the importance of endothelial PD-L1 expression in a murine allogeneic heart transplantation model, in which Tie2Crepdl1fl/fl grafts lacking PD-L1 in endothelial cells were rejected significantly faster than controls. CONCLUSIONS Loss of graft endothelial PD-L1 expression may play a role in regulating CD8+ T-cell infiltration in human heart transplantation. Murine model results suggest that loss of graft endothelial PD-L1 may facilitate alloresponses and rejection.
Collapse
Affiliation(s)
- William Bracamonte-Baran
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Medicine, Texas Tech University Health Sciences Center – Permian Basin, Odessa, TX, 79763, USA
| | - Nisha A Gilotra
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Taejoon Won
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Katrina M Rodriguez
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Monica V Talor
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Byoung C Oh
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Jan Griffin
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
- Current Address: Department of Medicine, Columbia University, New York, NY
| | - Ilan Wittstein
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Kavita Sharma
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - John Skinner
- Department of Anesthesiology and Critical Care Medicine, Division of Adult Anesthesia, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Roger A Johns
- Department of Anesthesiology and Critical Care Medicine, Division of Adult Anesthesia, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Stuart D Russell
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
- Current Address: Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Robert A Anders
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Qingfeng Zhu
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Marc K Halushka
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Gerald Brandacher
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Daniela Čiháková
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| |
Collapse
|
4
|
The role of circulating T follicular helper cells in kidney transplantation. Transpl Immunol 2021; 69:101459. [PMID: 34461243 DOI: 10.1016/j.trim.2021.101459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/21/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022]
Abstract
Humoral rejection plays a crucial role in the chronic deterioration of kidney allografts, but there is no effective therapeutic strategy to prevent or treat it. T follicular helper (Tfh) cells provide help to B cells, subsequently contributing to humoral rejection. Investigation of Tfh cells may be a useful strategy for assessing the risk and level of humoral rejection. However, it is difficult to investigate Tfh cells from patient-derived lymphoid tissue. Recent studies have shown that circulating Tfh (cTfh) cells, working in parallel to Tfh cells, have the capacity to promote antibody-secreting B cell differentiation and antibody secretion. Here, we review recent studies of cTfh cells in kidney transplantation and discuss the characteristics and functions of cTfh cells in kidney transplant recipients.
Collapse
|
5
|
Dudreuilh C, Basu S, Scottà C, Dorling A, Lombardi G. Potential Application of T-Follicular Regulatory Cell Therapy in Transplantation. Front Immunol 2021; 11:612848. [PMID: 33603742 PMCID: PMC7884443 DOI: 10.3389/fimmu.2020.612848] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022] Open
Abstract
Regulatory T cells (Tregs) constitute a small proportion of circulating CD4+ T cells that function to maintain homeostasis and prevent autoimmunity. In light of their powerful immunosuppressive and tolerance-promoting properties, Tregs have become an interesting potential candidate for therapeutic use in conditions such as solid organ transplant or to treat autoimmune and inflammatory conditions. Clinical studies have demonstrated the safety of polyclonally expanded Tregs in graft-versus-host disease, type 1 diabetes, and more recently in renal and liver transplantation. However, Tregs are heterogenous. Recent insights indicate that only a small proportion of Tregs, called T follicular regulatory cells (Tfr) regulate interactions between B cells and T follicular helper (Tfh) cells within the germinal center. Tfr have been mainly described in mouse models due to the challenges of sampling secondary lymphoid organs in humans. However, emerging human studies, characterize Tfr as being CD4+CD25+FOXP3+CXCR5+ cells with different levels of PD-1 and ICOS expression depending on their localization, in the blood or the germinal center. The exact role they play in transplantation remains to be elucidated. However, given the potential ability of these cells to modulate antibody responses to allo-antigens, there is great interest in exploring translational applications in situations where B cell responses need to be regulated. Here, we review the current knowledge of Tfr and the role they play focusing on human diseases and transplantation. We also discuss the potential future applications of Tfr therapy in transplantation and examine the evidence for a role of Tfr in antibody production, acute and chronic rejection and tertiary lymphoid organs. Furthermore, the potential impact of immunosuppression on Tfr will be explored. Based on preclinical research, we will analyse the rationale of Tfr therapy in solid organ transplantation and summarize the different challenges to be overcome before Tfr therapy can be implemented into clinical practice.
