1
|
He Y, Wang J, Chi L, Dong Y, Chen H, Meng X, Liao M, Luo Y, Fan H. Combination Adjuvants Enhance Recombinant H5 Hemagglutinin Vaccine Protection Against High-Dose Viral Challenge in Chickens. Vaccines (Basel) 2024; 12:1448. [PMID: 39772109 PMCID: PMC11680309 DOI: 10.3390/vaccines12121448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Recombinant avian influenza subunit vaccines often require adjuvants to enhance immune responses. This study aims to evaluate the immune-enhancing potential of seven combination adjuvants in specific pathogen-free (SPF) chickens. METHODS SPF chickens were vaccinated with combinations of ISA78VG and adjuvants, including Quil-A, CpG, and monophosphoryl lipid A (MPLA). Their immune responses were assessed using a vaccination and viral challenge protection model. RESULTS The combinations of ISA78VG with Quil-A, CpG&MPLA or CpG&Quil-A significantly enhanced antibody responses and provided cross-protection against the H5N8-20135 strain. The ISA78VG&MPLA and ISA78VG&CpG&MPLA combinations induced the stronger IFN-γ production, with CpG further amplifying the immune response. The ISA78VG&Quil-A formulation, in particular, stimulated rapid antibody responses, achieving a 100% seroconversion by day 14 and high titers of hemagglutination inhibition (HI) antibodies against both the recombinant HA antigen and the H5N6-20053 virus. CONCLUSIONS The ISA78VG&Quil-A combination is an ideal adjuvant for enhancing the immunogenicity of avian influenza rHA subunit vaccines, offering a promising strategy for H5 subtype vaccine development.
Collapse
Affiliation(s)
- Yanjuan He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (J.W.); (L.C.); (Y.D.); (H.C.); (X.M.); (M.L.)
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
| | - Jiaxin Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (J.W.); (L.C.); (Y.D.); (H.C.); (X.M.); (M.L.)
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
| | - Lanyan Chi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (J.W.); (L.C.); (Y.D.); (H.C.); (X.M.); (M.L.)
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
| | - Yajing Dong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (J.W.); (L.C.); (Y.D.); (H.C.); (X.M.); (M.L.)
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
| | - Huixin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (J.W.); (L.C.); (Y.D.); (H.C.); (X.M.); (M.L.)
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
| | - Xiaocui Meng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (J.W.); (L.C.); (Y.D.); (H.C.); (X.M.); (M.L.)
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (J.W.); (L.C.); (Y.D.); (H.C.); (X.M.); (M.L.)
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
| | - Yongwen Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (J.W.); (L.C.); (Y.D.); (H.C.); (X.M.); (M.L.)
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
| | - Huiying Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (J.W.); (L.C.); (Y.D.); (H.C.); (X.M.); (M.L.)
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
| |
Collapse
|
2
|
Wenger M, Grosse-Kathoefer S, Kraiem A, Pelamatti E, Nunes N, Pointner L, Aglas L. When the allergy alarm bells toll: The role of Toll-like receptors in allergic diseases and treatment. Front Mol Biosci 2023; 10:1204025. [PMID: 37426425 PMCID: PMC10325731 DOI: 10.3389/fmolb.2023.1204025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Toll-like receptors of the human immune system are specialized pathogen detectors able to link innate and adaptive immune responses. TLR ligands include among others bacteria-, mycoplasma- or virus-derived compounds such as lipids, lipo- and glycoproteins and nucleic acids. Not only are genetic variations in TLR-related genes associated with the pathogenesis of allergic diseases, including asthma and allergic rhinitis, their expression also differs between allergic and non-allergic individuals. Due to a complex interplay of genes, environmental factors, and allergen sources the interpretation of TLRs involved in immunoglobulin E-mediated diseases remains challenging. Therefore, it is imperative to dissect the role of TLRs in allergies. In this review, we discuss i) the expression of TLRs in organs and cell types involved in the allergic immune response, ii) their involvement in modulating allergy-associated or -protective immune responses, and iii) how differential activation of TLRs by environmental factors, such as microbial, viral or air pollutant exposure, results in allergy development. However, we focus on iv) allergen sources interacting with TLRs, and v) how targeting TLRs could be employed in novel therapeutic strategies. Understanding the contributions of TLRs to allergy development allow the identification of knowledge gaps, provide guidance for ongoing research efforts, and built the foundation for future exploitation of TLRs in vaccine design.
Collapse
|
3
|
Kayesh MEH, Kohara M, Tsukiyama-Kohara K. Toll-like Receptor Response to Human Immunodeficiency Virus Type 1 or Co-Infection with Hepatitis B or C Virus: An Overview. Int J Mol Sci 2023; 24:ijms24119624. [PMID: 37298575 DOI: 10.3390/ijms24119624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Toll-like receptors (TLRs) are evolutionarily conserved pattern recognition receptors that play important roles in the early detection of pathogen-associated molecular patterns and shaping innate and adaptive immune responses, which may influence the consequences of infection. Similarly to other viral infections, human immunodeficiency virus type 1 (HIV-1) also modulates the host TLR response; therefore, a proper understanding of the response induced by human HIV-1 or co-infection with hepatitis B virus (HBV) or hepatitis C virus (HCV), due to the common mode of transmission of these viruses, is essential for understanding HIV-1 pathogenesis during mono- or co-infection with HBV or HCV, as well as for HIV-1 cure strategies. In this review, we discuss the host TLR response during HIV-1 infection and the innate immune evasion mechanisms adopted by HIV-1 for infection establishment. We also examine changes in the host TLR response during HIV-1 co-infection with HBV or HCV; however, this type of study is extremely scarce. Moreover, we discuss studies investigating TLR agonists as latency-reverting agents and immune stimulators towards new strategies for curing HIV. This understanding will help develop a new strategy for curing HIV-1 mono-infection or co-infection with HBV or HCV.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| |
Collapse
|
4
|
Treating allergies via skin - Recent advances in cutaneous allergen immunotherapy. Adv Drug Deliv Rev 2022; 190:114458. [PMID: 35850371 DOI: 10.1016/j.addr.2022.114458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 01/24/2023]
Abstract
Subcutaneous allergen immunotherapy has been practiced clinically for decades to treat airborne allergies. Recently, the cutaneous route, which exploits the immunocompetence of the skin has received attention, which is evident from attempts to use it to treat peanut allergy. Delivery of allergens into the skin is inherently impeded by the barrier imposed by stratum corneum, the top layer of the skin. While the stratum corneum barrier must be overcome for efficient allergen delivery, excessive disruption of this layer can predispose to development of allergic inflammation. Thus, the most desirable allergen delivery approach must provide a balance between the level of skin disruption and the amount of allergen delivered. Such an approach should aim to achieve high allergen delivery efficiency across various skin types independent of age and ethnicity, and optimize variables such as safety profile, allergen dosage, treatment frequency, application time and patient compliance. The ability to precisely quantify the amount of allergen being delivered into the skin is crucial since it can allow for allergen dose optimization and can promote consistency and reproducibility in treatment response. In this work we review prominent cutaneous delivery approaches, and offer a perspective on further improvisation in cutaneous allergen-specific immunotherapy.
