1
|
Teixeira CSS, Carriço-Sá B, Villa C, Mafra I, Costa J. Can Physicochemical Properties Alter the Potency of Aeroallergens? Part 1 - Aeroallergen Protein Families. Curr Allergy Asthma Rep 2024; 24:591-607. [PMID: 39302571 PMCID: PMC11464574 DOI: 10.1007/s11882-024-01172-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE OF REVIEW Respiratory allergies are non-communicable diseases caused by the hypersensitivity of the immune system to environmental aeroallergens. The culprits are aero-transported proteins eliciting respiratory symptoms in sensitized/allergic individuals. This review intends to provide a holistic overview on the categorization of aeroallergens into protein families (Part 1) and to exploit the impact of physicochemical properties on inhalant protein allergenicity (Part 2). This first part will focus particularly on aeroallergen organization into families and how this classification fits their physicochemical properties. RECENT FINDINGS Aeroallergen classification into protein families facilitates the identification of common physicochemical properties, thus aiding a better comprehension of known allergens, while predicting the behavior of novel ones. The available online databases gathering important features of aeroallergens are currently scarce. Information on distinct aeroallergen classification is still lacking, as data is dispersed and often outdated, hampering an efficient evaluation of new aeroallergens.
Collapse
Affiliation(s)
- Carla S S Teixeira
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Bruno Carriço-Sá
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Caterina Villa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
2
|
Chong T, Olivieri B, Skypala IJ. Food-triggered anaphylaxis in adults. Curr Opin Allergy Clin Immunol 2024; 24:341-348. [PMID: 39079158 DOI: 10.1097/aci.0000000000001008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
PURPOSE OF REVIEW Adult food allergy, either unresolved from childhood, or new-onset in adult-life, is known to be increasingly prevalent. Although much of the reported anaphylaxis in adults is due to drug reactions, foods are becoming an increasingly important trigger, affecting adults of all ages, with a wide variation in food triggers which are often quite different to those reported in children. RECENT FINDINGS Peanuts are well known to cause anaphylaxis in some adult populations, but other legumes such as soy may be more relevant in others. Reactions to natto, fermented soybeans, are currently mainly reported in Japan, but changing dietary practices and an increase in plant-based eating mean natto, other forms of soy and other legumes are increasingly linked to anaphylaxis in Western countries. Anaphylaxis to red meat, caused by sensitization to galactose-α-1,3-galactose and first reported in North America, is now a more world-wide concern. Co-factor induced anaphylaxis is increasingly associated with both wheat allergy and lipid transfer protein allergy. SUMMARY More research is urgently needed to characterize adult food allergy, its triggers and symptom severity. Unusual food triggers and potential co-factors should be considered, so that anaphylaxis in adults can be correctly managed, not merely labelled as idiopathic.
Collapse
Affiliation(s)
| | - Bianca Olivieri
- Department of Medicine, Asthma, Allergy and Clinical Immunology Section, University of Verona, Verona, Italy
| | - Isabel J Skypala
- Royal Brompton & Harefield Hospitals, part of Guys & St Thomas NHS Foundation Trust
- Department of Inflammation & Repair, Imperial College, London, UK
| |
Collapse
|
3
|
Olivieri B, Skypala IJ. The Diagnosis of Allergy to Lipid Transfer Proteins. Curr Allergy Asthma Rep 2024; 24:509-518. [PMID: 38990405 DOI: 10.1007/s11882-024-01164-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
PURPOSE OF REVIEW To provide an update on the diagnosis of non-specific Lipid Transfer Protein (nsLTP) allergy. RECENT FINDINGS More publications report the presence of nsLTP allergy in Northern European countries and nsLTP sensitisation in children. Individuals are more likely to have severe reactions if there is recognition of increasing numbers of LTP components. Diagnosis is problematic; not all those with nsLTP allergy will have a positive test to a peach extract containing Pru p 3, the peach nsLTP. Sensitisation to nsLTP is being reported in more countries, including to the nsLTP in Cannabis Sativa in North America. Meals containing multiple nsLTP foods are more likely to be involved in co-factor reactions. Component-resolved diagnostics are superior to skin prick tests, to determine sensitisation to the individual nsLTP allergens causing symptoms and, in the future, the Basophil Activation test may best discriminate between sensitization and clinical allergy.
Collapse
Affiliation(s)
- Bianca Olivieri
- Department of Medicine, Asthma, Allergy and Clinical Immunology Section, University of Verona, Verona, Italy
| | - Isabel J Skypala
- Department of Allergy & Clinical Immunology, Royal Brompton & Harefield Hospitals, part of Guys and St Thomas NHS Foundation Trust, Sydney Street, London, SW3 6NP, UK.
- Department of Inflammation and repair, Imperial College, London, UK.
| |
Collapse
|
4
|
Grijincu M, Tănasie G, Zbîrcea LE, Buzan MR, Tamaș TP, Cotarcă MD, Huțu I, Babaev E, Stolz F, Dorofeeva Y, Valenta R, Păunescu V, Panaitescu C, Chen KW. Non-Specific Lipid Transfer Protein Amb a 6 Is a Source-Specific Important Allergenic Molecule in Ragweed Pollen. Int J Mol Sci 2024; 25:6513. [PMID: 38928218 PMCID: PMC11204090 DOI: 10.3390/ijms25126513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/02/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Pollen from common ragweed is an important allergen source worldwide and especially in western and southern Romania. More than 100 million patients suffer from symptoms of respiratory allergy (e.g., rhinitis, asthma) to ragweed pollen. Among the eleven characterized allergens, Amb a 6 is a non-specific lipid transfer protein (nsLTP). nsLTPs are structurally stable proteins in pollen and food from different unrelated plants capable of inducing severe reactions. The goal of this study was to produce Amb a 6 as a recombinant and structurally folded protein (rAmb a 6) and to characterize its physicochemical and immunological features. rAmb a 6 was expressed in Spodoptera frugiperda Sf9 cells as a secreted protein and characterized by mass spectrometry and circular dichroism (CD) spectroscopy regarding molecular mass and fold, respectively. The IgE-binding frequency towards the purified protein was evaluated using sera from 150 clinically well-characterized ragweed-allergic patients. The allergenic activities of rAmb a 6 and the nsLTP from the weed Parietaria judaica (Par j 2) were evaluated in basophil activation assays. rAmb a 6-specific IgE reactivity was associated with clinical features. Pure rAmb a 6 was obtained by insect cell expression. Its deduced molecular weight corresponded to that determined by mass spectrometry (i.e., 10,963 Da). rAmb a 6 formed oligomers as determined by SDS-PAGE under non-reducing conditions. According to multiple sequence comparisons, Amb a 6 was a distinct nsLTP with less than 40% sequence identity to currently known plant nsLTP allergens, except for nsLTP from Helianthus (i.e., 52%). rAmb a 6 is an important ragweed allergen recognized by 30% of ragweed pollen allergic patients. For certain patients, rAmb a 6-specific IgE levels were higher than those specific for the major ragweed allergen Amb a 1 and analysis also showed a higher allergenic activity in the basophil activation test. rAmb a 6-positive patients suffered mainly from respiratory symptoms. The assumption that Amb a 6 is a source-specific ragweed allergen is supported by the finding that none of the patients showing rAmb a 6-induced basophil activation reacted with Par j 2 and only one rAmb a 6-sensitized patient had a history of plant food allergy. Immunization of rabbits with rAmb a 6 induced IgG antibodies which strongly inhibited IgE binding to rAmb a 6. Our results demonstrate that Amb a 6 is an important source-specific ragweed pollen allergen that should be considered for diagnosis and allergen-specific immunotherapy of ragweed pollen allergy.
Collapse
Affiliation(s)
- Manuela Grijincu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania
- OncoGen Center, Pius Brînzeu County Clinical Emergency Hospital, 300723 Timișoara, Romania
| | - Gabriela Tănasie
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania
- OncoGen Center, Pius Brînzeu County Clinical Emergency Hospital, 300723 Timișoara, Romania
| | - Lauriana-Eunice Zbîrcea
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania
- OncoGen Center, Pius Brînzeu County Clinical Emergency Hospital, 300723 Timișoara, Romania
| | - Maria-Roxana Buzan
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania
- OncoGen Center, Pius Brînzeu County Clinical Emergency Hospital, 300723 Timișoara, Romania
| | - Tudor-Paul Tamaș
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania
- OncoGen Center, Pius Brînzeu County Clinical Emergency Hospital, 300723 Timișoara, Romania
| | - Monica-Daniela Cotarcă
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania
- OncoGen Center, Pius Brînzeu County Clinical Emergency Hospital, 300723 Timișoara, Romania
| | - Ioan Huțu
- Horia Cernescu Research Unit, Faculty of Veterinary Medicine, University of Life Sciences “King Michael I of Romania”, 300645 Timișoara, Romania
| | - Elijahu Babaev
- Biomay AG, Vienna Competence Center, 1220 Vienna, Austria
| | - Frank Stolz
- Biomay AG, Vienna Competence Center, 1220 Vienna, Austria
| | - Yulia Dorofeeva
- Department of Pathophysiology and Allergy Research, Division of Immunopathology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Rudolf Valenta
- Department of Pathophysiology and Allergy Research, Division of Immunopathology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- NRC Institute of Immunology FMBA of Russia, 115478 Moscow, Russia
- Department of Clinical Immunology and Allergy, Sechenov First State Medical University, 119991 Moscow, Russia
- Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
| | - Virgil Păunescu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania
- OncoGen Center, Pius Brînzeu County Clinical Emergency Hospital, 300723 Timișoara, Romania
| | - Carmen Panaitescu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania
- OncoGen Center, Pius Brînzeu County Clinical Emergency Hospital, 300723 Timișoara, Romania
| | - Kuan-Wei Chen
- OncoGen Center, Pius Brînzeu County Clinical Emergency Hospital, 300723 Timișoara, Romania
| |
Collapse
|
5
|
Sato S, Ebisawa M. Precision allergy molecular diagnosis applications in food allergy. Curr Opin Allergy Clin Immunol 2024; 24:129-137. [PMID: 38529801 DOI: 10.1097/aci.0000000000000977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
PURPOSE OF REVIEW Precision medicine has become important in the diagnosis and management of food allergies. This review summarizes the latest information regarding molecular allergology, an essential component of food allergy managements. RECENT FINDINGS Component-resolved diagnostics (CRD) can be used to investigate sensitization to allergens based on symptoms and to reveal co-sensitization and/or cross-sensitization in patients with allergies. The following allergen components are known to be associated with symptoms: ovomucoid from eggs, omega-5 gliadin from wheat, and many storage proteins (Gly m 8 from soy, Ara h 2 from peanut, Cor a 14 from hazelnut, Ana o 3 from cashew nut, Jug r 1 from walnut, and Ses i 1 from sesame). Recent studies on allergens of macadamia nuts (Mac i 1 and Mac i 2), almonds (Pru du 6), fish (parvalbumin and collagen), and shrimp (Pem m 1 and Pem m 14) have provided additional information regarding CRD. In addition, Pru p 7 is a risk factor for systemic reactions to peaches and has recently been found to cross-react with cypress and Japanese cedar pollen. SUMMARY CRD provides information of individualized sensitization profiles related to symptoms and severity of allergies in patients. Clinical practice based on CRD offers many benefits, such as higher diagnostic accuracy and improved management of individual patients.
Collapse
Affiliation(s)
- Sakura Sato
- Department of Allergy, Clinical Research Center for Allergy and Rheumatology, NHO Sagamihara National Hospital, Kanagawa, Japan
| | | |
Collapse
|
6
|
Kuźniar J, Kozubek P, Gomułka K. Differences in the Course, Diagnosis, and Treatment of Food Allergies Depending on Age-Comparison of Children and Adults. Nutrients 2024; 16:1317. [PMID: 38732564 PMCID: PMC11085589 DOI: 10.3390/nu16091317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Food allergy (FA) has become a common global public health issue, with a growing prevalence in the modern world and a significant impact on the lives of patients, their families, and caregivers. It affects every area of life and is associated with elevated costs. Food allergy is an adverse immune reaction that occurs in response to a given food. The symptoms vary from mild to severe and can lead to anaphylaxis. This is why it is important to focus on the factors influencing the occurrence of food allergies, specific diagnostic methods, effective therapies, and especially prevention. Recently, many guidelines have emphasized the impact of introducing specific foods into a child's diet at an early age in order to prevent food allergies. Childhood allergies vary with age. In infants, the most common allergy is to cow's milk. Later in life, peanut allergy is more frequently diagnosed. Numerous common childhood allergies can be outgrown by adulthood. Adults can also develop new IgE-mediated FA. The gold standard for diagnosis is the oral provocation test. Skin prick tests, specific IgE measurements, and component-resolved diagnostic techniques are helpful in the diagnosis. Multiple different approaches are being tried as possible treatments, such as immunotherapy or monoclonal antibodies. This article focuses on the prevention and quality of life of allergic patients. This article aims to systematize the latest knowledge and highlight the differences between food allergies in pediatric and adult populations.