Collapse
Affiliation(s)
- Caroline Dudreuilh
- Department of Inflammation Biology, King's College London (KCL), Guy's Hospital, London, United Kingdom.,Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, London, United Kingdom
| | - Sumoyee Basu
- Department of Inflammation Biology, King's College London (KCL), Guy's Hospital, London, United Kingdom.,Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, London, United Kingdom
| | - Cristiano Scottà
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, London, United Kingdom.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King's College London (KCL), Guy's Hospital, London, United Kingdom
| | - Anthony Dorling
- Department of Inflammation Biology, King's College London (KCL), Guy's Hospital, London, United Kingdom.,Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, London, United Kingdom
| | - Giovanna Lombardi
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, London, United Kingdom.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King's College London (KCL), Guy's Hospital, London, United Kingdom
| |
Collapse
|
6
|
Cheng CH, Lee CF, Oh BC, Furtmüller GJ, Patel CH, Brandacher G, Powell JD. Targeting Metabolism as a Platform for Inducing Allograft Tolerance in the Absence of Long-Term Immunosuppression. Front Immunol 2020; 11:572. [PMID: 32328063 PMCID: PMC7161684 DOI: 10.3389/fimmu.2020.00572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 03/12/2020] [Indexed: 12/14/2022] Open
Abstract
Transplant tolerance in the absence of long-term immunosuppression has been an elusive goal for solid organ transplantation. Recently, it has become clear that metabolic reprogramming plays a critical role in promoting T cell activation, differentiation, and function. Targeting metabolism can preferentially inhibit T cell effector generation while simultaneously promoting the generation of T regulatory cells. We hypothesized that costimulatory blockade with CTLA4Ig in combination with targeting T cell metabolism might provide a novel platform to promote the induction of transplant tolerance.
Collapse
Affiliation(s)
- Chih-Hsien Cheng
- Sidney∼Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Liver and Transplantation Surgery, Chang-Gung Memorial Hospital, Chang-Gung Transplantation Institute, Chang-Gung University College of Medicine, Taoyuan, Taiwan
| | - Chen-Fang Lee
- Sidney∼Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Liver and Transplantation Surgery, Chang-Gung Memorial Hospital, Chang-Gung Transplantation Institute, Chang-Gung University College of Medicine, Taoyuan, Taiwan
| | - Byoung Chol Oh
- Vascularized Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Georg J Furtmüller
- Vascularized Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Chirag H Patel
- Sidney∼Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Gerald Brandacher
- Vascularized Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jonathan D Powell
- Sidney∼Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
7
|
Oh BC, Furtmüller GJ, Fryer ML, Guo Y, Messner F, Krapf J, Schneeberger S, Cooney DS, Lee WPA, Raimondi G, Brandacher G. Vascularized composite allotransplantation combined with costimulation blockade induces mixed chimerism and reveals intrinsic tolerogenic potential. JCI Insight 2020; 5:128560. [PMID: 32271163 DOI: 10.1172/jci.insight.128560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/04/2020] [Indexed: 12/14/2022] Open
Abstract
Vascularized composite allotransplantation (VCA) has become a valid therapeutic option to restore form and function after devastating tissue loss. However, the need for high-dose multidrug immunosuppression to maintain allograft survival is still hampering more widespread application of VCA. In this study, we investigated the immunoregulatory potential of costimulation blockade (CoB; CTLA4-Ig and anti-CD154 mAb) combined with nonmyeoablative total body irradiation (TBI) to promote allograft survival of VCA in a fully MHC-mismatched mouse model of orthotopic hind limb transplantation. Compared with untreated controls (median survival time [MST] 8 days) and CTLA4-Ig treatment alone (MST 17 days), CoB treatment increased graft survival (MST 82 days), and the addition of nonmyeloablative TBI led to indefinite graft survival (MST > 210 days). Our analysis suggests that VCA-derived BM induced mixed chimerism in animals treated with CoB and TBI + CoB, promoting gradual deletion of alloreactive T cells as the underlying mechanism of long-term allograft survival. Acceptance of donor-matched secondary skin grafts, decreased ex vivo T cell responsiveness, and increased graft-infiltrating Tregs further indicated donor-specific tolerance induced by TBI + CoB. In summary, our data suggest that vascularized BM-containing VCAs are immunologically favorable grafts promoting chimerism induction and long-term allograft survival in the context of CoB.