Collapse
|
5
|
Zimmermann J, Goretzki A, Meier C, Wolfheimer S, Lin YJ, Rainer H, Krause M, Wedel S, Spies G, Führer F, Vieths S, Scheurer S, Schülke S. Modulation of dendritic cell metabolism by an MPLA-adjuvanted allergen product for specific immunotherapy. Front Immunol 2022; 13:916491. [PMID: 36059475 PMCID: PMC9430023 DOI: 10.3389/fimmu.2022.916491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/18/2022] [Indexed: 01/20/2023] Open
Abstract
Background Recently, bacterial components were shown to enhance immune responses by shifting immune cell metabolism towards glycolysis and lactic acid production, also known as the Warburg Effect. Currently, the effect of allergen products for immunotherapy (AIT) and commercial vaccines on immune cell metabolism is mostly unknown. Objective To investigate the effect of AIT products (adjuvanted with either MPLA or Alum) on myeloid dendritic cell (mDC) metabolism and activation. Methods Bone marrow-derived mDCs were stimulated with five allergoid-based AIT products (one adjuvanted with MPLA, four adjuvanted with Alum) and two MPLA-adjuvanted vaccines and analyzed for their metabolic activation, expression of cell surface markers, and cytokine secretion by ELISA. mDCs were pre-incubated with either immunological or metabolic inhibitors or cultured in glucose- or glutamine-free culture media and subsequently stimulated with the MPLA-containing AIT product (AIT product 1). mDCs were co-cultured with allergen-specific CD4+ T cells to investigate the contribution of metabolic pathways to the T cell priming capacity of mDCs stimulated with AIT product 1. Results Both the MPLA-containing AIT product 1 and commercial vaccines, but not the Alum-adjuvanted AIT products, activated Warburg metabolism and TNF-α secretion in mDCs. Further experiments focused on AIT product 1. Metabolic analysis showed that AIT product 1 increased glycolytic activity while also inducing the secretion of IL-1β, IL-10, IL-12, and TNF-α. Both rapamycin (mTOR-inhibitor) and SP600125 (SAP/JNK MAPK-inhibitor) dose-dependently suppressed the AIT product 1-induced Warburg Effect, glucose consumption, IL-10-, and TNF-α secretion. Moreover, both glucose- and glutamine deficiency suppressed secretion of all investigated cytokines (IL-1β, IL-10, and TNF-α). Glucose metabolism in mDCs was also critical for the (Th1-biased) T cell priming capacity of AIT product 1-stimulated mDCs, as inhibition of mTOR signaling abrogated their ability to induce Th1-responses. Conclusion The AIT product and commercial vaccines containing the adjuvant MPLA were shown to modulate the induction of immune responses by changing the metabolic state of mDCs. Better understanding the mechanisms underlying the interactions between cell metabolism and immune responses will allow us to further improve vaccine development and AIT.
Collapse
Affiliation(s)
- Jennifer Zimmermann
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Alexandra Goretzki
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Clara Meier
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Sonja Wolfheimer
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Yen-Ju Lin
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Hannah Rainer
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Maren Krause
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Saskia Wedel
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Gerd Spies
- Z6 Occupational Safety, Paul-Ehrlich-Institut, Langen, Germany
| | - Frank Führer
- Division of Allergology, Batch Control and Allergen Analytics, Paul-Ehrlich-Institut, Langen, Germany
| | - Stefan Vieths
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Stephan Scheurer
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Stefan Schülke
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
- *Correspondence: Stefan Schülke,
| |
Collapse
|
6
|
Losada Méndez J, Palomares F, Gómez F, Ramírez-López P, Ramos-Soriano J, Torres MJ, Mayorga C, Rojo J. Immunomodulatory Response of Toll-like Receptor Ligand-Peptide Conjugates in Food Allergy. ACS Chem Biol 2021; 16:2651-2664. [PMID: 34761908 PMCID: PMC8609526 DOI: 10.1021/acschembio.1c00765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Covalent conjugation
of allergens to toll-like receptor (TLR) agonists
appears to be a powerful strategy for the development of safety compounds
for allergen-specific immunomodulatory response toward tolerance in
allergy. In this work, we have synthesized two family of ligands,
an 8-oxoadenine derivative as a ligand for TLR7 and a pyrimido[5,4-b]indole as a ligand for TLR4, both conjugated with a T-cell
peptide of Pru p 3 allergen, the lipid transfer protein (LTP) responsible
for LTP-dependent food allergy. These conjugates interact with dendritic
cells, inducing their specific maturation, T-cell proliferation, and
cytokine production in peach allergic patients. Moreover, they increased
the Treg-cell frequencies in these patients and could induce the IL-10
production. These outcomes were remarkable in the case of the TLR7
ligand conjugated with Pru p 3, opening the door for the potential
application of these allergen–adjuvant systems in food allergy
immunotherapy.
Collapse
Affiliation(s)
- Jorge Losada Méndez
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC─Universidad de Sevilla, 41092 Seville, Spain
| | - Francisca Palomares
- Allergy Unit, IBIMA, Regional University Hospital of Malaga, UMA, 29009 Malaga, Spain
| | - Francisca Gómez
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
| | - Pedro Ramírez-López
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC─Universidad de Sevilla, 41092 Seville, Spain
| | - Javier Ramos-Soriano
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC─Universidad de Sevilla, 41092 Seville, Spain
| | - Maria Jose Torres
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
- Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory, Centro Andaluz de Nanomedicina y Biotecnología-BIONAND, 29590 Málaga, Spain
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, 29009 Málaga, Spain
- Medicine Department, Universidad de Málaga-UMA, 29009 Málaga, Spain
| | - Cristobalina Mayorga
- Allergy Unit, IBIMA, Regional University Hospital of Malaga, UMA, 29009 Malaga, Spain
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
- Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory, Centro Andaluz de Nanomedicina y Biotecnología-BIONAND, 29590 Málaga, Spain
| | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC─Universidad de Sevilla, 41092 Seville, Spain
| |
Collapse
|
7
|
Pointner L, Kraiem A, Thaler M, Richter F, Wenger M, Bethanis A, Klotz M, Traidl-Hoffmann C, Gilles S, Aglas L. Birch Pollen Induces Toll-Like Receptor 4-Dependent Dendritic Cell Activation Favoring T Cell Responses. FRONTIERS IN ALLERGY 2021; 2:680937. [PMID: 35386993 PMCID: PMC8974861 DOI: 10.3389/falgy.2021.680937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Seasonal exposure to birch pollen (BP) is a major cause of pollinosis. The specific role of Toll-like receptor 4 (TLR4) in BP-induced allergic inflammation and the identification of key factors in birch pollen extracts (BPE) initiating this process remain to be explored. This study aimed to examine (i) the importance of TLR4 for dendritic cell (DC) activation by BPE, (ii) the extent of the contribution of BPE-derived lipopolysaccharide (LPS) and other potential TLR4 adjuvant(s) in BPE, and (iii) the relevance of the TLR4-dependent activation of BPE-stimulated DCs in the initiation of an adaptive immune response. In vitro, activation of murine bone marrow-derived DCs (BMDCs) and human monocyte-derived DCs by BPE or the equivalent LPS (nLPS) was analyzed by flow cytometry. Polymyxin B (PMB), a TLR4 antagonist and TLR4-deficient BMDCs were used to investigate the TLR4 signaling in DC activation. The immunostimulatory activity of BPE was compared to protein-/lipid-depleted BPE-fractions. In co-cultures of BPE-pulsed BMDCs and Bet v 1-specific hybridoma T cells, the influence of the TLR4-dependent DC activation on T cell activation was analyzed. In vivo immunization of IL-4 reporter mice was conducted to study BPE-induced Th2 polarization upon PMB pre-treatment. Murine and human DC activation induced by either BPE or nLPS was inhibited by the TLR4 antagonist or by PMB, and abrogated in TLR4-deficient BMDCs compared to wild-type BMDCs. The lipid-free but not the protein-free fraction showed a reduced capacity to activate the TLR4 signaling and murine DCs. In human DCs, nLPS only partially reproduced the BPE-induced activation intensity. BPE-primed BMDCs efficiently stimulated T cell activation, which was repressed by the TLR4 antagonist or PMB, and the addition of nLPS to Bet v 1 did not reproduce the effect of BPE. In vivo, immunization with BPE induced a significant Th2 polarization, whereas administration of BPE pre-incubated with PMB showed a decreased tendency. These findings suggest that TLR4 is a major pathway by which BPE triggers DC activation that is involved in the initiation of adaptive immune responses. Further characterization of these BP-derived TLR4 adjuvants could provide new candidates for therapeutic strategies targeting specific mechanisms in BP-induced allergic inflammation.