Collapse
Affiliation(s)
- Julia Kuźniar
- Student Scientific Group of Internal Medicine and Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland;
| | - Patrycja Kozubek
- Student Scientific Group of Internal Medicine and Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland;
| | - Krzysztof Gomułka
- Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland;
| |
Collapse
|
7
|
Quid des pollens et des allergies croisées : le point de vue du chercheur. REVUE FRANÇAISE D'ALLERGOLOGIE 2023. [DOI: 10.1016/j.reval.2023.103319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
8
|
Anagnostou A. Lipid transfer protein allergy. Ann Allergy Asthma Immunol 2023; 130:413-414. [PMID: 37005051 DOI: 10.1016/j.anai.2023.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 04/03/2023]
Affiliation(s)
- Aikaterini Anagnostou
- Division of Immunology, Allergy, and Retrovirology, Department of Pediatrics, Texas Children's Hospital, Houston, Texas; Division of Allergy, Immunology, and Retrovirology, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
9
|
Dramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, Hoffmann-Sommergruber K. EAACI Molecular Allergology User's Guide 2.0. Pediatr Allergy Immunol 2023; 34 Suppl 28:e13854. [PMID: 37186333 DOI: 10.1111/pai.13854] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 05/17/2023]
Abstract
Since the discovery of immunoglobulin E (IgE) as a mediator of allergic diseases in 1967, our knowledge about the immunological mechanisms of IgE-mediated allergies has remarkably increased. In addition to understanding the immune response and clinical symptoms, allergy diagnosis and management depend strongly on the precise identification of the elicitors of the IgE-mediated allergic reaction. In the past four decades, innovations in bioscience and technology have facilitated the identification and production of well-defined, highly pure molecules for component-resolved diagnosis (CRD), allowing a personalized diagnosis and management of the allergic disease for individual patients. The first edition of the "EAACI Molecular Allergology User's Guide" (MAUG) in 2016 rapidly became a key reference for clinicians, scientists, and interested readers with a background in allergology, immunology, biology, and medicine. Nevertheless, the field of molecular allergology is moving fast, and after 6 years, a new EAACI Taskforce was established to provide an updated document. The Molecular Allergology User's Guide 2.0 summarizes state-of-the-art information on allergen molecules, their clinical relevance, and their application in diagnostic algorithms for clinical practice. It is designed for both, clinicians and scientists, guiding health care professionals through the overwhelming list of different allergen molecules available for testing. Further, it provides diagnostic algorithms on the clinical relevance of allergenic molecules and gives an overview of their biology, the basic mechanisms of test formats, and the application of tests to measure allergen exposure.
Collapse
Affiliation(s)
- Stephanie Dramburg
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | | | - Rob C Aalberse
- Sanquin Research, Dept Immunopathology, University of Amsterdam, Amsterdam, The Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Lorenz Aglas
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Karla L Arruda
- Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Sao Paulo, Brasil, Brazil
| | - Riccardo Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| | - Barbara Ballmer-Weber
- Klinik für Dermatologie und Allergologie, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Domingo Barber
- Institute of Applied Molecular Medicine Nemesio Diez (IMMAND), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Kirsten Beyer
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Maria Beatrice Bilo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
- Allergy Unit Department of Internal Medicine, University Hospital Ospedali Riuniti di Ancona, Torrette, Italy
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Philipp P Bosshard
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Helen A Brough
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Merima Bublin
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Dianne Campbell
- Department of Allergy and Immunology, Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
- Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Jean Christoph Caubet
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Giorgio Celi
- Centro DH Allergologia e Immunologia Clinica ASST- MANTOVA (MN), Mantova, Italy
| | | | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Janet Davies
- Queensland University of Technology, Centre for Immunology and Infection Control, School of Biomedical Sciences, Herston, Queensland, Australia
- Metro North Hospital and Health Service, Emergency Operations Centre, Herston, Queensland, Australia
| | - Nikolaos Douladiris
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Bernadette Eberlein
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, Japan
| | - Anna Ehlers
- Chemical Biology and Drug Discovery, Utrecht University, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Philippe Eigenmann
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Gabriele Gadermaier
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Mattia Giovannini
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Francisca Gomez
- Allergy Unit IBIMA-Hospital Regional Universitario de Malaga, Malaga, Spain
- Spanish Network for Allergy research RETIC ARADyAL, Malaga, Spain
| | - Rebecca Grohman
- NYU Langone Health, Department of Internal Medicine, New York, New York, USA
| | - Carole Guillet
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Christine Hafner
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Robert G Hamilton
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Hauser
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Thomas Hawranek
- Department of Dermatology and Allergology, Paracelsus Private Medical University, Salzburg, Austria
| | - Hans Jürgen Hoffmann
- Institute for Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Tomona Iizuka
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thilo Jakob
- Department of Dermatology and Allergology, University Medical Center, Justus Liebig University Gießen, Gießen, Germany
| | - Bente Janssen-Weets
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
- Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research, Germany
- Interdisciplinary Allergy Outpatient Clinic, Dept. of Pneumology, University of Lübeck, Lübeck, Germany
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | - Tanja Kalic
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Sandip Kamath
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Sabine Kespohl
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Jörg Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient Clinic and Clinical Research Center, Berlin, Germany
| | - Edward Knol
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - André Knulst
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jon R Konradsen
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Korošec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Gideon Lack
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Thuy-My Le
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Andreas Lopata
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Olga Luengo
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
- Allergy Section, Internal Medicine Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mika Mäkelä
- Division of Allergy, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Pediatric Department, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | | | - Clare Mills
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | | | - Antonella Muraro
- Food Allergy Referral Centre, Department of Woman and Child Health, Padua University Hospital, Padua, Italy
| | - Anna Nowak-Wegrzyn
- Division of Pediatric Allergy and Immunology, NYU Grossman School of Medicine, Hassenfeld Children's Hospital, New York, New York, USA
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Roni Nugraha
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, IPB University, Bogor, Indonesia
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Kati Palosuo
- Department of Allergology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Sarita Ulhas Patil
- Division of Rheumatology, Allergy and Immunology, Departments of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Allergy and Immunology, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thomas Platts-Mills
- Division of Allergy and Clinical Immunology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Pascal Poncet
- Institut Pasteur, Immunology Department, Paris, France
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Ekaterina Potapova
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lars K Poulsen
- Allergy Clinic, Department of Dermatology and Allergy, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| | - Christian Radauer
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Suzana Radulovic
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Monika Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Pierre Rougé
- UMR 152 PharmaDev, IRD, Université Paul Sabatier, Faculté de Pharmacie, Toulouse, France
| | - Joaquin Sastre
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Sakura Sato
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit - IDI- IRCCS, Fondazione L M Monti Rome, Rome, Italy
| | - Johannes M Schmid
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Schmid-Grendelmeier
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - Denise Schrama
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Hélène Sénéchal
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Claudia Traidl-Hoffmann
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Marcela Valverde-Monge
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ronald van Ree
- Department of Experimental Immunology and Department of Otorhinolaryngology, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kitty Verhoeckx
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stefan Vieths
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Magnus Wickman
- Department of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Paolo M Matricardi
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
10
|
Kronfel CM, Cheng H, McBride JK, Nesbit JB, Krouse R, Burns P, Cabanillas B, Crespo JF, Ryan R, Simon RJ, Maleki SJ, Hurlburt BK. IgE epitopes of Ara h 9, Jug r 3, and Pru p 3 in peanut-allergic individuals from Spain and the US. FRONTIERS IN ALLERGY 2023; 3:1090114. [PMID: 36698378 PMCID: PMC9869384 DOI: 10.3389/falgy.2022.1090114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Non-specific lipid transfer proteins (LTPs) are well studied allergens that can lead to severe reactions, but often cause oral allergy syndrome in the Mediterranean area and other European countries. However, studies focused on LTP reactivity in allergic individuals from the United States are lacking because they are not considered major allergens. The goal of this study is to determine if differences in immunoglobulin (Ig) E binding patterns to the peanut allergen Ara h 9 and two homologous LTPs (walnut Jug r 3 and peach Pru p 3) between the US and Spain contribute to differences observed in allergic reactivity. Synthetic overlapping 15-amino acid-long peptides offset by five amino acids from Ara h 9, Jug r 3, and Pru p 3 were synthesized, and the intact proteins were attached to microarray slides. Sera from 55 peanut-allergic individuals from the US were tested for IgE binding to the linear peptides and IgE binding to intact proteins using immunofluorescence. For comparison, sera from 17 peanut-allergic individuals from Spain were also tested. Similar IgE binding profiles for Ara h 9, Jug r 3, and Pru p 3 were identified between the US and Spain, with slight differences. Certain regions of the proteins, specifically helices 1 and 2 and the C-terminal coil, were recognized by the majority of the sera more often than other regions of the proteins. While serum IgE from peanut-allergic individuals in the US binds to peptides of Ara h 9 and its homologs, only IgE from the Spanish subjects bound to the intact LTPs. This study identifies Ara h 9, Jug r 3, and Pru p 3 linear epitopes that were previously unidentified using sera from peanut-allergic individuals from the US and Spain. Certain regions of the LTPs are recognized more often in US subjects, indicating that they represent conserved and possible cross-reactive regions. The location of the epitopes in 3D structure models of the LTPs may predict the location of potential conformational epitopes bound by a majority of the Spanish patient sera. These findings are potentially important for development of peptide or protein-targeting diagnostic and therapeutic tools for food allergy.
Collapse
Affiliation(s)
- Christina M. Kronfel
- United States Department of Agriculture, Agriculture Research Service, Southern Regional Research Center, New Orleans, LA, United States
| | - Hsiaopo Cheng
- United States Department of Agriculture, Agriculture Research Service, Southern Regional Research Center, New Orleans, LA, United States
| | - Jane K. McBride
- United States Department of Agriculture, Agriculture Research Service, Southern Regional Research Center, New Orleans, LA, United States
| | - Jacqueline B. Nesbit
- United States Department of Agriculture, Agriculture Research Service, Southern Regional Research Center, New Orleans, LA, United States
| | | | - Preston Burns
- Rho Federal Systems Division, Durham, NC, United States
| | - Beatriz Cabanillas
- Department of Allergy, Research Institute Hospital 12 de Octubre, Madrid, Spain
| | - Jesus F. Crespo
- Department of Allergy, Research Institute Hospital 12 de Octubre, Madrid, Spain
| | - Robert Ryan
- Aimmune Therapeutics, a Nestlé Health Science Company, Brisbane, CA, United States
| | - Reyna J. Simon
- Aimmune Therapeutics, a Nestlé Health Science Company, Brisbane, CA, United States
| | - Soheila J. Maleki
- United States Department of Agriculture, Agriculture Research Service, Southern Regional Research Center, New Orleans, LA, United States,Correspondence: Soheila J. Maleki
| | - Barry K. Hurlburt
- United States Department of Agriculture, Agriculture Research Service, Southern Regional Research Center, New Orleans, LA, United States
| |
Collapse
|
11
|
Wolters P, Ostermann T, Hofmann SC. Lipid‐Transfer‐Protein‐Allergie: Charakterisierung und Vergleich mit birkenpollenassoziierter Nahrungsmittelallergie. J Dtsch Dermatol Ges 2022; 20:1430-1440. [DOI: 10.1111/ddg.14881_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Paula Wolters
- Zentrum für Dermatologie Allergologie und Dermatochirurgie Helios Universitätsklinikum Wuppertal Universität Witten/Herdecke Wuppertal
| | - Thomas Ostermann
- Lehrstuhl für Forschungsmethodik und Statistik in der Psychologie Fakultät für Gesundheit Universität Witten/Herdecke Witten
| | - Silke C. Hofmann
- Zentrum für Dermatologie Allergologie und Dermatochirurgie Helios Universitätsklinikum Wuppertal Universität Witten/Herdecke Wuppertal
| |
Collapse
|
12
|
Wolters P, Ostermann T, Hofmann SC. Lipid transfer protein allergy: characterization and comparison to birch‐related food allergy. J Dtsch Dermatol Ges 2022; 20:1430-1438. [DOI: 10.1111/ddg.14881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 12/12/1912] [Accepted: 07/25/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Paula Wolters
- Department of Dermatology Allergy and Dermatosurgery Helios University Hospital Wuppertal University Witten/Herdecke Wuppertal Germany
| | - Thomas Ostermann
- Department for Psychology and Psychotherapy, Faculty of Health University Witten/Herdecke Witten Germany
| | - Silke C. Hofmann
- Department of Dermatology Allergy and Dermatosurgery Helios University Hospital Wuppertal University Witten/Herdecke Wuppertal Germany
| |
Collapse
|
13
|
Skypala IJ, Hunter H, Krishna MT, Rey-Garcia H, Till SJ, du Toit G, Angier E, Baker S, Stoenchev KV, Luyt DK. BSACI guideline for the diagnosis and management of pollen food syndrome in the UK. Clin Exp Allergy 2022; 52:1018-1034. [PMID: 35975576 DOI: 10.1111/cea.14208] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023]
Abstract
Pollen food syndrome (PFS) is a highly prevalent food allergy affecting pollen-sensitized children and adults. Sufferers experience allergic symptoms when consuming raw plant foods, due to the homology between the pollen allergens and unstable proteins in these foods. The triggers involved can vary depending on the pollen sensitization, which in turn is affected by geographical location. The British Society of Allergy and Clinical Immunology (BSACI) Standards of Care Committee (SOCC) identified a need to develop a guideline for the diagnosis and management of PFS in the United Kingdom (UK). Guidelines produced by the BSACI use either the GRADE or SIGN methodology; due to a lack of high-quality evidence these recommendations were formulated using the SIGN guidelines, which is acknowledged to be less robust than the GRADE approach. The correct diagnosis of PFS ensures the avoidance of a misdiagnosis of a primary peanut or tree nut allergy or confusion with another plant food allergy to non-specific lipid transfer proteins. The characteristic foods involved, and rapid-onset oropharyngeal symptoms, mean PFS can often be diagnosed from the clinical history alone. However, reactions involving tree nuts, peanuts and soya milk or severe/atypical reactions to fruits and vegetables may require additional diagnostic tests. Management is through the exclusion of known trigger foods, which may appear to be simple, but is highly problematic if coupled with a pre-existing food allergy or for individuals following a vegetarian/vegan diet. Immunotherapy to pollens is not an effective treatment for PFS, and although oral or sublingual immunotherapy to foods seems more promising, large, controlled studies are needed. The typically mild symptoms of PFS can lead to an erroneous perception that this condition is always easily managed, but severe reactions can occur, and anxiety about the onset of symptoms to new foods can have a profound effect on quality of life.