Collapse
Affiliation(s)
- Byoung Chol Oh
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Georg J Furtmüller
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Madeline L Fryer
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yinan Guo
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Hand and Microsurgery, Xiangya Hospital, Central South University, Hunan, China
| | - Franka Messner
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Visceral, Transplant and Thoracic Surgery, and
| | - Johanna Krapf
- Department of Plastic and Reconstructive Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Damon S Cooney
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - W P Andrew Lee
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Giorgio Raimondi
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gerald Brandacher
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Mardomi A, Mohammadi N, Khosroshahi HT, Abediankenari S. An update on potentials and promises of T cell co-signaling molecules in transplantation. J Cell Physiol 2019; 235:4183-4197. [PMID: 31696513 DOI: 10.1002/jcp.29369] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023]
Abstract
The promising outcomes of immune-checkpoint based immunotherapies in cancer have provided a proportional perspective ahead of exploiting similar approaches in allotransplantation. Belatacept (CTLA-4-Ig) is an example of costimulation blockers successfully exploited in renal transplantation. Due to the wide range of regulatory molecules characterized in the past decades, some of these molecules might be candidates as immunomodulators in the case of tolerance induction in transplantation. Although there are numerous attempts on the apprehension of the effects of co-signaling molecules on immune response, the necessity for a better understanding is evident. By increasing the knowledge on the biology of co-signaling pathways, some pitfalls are recognized and improved approaches are proposed. The blockage of CD80/CD28 axis is an instance of evolution toward more efficacy. It is now evident that anti-CD28 antibodies are more effective than CD80 blockers in animal models of transplantation. Other co-signaling axes such as PD-1/PD-L1, CD40/CD154, 2B4/CD48, and others discussed in the present review are examples of critical immunomodulatory molecules in allogeneic transplantation. We review here the outcomes of recent experiences with co-signaling molecules in preclinical studies of solid organ transplantation.
Collapse
Affiliation(s)
- Alireza Mardomi
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nabiallah Mohammadi
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Saeid Abediankenari
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
9
|
Laguna-Goya R, Suàrez-Fernández P, Paz-Artal E. Follicular helper T cells and humoral response in organ transplantation. Transplant Rev (Orlando) 2019; 33:183-190. [PMID: 31327572 DOI: 10.1016/j.trre.2019.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/17/2019] [Accepted: 06/28/2019] [Indexed: 02/07/2023]
Abstract
Antibody mediated rejection has been recognized as an important contributor to long-term graft loss in most solid organ transplants. Current immunosuppressive regimes are not capable of preventing anti-HLA antibody formation and eventual damage to the graft, and there is a need to develop drugs directed against novel targets to avoid graft allorecognition. In this review we introduce follicular helper T cells (Tfh), a subtype of lymphocyte specialized in helping B cells to differentiate into plasmablasts and produce class-switched antibodies. We focus on the role of Tfh in solid organ transplantation, what is known about Tfh and the production of alloantibodies, how current immunosuppressive therapies affect Tfh and what new molecules could be used to target Tfh in transplantation, with the goal of improving graft survival.
Collapse
Affiliation(s)
- R Laguna-Goya
- Immunology Department, Hospital Universitario 12 de Octubre, Madrid, Spain; Instituto de investigación Hospital Universitario 12 de Octubre (Imas12), Madrid, Spain; School of Medicine, Universidad Complutense de Madrid, Spain.