Collapse
Affiliation(s)
- Lisa Pointner
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Amin Kraiem
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Michael Thaler
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Fabian Richter
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Mario Wenger
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | | | - Markus Klotz
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Claudia Traidl-Hoffmann
- Chair of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Institute of Environmental Medicine, Helmholtz Zentrum München, Neuherberg, Germany
- Christine Kühne 96 Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Stefanie Gilles
- Chair of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Institute of Environmental Medicine, Helmholtz Zentrum München, Neuherberg, Germany
| | - Lorenz Aglas
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| |
Collapse
|
8
|
Taddio MF, Castro Jaramillo CA, Runge P, Blanc A, Keller C, Talip Z, Béhé M, van der Meulen NP, Halin C, Schibli R, Krämer SD. In Vivo Imaging of Local Inflammation: Monitoring LPS-Induced CD80/CD86 Upregulation by PET. Mol Imaging Biol 2021; 23:196-207. [PMID: 32989622 PMCID: PMC7910267 DOI: 10.1007/s11307-020-01543-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/11/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE The co-stimulatory molecules CD80 and CD86 are upregulated on activated antigen-presenting cells (APC). We investigated whether local APC activation, induced by subcutaneous (s.c.) inoculation of lipopolysaccharides (LPS), can be imaged by positron emission tomography (PET) with CD80/CD86-targeting 64Cu-labelled abatacept. PROCEDURES Mice were inoculated s.c. with extracellular-matrix gel containing either LPS or vehicle (PBS). Immune cell populations were analysed by flow cytometry and marker expression by RT-qPCR. 64Cu-NODAGA-abatacept distribution was analysed using PET/CT and ex vivo biodistribution. RESULTS The number of CD80+ and CD86+ immune cells at the LPS inoculation site significantly increased a few days after inoculation. CD68 and CD86 expression were higher at the LPS than the PBS inoculation site, and CD80 was only increased at the LPS inoculation site. CTLA-4 was highest 10 days after LPS inoculation, when CD80/CD86 decreased again. A few days after inoculation, 64Cu-NODAGA-abatacept distribution to the inoculation site was significantly higher for LPS than PBS (4.2-fold). Co-administration of unlabelled abatacept or human immunoglobulin reduced tracer uptake. The latter reduced the number of CD86+ immune cells at the LPS inoculation site. CONCLUSIONS CD80 and CD86 are upregulated in an LPS-induced local inflammation, indicating invasion of activated APCs. 64Cu-NODAGA-abatacept PET allowed following APC activation over time.
Collapse
Affiliation(s)
- Marco F Taddio
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland.
| | - Claudia A Castro Jaramillo
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Peter Runge
- Pharmaceutical Immunology, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Alain Blanc
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Paul Scherrer Institute (PSI), Villigen, Switzerland
| | - Claudia Keller
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Zeynep Talip
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Paul Scherrer Institute (PSI), Villigen, Switzerland
| | - Martin Béhé
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Paul Scherrer Institute (PSI), Villigen, Switzerland
| | - Nicholas P van der Meulen
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Paul Scherrer Institute (PSI), Villigen, Switzerland
- Laboratory of Radiochemistry, Paul Scherrer Institute (PSI), Villigen, Switzerland
| | - Cornelia Halin
- Pharmaceutical Immunology, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Paul Scherrer Institute (PSI), Villigen, Switzerland
| | - Stefanie D Krämer
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland.
| |
Collapse
|
9
|
Kirtland ME, Tsitoura DC, Durham SR, Shamji MH. Toll-Like Receptor Agonists as Adjuvants for Allergen Immunotherapy. Front Immunol 2020; 11:599083. [PMID: 33281825 PMCID: PMC7688745 DOI: 10.3389/fimmu.2020.599083] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/19/2020] [Indexed: 01/19/2023] Open
Abstract
Toll-like receptors (TLRs) are essential components of innate immunity and provide defensive inflammatory responses to invading pathogens. Located within the plasma membranes of cells and also intracellular endosomes, TLRs can detect a range of pathogen associated molecular patterns from bacteria, viruses and fungi. TLR activation on dendritic cells can propagate to an adaptive immune response, making them attractive targets for the development of both prophylactic and therapeutic vaccines. In contrast to conventional adjuvants such as aluminium salts, TLR agonists have a clear immunomodulatory profile that favours anti-allergic T lymphocyte responses. Consequently, the potential use of TLRs as adjuvants in Allergen Immunotherapy (AIT) for allergic rhinitis and asthma remains of great interest. Allergic Rhinitis is a Th2-driven, IgE-mediated disease that occurs in atopic individuals in response to exposure to otherwise harmless aeroallergens such as pollens, house dust mite and animal dander. AIT is indicated in subjects with allergic rhinitis whose symptoms are inadequately controlled by antihistamines and nasal corticosteroids. Unlike anti-allergic drugs, AIT is disease-modifying and may induce long-term disease remission through mechanisms involving upregulation of IgG and IgG4 antibodies, induction of regulatory T and B cells, and immune deviation in favour of Th1 responses that are maintained after treatment discontinuation. This process takes up to three years however, highlighting an unmet need for a more efficacious therapy with faster onset. Agonists targeting different TLRs to treat allergy are at different stages of development. Synthetic TLR4, and TLR9 agonists have progressed to clinical trials, while TLR2, TLR5 and TLR7 agonists been shown to have potent anti-allergic effects in human in vitro experiments and in vivo in animal studies. The anti-allergic properties of TLRs are broadly characterised by a combination of enhanced Th1 deviation, regulatory responses, and induction of blocking antibodies. While promising, a durable effect in larger clinical trials is yet to be observed and further long-term studies and comparative trials with conventional AIT are required before TLR adjuvants can be considered for inclusion in AIT. Here we critically evaluate experimental and clinical studies investigating TLRs and discuss their potential role in the future of AIT.
Collapse
Affiliation(s)
- Max E Kirtland
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,NIHR Biomedical Research Centre, Asthma UK Centre in Allergic Mechanisms of Asthma Imperial College London, London, United Kingdom
| | - Daphne C Tsitoura
- Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Stephen R Durham
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,NIHR Biomedical Research Centre, Asthma UK Centre in Allergic Mechanisms of Asthma Imperial College London, London, United Kingdom
| | - Mohamed H Shamji
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,NIHR Biomedical Research Centre, Asthma UK Centre in Allergic Mechanisms of Asthma Imperial College London, London, United Kingdom
| |
Collapse
|
10
|
Alvaro-Lozano M, Akdis CA, Akdis M, Alviani C, Angier E, Arasi S, Arzt-Gradwohl L, Barber D, Bazire R, Cavkaytar O, Comberiati P, Dramburg S, Durham SR, Eifan AO, Forchert L, Halken S, Kirtland M, Kucuksezer UC, Layhadi JA, Matricardi PM, Muraro A, Ozdemir C, Pajno GB, Pfaar O, Potapova E, Riggioni C, Roberts G, Rodríguez Del Río P, Shamji MH, Sturm GJ, Vazquez-Ortiz M. EAACI Allergen Immunotherapy User's Guide. Pediatr Allergy Immunol 2020; 31 Suppl 25:1-101. [PMID: 32436290 PMCID: PMC7317851 DOI: 10.1111/pai.13189] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Allergen immunotherapy is a cornerstone in the treatment of allergic children. The clinical efficiency relies on a well-defined immunologic mechanism promoting regulatory T cells and downplaying the immune response induced by allergens. Clinical indications have been well documented for respiratory allergy in the presence of rhinitis and/or allergic asthma, to pollens and dust mites. Patients who have had an anaphylactic reaction to hymenoptera venom are also good candidates for allergen immunotherapy. Administration of allergen is currently mostly either by subcutaneous injections or by sublingual administration. Both methods have been extensively studied and have pros and cons. Specifically in children, the choice of the method of administration according to the patient's profile is important. Although allergen immunotherapy is widely used, there is a need for improvement. More particularly, biomarkers for prediction of the success of the treatments are needed. The strength and efficiency of the immune response may also be boosted by the use of better adjuvants. Finally, novel formulations might be more efficient and might improve the patient's adherence to the treatment. This user's guide reviews current knowledge and aims to provide clinical guidance to healthcare professionals taking care of children undergoing allergen immunotherapy.