Collapse
Affiliation(s)
- Isabel J Skypala
- Department of Allergy & Clinical Immunology, Royal Brompton & Harefield Hospitals, Part of Guys & St Thomas NHS Foundation Trust, London, UK.,Inflammation, Repair & Development Section, National Heart & Lung Institute, Imperial College, London, UK
| | - Hannah Hunter
- Department of Allergy, Guys & St Thomas NHS Foundation Trust, London, UK.,Kings College, London, UK
| | - Mamidipudi Thirumala Krishna
- Department of Allergy and Immunology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,The Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Helena Rey-Garcia
- Department of Allergy & Clinical Immunology, Royal Brompton & Harefield Hospitals, Part of Guys & St Thomas NHS Foundation Trust, London, UK
| | - Stephen J Till
- Department of Allergy, Guys & St Thomas NHS Foundation Trust, London, UK.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - George du Toit
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK.,Children's Allergy Service, Evelina Children's Hospital, Guy's and St. Thomas's NHS Foundation Trust, London, UK.,Department Women and Children's Health (Paediatric Allergy), Faculty of Life Sciences and Medicine, School of Life Course Sciences, King's College London, London, UK
| | - Elizabeth Angier
- Primary Care, Population Science and Medical Education, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Kostadin V Stoenchev
- Department of Allergy & Clinical Immunology, Royal Brompton & Harefield Hospitals, Part of Guys & St Thomas NHS Foundation Trust, London, UK
| | | |
Collapse
|
14
|
Sánchez-Ruano L, Fernández-Lozano C, Ferrer M, Gómez F, de la Hoz B, Martínez-Botas J, Goikoetxea MJ. Differences in Linear Epitopes of Ara h 9 Recognition in Peanut Allergic and Tolerant, Peach Allergic Patients. FRONTIERS IN ALLERGY 2022; 3:896617. [PMID: 35935018 PMCID: PMC9352880 DOI: 10.3389/falgy.2022.896617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/22/2022] [Indexed: 11/29/2022] Open
Abstract
Background Peanut-allergic patients from the Mediterranean region are predominantly sensitized to the lipid transfer protein (LTP) Ara h 9, and the peach LTP Pru p 3 seems to be the primary sensitizer. However, LTP sensitization in peanut allergy is not a predictive marker for clinically relevant symptoms. Objective We aimed to identify sequential epitopes of IgE and IgG4 from Pru p 3 and Ara h 9 in peach-allergic patients sensitized to peanuts. We also sought to determine the differences in IgE and IgG4 binding between patients who had developed peanut allergy and those tolerating peanuts. Methods A total of 46 peach-allergic patients sensitized to peanuts were selected. A total of 35 patients were allergic to peanuts (peanut-allergic group) and 11 were tolerant to peanuts (peanut-tolerant group). We measured sIgE and sIgG4 in peanut, peach, and their recombinant allergen (Ara h 1, Ara h 2, Ara h 3, Ara h 8, and Ara h 9) with fluorescence enzyme immunoassay. We examined the IgE and IgG4 binding to sequential epitopes using a peptide microarray corresponding to linear sequences of the LTPs Ara h 9 and Pru p 3 with a library of overlapping peptides with a length of 20 amino acids (aa) and an offset of 3 aa. Results The frequency and the intensity of IgE recognition of Ara h 9 and Pru p 3 peptides were higher in the peanut-tolerant group than in the peanut-allergic group. We found four Ara h 9 peptides (p4, p14, p21, and p25) and four Pru p 3 peptides (p1, p3, p21, and p24) with a significantly elevated IgE recognition in peanut-tolerant patients. Only one peptide of Ara h 9 (p4) recognized by IgG4 was significantly elevated in the peanut-tolerant group. The IgG4/IgE ratio of Ara h 9 peptide 4 was significantly higher in peanut-tolerant patients than in peanut-allergic patients, while no significant differences were observed in the IgG4/IgE ratio of this peptide in Pru p 3. Conclusion Although we found significant differences in IgE and IgG4 recognition of Ara h 9 and Pru p 3 between peanut-tolerant and peanut-allergic patients (all of whom were allergic to peach), polyclonal IgE peptide recognition of both LTPs was observed in peach-allergic patients tolerating peanuts. However, the IgG4 blocking antibodies against Ara h 9 peptide 4 could provide an explanation for the absence of clinical reactivity in peanut-tolerant peach-allergic patients. Further studies are needed to validate the usefulness of IgG4 antibodies against Ara h 9 peptide 4 for peanut allergy diagnosis.
Collapse
Affiliation(s)
- L. Sánchez-Ruano
- Allergy Department, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - C. Fernández-Lozano
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal - Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - M. Ferrer
- Department of Allergy and Clinical Immunology, Clínica Universidad de Navarra, Navarra Health Research Institute (IDISNA, Instituto de Investigacion Sanitaria de Navarra), Pamplona, Spain
- Research Network on Asthma, Drug Adverse Reactions and Allergy (ARADyAL, Red de Investigacion en Asma, Reacciones Adversas a Farmacos y Alergia), Málaga, Spain
| | - F. Gómez
- Research Network on Asthma, Drug Adverse Reactions and Allergy (ARADyAL, Red de Investigacion en Asma, Reacciones Adversas a Farmacos y Alergia), Málaga, Spain
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - B. de la Hoz
- Allergy Department, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Research Network on Asthma, Drug Adverse Reactions and Allergy (ARADyAL, Red de Investigacion en Asma, Reacciones Adversas a Farmacos y Alergia), Málaga, Spain
| | - J. Martínez-Botas
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal - Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN)-Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: J. Martínez-Botas
| | - M. J. Goikoetxea
- Department of Allergy and Clinical Immunology, Clínica Universidad de Navarra, Navarra Health Research Institute (IDISNA, Instituto de Investigacion Sanitaria de Navarra), Pamplona, Spain
- Research Network on Asthma, Drug Adverse Reactions and Allergy (ARADyAL, Red de Investigacion en Asma, Reacciones Adversas a Farmacos y Alergia), Málaga, Spain
- M. J. Goikoetxea
| |
Collapse
|
15
|
Xu L, Luo W, Lu Y, Huang Z, Yu X, Liao C, Dai Y, Huang H, Gu W, Zheng P, Zhang X, Chen H, Huang L, Zheng J, Hao C, Sun B. A comprehensive analysis of the components of common weed pollen and related allergens in patients with allergic diseases in southern China. Mol Immunol 2022; 147:180-186. [PMID: 35633613 DOI: 10.1016/j.molimm.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 05/04/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Pollen allergens are vital contributors to allergic diseases. The frequency and coreactivity pattern of allergens are closely related to geographical distribution. OBJECTIVE In this study, we aimed to characterize the prevalence of the molecular components of the common weed pollen allergens, birch pollen, walnut, and cross-reactive carbohydrate determinant (CCD), as well as investigate the relationship between the allergens and CCD in Chinese pollen-sensitized patients with allergic diseases. METHODS Based on previous vegetation surveys, serum samples from 165 pollen-sensitized patients with allergic diseases in Guangdong Province in southern China were used to test 19 crude allergen extracts, their components, and CCD using component-resolved diagnosis (CRD). Moreover, the potential associations among CCD, allergens, and their components were described. RESULTS In the 165 samples, the most common sensitized allergens were goosefoot (43.0%), ragweed (40.6%), walnut (37.6%), walnut tree (37.6%), and mugwort (37.0%), followed by platane (35.2%), cocklebur (27.9%), and birch (24.2%). The positivity rate of CCD was 39.4%. Among the samples positive for mugwort, 11 (18.0%), 15 (24.6%), and 15 (24.6%) were positive for Art v 1, Art v 2, and Art v 3, respectively. Among the 67 patients sensitized to ragweed, only five (7.5%) were positive for Amb a 1. In the 40 patients sensitized to birch, Bet v 2 had the highest positivity rate (40.0%). There were 62 patients who were sensitized to walnut. Their components had a lower positivity rate (less than 15%). The hierarchical clustering and optimal scale analysis showed that Art v 4 and Bet v 2 were closely related, and 91.9% of CCD-positive samples were polysensitized. Meanwhile, Spearman's rank correlation method showed that CCD was closely correlated with the sensitization of crude allergen extracts, and there was a low correlation between CCD and allergen components. CCD was highly correlated with goosefoot, ragweed, and walnut trees (r>0.8). Moreover, there was a strong relationship between the levels of Jug r 3 and Art v 3 (r = 0.78; P < 0.001). CONCLUSIONS In southern China, the weed pollens (ragweed, cocklebur, and goosefoot) exhibited higher positivity rates in adults and had a stronger relationship with CCD but not with mugwort. The positivity rate of allergen components was not high. CCD-positive samples were always polysensitized.
Collapse
Affiliation(s)
- Lina Xu
- Department of Respiratory Medicine, Children's Hospital of Soochow University, China
| | - Wenting Luo
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Yanhong Lu
- Department of Respiratory Medicine, Children's Hospital of Soochow University, China
| | - Zhifeng Huang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Xingmei Yu
- Department of Respiratory Medicine, Children's Hospital of Soochow University, China
| | - Chenxi Liao
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Yinfang Dai
- Department of Respiratory Medicine, Children's Hospital of Soochow University, China
| | - Huimin Huang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Wenjing Gu
- Department of Respiratory Medicine, Children's Hospital of Soochow University, China
| | - Peiyan Zheng
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Xinxing Zhang
- Department of Respiratory Medicine, Children's Hospital of Soochow University, China
| | - Hongling Chen
- Department of Respiratory Medicine, Children's Hospital of Soochow University, China
| | - Li Huang
- Department of Respiratory Medicine, Children's Hospital of Soochow University, China
| | - Jinping Zheng
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510120, China.
| | - Chuangli Hao
- Department of Respiratory Medicine, Children's Hospital of Soochow University, China.
| | - Baoqing Sun
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510120, China.
| |
Collapse
|
16
|
Gonzalez-Klein Z, Pazos-Castro D, Hernandez-Ramirez G, Garrido-Arandia M, Diaz-Perales A, Tome-Amat J. Lipid Ligands and Allergenic LTPs: Redefining the Paradigm of the Protein-Centered Vision in Allergy. FRONTIERS IN ALLERGY 2022; 3:864652. [PMID: 35769581 PMCID: PMC9234880 DOI: 10.3389/falgy.2022.864652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
Lipid Transfer Proteins (LTPs) have been described as one of the most prevalent and cross-reactive allergen families in the general population. They are widely distributed among the plant kingdom, as well as in different plant organs ranging from pollen to fruits. Thus, they can initiate allergic reactions with very different outcomes, such as asthma and food allergy. Several mouse models have been developed to unravel the mechanisms that lead LTPs to promote such strong sensitization patterns. Interestingly, the union of certain ligands can strengthen the allergenic capacity of LTPs, suggesting that not only is the protein relevant in the sensitization process, but also the ligands that LTPs carry in their cavity. In fact, different LTPs with pro-allergenic capacity have been shown to transport similar ligands, thus positioning lipids in a central role during the first stages of the allergic response. Here, we offer the latest advances in the use of experimental animals to study the topic, remarking differences among them and providing future researchers a tool to choose the most suitable model to achieve their goals. Also, recent results derived from metabolomic studies in humans are included, highlighting how allergic diseases alter the lipidic metabolism toward a pathogenic state in the individual. Altogether, this review offers a comprehensive body of work that sums up the background evidence supporting the role of lipids as modulators of allergic diseases. Studying the role of lipids during allergic sensitization might broaden our understanding of the molecular events leading to tolerance breakdown in the epithelium, thus helping us to understand how allergy is initiated and established in the individuals.