| | - P Suàrez-Fernández
- Instituto de investigación Hospital Universitario 12 de Octubre (Imas12), Madrid, Spain
| | - E Paz-Artal
- Immunology Department, Hospital Universitario 12 de Octubre, Madrid, Spain; Instituto de investigación Hospital Universitario 12 de Octubre (Imas12), Madrid, Spain; School of Medicine, Universidad Complutense de Madrid, Spain
| |
Collapse
|
10
|
Abstract
De novo donor-specific antibody (DSA) formation is a major problem in transplantation, and associated with long-term graft decline and loss as well as sensitization, limiting future transplant options. Forming high-affinity, long-lived antibody responses involves a process called the germinal center (GC) reaction, and requires interaction between several cell types, including GC B cells, T follicular helper (Tfh) and T follicular regulatory (Tfr) cells. T follicular regulatory cells are an essential component of the GC reaction, limiting its size and reducing nonspecific or self-reactive responses.An imbalance between helper function and regulatory function can lead to excessive antibody production. High proportions of Tfh cells have been associated with DSA formation in transplantation; therefore, Tfr cells are likely to play an important role in limiting DSA production. Understanding the signals that govern Tfr cell development and the balance between helper and regulatory function within the GC is key to understanding how these cells might be manipulated to reduce the risk of DSA development.This review discusses the development and function of Tfr cells and their relevance to transplantation. In particular how current and future immunosuppressive strategies might allow us to skew the ratio between Tfr and Tfh cells to increase or decrease the risk of de novo DSA formation.
Collapse
|
11
|
Kubo K, Kawato Y, Nakamura K, Nakajima Y, Nakagawa TY, Hanaoka K, Oshima S, Fukahori H, Inami M, Morokata T, Higashi Y. Effective suppression of donor specific antibody production by Cathepsin S inhibitors in a mouse transplantation model. Eur J Pharmacol 2018; 838:145-152. [DOI: 10.1016/j.ejphar.2018.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/16/2018] [Accepted: 09/05/2018] [Indexed: 02/03/2023]
|
12
|
Kwun J, Park J, Yi JS, Farris AB, Kirk AD, Knechtle SJ. IL-21 Biased Alemtuzumab Induced Chronic Antibody-Mediated Rejection Is Reversed by LFA-1 Costimulation Blockade. Front Immunol 2018; 9:2323. [PMID: 30374350 PMCID: PMC6196291 DOI: 10.3389/fimmu.2018.02323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/18/2018] [Indexed: 11/25/2022] Open
Abstract
Despite its excellent efficacy in controlling T cell mediated acute rejection, lymphocyte depletion may promote a humoral response. While T cell repopulation after depletion has been evaluated in many aspects, the B cell response has not been fully elucidated. We tested the hypothesis that the mechanisms also involve skewed T helper phenotype after lymphocytic depletion. Post-transplant immune response was measured from alemtuzumab treated hCD52Tg cardiac allograft recipients with or without anti-LFA-1 mAb. Alemtuzumab induction promoted serum DSA, allo-B cells, and CAV in humanized CD52 transgenic (hCD52Tg) mice after heterotopic heart transplantation. Additional anti-LFA-1 mAb treatment resulted in reduced DSA (Fold increase 4.75 ± 6.9 vs. 0.7 ± 0.5; p < 0.01), allo-specific B cells (0.07 ± 0.06 vs. 0.006 ± 0.002 %; p < 0.01), neo-intimal hyperplasia (56 ± 14% vs. 23 ± 13%; p < 0.05), arterial disease (77.8 ± 14.2 vs. 25.8 ± 20.1%; p < 0.05), and fibrosis (15 ± 23.3 vs. 4.3 ± 1.65%; p < 0.05) in this alemtuzumab-induced chronic antibody-mediated rejection (CAMR) model. Surprisingly, elevated serum IL-21 levels in alemtuzumab-treated mice was reduced with LFA-1 blockade. In accordance with the increased serum IL-21 level, alemtuzumab treated mice showed hyperplastic germinal center (GC) development, while the supplemental anti-LFA-1 mAb significantly reduced the GC frequency and size. We report that the incomplete T cell depletion inside of the GC leads to a systemic IL-21 dominant milieu with hyperplastic GC formation and CAMR. Conventional immunosuppression, such as tacrolimus and rapamycin, failed to reverse AMR, while co-stimulation blockade with LFA-1 corrected the GC hyperplastic response. The identification of IL-21 driven chronic AMR elucidates a novel mechanism that suggests a therapeutic approach with cytolytic induction.