Collapse
Affiliation(s)
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.,Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cherry Alviani
- The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Newport, Isle of Wight, UK.,Clinical and Experimental Sciences and Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Elisabeth Angier
- Primary Care and Population Sciences, University of Southampton, Southampton, UK
| | - Stefania Arasi
- Pediatric Allergology Unit, Department of Pediatric Medicine, Bambino Gesù Children's research Hospital (IRCCS), Rome, Italy
| | - Lisa Arzt-Gradwohl
- Department of Dermatology and Venerology, Medical University of Graz, Graz, Austria
| | - Domingo Barber
- School of Medicine, Institute for Applied Molecular Medicine (IMMA), Universidad CEU San Pablo, Madrid, Spain.,RETIC ARADYAL RD16/0006/0015, Instituto de Salud Carlos III, Madrid, Spain
| | - Raphaëlle Bazire
- Allergy Department, Hospital Infantil Niño Jesús, ARADyAL RD16/0006/0026, Madrid, Spain
| | - Ozlem Cavkaytar
- Department of Paediatric Allergy and Immunology, Faculty of Medicine, Goztepe Training and Research Hospital, Istanbul Medeniyet University, Istanbul, Turkey
| | - Pasquale Comberiati
- Department of Clinical Immunology and Allergology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,Department of Clinical and Experimental Medicine, Section of Paediatrics, University of Pisa, Pisa, Italy
| | - Stephanie Dramburg
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité Medical University, Berlin, Germany
| | - Stephen R Durham
- Immunomodulation and Tolerance Group; Allergy and Clinical Immunology, Section of Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK.,the MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Aarif O Eifan
- Allergy and Clinical Immunology, National Heart and Lung Institute, Imperial College London and Royal Brompton Hospitals NHS Foundation Trust, London, UK
| | - Leandra Forchert
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité Medical University, Berlin, Germany
| | - Susanne Halken
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | - Max Kirtland
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, UK
| | - Umut C Kucuksezer
- Aziz Sancar Institute of Experimental Medicine, Department of Immunology, Istanbul University, Istanbul, Turkey
| | - Janice A Layhadi
- Immunomodulation and Tolerance Group; Allergy and Clinical Immunology, Section of Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK.,the MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK.,Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, UK
| | - Paolo Maria Matricardi
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité Medical University, Berlin, Germany
| | - Antonella Muraro
- The Referral Centre for Food Allergy Diagnosis and Treatment Veneto Region, Department of Women and Child Health, University of Padua, Padua, Italy
| | - Cevdet Ozdemir
- Institute of Child Health, Department of Pediatric Basic Sciences, Istanbul University, Istanbul, Turkey.,Faculty of Medicine, Department of Pediatrics, Division of Pediatric Allergy and Immunology, Istanbul University, Istanbul, Turkey
| | | | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Ekaterina Potapova
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité Medical University, Berlin, Germany
| | - Carmen Riggioni
- Pediatric Allergy and Clinical Immunology Service, Institut de Reserca Sant Joan de Deú, Barcelona, Spain
| | - Graham Roberts
- The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Newport, Isle of Wight, UK.,NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Paediatric Allergy and Respiratory Medicine (MP803), Clinical & Experimental Sciences & Human Development in Health Academic Units University of Southampton Faculty of Medicine & University Hospital Southampton, Southampton, UK
| | | | - Mohamed H Shamji
- Immunomodulation and Tolerance Group; Allergy and Clinical Immunology, Section of Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK.,the MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Gunter J Sturm
- Department of Dermatology and Venerology, Medical University of Graz, Graz, Austria
| | | |
Collapse
|
11
|
Anwar MA, Shah M, Kim J, Choi S. Recent clinical trends in Toll-like receptor targeting therapeutics. Med Res Rev 2018; 39:1053-1090. [PMID: 30450666 PMCID: PMC6587958 DOI: 10.1002/med.21553] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 10/18/2018] [Accepted: 10/21/2018] [Indexed: 12/13/2022]
Abstract
Toll‐like receptors (TLRs) are germline‐encoded receptors that are central to innate and adaptive immune responses. Owing to their vital role in inflammation, TLRs are rational targets in clinics; thus, many ligands and biologics have been reported to overcome the progression of various inflammatory and malignant conditions and support the immune system. For each TLR, at least one, and often many, drug formulations are being evaluated. Ligands reported as stand‐alone drugs may also be reported based on their use in combinatorial therapeutics as adjuvants. Despite their profound efficacy in TLR‐modulation in preclinical studies, multiple drugs have been terminated at different stages of clinical trials. Here, TLR modulating drugs that have been evaluated in clinical trials are discussed, along with their mode of action, suggestive failure reasons, and ways to improve the clinical outcomes. This review presents recent advances in TLR‐targeting drugs and provides directions for more successful immune system manipulation.
Collapse
Affiliation(s)
- Muhammad Ayaz Anwar
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Masaud Shah
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | | | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| |
Collapse
|
12
|
Hu J, Shi B, Liu X, Jiang M, Yuan C, Jiang B, Song Y, Zeng Y, Wang G. The activation of Toll-like receptor 4 reverses tumor differentiation in human glioma U251 cells via Notch pathway. Int Immunopharmacol 2018; 64:33-41. [PMID: 30145468 DOI: 10.1016/j.intimp.2018.08.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/05/2018] [Accepted: 08/15/2018] [Indexed: 12/23/2022]
Abstract
Toll-like receptors (TLRs) are closely related to cancer. However, the mechanism for TLR regulation of cancer is not fully understood. Our previous studies demonstrated that toll-like receptor (TLR) 4 functions to maintain the un-differential stem cell phenotypes of human endothelial progenitor cells. In this study, we found that human glioma cells expressed several TLRs. The activation of TLR4 by LPS in glioma U251 cells induced the expression of cytokines, including IL-1β, IL-6, IL-8, and TNFα, suggesting the functional expression of TLR4. Nude mouse in vivo studies showed that LPS treatment promoted tumor growth, and decreased mouse survival. But LPS treatment did not promote tumor cell proliferation in vitro. Meanwhile, we found that LPS treatment down-regulated the expression of glial fibrillary acidic protein (GFAP), an important differentiation maker of glioma, at both mRNA and protein levels. TLR4 activation also down-regulated GFAP in glioma Hs683 cells. LPS did not induce the activation of MAPKs, but induced the activation of NF-κB. However, pharmacological inhibition of NF-κB signaling did not reverse the down-regulation of GFAP. Furthermore, we found that LPS induced the activation of Notch pathway, which was MyD88-dependent, and Notch inhibition reversed the down-regulation of GFAP. In addition, LPS treatment up-regulated stem cell makers, including CD34 and CD133. Taken together, these results suggested that in human glioma U251 cells, TLR4 functions to reverse tumor differentiation, and it may be a target for glioma prevention and therapy.