Collapse
Affiliation(s)
- Zulema Gonzalez-Klein
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Diego Pazos-Castro
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Guadalupe Hernandez-Ramirez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Maria Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Araceli Diaz-Perales
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Jaime Tome-Amat
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
- *Correspondence: Jaime Tome-Amat
| |
Collapse
|
17
|
Castro-Jiménez A, Florido F, Alonso-Morales F, Gratacós-Gómez A, Alonso-Morales FJ, Gómez-Torrijos E. [Peculiarities of allergy to plant foods in South-Eastern Spain]. REVISTA ALERGIA MÉXICO 2022; 69:56-60. [PMID: 36927751 DOI: 10.29262/ram.v69i1.962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/01/2021] [Indexed: 11/24/2022] Open
Abstract
Allergy to fruits and vegetables is the most common primary food allergy in Mediterranean countries, especially the lipid transfer proteins (LTPs) syndrome. This study is the first research that studies multiple clinical, allergological and therapeutics characteristics of allergies to plants in the South-East of Spain, and assessing whether these characteristics differ in emergency room or outpatient clinic. This is a prospective study of patients who consult for the first time for allergy to vegetables at Granada, Spain. We record demographic data, symptoms, allergological study and indicated therapy. The characteristics obtained agree with the current bibliographic except the higher prevalence than other areas of positive sensitization of Pru p 3, Cor a 9 and Ara h 9, which predisposes to severe allergic reactions. We conclude: Allergy to plant food in Granada is a more severe phenotype than other geographic areas from Spain, especially in young adults sensitized by different LTPs and pollinosis to olive pollen.
Collapse
Affiliation(s)
| | - Fernando Florido
- Universidad de Granada, Hospital Universitario San Cecilio, Granada, España
| | | | | | | | - Elisa Gómez-Torrijos
- Universidad de Castilla-La Mancha, Hospital General Universitario de Ciudad Real, España
| |
Collapse
|
18
|
Basophil Activation Test Utility as a Diagnostic Tool in LTP Allergy. Int J Mol Sci 2022; 23:ijms23094979. [PMID: 35563370 PMCID: PMC9105056 DOI: 10.3390/ijms23094979] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/10/2022] Open
Abstract
Plant-food allergy is an increasing problem, with nonspecific lipid transfer proteins (nsLTPs) triggering mild/severe reactions. Pru p 3 is the major sensitizer in LTP food allergy (FA). However, in vivo and in vitro diagnosis is hampered by the need for differentiating between asymptomatic sensitization and allergy with clinical relevance. The basophil activation test (BAT) is an ex vivo method able to identify specific IgE related to the allergic response. Thus, we aimed to establish the value of BAT in a precise diagnosis of LTP-allergic patients. Ninety-two individuals with peach allergy sensitized to LTP, Pru p 3, were finally included, and 40.2% of them had symptoms to peanut (n = 37). In addition, 16 healthy subjects were recruited. BAT was performed with Pru p 3 and Ara h 9 (peanut LTP) at seven ten-fold concentrations, and was evaluated by flow cytometry, measuring the percentage of CD63 (%CD63+) and CD203c (%CD203chigh) cells, basophil allergen threshold sensitivity (CD-Sens), and area under the dose−response curve (AUC). Significant changes in BAT parameters (%CD63+ and %CD203chigh) were found between the controls and patients. However, comparisons for %CD63+, %CD203chigh, AUC, and CD-Sens showed similar levels among patients with different symptoms. An optimal cut-off was established from ROC curves, showing a significant positive percentage of BAT in patients compared to controls and great values of sensitivity (>87.5%) and specificity (>85%). In addition, BAT showed differences in LTP-allergic patients tolerant to peanut using its corresponding LTP, Ara h 9. BAT can be used as a potential diagnostic tool for identifying LTP allergy and for differentiating peanut tolerance, although neither reactivity nor sensitivity can distinguish the severity of the clinical symptoms.
Collapse
|
19
|
Abstract
This review provides a global overview on Rosaceae allergy and details the particularities of each fruit allergy induced by ten Rosaceae species: almond/peach/cherry/apricot/plum (Amygdaleae), apple/pear (Maleae), and raspberry/blackberry/strawberry (Rosoideae). Data on clinical symptoms, prevalence, diagnosis, and immunotherapies for the treatment of Rosaceae allergy are herein stated. Allergen molecular characterization, cross-reactivity/co-sensitization phenomena, the impact of food processing and digestibility, and the methods currently available for the Rosaceae detection/quantification in foods are also described. Rosaceae allergy has a major impact in context to pollen-food allergy syndrome (PFAS) and lipid transfer protein (LTP) allergies, being greatly influenced by geography, environment, and presence of cofactors. Peach, apple, and almond allergies are probably the ones most affecting the quality of life of the allergic-patients, although allergies to other Rosaceae fruits cannot be overlooked. From patients' perspective, self-allergy management and an efficient avoidance of multiple fruits are often difficult to achieve, which might raise the risk for cross-reactivity and co-sensitization phenomena and increase the severity of the induced allergic responses with time. At this point, the absence of effective allergy diagnosis (lack of specific molecular markers) and studies advancing potential immunotherapies are some gaps that certainly will prompt the progress on novel strategies to manage Rosaceae food allergies.
Collapse
Affiliation(s)
- Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
20
|
Missaoui K, Gonzalez-Klein Z, Pazos-Castro D, Hernandez-Ramirez G, Garrido-Arandia M, Brini F, Diaz-Perales A, Tome-Amat J. Plant non-specific lipid transfer proteins: An overview. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 171:115-127. [PMID: 34992048 DOI: 10.1016/j.plaphy.2021.12.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 05/26/2023]
Abstract
Plant non-specific lipid transfer proteins (nsLTPs) are usually defined as small, basic proteins, with a wide distribution in all orders of higher plants. Structurally, nsLTPs contain a conserved motif of eight cysteines, linked by four disulphide bonds, and a hydrophobic cavity in which the ligand is housed. This structure confers stability and enhances the ability to bind and transport a variety of hydrophobic molecules. Their highly conserved structural resemblance but low sequence identity reflects the wide variety of ligands they can carry, as well as the broad biological functions to which they are linked to, such as membrane stabilization, cell wall organization and signal transduction. In addition, they have also been described as essential in resistance to biotic and abiotic stresses, plant growth and development, seed development, and germination. Hence, there is growing interest in this family of proteins for their critical roles in plant development and for the many unresolved questions that need to be clarified, regarding their subcellular localization, transfer capacity, expression profile, biological function, and evolution.
Collapse
Affiliation(s)
- Khawla Missaoui
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax (CBS), University of Sfax, Tunisia
| | - Zulema Gonzalez-Klein
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Spain
| | - Diego Pazos-Castro
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Spain
| | - Guadalupe Hernandez-Ramirez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Spain
| | - Maria Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Spain
| | - Faical Brini
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax (CBS), University of Sfax, Tunisia
| | - Araceli Diaz-Perales
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Spain
| | - Jaime Tome-Amat
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Spain.
| |
Collapse
|
21
|
The Influence of Biomolecule Composition on Colloidal Beer Structure. Biomolecules 2021; 12:biom12010024. [PMID: 35053172 PMCID: PMC8774254 DOI: 10.3390/biom12010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
Recent studies have revealed an interest in the composition of beer biomolecules as a colloidal system and their influence on the formation of beer taste. The purpose of this research was to establish biochemical interactions between the biomolecules of plant-based raw materials of beer in order to understand the overall structure of beer as a complex system of bound biomolecules. Generally accepted methods of analytical research in the field of brewing, biochemistry and proteomics were used to solve the research objectives. The studies allowed us to establish the relationship between the grain and plant-based raw materials used, as well as the processing technologies and biomolecular profiles of beer. The qualitative profile of the distribution of protein compounds as a framework for the formation of a colloidal system and the role of carbohydrate dextrins and phenol compounds are given. This article provides information about the presence of biogenic compounds in the structure of beer that positively affect the functioning of the body. A critical assessment of the influence of some parameters on the completeness of beer taste by biomolecules is given. Conclusion: the conducted analytical studies allowed us to confirm the hypothesis about the nitrogen structure of beer and the relationship of other biomolecules with protein substances, and to identify the main factors affecting the distribution of biomolecules by fractions.
Collapse
|
22
|
Losada Méndez J, Palomares F, Gómez F, Ramírez-López P, Ramos-Soriano J, Torres MJ, Mayorga C, Rojo J. Immunomodulatory Response of Toll-like Receptor Ligand-Peptide Conjugates in Food Allergy. ACS Chem Biol 2021; 16:2651-2664. [PMID: 34761908 PMCID: PMC8609526 DOI: 10.1021/acschembio.1c00765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Covalent conjugation
of allergens to toll-like receptor (TLR) agonists
appears to be a powerful strategy for the development of safety compounds
for allergen-specific immunomodulatory response toward tolerance in
allergy. In this work, we have synthesized two family of ligands,
an 8-oxoadenine derivative as a ligand for TLR7 and a pyrimido[5,4-b]indole as a ligand for TLR4, both conjugated with a T-cell
peptide of Pru p 3 allergen, the lipid transfer protein (LTP) responsible
for LTP-dependent food allergy. These conjugates interact with dendritic
cells, inducing their specific maturation, T-cell proliferation, and
cytokine production in peach allergic patients. Moreover, they increased
the Treg-cell frequencies in these patients and could induce the IL-10
production. These outcomes were remarkable in the case of the TLR7
ligand conjugated with Pru p 3, opening the door for the potential
application of these allergen–adjuvant systems in food allergy
immunotherapy.
Collapse
Affiliation(s)
- Jorge Losada Méndez
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC─Universidad de Sevilla, 41092 Seville, Spain
| | - Francisca Palomares
- Allergy Unit, IBIMA, Regional University Hospital of Malaga, UMA, 29009 Malaga, Spain
| | - Francisca Gómez
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
| | - Pedro Ramírez-López
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC─Universidad de Sevilla, 41092 Seville, Spain
| | - Javier Ramos-Soriano
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC─Universidad de Sevilla, 41092 Seville, Spain
| | - Maria Jose Torres
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
- Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory, Centro Andaluz de Nanomedicina y Biotecnología-BIONAND, 29590 Málaga, Spain
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, 29009 Málaga, Spain
- Medicine Department, Universidad de Málaga-UMA, 29009 Málaga, Spain
| | - Cristobalina Mayorga
- Allergy Unit, IBIMA, Regional University Hospital of Malaga, UMA, 29009 Malaga, Spain
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
- Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory, Centro Andaluz de Nanomedicina y Biotecnología-BIONAND, 29590 Málaga, Spain
| | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC─Universidad de Sevilla, 41092 Seville, Spain
| |
Collapse
|
23
|
Asero R, Pravettoni V, Scala E, Villalta D. Lipid transfer protein allergy: A review of current controversies. Clin Exp Allergy 2021; 52:222-230. [PMID: 34773669 DOI: 10.1111/cea.14049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/04/2023]
Abstract
Sensitization to lipid transfer protein (LTP), the most frequent cause of food allergy in southern Europe, still shows several controversial, but also intriguing, aspects. Some of these include the degree of cross-reactivity between LTPs from botanically distant sources, the definition of risk factors, the role of some cofactors, clinical outcomes, geographical differences and the identification of the primary sensitizer in different areas. This review article tries to analyse and comment on these aspects point by point suggesting some explanatory hypotheses with the final scope to stimulate critical thoughts and elicit the scientific discussion about this issue in the readership.