Collapse
Affiliation(s)
- Jean Kwun
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, NC, United States
| | - Jaeberm Park
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, NC, United States
| | - John S Yi
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Alton B Farris
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, United States
| | - Allan D Kirk
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, NC, United States
| | - Stuart J Knechtle
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
13
|
Chen M, Lin X, Olsen N, He X, Zheng SG. Advances in T follicular helper and T follicular regulatory cells in transplantation immunity. Transplant Rev (Orlando) 2018; 32:187-193. [PMID: 30139705 DOI: 10.1016/j.trre.2018.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/08/2018] [Accepted: 07/20/2018] [Indexed: 12/14/2022]
Abstract
B cells play a crucial role in alloreactivity of organ transplant rejection and graft versus host diseases (GVHD). Over the past decade, it has been well recognized that B-cell infiltration in allografts and de novo donor-specific antibodies (DSA) were strongly associated with severe graft rejection and loss, as well as glucocorticoid resistance. Emerging evidence has demonstrated that Follicular T helper (Tfh) cells are key effectors to promote the proliferation and differentiation of B cells into antibody-producing plasmablasts and memory B cells. T-follicular regulatory (Tfr) cells are a recently recognized cell population that has a negative regulatory role on Tfh cells in the follicle, preventing incessant antibody production. It is still less clear how those humoral immunoreactive cells affect transplant rejection and allograft loss. This review focuses on the production and function of Tfr/Tfh cells in the transplant environment. Better understanding of the functions and mechanisms of Tfr/Tfh cells will help to design new strategies to prevent allograft rejection and prolong graft survival.
Collapse
Affiliation(s)
- Maogen Chen
- Organ transplant center, First affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, PR China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Xiaohong Lin
- Division of general surgery, The Eastern Hospital of the First affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | - Nancy Olsen
- Division of Rheumatology, Penn State Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Xiaoshun He
- Organ transplant center, First affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, PR China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Song Guo Zheng
- Division of Rheumatology, Penn State Milton S. Hershey Medical Center, Hershey, PA 17033, USA.
| |
Collapse
|
14
|
Yan L, de Leur K, Hendriks RW, van der Laan LJW, Shi Y, Wang L, Baan CC. T Follicular Helper Cells As a New Target for Immunosuppressive Therapies. Front Immunol 2017; 8:1510. [PMID: 29163552 PMCID: PMC5681999 DOI: 10.3389/fimmu.2017.01510] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/25/2017] [Indexed: 02/05/2023] Open
Abstract
Over the past decade, antibody-mediated (humoral) rejection has been recognized as a common cause of graft dysfunction after organ transplantation and an important determinant for graft loss. In humoral alloimmunity, T follicular helper (Tfh) cells play a crucial role, because they help naïve B cells to differentiate into memory B cells and alloantibody-producing plasma cells within germinal centers. In this way, they contribute to the induction of donor-specific antibodies, which are responsible for the humoral immune response to the allograft. In this article, we provide an overview of the current knowledge on the effects of immunosuppressive therapies on Tfh cell development and function, and discuss possible new approaches to influence the activity of Tfh cells. In addition, we discuss the potential use of Tfh cells as a pharmacodynamic biomarker to improve alloimmune-risk stratification and tailoring of immunosuppression to individualize therapy after transplantation.
Collapse
Affiliation(s)
- Lin Yan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Kitty de Leur
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, Netherlands.,Department of Surgery, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Yunying Shi
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Lanlan Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Carla C Baan
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
15
|
Galgani M, De Rosa V, La Cava A, Matarese G. Role of Metabolism in the Immunobiology of Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2017; 197:2567-75. [PMID: 27638939 DOI: 10.4049/jimmunol.1600242] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/25/2016] [Indexed: 02/06/2023]
Abstract
Intracellular metabolism is central to cell activity and function. CD4(+)CD25(+) regulatory T cells (Tregs) that express the transcription factor FOXP3 play a pivotal role in the maintenance of immune tolerance to self. Recent studies showed that the metabolism and function of Tregs are influenced significantly by local environmental conditions and the availability of certain metabolites. It also was reported that defined metabolic programs associate with Treg differentiation, expression of FOXP3, and phenotype stabilization. This article reviews how metabolism modulates FOXP3 expression and Treg function, what environmental factors are involved, and how metabolic manipulation could alter Treg frequency and function in physiopathologic conditions.
Collapse
Affiliation(s)
- Mario Galgani
- Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy
| | - Veronica De Rosa
- Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy; Unità di NeuroImmunologia, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 00179 Rome, Italy
| | - Antonio La Cava
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095; and
| | - Giuseppe Matarese
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| |
Collapse
|