Collapse
Affiliation(s)
- Jinyue Hu
- Medical Research Center, Changsha Central Hospital, Changsha, Hunan 410004, China.
| | - Bizhi Shi
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Xueting Liu
- Medical Research Center, Changsha Central Hospital, Changsha, Hunan 410004, China
| | - Manli Jiang
- Medical Research Center, Changsha Central Hospital, Changsha, Hunan 410004, China
| | - Chuang Yuan
- Medical Research Center, Changsha Central Hospital, Changsha, Hunan 410004, China
| | - Binyuan Jiang
- Medical Research Center, Changsha Central Hospital, Changsha, Hunan 410004, China
| | - Yinghui Song
- Department of Oncology, Changsha Central Hospital, Changsha, Hunan 410004, China; Changsha Cancer Institute, Changsha Central Hospital, Changsha, Hunan 410004, China
| | - Yanhua Zeng
- Department of Oncology, Changsha Central Hospital, Changsha, Hunan 410004, China; Changsha Cancer Institute, Changsha Central Hospital, Changsha, Hunan 410004, China
| | - Guihua Wang
- Department of Oncology, Changsha Central Hospital, Changsha, Hunan 410004, China; Changsha Cancer Institute, Changsha Central Hospital, Changsha, Hunan 410004, China.
| |
Collapse
|
13
|
Lin YL, Cheng PY, Chin CL, Huang LM, Lin SY, Chiang BL. Fibroblast-stimulating lipopeptide-1 as a potential mucosal adjuvant enhances mucosal and systemic immune responses to enterovirus 71 vaccine. Vaccine 2018; 36:4331-4338. [PMID: 29891349 DOI: 10.1016/j.vaccine.2018.05.090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 01/05/2023]
Abstract
To prevent viral infection at the site of entry, mucosal vaccines are potent tools for inducing IgA secretion for defense. Because Toll-like receptor (TLR) ligands serve as strong adjuvants, two ligands that mimic the structure of mycoplasmal and bacterial lipopeptides represent interesting vaccine candidates. Pam3CSK4, a synthetic triacylated lipopeptide, interacts with TLR2/1. Because fibroblast-stimulating lipopeptide-1 (FSL-1), a synthetic diacylated lipopeptide, is recognized by TLR2/6, we targeted the potential immuno-inducibility of Pam3CSK4 and FSL-1 as adjuvants of an enterovirus 71 (EV71) mucosal vaccine. Naïve BALB/c mice were used for intranasal immunization three times over a 3-week interval, with results showing that EV71-specific IgG and IgA in serum, nasal washes, bronchoalveolar lavage fluid, and feces from the EV71 + FSL-1 group were significantly higher than levels observed in mice treated with EV71 + Pam3CSK4, EV71 alone, or the control group treated with phosphate-buffered saline. Furthermore, we observed more EV71-specific IgG and IgA-producing cells in treatments using EV71 formulated with FSL-1. Additionally, T cell-proliferative responses and interferon-γ and interleukin-17 secretion were significantly increased when inactivated EV71 was formulated using FSL-1. Moreover, serum from immunized mice was capable of neutralizing the infectivity of EV71 (C2 genotype) and was able to cross-neutralize the B4 and B5 genotypes of EV71. Our data suggested that FSL-1 could be used as an efficient adjuvant for intranasal EV71-vaccine immunization.
Collapse
Affiliation(s)
- Yu-Li Lin
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Pei-Yun Cheng
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chiao-Li Chin
- Graduate Institute of Immunology, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Min Huang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Shr-Yu Lin
- Graduate Institute of Immunology, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Bor-Luen Chiang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
14
|
Battin C, Hennig A, Mayrhofer P, Kunert R, Zlabinger GJ, Steinberger P, Paster W. A human monocytic NF-κB fluorescent reporter cell line for detection of microbial contaminants in biological samples. PLoS One 2017; 12:e0178220. [PMID: 28542462 PMCID: PMC5443541 DOI: 10.1371/journal.pone.0178220] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/09/2017] [Indexed: 12/16/2022] Open
Abstract
Sensing of pathogens by innate immune cells is essential for the initiation of appropriate immune responses. Toll-like receptors (TLRs), which are highly sensitive for various structurally and evolutionary conserved molecules derived from microbes have a prominent role in this process. TLR engagement results in the activation of the transcription factor NF-κB, which induces the expression of cytokines and other inflammatory mediators. The exquisite sensitivity of TLR signalling can be exploited for the detection of bacteria and microbial contaminants in tissue cultures and in protein preparations. Here we describe a cellular reporter system for the detection of TLR ligands in biological samples. The well-characterized human monocytic THP-1 cell line was chosen as host for an NF-ᴋB-inducible enhanced green fluorescent protein reporter gene. We studied the sensitivity of the resultant reporter cells for a variety of microbial components and observed a strong reactivity towards TLR1/2 and TLR2/6 ligands. Mycoplasma lipoproteins are potent TLR2/6 agonists and we demonstrate that our reporter cells can be used as reliable and robust detection system for mycoplasma contaminations in cell cultures. In addition, a TLR4-sensitive subline of our reporters was engineered, and probed with recombinant proteins expressed in different host systems. Bacterially expressed but not mammalian expressed proteins induced strong reporter activity. We also tested proteins expressed in an E. coli strain engineered to lack TLR4 agonists. Such preparations also induced reporter activation in THP-1 cells highlighting the importance of testing recombinant protein preparations for microbial contaminations beyond endotoxins. Our results demonstrate the usefulness of monocytic reporter cells for high-throughput screening for microbial contaminations in diverse biological samples, including tissue culture supernatants and recombinant protein preparations. Fluorescent reporter assays can be measured on standard flow cytometers and in contrast to established detection methods, like luciferase-based systems or Limulus Amebocyte Lysate tests, they do not require costly reagents.
Collapse
Affiliation(s)
- Claire Battin
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Annika Hennig
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Patrick Mayrhofer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Renate Kunert
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Gerhard J. Zlabinger
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- * E-mail: (PS); (WP), (WP)
| | - Wolfgang Paster
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- * E-mail: (PS); (WP), (WP)
| |
Collapse
|
15
|
Kitzmüller C, Kalser J, Mutschlechner S, Hauser M, Zlabinger GJ, Ferreira F, Bohle B. Fusion proteins of flagellin and the major birch pollen allergen Bet v 1 show enhanced immunogenicity, reduced allergenicity, and intrinsic adjuvanticity. J Allergy Clin Immunol 2017; 141:293-299.e6. [PMID: 28456624 DOI: 10.1016/j.jaci.2017.02.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 02/03/2017] [Accepted: 02/22/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND Recombinant fusion proteins of flagellin and antigens have been demonstrated to induce strong innate and adaptive immune responses. Such fusion proteins can enhance the efficacy of allergen-specific immunotherapy. OBJECTIVE We sought to characterize different fusion proteins of flagellin and the major birch pollen allergen Bet v 1 for suitability as allergy vaccines. METHODS A truncated version of flagellin (NtCFlg) was genetically fused to the N- or C-terminus of Bet v 1. Toll-like receptor (TLR) 5 binding was assessed with HEK293 cells expressing TLR5. Upregulation of CD40, CD80, CD83, and CD86 on monocyte-derived dendritic cells from allergic patients was analyzed by using flow cytometry. The T cell-stimulatory capacity of the fusion proteins was assessed with naive and Bet v 1-specific T cells. IgE binding was tested in inhibition ELISAs and basophil activation tests. Mice were immunized with the fusion proteins in the absence and presence of aluminum hydroxide. Cellular and antibody responses were monitored. Murine antibodies were tested for blocking capacity in basophil activation tests. RESULTS Both fusion proteins matured monocyte-derived dendritic cells through TLR5. Compared with Bet v 1, the fusion proteins showed stronger T cell-stimulatory and reduced IgE-binding capacity and induced murine Bet v 1-specific antibodies in the absence of aluminum hydroxide. However, only antibodies induced by means of immunization with NtCFlg fused to the C-terminus of Bet v 1 inhibited binding of patients' IgE antibodies to Bet v 1. CONCLUSION Bet v 1-flagellin fusion proteins show enhanced immunogenicity, reduced allergenicity, and intrinsic adjuvanticity and thus represent promising vaccines for birch pollen allergen-specific immunotherapy. However, the sequential order of allergen and adjuvant within a fusion protein determines its immunologic characteristics.