Collapse
Affiliation(s)
- Riccardo Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Milan, Italy
| | - Valerio Pravettoni
- Department of General Medicine, Immunology and Allergy, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit, IDI - IRCCS, Rome, Italy
| | - Danilo Villalta
- Immunologia e allergologia, Ospedale S. Maria degli Angeli, Pordenone, Italy
| |
Collapse
|
24
|
Luo W, Yang S, Huang H, Wu L, Cheng ZJ, Zheng P, Zheng J, Sun B. Analysis of Peanut Allergen Components Sensitization and Cross Reaction with Pollen Allergen in Chinese Southerners with Allergic Rhinitis and/or Asthma. J Asthma Allergy 2021; 14:1285-1293. [PMID: 34737581 PMCID: PMC8560168 DOI: 10.2147/jaa.s335265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/13/2021] [Indexed: 11/26/2022] Open
Abstract
Objective Peanut is one of the most frequently reported allergens causing severe allergies in western countries. In China, however, there have been few reports of severe allergies caused by peanuts. We investigated the peanut allergen components sensitization and cross-reaction with pollen allergen in Chinese Southerners with allergic rhinitis and/or asthma. Methods Total IgE (tIgE) and specific IgE (sIgE) antibodies against Ara h 1, Ara h 8, Juglans pollen, Platanus pollen, birch pollen, Bet v 1, Bet v 4, and cross-reactive carbohydrate determinant (CCD) of 58 allergic patients, of whom 33 were peanut-sIgE positive and 25 were negative, were detected by the ImmunoCAP system. The relationships between peanut allergen and pollen allergens were analyzed. Results A 9.1% (3/33) of the patients with peanut sensitization were sensitized to Ara h 8, while 21.2% (7/33) were sensitized to Ara h 1. The peanut-sensitized group had significantly higher positive rates for sIgE antibodies against CCD (69.7% vs 4.0%), Juglans pollen (87.9% vs 12.0%), Platanus pollen (90.9% vs 16.0%), and birch pollen (60.6% vs 4.0%) than the peanut tolerance group (all P < 0.05). Spearman correlation showed that peanut-sIgE were significantly correlated with sIgE to CCD (rs=0.859), Juglans pollen (rs=0.772), Platanus pollen (rs=0.838) and birch pollen (rs=0.816). Conclusion The majority of patients sensitized to peanut allergen in Southern China tested positive for multiple pollen allergens. Peanut sensitization was highly correlated with Platanus, Juglans, and birch pollen sensitization, which suggested there may be cross-reactions between peanut and pollen allergens. Clinicians should pay attention to distinguish diagnosis in clinical peanut allergy diagnosis and treatment.
Collapse
Affiliation(s)
- Wenting Luo
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Shuwen Yang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Huimin Huang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Liting Wu
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Zhangkai J Cheng
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Peiyan Zheng
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jinping Zheng
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Baoqing Sun
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
25
|
Scala E, Caprini E, Abeni D, Meneguzzi G, Buzzulini F, Cecchi L, Villalta D, Asero R. A qualitative and quantitative comparison of IgE antibody profiles with two multiplex platforms for component-resolved diagnostics in allergic patients. Clin Exp Allergy 2021; 51:1603-1612. [PMID: 34523179 DOI: 10.1111/cea.14016] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 06/03/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Clinically complex phenotypes require more and more sophisticated and comprehensive diagnostic approaches, able to discriminate genuine sensitizations from cross-reactivity. Interpretative complexity of multiplex diagnostic arrays has somewhat limited their diffusion. This study compares two currently available methods, namely ISAC® test and ALEX2® test. METHODS In total, 140 allergic individuals, with a history of atopic dermatitis, adverse food reactions, allergic rhinitis and/or bronchial asthma were studied by Allergy Explorer-ALEX2® macroarray and ImmunoCAP ISAC112® . Lin's concordance correlation coefficient, intraclass correlation coefficient and Bland-Altman plots were used to verify the agreement between continuous values. Cohen's kappa coefficient (k) was assessed for the molecules available in both tests. The degree of relationship was analysed using Spearman's correlation (quantitative variables) and Pearson's χ2 or Fisher's exact test (categorical variables). RESULTS A substantial agreement (κ = 0.795) was observed between the two methods with 94,3% concordant results when results were dichotomized as negative or positive, but if double-negative results were discarded, the agreement dropped to 71%. Conversely, little or no concordance was observed comparing raw data. Considering the 102 molecules shared by both systems, 28/102 (27%) showed an almost perfect agreement (k > 0.81), and concordance was good (k > 0.61) in a further 32 (31%) cases. A perfect to substantial agreement was observed by comparing species-specific aeroallergens. Heterogeneous results emerged comparing panallergens (co-recognition ranging from 30% for tropomyosin/serum albumins to 70% for PR-10/profilin). The correlation among LTP, profilin and PR-10 assayed with ISAC® was better than ALEX2® , but the latter identified more positive cases due to the wider number of molecules available. The CCD blocker provided by ALEX® test abolishes the carbohydrate determinants signal in 60% of the 33 cases reactive to MUXF3 on the ISAC® test. CONCLUSION Despite the excellent concordance of the species-specific markers, the analysis of the panallergens provided in both methods suggests a better performance of the ISAC® test on those components, while the ALEX2® test, which includes a larger number of allergens, allowing a broader molecular detection.
Collapse
Affiliation(s)
- Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit, IDI - IRCCS, Rome, Italy
| | - Elisabetta Caprini
- Clinical and Laboratory Molecular Allergy Unit, IDI - IRCCS, Rome, Italy
| | - Damiano Abeni
- Clinical and Laboratory Molecular Allergy Unit, IDI - IRCCS, Rome, Italy
| | - Giorgia Meneguzzi
- Clinical and Laboratory Molecular Allergy Unit, IDI - IRCCS, Rome, Italy
| | - Francesca Buzzulini
- Immunologia e allergologia, Ospedale S. Maria degli Angeli, Pordenone, Italy
| | - Lorenzo Cecchi
- SOS Allergy and Clinical Immunology, USL Toscana Centro, Prato, Italy
| | - Danilo Villalta
- Immunologia e allergologia, Ospedale S. Maria degli Angeli, Pordenone, Italy
| | - Riccardo Asero
- Ambulatorio di allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| |
Collapse
|
26
|
Somoza ML, Pérez-Sánchez N, Victorio-Puche L, Martín-Pedraza L, Esteban Rodríguez A, Blanca-López N, Abel Fernández González E, Ruano-Zaragoza M, Prieto-Moreno Pfeifer A, Fernández Caldas E, Morán Morales M, Fernández Sánchez FJ, López Sánchez JD, Jiménez Rodríguez TW, Subiza Garrido-Lestache JL, Canto Díez G, Blanca Gómez M, Cornejo-García JA. Subjects develop tolerance to Pru p 3 but respiratory allergy to Pru p 9: A large study group from a peach exposed population. PLoS One 2021; 16:e0255305. [PMID: 34411133 PMCID: PMC8376049 DOI: 10.1371/journal.pone.0255305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/13/2021] [Indexed: 11/19/2022] Open
Abstract
Peach tree allergens are present in fruit, pollen, branches, and leaves, and can induce systemic, respiratory, cutaneous, and gastrointestinal symptoms. We studied the capacity of peach fruit/Pru p 1, Pru p 3, Pru p 4, Pru p 7 and peach pollen/Pru p 9 for inducing symptoms following oral or respiratory exposure in a large group of subjects. We included 716 adults (aged 21 to 83 y.o.) exposed to peach tree pollen and fruit intake in the study population. Participants completed a questionnaire and were skin tested with a panel of inhalant and food allergens, including peach tree pollen, Pru p 9 and peach fruit skin extract. Immunoglobulin E antibodies (SIgE) to Pru p 1, Pru p 3, Pru p 4 and Pru p 7 were quantified. Sensitised subjects underwent oral food challenge with peach fruit and nasal provocation test with peach tree pollen and Pru p 9. The prevalence of sensitisation to peach fruit was 5% and most of these had SIgE to Pru p 3, with a very low proportion to Pru p 4 SIgE and no SIgE to Pru p 1 and Pru p 7. In only 1.8%, anaphylaxis was the clinical entity induced. Cases with positive skin tests to peach and SIgE to Pru p 3 presented a good tolerance after oral challenge with peach fruit. The prevalence of skin sensitisation to peach tree pollen was 22%, with almost half recognising Pru p 9. This induced respiratory symptoms in those evaluated by nasal provocation. In a large population group exposed to peach fruit and peach tree pollen, most individuals were tolerant, even in those with SIgE to Pru p 3. A positive response to Pru p 9 was associated with respiratory allergy.
Collapse
Affiliation(s)
| | - Natalia Pérez-Sánchez
- Allergy Department, Hospital Regional Universitario de Málaga, Málaga-IBIMA, Málaga, Spain
| | | | - Laura Martín-Pedraza
- Allergy Department, Fundación para la Investigación e Innovación Biomédica (FIIB) de los Hospitales Universitarios Infanta Leonor y Sureste, Madrid, Spain
| | | | | | | | - María Ruano-Zaragoza
- Allergy Department, General University Hospital of Alicante- ISABIAL, Alicante, Spain
| | | | | | | | | | | | | | | | | | - Miguel Blanca Gómez
- Allergy Department, Fundación para la Investigación e Innovación Biomédica (FIIB) de los Hospitales Universitarios Infanta Leonor y Sureste, Madrid, Spain
| | | |
Collapse
|
27
|
Abstract
INTRODUCTION Allergies affect 20-30% of the population and respiratory allergies are mostly due to pollen grains from anemophilous plants. One to 5% of people suffer from food allergies and clinicians report increasing numbers of pollen-food allergy syndrome (PFAS), such that the symptoms have broadened from respiratory to gastrointestinal, and even to anaphylactic shock in the presence of cofactors. Thirty to 60% of food allergies are associated with pollen allergy while the percentage of pollen allergies associated to food allergy varies according to local environment and dietary habits. AREAS COVERED Articles published in peer-reviewed journals, covered by PubMed databank, clinical data are discussed including symptoms, diagnosis, and management. A chapter emphasizes the role of six well-known allergen families involved in PFAS: PR10 proteins, profilins, lipid transfer proteins, thaumatin-like proteins, isoflavone reductases, and β-1,3 glucanases. The relevance in PFAS of three supplementary allergen families is presented: oleosins, polygalacturonases, and gibberellin-regulated proteins. To support the discussion a few original relevant results were added. EXPERT OPINION Both allergenic sources, pollen and food, are submitted to the same stressful environmental changes resulting in an increase of pathogenesis-related proteins in which numerous allergens are found. This might be responsible for the potential increase of PFAS.
Collapse
Affiliation(s)
- Pascal Poncet
- Armand Trousseau Children Hospital, Immunology Department, Allergy & Environment Research Team , Paris, France.,Immunology Department, Institut Pasteur , Paris, France
| | - Hélène Sénéchal
- Armand Trousseau Children Hospital, Immunology Department, Allergy & Environment Research Team , Paris, France
| | - Denis Charpin
- Aix Marseille University and French Clean Air Association (APPA) , Marseille, France
| |
Collapse
|
28
|
Can patients with oral allergy syndrome be at risk of anaphylaxis? Curr Opin Allergy Clin Immunol 2021; 20:459-464. [PMID: 32842037 DOI: 10.1097/aci.0000000000000679] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE OF REVIEW Oral allergy syndrome, also known as pollen-food syndrome (PFS), is a condition usually associated with adults and characterized by mild transient oropharyngeal symptoms. The purpose of this review is to determine whether systemic or anaphylactic reactions do occur and if so, who is affected and what are the triggers. RECENT FINDINGS An increasing number of studies demonstrate that PFS occurs all age groups, and a significant number of affected adults do experience systemic and anaphylactic reactions. The upsurge in the adoption of vegan lifestyles, increase in consumption of fruits and vegetables including smoothies and juices, and use of plant foods in nutritional or body-building supplements, could exacerbate this. Changes in pollen and pollution levels, cofactors and sensitization to other plant food allergens may also be involved. SUMMARY While the majority of those with PFS will continue to experience mild symptoms, all individuals should be properly advised regarding the dangers of concentrated or unusual forms of plant food allergens such as smoothies, juices, soy/nut milks and nutritional supplements. Further well characterized studies are needed to determine risk factors for severe reactions, and sensitization patterns to pollens and plant food allergens.
Collapse
|
29
|
Skypala IJ, Bartra J, Ebo DG, Antje Faber M, Fernández‐Rivas M, Gomez F, Luengo O, Till SJ, Asero R, Barber D, Cecchi L, Diaz Perales A, Hoffmann‐Sommergruber K, Anna Pastorello E, Swoboda I, Konstantinopoulos AP, Ree R, Scala E. The diagnosis and management of allergic reactions in patients sensitized to non-specific lipid transfer proteins. Allergy 2021; 76:2433-2446. [PMID: 33655502 DOI: 10.1111/all.14797] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/29/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022]
Abstract
Sensitization to one or more non-specific lipid transfer proteins (nsLTPs), initially thought to exist mainly in southern Europe, is becoming accepted as a cause of allergic reactions to plant foods across Europe and beyond. The peach nsLTP allergen Pru p 3 is a dominant sensitizing allergen and peaches a common food trigger, although multiple foods can be involved. A frequent feature of reactions is the requirement for a cofactor (exercise, alcohol, non-steroidal anti-inflammatory drugs, Cannabis sativa) to be present for a food to elicit a reaction. The variability in the food and cofactor triggers makes it essential to include an allergy-focused diet and clinical history in the diagnostic workup. Testing on suspected food triggers should also establish whether sensitization to nsLTP is present, using purified or recombinant nsLTP allergens such as Pru p 3. The avoidance of known trigger foods and advice on cofactors is currently the main management for this condition. Studies on immunotherapy are promising, but it is unknown whether such treatments will be useful in populations where Pru p 3 is not the primary sensitizing allergen. Future research should focus on the mechanisms of cofactors, improving diagnostic accuracy and establishing the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Isabel J. Skypala
- Royal Brompton & Harefield NHS Foundation Trust London UK
- Department of Allergy and Clinical Immunology Imperial College London UK
| | - Joan Bartra
- Hospital Clinic Barcelona Spain
- IDIBAPS Universitat de Barcelona ARADyAL, Barcelona Spain
| | - Didier G. Ebo
- Department of Immunology, Allergology, Rheumatology Faculty of Medicine and Health Sciences Infla‐Med Centre of Excellence Antwerp University Hospital University of Antwerp Antwerp Belgium
- Jan Palfijn Ziekenhuis Ghent Ghent Belgium
| | - Margaretha Antje Faber
- Faculty of Medicine and Health Sciences Department of Immunology, Allergology, Rheumatology Infla‐Med Centre of Excellence Antwerp University Hospital University of Antwerp Antwerp Belgium
| | - Montserrat Fernández‐Rivas
- Department of Allergy Hospital Clínico San Carlos Universidad Complutense de Madrid IdISSC ARADyAL Madrid Spain
| | - Francisca Gomez
- Allergy Unit IBIMA—Hospital Regional Universitario de Malaga Malaga Spain
- Spanish Network for Allergy ‐ RETICS de Asma Reaccionesadversas y Alérgicas (ARADyAL Madrid Spain
| | - Olga Luengo
- Allergy Unit Internal Medicine Department Vall d'Hebron University Hospital Universitat Autònoma de Barcelona ARADyAL Barcelona Spain
| | - Stephen J. Till
- Peter Gorer Department of Immunobiology King’s College London London UK
- Department of Allergy Guy’s & St Thomas’ NHS Foundation Trust London UK
| | - Riccardo Asero
- Ambulatorio di Allergologia Clinica San Carlo Paderno Dugnano Italy
| | - Domingo Barber
- IMMA School of Medicine Universidad San Pablo CEU, Universities Madrid Spain
- RETIC ARADYAL RD16/0006/0015 Instituto de Salud Carlos III Madrid Spain
| | - Lorenzo Cecchi
- SOS Allergy and Clinical Immunology USL Toscana Centro Prato Italy
| | - Araceli Diaz Perales
- Centro de Biotecnología y Genómica de Plantas Universidad Politecnica Madrid Spain
| | | | - Elide Anna Pastorello
- Unit of Allergology and Immunology ASST Grande Ospedale Metropolitano Niguarda University of Milan Milan Italy
| | - Ines Swoboda
- Biotechnology Section Campus Vienna Biocenter FH Campus Wien, University of Applied Sciences Vienna Austria
| | | | - Ronald Ree
- Department of Experimental Immunology Amsterdam University Medical Centers, location AMC Amsterdam The Netherlands
- Department of Otorhinolaryngology Amsterdam University Medical Centers, location AMC Amsterdam The Netherlands
| | - Enrico Scala
- Experimental Allergy Unit Istituto Dermopatico dell’Immacolata – IRCCS FLMM Rome Italy
| | | |
Collapse
|
30
|
Maruyama N. Components of plant-derived food allergens: Structure, diagnostics, and immunotherapy. Allergol Int 2021; 70:291-302. [PMID: 34092500 DOI: 10.1016/j.alit.2021.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
A large number of plant-derived food allergen components have been identified to date. Although these allergens are diverse, they often share common structural features such as numerous disulfide bonds or oligomeric structures. Furthermore, some plant-derived food allergen components cross-react with pollen allergens. Since the relationship between allergen components and clinical symptoms has been well characterized, measurements of specific IgE to these components have become useful for the accurate clinical diagnosis and selection of optimal treatment methods for various allergy-related conditions including allergy caused by plant-derived foods. Herein, I have described the types and structures of different plant allergen components and outlined the diagnosis as well as treatment strategies, including those reported recently, for such substances. Furthermore, I have also highlighted the contribution of allergen components to this field.
Collapse
Affiliation(s)
- Nobuyuki Maruyama
- Food Quality Design and Development Laboratory, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
31
|
Mishra A, Kumar A. Mapping B-Cell Epitopes for Nonspecific Lipid Transfer Proteins of Legumes Consumed in India and Identification of Critical Residues Responsible for IgE Binding. Foods 2021; 10:foods10061269. [PMID: 34199581 PMCID: PMC8227083 DOI: 10.3390/foods10061269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/26/2022] Open
Abstract
Nonspecific lipid transfer proteins (nsLTPs) have been categorized as panallergens and display widespread occurrence across plant-kingdom. Present study, investigated B-cell epitopes for LTPs from chickpea, mung-bean, cowpea, pigeon-pea, and soybean via in silico methods. In-silico predicted regions were evaluated for epitope-conservancy and property-based peptide similarity search by different allergen databases. Additionally, the in-silico predicted regions were compared with the experimentally validated epitopes of peach-LTP. Sequence-homology studies showed that chickpea and mung-bean LTPs shared significant homology, i.e., >70% and >60%, respectively, with other LTP allergens from lentil, garden-pea, peanut, etc. Phylogenetic-analysis also showed chickpea and mung-bean LTPs to be closely related to allergenic LTPs from lentil and peanut, respectively. Epitope-conservation analysis showed that two of the predicted B-cell epitopic regions in chickpea and mung-bean LTPs were also conserved in other allergenic LTPs from peach, peanut, garden-pea, lentil, and green-bean, and might serve as conserved B-cell epitopes of the LTP protein family. Property-distance index values for chickpea and mung-bean LTPs also showed that most of the epitopes shared similarity with the reported allergens like-lentil, peanut, apple, plum, tomato, etc. Present findings, may be explored for identification of probable allergenicity of novel LTPs, on the basis of the reported conserved B-cell epitopes, responsible for potential cross-reactivity.
Collapse
Affiliation(s)
- Ankita Mishra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India;
- Correspondence:
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India;
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| |
Collapse
|
32
|
Skypala IJ, Asero R, Barber D, Cecchi L, Diaz Perales A, Hoffmann-Sommergruber K, Pastorello EA, Swoboda I, Bartra J, Ebo DG, Faber MA, Fernández-Rivas M, Gomez F, Konstantinopoulos AP, Luengo O, van Ree R, Scala E, Till SJ. Non-specific lipid-transfer proteins: Allergen structure and function, cross-reactivity, sensitization, and epidemiology. Clin Transl Allergy 2021; 11:e12010. [PMID: 34025983 PMCID: PMC8129635 DOI: 10.1002/clt2.12010] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/08/2021] [Indexed: 12/27/2022] Open
Abstract
Background Discovered and described 40 years ago, non‐specific lipid transfer proteins (nsLTP) are present in many plant species and play an important role protecting plants from stressors such as heat or drought. In the last 20 years, sensitization to nsLTP and consequent reactions to plant foods has become an increasing concern. Aim The aim of this paper is to review the evidence for the structure and function of nsLTP allergens, and cross‐reactivity, sensitization, and epidemiology of nsLTP allergy. Materials and Methods A Task Force, supported by the European Academy of Allergy & Clinical Immunology (EAACI), reviewed current evidence and provide a signpost for future research. The search terms for this paper were “Non‐specific Lipid Transfer Proteins”, “LTP syndrome”, “Pru p 3”, “plant food allergy”, “pollen‐food syndrome”. Results Most nsLTP allergens have a highly conserved structure stabilised by 4‐disulphide bridges. Studies on the peach nsLTP, Pru p 3, demonstrate that nsLTPs are very cross‐reactive, with the four major IgE epitopes of Pru p 3 being shared by nsLTP from other botanically related fruits. These nsLTP allergens are to varying degrees resistant to heat and digestion, and sensitization may occur through the oral, inhaled or cutaneous routes. In some populations, Pru p 3 is the primary and sole sensitizing allergen, but many are poly‐sensitised both to botanically un‐related nsLTP in foods, and non‐food sources of nsLTP such as Cannabis sativa, Platanus acerifolia, (plane tree), Ambrosia artemisiifolia (ragweed) and Artemisia vulgaris (mugwort). Initially, nsLTP sensitization appeared to be limited to Mediterranean countries, however more recent studies suggest clinically relevant sensitization occurs in North Atlantic regions and also countries in Northern Europe, with nsLTP sensitisation profiles being broadly similar. Discussion These robust allergens have the potential to sensitize and provoke symptoms to a large number of plant foods, including those which are raw, cooked or processed. It is unknown why some sensitized individuals develop clinical symptoms to foods whereas others do not, or indeed what other allergens besides Pru p 3 may be primary sensitising allergens. It is clear that these allergens are also relevant in non‐Mediterranean populations and there needs to be more recognition of this. Conclusion Non‐specific LTP allergens, present in a wide variety of plant foods and pollens, are structurally robust and so may be present in both raw and cooked foods. More studies are needed to understand routes of sensitization and the world‐wide prevalence of clinical symptoms associated with sensitization to these complex allergens.
Collapse
Affiliation(s)
- Isabel J Skypala
- Department of Allergy & Clinical Immunology Royal Brompton & Harefield NHS Foundation Trust Imperial College London UK
| | - Ricardo Asero
- Ambulatorio di Allergologia Clinica San Carlo Milan Italy
| | - Domingo Barber
- IMMA School of Medicine Universidad San Pablo CEU CEU Universities Madrid Spain.,RETIC ARADYAL RD16/0006/0015 Instituto de Salud Carlos III Madrid Spain
| | - Lorenzo Cecchi
- SOS Allergy and Clinical Immunology USL Toscana Centro Prato Italy
| | - Arazeli Diaz Perales
- Departamento de Biotecnología-Biología Vegetal Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid Madrid Spain
| | | | - Elide A Pastorello
- Unit of Allergology and Immunology ASST Grande Ospedale Metropolitano Niguarda University of Milan Milan Italy
| | - Ines Swoboda
- Biotechnology Section FH Campus Wien University of Applied Sciences Vienna Austria
| | - Joan Bartra
- Hospital Clinic de Barcelona IDIBAPS Universitat de Barcelona ARADyAL Barcelona Spain
| | - Didier G Ebo
- Department of Immunology, Allergology, Rheumatology and Infla-Med Centre of Excellence Faculty of Medicine and Health Sciences University of Antwerp and Antwerp University Hospital Ghent Belgium
| | - Margaretha A Faber
- Department of Immunology, Allergology, Rheumatology and Infla-Med Centre of Excellence Faculty of Medicine and Health Sciences University of Antwerp and Antwerp University Hospital Ghent Belgium
| | - Montserrat Fernández-Rivas
- Department of Allergy Hospital Clínico San Carlos Universidad Complutense de Madrid IdISSC, ARADyAL Madrid Spain
| | - Francesca Gomez
- Allergy Unit IBIMA- Hospital Regional Universitario de Malaga Malaga and Spanish Network for Allergy - RETICS de Asma, Reacciones adversas y Alérgicas (ARADyAL) Madrid Spain
| | | | - Olga Luengo
- Allergy Unit, Internal Medicine Department Vall d'Hebron University Hospital Universitat Autònoma de Barcelona ARADyAL Barcelona Spain
| | - Ronald van Ree
- Department of Experimental Immunology and Department of Otorhinolaryngology Amsterdam University Medical Centers location AMC Amsterdam The Netherlands
| | - Enrico Scala
- Experimental Allergy Unit Istituto Dermopatico Dell'immacolata IRCCS FLMM Rome Italy
| | - Stephen J Till
- Peter Gorer Department of Immunobiology King's College London London UK.,Department of Allergy Guy's & St Thomas' NHS Foundation Trust London UK
| | | | | |
Collapse
|
33
|
Sánchez‐López J, Araujo G, Cardona V, García‐Moral A, Casas‐Saucedo R, Guilarte M, Torres MJ, Doña I, Picado C, Pascal M, Muñoz‐Cano R, Bartra J. Food-dependent NSAID-induced hypersensitivity (FDNIH) reactions: Unraveling the clinical features and risk factors. Allergy 2021; 76:1480-1492. [PMID: 33289951 DOI: 10.1111/all.14689] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 10/10/2020] [Accepted: 10/19/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND In up to 70%-80% of patients with a suspected non-steroidal anti-inflammatory drug hypersensitivity (NSAIDH), challenge tests with the culprit drug yield negative results. On the other hand, there could be a NSAIDH overdiagnosis when anaphylaxis is the clinical manifestation. We hypothesize that some negative NSAID challenge tests and an overdiagnosis of NSAIDH occur in patients with food-dependent NSAID-induced hypersensitivity (FDNIH). METHODS We studied 328 patients with a suspected acute NSAIDH. FDNIH was diagnosed in patients meeting all the following: (1) tolerance to the food ingested more temporally closed before the reaction, later the episode, (2) respiratory or cutaneous symptoms or anaphylaxis related to NSAID, (3) positive skin prick test to foods and/or specific IgE to food allergens (Pru p 3, Tri a 19, Pen a 1) involved in the reaction, and (4) negative oral provocation test to the culprit NSAID. RESULTS 199 patients (60%) were diagnosed with NSAIDH and 52 (16%) with FDNIH. Pru p 3 was involved in 44 cases (84.6%) and Tri a 19 in 6 cases (11%). FDNIH subjects were younger (p < .001), with a higher prevalence of rhinitis (p < .001) and previous food allergy (p < .001), together with a higher proportion of subjects sensitized to pollens (p < .001) and foods (p < .001). Using just four variables (Pru p 3 sensitization, Tri a 19 sensitization, anaphylaxis, and any NSAID different from pyrazolones), 95.3% of cases were correctly classified, with a sensitivity of 92% and specificity of 96%. CONCLUSION Evaluation of FDNIH should be included in the diagnostic workup of NSAIDH.