Collapse
Affiliation(s)
- Claudia Kitzmüller
- Christian Doppler Laboratory for Immunomodulation, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Julia Kalser
- Christian Doppler Laboratory for Immunomodulation, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Sonja Mutschlechner
- Christian Doppler Laboratory for Immunomodulation, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Michael Hauser
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | | | - Fatima Ferreira
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Barbara Bohle
- Christian Doppler Laboratory for Immunomodulation, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
16
|
Nemati M, Larussa T, Khorramdelazad H, Mahmoodi M, Jafarzadeh A. Toll-like receptor 2: An important immunomodulatory molecule during Helicobacter pylori infection. Life Sci 2017; 178:17-29. [PMID: 28427896 DOI: 10.1016/j.lfs.2017.04.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 04/06/2017] [Accepted: 04/11/2017] [Indexed: 12/11/2022]
Abstract
Toll like receptors (TLRs) are an essential subset of pathogen recognition receptors (PRRs) which identify the microbial components and contribute in the regulation of innate and adaptive immune responses against the infectious agents. The TLRs, especially TLR2, TLR4, TLR5 and TLR9, participate in the induction of immune response against H. pylori. TLR2 is expressed on a number of immune and non-immune cells and recognizes a vast broad of microbial components due to its potential to form heterodimers with other TLRs, including TLR1, TLR6 and TLR10. A number of H. pylori-related molecules may contribute to TLR2-dependent responses, including HP-LPS, HP-HSP60 and HP-NAP. TLR2 plays a pivotal role in regulation of immune response to H. pylori through activation of NF-κB and induction of cytokine expression in epithelial cells, monocytes/macrophages, dendritic cells, neutrophils and B cells. The TLR2-related immune response that is induced by H. pylori-derived components may play an important role regarding the outcome of the infection toward bacterial elimination, persistence or pathological reactions. The immunomodulatory and immunoregulatory roles of TLR2 during H. pylori infection were considered in this review. TLR2 could be considered as an interesting therapeutic target for treatment of H. pylori-related diseases.
Collapse
Affiliation(s)
- Maryam Nemati
- Department of Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran; Department of Microbiology, School of Medicine, Islamic Azad University Branch of Kerman, Kerman, Iran
| | - Tiziana Larussa
- Department of Health Sciences, University of Catanzaro "Magna Graecia", 88100 Catanzaro, Italy
| | - Hossein Khorramdelazad
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Merat Mahmoodi
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdollah Jafarzadeh
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
17
|
Weinstock A, Pevsner-Fischer M, Porat Z, Selitrennik M, Zipori D. Cultured Mesenchymal Stem Cells Stimulate an Immune Response by Providing Immune Cells with Toll-Like Receptor 2 Ligand. Stem Cell Rev Rep 2016; 11:826-40. [PMID: 26250539 DOI: 10.1007/s12015-015-9614-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) serve as supporting and regulatory cells, by providing tissues with multiple factors and are also known for their immunosuppressive capabilities. Our laboratory had previously shown that MSCs expressed toll-like receptor (TLR) 2 and are activated by its ligand Pam3Cys. TLR2 is an important component of the innate immune system, as it recognizes bacterial lipopeptides, thus priming a pro-inflammatory immune response. This study showed that Pam3Cys attached extensively to cells of both wild-type and TLR2 deficient cultured MSCs, thus, independently of TLR2. The TLR2 independent binding occurred through the adsorption of the palmitoyl moieties of Pam3Cys. It was further showed that Pam3Cys was transferred from cultured MSCs to immune cells. Moreover, Pam3Cys provided to the immune cells induced a pro-inflammatory response in vitro and in vivo. Overall, it is demonstrated herein that a TLR2 ligand bound to MSCs also through a TLR2 independent mechanism. Furthermore, the ligand incorporated by MSCs is subsequently released to stimulate an immune response both in vitro and in vivo. It is thus suggested that during bacterial infection, stromal cells may retain a reservoir of the TLR2 ligands, in a long-term manner, and release them slowly to maintain an immune response.
Collapse
Affiliation(s)
- Ada Weinstock
- Department of Molecular Cell Biology, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 76100, Israel.
| | - Meirav Pevsner-Fischer
- Department of Molecular Cell Biology, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 76100, Israel.
| | - Ziv Porat
- FACS Unit, Biological Services, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 76100, Israel.
| | - Michael Selitrennik
- Department of Molecular Cell Biology, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 76100, Israel.
| | - Dov Zipori
- Department of Molecular Cell Biology, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 76100, Israel.
| |
Collapse
|
18
|
Tomić S, Kokol V, Mihajlović D, Mirčić A, Čolić M. Native cellulose nanofibrills induce immune tolerance in vitro by acting on dendritic cells. Sci Rep 2016; 6:31618. [PMID: 27558765 PMCID: PMC4997350 DOI: 10.1038/srep31618] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/20/2016] [Indexed: 12/22/2022] Open
Abstract
Cellulose nanofibrills (CNFs) are attractive biocompatible, natural nanomaterials for wide biomedical applications. However, the immunological mechanisms of CNFs have been poorly investigated. Considering that dendritic cells (DCs) are the key immune regulatory cells in response to nanomaterials, our aim was to investigate the immunological mechanisms of CNFs in a model of DC-mediated immune response. We found that non-toxic concentrations of CNFs impaired the differentiation, and subsequent maturation of human monocyte-derived (mo)-DCs. In a co-culture with CD4+T cells, CNF-treated mo-DCs possessed a weaker allostimulatory and T helper (Th)1 and Th17 polarizing capacity, but a stronger capacity to induce Th2 cells and CD4+CD25hiFoxP3hi regulatory T cells. This correlated with an increased immunoglobulin-like transcript-4 and indolamine dioxygenase-1 expression by CNF-treated mo-DCs, following the partial internalization of CNFs and the accumulation of CD209 and actin bundles at the place of contacts with CNFs. Cumulatively, we showed that CNFs are able to induce an active immune tolerance by inducing tolerogenic DCs, which could be beneficial for the application of CNFs in wound healing and chronic inflammation therapies.