Collapse
Affiliation(s)
- Jaime Sánchez‐López
- Department of Pulmonology and Respiratory Allergy Allergy Section Hospital Clinic Barcelona Barcelona Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Universitat de Barcelona Barcelona Spain
| | - Giovanna Araujo
- Department of Pulmonology and Respiratory Allergy Allergy Section Hospital Clinic Barcelona Barcelona Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Universitat de Barcelona Barcelona Spain
| | - Victoria Cardona
- Department of Internal medicine, Allergy Section Hospital Universitari Vall d'Hebron Universitat Autònoma de Barcelona Barcelona Spain
- Vall d'Hebron Research Institute Allergy Research Unit Barcelona Spain
- Spanish Network for Allergy—RETIC de Asma, Reacciones adversas y Alérgicas (ARADyAL) Madrid Spain
| | - Alba García‐Moral
- Department of Pulmonology and Respiratory Allergy Allergy Section Hospital Clinic Barcelona Barcelona Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Universitat de Barcelona Barcelona Spain
| | - Rocío Casas‐Saucedo
- Department of Pulmonology and Respiratory Allergy Allergy Section Hospital Clinic Barcelona Barcelona Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Universitat de Barcelona Barcelona Spain
- Spanish Network for Allergy—RETIC de Asma, Reacciones adversas y Alérgicas (ARADyAL) Madrid Spain
| | - Mar Guilarte
- Department of Internal medicine, Allergy Section Hospital Universitari Vall d'Hebron Universitat Autònoma de Barcelona Barcelona Spain
- Vall d'Hebron Research Institute Allergy Research Unit Barcelona Spain
- Spanish Network for Allergy—RETIC de Asma, Reacciones adversas y Alérgicas (ARADyAL) Madrid Spain
| | - María José Torres
- Spanish Network for Allergy—RETIC de Asma, Reacciones adversas y Alérgicas (ARADyAL) Madrid Spain
- Allergy Unit Hospital Regional Universitario de Málaga Malaga Spain
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA Malaga Spain
| | - Inmaculada Doña
- Spanish Network for Allergy—RETIC de Asma, Reacciones adversas y Alérgicas (ARADyAL) Madrid Spain
- Allergy Unit Hospital Regional Universitario de Málaga Malaga Spain
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA Malaga Spain
| | - Cesar Picado
- Department of Pulmonology and Respiratory Allergy Allergy Section Hospital Clinic Barcelona Barcelona Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Universitat de Barcelona Barcelona Spain
- CIBERES CIBER of Respiratory Diseases Madrid Spain
| | - Mariona Pascal
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Universitat de Barcelona Barcelona Spain
- Spanish Network for Allergy—RETIC de Asma, Reacciones adversas y Alérgicas (ARADyAL) Madrid Spain
- Immunology Department Centre de Diagnòstic Biomèdic (CDB) Hospital Clínic de Barcelona Barcelona Spain
| | - Rosa Muñoz‐Cano
- Department of Pulmonology and Respiratory Allergy Allergy Section Hospital Clinic Barcelona Barcelona Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Universitat de Barcelona Barcelona Spain
- Spanish Network for Allergy—RETIC de Asma, Reacciones adversas y Alérgicas (ARADyAL) Madrid Spain
| | - Joan Bartra
- Department of Pulmonology and Respiratory Allergy Allergy Section Hospital Clinic Barcelona Barcelona Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Universitat de Barcelona Barcelona Spain
- Spanish Network for Allergy—RETIC de Asma, Reacciones adversas y Alérgicas (ARADyAL) Madrid Spain
| |
Collapse
|
34
|
Passanisi S, Lombardo F, Crisafulli G, Salzano G, Aversa T, Pajno GB. Novel diagnostic techniques and therapeutic strategies for IgE-mediated food allergy. Allergy Asthma Proc 2021; 42:124-130. [PMID: 33685556 PMCID: PMC8133008 DOI: 10.2500/aap.2021.42.200129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Background: Immunoglobulin E (IgE) mediated food allergy is a potentially life-threatening condition and represents a heavy burden for patients and their families. Identification of the most suitable way for management of each patient has currently become the primary goal for physicians. Methods: This study reviewed the current literature related to IgE-mediated food allergy. Results: The use of innovative diagnostic tools, such as allergen-specific IgG4 determination, basophil activation test, and component-resolved diagnostics, is currently available to facilitate a proper diagnosis of food allergy. After several decades of "passive clinical management" of the disease, which was based only on avoidance of the allergenic food and the use of epinephrine in the event of anaphylaxis, there has been a switch to active treatment. The most recent evidence-practice guidelines strongly recommend the use of immunotherapy as an effective therapeutic option, particularly in cases of allergy to cow's milk, egg, or peanut. The use of omalizumab, in association with immunotherapy or alone, has been tested in several studies, and results on its effectiveness seemed to be encouraging. Other biologics, such as dupilumab, reslizumab, mepolizumab, and other anticytokines therapies, are being investigated. Another interesting future treatment strategy could be the use of DNA vaccines. Conclusion: In recent years, the management of IgE-mediated food allergy has greatly improved. Knowledge of pathogenetic mechanisms, understanding of the disease course, and the introduction of novel biomarkers led to more accurate diagnoses along with the active treatment of patients.
Collapse
|
35
|
Čelakovská J, Bukač J, Vaňková R, Salavec M, Krejsek J, Andrýs C. Allergy to walnuts and hazelnuts in atopic dermatitis patients and analysis of sensitization to molecular components. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1874883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- J. Čelakovská
- Department of Dermatology and Venereology, Charles University, Hradec Králové, Czech Republic
| | - J. Bukač
- Department of Medical Biophysic, Charles University, Hradec Králové, Czech republic
| | - R. Vaňková
- Department of Clinical Immunology and Allergy, Charles University, Hradec Králové, Czech Republic
| | - M. Salavec
- Department of Dermatology and Venereology, Charles University, Hradec Králové, Czech Republic
| | - J. Krejsek
- Department of Clinical Immunology and Allergy, Charles University, Hradec Králové, Czech Republic
| | - C. Andrýs
- Department of Clinical Immunology and Allergy, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
36
|
Scheurer S, van Ree R, Vieths S. The Role of Lipid Transfer Proteins as Food and Pollen Allergens Outside the Mediterranean Area. Curr Allergy Asthma Rep 2021; 21:7. [PMID: 33537877 PMCID: PMC7858557 DOI: 10.1007/s11882-020-00982-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2020] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW To provide an overview of the prevalence and clinical manifestation of non-specific lipid transfer proteins (LTP)-mediated allergies outside the Mediterranean area and to address potential reasons for the different geographical significance of LTP-driven allergies. RECENT FINDINGS LTPs are major allergens in the Mediterranean area, which frequently can elicit severe reactions. Pru p 3 the LTP from peach is reported as genuine allergen and is considered a prototypic marker for LTP-mediated allergies. However, both food and pollen LTP allergies exist outside the Mediterranean area, but with lower clinical significance, different immunogenicity, and less clarified role. Evidence has been reported that in areas with high exposure to pollen, in particular to mugwort, pollen-derived LTPs can act as a primary sensitizer to trigger secondary food allergies. Co-sensitization to unrelated allergens might be causative for less severe reactions in response to LTPs. However, the reason for the geographical different sensitization patterns to LTPs remains unclear.
Collapse
Affiliation(s)
- Stephan Scheurer
- Molecular Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich Str. 51-59, 63225, Langen, Germany.
| | - Ronald van Ree
- Departments of Experimental Immunology and of Otorhinolaryngology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Stefan Vieths
- Molecular Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich Str. 51-59, 63225, Langen, Germany
| |
Collapse
|
37
|
Ruano-Zaragoza M, Somoza ML, Jiménez-Rodriguez TW, Soriano-Gomis V, González-Delgado P, Esteban-Rodriguez A, Palazón-Bru A, Blanca M, Fernández-Sánchez J. Lipid Transfer Protein Sensitization: Risk of Anaphylaxis and Molecular Sensitization Profile in Pru p 3-Sensitized Patients. Int Arch Allergy Immunol 2020; 182:425-432. [PMID: 33341818 DOI: 10.1159/000511977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/02/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Component-resolved diagnosis reveals the IgE response to many inhaled, food, and other allergens, improving the understanding and diagnosis of allergic diseases. OBJECTIVE The aims of the study are to study the recognition of different lipid transfer proteins (LTPs) and other allergen families in a large group of people sensitized to Pru p 3 and to analyze the relationship between the clinical entities and the allergens. METHODS This cross-sectional study included a large cohort of patients with positive skin tests to peach fruit and Pru p 3 specific IgE antibodies. Respiratory and food allergy symptoms were collected, and we performed prick tests with pollen, plant food, and other allergens plus the ImmunoCAP ISAC assay. RESULTS Our sample consisted of 421 people with a mean age of 33.25 years (range 16-68); 54.6% were women. Clinical entities included anaphylaxis (37.1%), urticaria (67.9%), and oral allergy syndrome (59.1%). Rhinitis, rhinoconjunctivitis, and/or asthma were diagnosed in 71.8% of the participants. The most pronounced correlation existed between sensitization to Pru p 3 and to Jug r 3, Pla a 3, Ara h 9, and Cor a 8. We found a higher incidence of anaphylaxis in people with 5 or more recognized LTPs. No association was observed between inhaled and food allergies. CONCLUSION Most Pru p 3-sensitized participants were sensitized to additional allergens from the same family and, to a lesser extent, to other allergens, mainly in the profilin and PR-10 protein families. Anaphylaxis occurred in more than a third of the cases evaluated, and almost three-quarters of them had respiratory symptoms. Respiratory and food allergies involving LTPs do not seem to be associated.
Collapse
Affiliation(s)
- Maria Ruano-Zaragoza
- Allergy Section, ARADyAL Spanish Network, Alicante General University Hospital-ISABIAL, Alicante, Spain, .,PhD Program in Public Health, Medical and Surgical Sciences. Miguel Hernandez University, Alicante, Spain,
| | | | | | - Victor Soriano-Gomis
- Allergy Section, ARADyAL Spanish Network, Alicante General University Hospital-ISABIAL, Alicante, Spain.,Clinical Medicine Department, Miguel Hernandez University, Alicante, Spain
| | - Purificación González-Delgado
- Allergy Section, ARADyAL Spanish Network, Alicante General University Hospital-ISABIAL, Alicante, Spain.,Clinical Medicine Department, Miguel Hernandez University, Alicante, Spain
| | | | | | - Miguel Blanca
- Section of Allergy, Infanta Leonor University Hospital, Madrid, Spain
| | | |
Collapse
|
38
|
Bousquet J, Grattan CE, Akdis CA, Eigenmann PA, Hoffmann-Sommergruber K, Agache I, Jutel M. Highlights and recent developments in allergic diseases in EAACI journals (2019). Clin Transl Allergy 2020; 10:56. [PMID: 33292572 PMCID: PMC7712618 DOI: 10.1186/s13601-020-00366-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
The European Academy of Allergy and Clinical Immunology (EAACI) owns three journals: Allergy, Pediatric Allergy and Immunology and Clinical and Translational Allergy. One of the major goals of EAACI is to support health promotion in which prevention of allergy and asthma plays a critical role and to disseminate the knowledge of allergy to all stakeholders including the EAACI junior members. There was substantial progress in 2019 in the identification of basic mechanisms of allergic and respiratory disease and the translation of these mechanisms into clinics. Better understanding of molecular and cellular mechanisms, efforts for the development of biomarkers for disease prediction, novel prevention and intervention studies, elucidation of mechanisms of multimorbidities, entrance of new drugs in the clinics as well as recently completed phase three clinical studies and publication of a large number of allergen immunotherapy studies and meta-analyses have been the highlights of the last year.