Collapse
Affiliation(s)
- Sergej Tomić
- University of Defense, Medical Faculty of the Military Medical Academy, Institute for Medical Research, Belgrade, Serbia
| | - Vanja Kokol
- University of Maribor, Faculty of Mechanical Engineering, Institute for Engineering Materials and Design, Maribor, Slovenia
| | - Dušan Mihajlović
- University of Defense, Medical Faculty of the Military Medical Academy, Institute for Medical Research, Belgrade, Serbia
| | - Aleksandar Mirčić
- University of Belgrade, Institute of Histology and Embryology, School of Medicine, Belgrade, Serbia
| | - Miodrag Čolić
- University of Defense, Medical Faculty of the Military Medical Academy, Institute for Medical Research, Belgrade, Serbia.,University of Belgrade, Institute for Application of Nuclear Energy, Belgrade, Serbia
| |
Collapse
|
19
|
Li LJ, Ma N, Zeng L, Mo LH, Li XX, Xu LZ, Yang B, Liu ZG, Feng BS, Zheng PY, Zhang HP, Yang PC. Flagellin modulates IgE expression in B cells to initiate food allergy in mice. Am J Transl Res 2016; 8:2748-2757. [PMID: 27398157 PMCID: PMC4931168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/08/2016] [Indexed: 06/06/2023]
Abstract
The initiation mechanism of IgE expression has not been fully understood. Flagellin (FGN) is an important microbial factor in the regulation of immune responses in the intestine. This study tests a hypothesis that FGN plays a crucial role in the isotype switching of IgE in B cells and the initiation of food allergy. In this study, the expression of IgE in B cells was analyzed by real time RT-PCR, Western blotting and chromatin immunoprecipitation. A mouse model was developed to assess the role of Toll like receptor-5 in the development of IgE-mediated allergic reaction in the intestinal mucosa. The results showed that exposure to FGN suppressed the expression of Bcl6 in B cells via increasing the levels of histone deacetylase (HDAC) 7; the latter up regulated the levels of methylated H3K9 and H3K27, down regulated RNA polymerase II and STAT3 (signal transducer and activator of transcription 3) at the Bcl6 promoter locus. Exposure to FGN and IL-4 markedly increased the expression of IgE in B cells via activating p300, H3K4, Pol II and STAT6 at the IgE promoter locus. As compared with the sensitized wild mice, the sensitized TLR5-deficient mice showed no detectable OVA-specific IgE in the serum; mast cells in the intestinal mucosa were not activated, no apparent allergic symptoms were evoked after the specific antigen challenge. In conclusion, FGN facilitates the initiation of food allergy in mice by triggering IgE transcription in B cells in a Th2 polarization environment via activating HDAC7 and suppressing Bcl6 expression.
Collapse
Affiliation(s)
- Lin-Jing Li
- Department of Gastroenterology, The First Hospital, Zhengzhou UniversityZhengzhou 450052, China
- Brain Body Institute and Department of Pathology & Molecular Medicine, McMaster UniversityHamilton, ON, L8N 3Z5, Canada
| | - Na Ma
- Department of Gastroenterology, The First Hospital, Zhengzhou UniversityZhengzhou 450052, China
- The Research Center of Allergy & Immunology, Shenzhen University School of MedicineShenzhen 518060, China
| | - Lu Zeng
- The Research Center of Allergy & Immunology, Shenzhen University School of MedicineShenzhen 518060, China
| | - Li-Hua Mo
- The Research Center of Allergy & Immunology, Shenzhen University School of MedicineShenzhen 518060, China
| | - Xiao-Xi Li
- The Research Center of Allergy & Immunology, Shenzhen University School of MedicineShenzhen 518060, China
| | - Ling-Zhi Xu
- The Research Center of Allergy & Immunology, Shenzhen University School of MedicineShenzhen 518060, China
| | - Bo Yang
- The Research Center of Allergy & Immunology, Shenzhen University School of MedicineShenzhen 518060, China
| | - Zhi-Gang Liu
- The Research Center of Allergy & Immunology, Shenzhen University School of MedicineShenzhen 518060, China
| | - Bai-Sui Feng
- Department of Gastroenterology, The Second Hospital, Zhengzhou UniversityZhengzhou 450052, China
| | - Peng-Yuan Zheng
- Department of Gastroenterology, The Fifth Hospital, Zhengzhou UniversityZhengzhou 450052, China
| | - Huan-Ping Zhang
- Brain Body Institute and Department of Pathology & Molecular Medicine, McMaster UniversityHamilton, ON, L8N 3Z5, Canada
| | - Ping-Chang Yang
- The Research Center of Allergy & Immunology, Shenzhen University School of MedicineShenzhen 518060, China
| |
Collapse
|
20
|
Aldinucci A, Bonechi E, Manuelli C, Nosi D, Masini E, Passani MB, Ballerini C. Histamine Regulates Actin Cytoskeleton in Human Toll-like Receptor 4-activated Monocyte-derived Dendritic Cells Tuning CD4+ T Lymphocyte Response. J Biol Chem 2016; 291:14803-14. [PMID: 27226579 DOI: 10.1074/jbc.m116.720680] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Indexed: 01/06/2023] Open
Abstract
Histamine, a major mediator in allergic diseases, differentially regulates the polarizing ability of dendritic cells after Toll-like receptor (TLR) stimulation, by not completely explained mechanisms. In this study we investigated the effects of histamine on innate immune reaction during the response of human monocyte-derived DCs (mDCs) to different TLR stimuli: LPS, specific for TLR4, and Pam3Cys, specific for heterodimer molecule TLR1/TLR2. We investigated actin remodeling induced by histamine together with mDCs phenotype, cytokine production, and the stimulatory and polarizing ability of Th0. By confocal microscopy and RT-PCR expression of Rac1/CdC42 Rho GTPases, responsible for actin remodeling, we show that histamine selectively modifies actin cytoskeleton organization induced by TLR4, but not TLR2 and this correlates with increased IL4 production and decreased IFNγ by primed T cells. We also demonstrate that histamine-induced cytoskeleton organization is at least in part mediated by down-regulation of small Rho GTPase CdC42 and the protein target PAK1, but not by down-regulation of Rac1. The presence and relative expression of histamine receptors HR1-4 and TLRs were determined as well. Independently of actin remodeling, histamine down-regulates IL12p70 and CXCL10 production in mDCs after TLR2 and TLR4 stimulation. We also observed a trend of IL10 up-regulation that, despite previous reports, did not reach statistical significance.
Collapse
Affiliation(s)
| | - Elena Bonechi
- From the Departments of Neuroscience, Psychology, Drugs and Child Health
| | | | | | - Emanuela Masini
- From the Departments of Neuroscience, Psychology, Drugs and Child Health
| | | | - Clara Ballerini
- From the Departments of Neuroscience, Psychology, Drugs and Child Health,
| |
Collapse
|
21
|
Impaired Cell Cycle Regulation in a Natural Equine Model of Asthma. PLoS One 2015; 10:e0136103. [PMID: 26292153 PMCID: PMC4546272 DOI: 10.1371/journal.pone.0136103] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 07/29/2015] [Indexed: 12/14/2022] Open
Abstract
Recurrent airway obstruction (RAO) is a common and potentially debilitating lower airway disease in horses, which shares many similarities with human asthma. In susceptible horses RAO exacerbation is caused by environmental allergens and irritants present in hay dust. The objective of this study was the identification of genes and pathways involved in the pathology of RAO by global transcriptome analyses in stimulated peripheral blood mononuclear cells (PBMCs). We performed RNA-seq on PBMCs derived from 40 RAO affected and 45 control horses belonging to three cohorts of Warmblood horses: two half-sib families and one group of unrelated horses. PBMCs were stimulated with hay dust extract, lipopolysaccharides, a recombinant parasite antigen, or left unstimulated. The total dataset consisted of 561 individual samples. We detected significant differences in the expression profiles between RAO and control horses. Differential expression (DE) was most marked upon stimulation with hay dust extract. An important novel finding was a strong upregulation of CXCL13 together with many genes involved in cell cycle regulation in stimulated samples from RAO affected horses, in addition to changes in the expression of several HIF-1 transcription factor target genes. The RAO condition alters systemic changes observed as differential expression profiles of PBMCs. Those changes also depended on the cohort and stimulation of the samples and were dominated by genes involved in immune cell trafficking, development, and cell cycle regulation. Our findings indicate an important role of CXCL13, likely macrophage or Th17 derived, and the cell cycle regulator CDC20 in the immune response in RAO.
Collapse
|
22
|
Ashjaei K, Palmberger D, Bublin M, Bajna E, Breiteneder H, Grabherr R, Ellinger I, Hoffmann-Sommergruber K. Atopic donor status does not influence the uptake of the major grass pollen allergen, Phl p 5, by dendritic cells. J Immunol Methods 2015; 424:120-30. [PMID: 26055335 PMCID: PMC4739503 DOI: 10.1016/j.jim.2015.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 02/02/2023]
Abstract
Dendritic cells (DCs) are sentinels of the immune system for antigen recognition and uptake, as well as presentation to naïve T cells for stimulation or priming. Internalization and endocytic degradation of allergens by DCs are important steps required for T cell priming. In the current study we investigated binding and internalization of purified recombinant non-glycosylated grass pollen allergen, Phl p 5, and natural non-specific lipid transfer protein from sunflower, SF-nsLTP to human monocyte derived dendritic cells (MoDCs). Colocalization of Phl p 5 with low affinity (CD23) or high affinity receptor (FcεRI) was investigated by immunofluorescence staining. Likewise, localization of the allergens in early (EE) and late endosomes (LE) was detected by co-staining for early endosome antigen (EEA1) and lysosomal-associated membrane protein 1 (LAMP1). In our experimental setting we could demonstrate that Phl p 5 as well as SF-nsLTP bound to MoDCs from both, grass pollen allergic and non-allergic individuals. Competitive allergen uptake experiments demonstrated non-preferential and simultaneous uptake of Phl p 5 and SF-nsLTP by MoDCs. No overlap of signals from Phl p 5 and CD23 or FcεRI was detectable, excluding IgE-mediated uptake for this allergen. Both allergens, Phl p 5 and SF-nsLTP, were localized in early and late endosomes. The present study applied a set of methods to assess the allergen uptake by MoDCs in an in vitro model. No qualitative and quantitative differences in the allergen uptake of both, Phl p 5 and SF-nsLTP were detected in single and competitive assays.
Collapse
Affiliation(s)
- Kazem Ashjaei
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria.
| | - Dieter Palmberger
- Vienna Institute of Biotechnology - VIBT, University of Natural Resources and Life Sciences, Vienna, Austria.
| | - Merima Bublin
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria.
| | - Erika Bajna
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria.
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria.
| | - Reingard Grabherr
- Vienna Institute of Biotechnology - VIBT, University of Natural Resources and Life Sciences, Vienna, Austria.
| | - Isabella Ellinger
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria.
| | | |
Collapse
|
23
|
Renkonen J, Toppila-Salmi S, Joenväärä S, Mattila P, Parviainen V, Hagström J, Haglund C, Lehtonen M, Renkonen R. Expression of Toll-like receptors in nasal epithelium in allergic rhinitis. APMIS 2015; 123:716-25. [PMID: 26061394 PMCID: PMC4744727 DOI: 10.1111/apm.12408] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 04/24/2015] [Indexed: 01/10/2023]
Abstract
Toll‐like receptors (TLRs) are important in barrier homeostasis, but their role in airborne allergies is not fully understood. The aim was to evaluate baseline and allergen‐induced expression of TLR proteins in nasal epithelium during allergic rhinitis. Nineteen otherwise healthy non‐smoking volunteers both allergic to birch pollen and non‐allergic controls were enrolled. We took nasal biopsies before and after off‐seasonal intranasal birch pollen or diluent challenge. The expression of epithelial TLR1‐7, TLR9‐10, and MyD88 proteins was immunohistochemically evaluated from the nasal biopsies. The TLR1‐3 and TLR5‐10 mRNAs were observed by RNA‐microarray. Baseline epithelial expression of TLR proteins was wide and identical in controls and atopics. After off‐seasonal intranasal birch pollen challenge, a negative change in the expression score of TLR1 and TLR6 proteins was detected in the atopic group. TLR mRNA expression was not affected by birch pollen challenge. Nasal epithelium seems to express all known TLRs. The mechanisms by which TLR1, and TLR6 proteins could affect pollen allergen transport need further studies.
Collapse
Affiliation(s)
- Jutta Renkonen
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Sanna Toppila-Salmi
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland.,Department of Allergy, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Sakari Joenväärä
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Pirkko Mattila
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland.,Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Ville Parviainen
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Jaana Hagström
- Department of Pathology, Haartman Institute, University of Helsinki, Helsinki, Finland.,HUSLAB, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Caj Haglund
- Department of Surgery, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland.,Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland
| | - Mikko Lehtonen
- Department of Otorhinolaryngology, Tampere University Hospital, Tampere, Finland
| | - Risto Renkonen
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland.,HUSLAB, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
24
|
Ashjaei K, Bublin M, Smole U, Lengger N, Hafner C, Breiteneder H, Wagner S, Hoffmann-Sommergruber K. Differential T-helper cell polarization after allergen-specific stimulation of autologous dendritic cells in polysensitized allergic patients. Int Arch Allergy Immunol 2015; 166:97-106. [PMID: 25792188 PMCID: PMC4739505 DOI: 10.1159/000375405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 01/21/2015] [Indexed: 12/17/2022] Open
Abstract
Background Dendritic cells (DCs) play an important role in the induction and regulation of adaptive immune responses by polarizing T-helper (Th) cells. In allergic disease this response is dominated by Th2 cells. It is still unclear whether the activation of Th cells by DCs in atopic individuals is allergen specific. Methods Monocyte-derived DCs (MoDCs) obtained from polysensitized patients were stimulated with purified Bet v 1, Phl p 5 and Act d 10, and the surface marker expression was analysed. Proliferation and cytokine profiles of autologous naïve CD4+ T cells co-cultured with allergen-pulsed MoDCs were assessed. Results The addition of either Bet v 1 or Phl p 5 did not further increase the expression of surface markers from matured MoDCs in all study groups. In co-cultures, autologous naïve CD4+ T cells proliferated when DCs obtained from individuals allergic to birch and grass pollen were stimulated with Bet v 1 and Phl p 5, respectively. In the co-culture supernatants, significantly increased levels of IL-5 and IL-13 were detected. This effect correlated with the sensitization background and was absent when applying an unspecific allergen, Act d 10. The levels of IL-10 in supernatants of MoDCs and the levels of IL-10 and IFN-γ in supernatants of T cells remained unchanged upon stimulation with allergens. Conclusions In this study we observed that allergen-specific stimulation of MoDCs induces T-cell proliferation and upregulation of Th2-type cytokines. Interestingly, this Th2 polarization was only observed in cells stimulated with the allergen to which the patients were sensitized.
Collapse
Affiliation(s)
- Kazem Ashjaei
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Skin diseases with an allergic background such as atopic dermatitis, allergic contact dermatitis, and urticaria are very common. Moreover, diseases arising from a dysfunction of immune cells and/or their products often manifest with skin symptoms. This review aims to summarize recently published articles in order to highlight novel research findings, clinical trial results, and current guidelines on disease management. In recent years, an immense progress has been made in understanding the link between skin barrier dysfunction and allergic sensitization initiating the atopic march. In consequence, new strategies for treatment and prevention have been developed. Novel pathogenic insights, for example, into urticaria, angioedema, mastocytosis, led to the development of new therapeutic approaches and their implementation in daily patient care. By understanding distinct pathomechanisms, for example, the role of IL-1, novel entities such as autoinflammatory diseases have been described. Considerable effort has been made to improve and harmonize patient management as documented in several guidelines and position papers.
Collapse
Affiliation(s)
- C. Schlapbach
- Department of Dermatology, Inselspital; Bern University Hospital; University of Bern; Bern Switzerland
| | - D. Simon
- Department of Dermatology, Inselspital; Bern University Hospital; University of Bern; Bern Switzerland
| |
Collapse
|