Collapse
Affiliation(s)
- J Bousquet
- MACVIA-France, Montpellier, France. .,CHRU Arnaud de Villeneuve, 371 Avenue du Doyen Gaston Giraud, 34295, Montpellier Cedex 5, France.
| | - C E Grattan
- St John's Institute of Dermatology, Guy's Hospital, London, UK
| | - C A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| | - P A Eigenmann
- Pediatric Allergy Unit, University Hospitals of Geneva, Geneva, Switzerland
| | - K Hoffmann-Sommergruber
- Depart of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - I Agache
- Transylvania University Brasov, Brasov, Romania
| | - M Jutel
- Department of Clinical Immunology, Wrocław Medical University, Wrocław, Poland.,ALL-MED Medical Research Institute, Wrocław, Poland
| |
Collapse
|
39
|
Bogas G, Muñoz‐Cano R, Mayorga C, Casas R, Bartra J, Pérez N, Pascal M, Palomares F, Torres MJ, Gómez F. Phenotyping peach-allergic patients sensitized to lipid transfer protein and analysing severity biomarkers. Allergy 2020; 75:3228-3236. [PMID: 32535938 DOI: 10.1111/all.14447] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/10/2020] [Accepted: 05/18/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Patients with peach allergy due to nsLTP sensitization constitute a heterogeneous group in terms of sensitization profile and severity. This could be due to the presence of additional allergies to pollens. The aim of this study was to analyse the clinical characteristics, sensitization profile and severity of reactions in peach-allergic patients sensitized to nsLTP from two Mediterranean areas with different pollen exposure. METHODS Patients with diagnosis of LTP allergy from the Allergy Unit of Hospital Regional Universitario de Malaga (HRUM) and Hospital Clinic de Barcelona (HCB) were prospectively included and classified into two groups; (a) LTP-monoallergic: those that presented reaction only with peach and (b) LTP-Allergy: those that presented reaction with peach and at least another plant-food containing LTP. RESULTS A total of 252 patients were included, 235 (93.2%) had LTP-syndrome and 17 (6.8%) were LTP-monoallergic. We found a higher percentage of anaphylaxis and delayed onset of symptoms in the LTP-monoallergic group (P = .02 and P = .04, respectively). Moreover, anaphylaxis was less frequent in patients with profilin sensitization (P = .03). The comparison of patients' data from HRUM with data from HCB showed differences in sensitization to olive tree pollen and profilin (P = .01 and P = .001, respectively). CONCLUSION This study was undertaken to characterize two large group of subjects from to two regions with differing exposures to pollen. We found that more than 90% of peach-allergic patients in both populations evolved to LTP-Allergy and showed an early onset. Profilin sensitization could be more useful as a severity biomarker than the number of nsLTP, aeroallergen sensitizations or sIgE levels. This could provide clues regarding sensitization and severity patterns that might be relevant in other geographical areas.
Collapse
Affiliation(s)
- Gador Bogas
- Allergy Unit IBIMA‐ Hospital Regional Universitario de Malaga Malaga Spain
| | - Rosa Muñoz‐Cano
- Allergy Section Pneumology Department IDIBAPS Universitat de Barcelona, Hospital Clínic Barcelona Spain
- Spanish Network for Allergy ‐ RETICS de Asma Reacciones adversas y Alérgicas (ARADyAL) Madrid Spain
| | - Cristobalina Mayorga
- Allergy Unit IBIMA‐ Hospital Regional Universitario de Malaga Malaga Spain
- Spanish Network for Allergy ‐ RETICS de Asma Reacciones adversas y Alérgicas (ARADyAL) Madrid Spain
- Research Laboratory IBIMA‐ Hospital Regional Universitario de Malaga Malaga Spain
| | - Rocio Casas
- Allergy Section Pneumology Department IDIBAPS Universitat de Barcelona, Hospital Clínic Barcelona Spain
| | - Joan Bartra
- Allergy Section Pneumology Department IDIBAPS Universitat de Barcelona, Hospital Clínic Barcelona Spain
- Spanish Network for Allergy ‐ RETICS de Asma Reacciones adversas y Alérgicas (ARADyAL) Madrid Spain
| | - Natalia Pérez
- Allergy Unit IBIMA‐ Hospital Regional Universitario de Malaga Malaga Spain
| | - Mariona Pascal
- Allergy Section Pneumology Department IDIBAPS Universitat de Barcelona, Hospital Clínic Barcelona Spain
- Spanish Network for Allergy ‐ RETICS de Asma Reacciones adversas y Alérgicas (ARADyAL) Madrid Spain
| | - Francisca Palomares
- Research Laboratory IBIMA‐ Hospital Regional Universitario de Malaga Malaga Spain
| | - María José Torres
- Allergy Unit IBIMA‐ Hospital Regional Universitario de Malaga Malaga Spain
- Spanish Network for Allergy ‐ RETICS de Asma Reacciones adversas y Alérgicas (ARADyAL) Madrid Spain
- Research Laboratory IBIMA‐ Hospital Regional Universitario de Malaga Malaga Spain
| | - Francisca Gómez
- Allergy Unit IBIMA‐ Hospital Regional Universitario de Malaga Malaga Spain
- Spanish Network for Allergy ‐ RETICS de Asma Reacciones adversas y Alérgicas (ARADyAL) Madrid Spain
| |
Collapse
|
40
|
Abstract
This review searched for published evidence that could explain how different physicochemical properties impact on the allergenicity of food proteins and if their effects would follow specific patterns among distinct protein families. Owing to the amount and complexity of the collected information, this literature overview was divided in two articles, the current one dedicated to protein families of plant allergens and a second one focused on animal allergens. Our extensive analysis of the available literature revealed that physicochemical characteristics had consistent effects on protein allergenicity for allergens belonging to the same protein family. For example, protein aggregation contributes to increased allergenicity of 2S albumins, while for legumins and cereal prolamins, the same phenomenon leads to a reduction. Molecular stability, related to structural resistance to heat and proteolysis, was identified as the most common feature promoting plant protein allergenicity, although it fails to explain the potency of some unstable allergens (e.g. pollen-related food allergens). Furthermore, data on physicochemical characteristics translating into clinical effects are limited, mainly because most studies are focused on in vitro IgE binding. Clinical data assessing how these parameters affect the development and clinical manifestation of allergies is minimal, with only few reports evaluating the sensitising capacity of modified proteins (addressing different physicochemical properties) in murine allergy models. In vivo testing of modified pure proteins by SPT or DBPCFC is scarce. At this stage, a systematic approach to link the physicochemical properties with clinical plant allergenicity in real-life scenarios is still missing.
Collapse
|
41
|
Alessandri C, Ferrara R, Bernardi ML, Zennaro D, Tuppo L, Giangrieco I, Ricciardi T, Tamburrini M, Ciardiello MA, Mari A. Molecular approach to a patient's tailored diagnosis of the oral allergy syndrome. Clin Transl Allergy 2020; 10:22. [PMID: 32551040 PMCID: PMC7298840 DOI: 10.1186/s13601-020-00329-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022] Open
Abstract
Oral allergy syndrome (OAS) is one of the most common IgE-mediated allergic reactions. It is characterized by a number of symptoms induced by the exposure of the oral and pharyngeal mucosa to allergenic proteins belonging to class 1 or to class 2 food allergens. OAS occurring when patients sensitized to pollens are exposed to some fresh plant foods has been called pollen food allergy syndrome (PFAS). In the wake of PFAS, several different associations of allergenic sources have been progressively proposed and called syndromes. Molecular allergology has shown that these associations are based on IgE co-recognition taking place between homologous allergens present in different allergenic sources. In addition, the molecular approach reveals that some allergens involved in OAS are also responsible for systemic reactions, as in the case of some food Bet v 1-related proteins, lipid transfer proteins and gibberellin regulated proteins. Therefore, in the presence of a convincing history of OAS, it becomes crucial to perform a patient's tailored molecule-based diagnosis in order to identify the individual IgE sensitization profile. This information allows the prediction of possible cross-reactions with homologous molecules contained in other sources. In addition, it allows the assessment of the risk of developing more severe symptoms on the basis of the features of the allergenic proteins to which the patient is sensitized. In this context, we aimed to provide an overview of the features of relevant plant allergenic molecules and their involvement in the clinical onset of OAS. The value of a personalized molecule-based approach to OAS diagnosis is also analyzed and discussed.
Collapse
Affiliation(s)
- Claudia Alessandri
- Associated Centers for Molecular Allergology (CAAM), Rome, Italy
- Allergy Data Laboratories (ADL), Latina, Italy
| | - Rosetta Ferrara
- Associated Centers for Molecular Allergology (CAAM), Rome, Italy
- Allergy Data Laboratories (ADL), Latina, Italy
| | - Maria Livia Bernardi
- Associated Centers for Molecular Allergology (CAAM), Rome, Italy
- Allergy Data Laboratories (ADL), Latina, Italy
| | - Danila Zennaro
- Associated Centers for Molecular Allergology (CAAM), Rome, Italy
- Allergy Data Laboratories (ADL), Latina, Italy
| | - Lisa Tuppo
- Allergy Data Laboratories (ADL), Latina, Italy
- Institute of Biosciences and BioResources (IBBR), CNR, Naples, Italy
| | - Ivana Giangrieco
- Allergy Data Laboratories (ADL), Latina, Italy
- Institute of Biosciences and BioResources (IBBR), CNR, Naples, Italy
| | - Teresa Ricciardi
- Allergy Data Laboratories (ADL), Latina, Italy
- Institute of Biosciences and BioResources (IBBR), CNR, Naples, Italy
| | | | | | - Adriano Mari
- Associated Centers for Molecular Allergology (CAAM), Rome, Italy
- Allergy Data Laboratories (ADL), Latina, Italy
| |
Collapse
|
42
|
Alvaro-Lozano M, Akdis CA, Akdis M, Alviani C, Angier E, Arasi S, Arzt-Gradwohl L, Barber D, Bazire R, Cavkaytar O, Comberiati P, Dramburg S, Durham SR, Eifan AO, Forchert L, Halken S, Kirtland M, Kucuksezer UC, Layhadi JA, Matricardi PM, Muraro A, Ozdemir C, Pajno GB, Pfaar O, Potapova E, Riggioni C, Roberts G, Rodríguez Del Río P, Shamji MH, Sturm GJ, Vazquez-Ortiz M. EAACI Allergen Immunotherapy User's Guide. Pediatr Allergy Immunol 2020; 31 Suppl 25:1-101. [PMID: 32436290 PMCID: PMC7317851 DOI: 10.1111/pai.13189] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Allergen immunotherapy is a cornerstone in the treatment of allergic children. The clinical efficiency relies on a well-defined immunologic mechanism promoting regulatory T cells and downplaying the immune response induced by allergens. Clinical indications have been well documented for respiratory allergy in the presence of rhinitis and/or allergic asthma, to pollens and dust mites. Patients who have had an anaphylactic reaction to hymenoptera venom are also good candidates for allergen immunotherapy. Administration of allergen is currently mostly either by subcutaneous injections or by sublingual administration. Both methods have been extensively studied and have pros and cons. Specifically in children, the choice of the method of administration according to the patient's profile is important. Although allergen immunotherapy is widely used, there is a need for improvement. More particularly, biomarkers for prediction of the success of the treatments are needed. The strength and efficiency of the immune response may also be boosted by the use of better adjuvants. Finally, novel formulations might be more efficient and might improve the patient's adherence to the treatment. This user's guide reviews current knowledge and aims to provide clinical guidance to healthcare professionals taking care of children undergoing allergen immunotherapy.
Collapse
Affiliation(s)
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.,Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cherry Alviani
- The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Newport, Isle of Wight, UK.,Clinical and Experimental Sciences and Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Elisabeth Angier
- Primary Care and Population Sciences, University of Southampton, Southampton, UK
| | - Stefania Arasi
- Pediatric Allergology Unit, Department of Pediatric Medicine, Bambino Gesù Children's research Hospital (IRCCS), Rome, Italy
| | - Lisa Arzt-Gradwohl
- Department of Dermatology and Venerology, Medical University of Graz, Graz, Austria
| | - Domingo Barber
- School of Medicine, Institute for Applied Molecular Medicine (IMMA), Universidad CEU San Pablo, Madrid, Spain.,RETIC ARADYAL RD16/0006/0015, Instituto de Salud Carlos III, Madrid, Spain
| | - Raphaëlle Bazire
- Allergy Department, Hospital Infantil Niño Jesús, ARADyAL RD16/0006/0026, Madrid, Spain
| | - Ozlem Cavkaytar
- Department of Paediatric Allergy and Immunology, Faculty of Medicine, Goztepe Training and Research Hospital, Istanbul Medeniyet University, Istanbul, Turkey
| | - Pasquale Comberiati
- Department of Clinical Immunology and Allergology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,Department of Clinical and Experimental Medicine, Section of Paediatrics, University of Pisa, Pisa, Italy
| | - Stephanie Dramburg
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité Medical University, Berlin, Germany
| | - Stephen R Durham
- Immunomodulation and Tolerance Group; Allergy and Clinical Immunology, Section of Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK.,the MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Aarif O Eifan
- Allergy and Clinical Immunology, National Heart and Lung Institute, Imperial College London and Royal Brompton Hospitals NHS Foundation Trust, London, UK
| | - Leandra Forchert
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité Medical University, Berlin, Germany
| | - Susanne Halken
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | - Max Kirtland
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, UK
| | - Umut C Kucuksezer
- Aziz Sancar Institute of Experimental Medicine, Department of Immunology, Istanbul University, Istanbul, Turkey
| | - Janice A Layhadi
- Immunomodulation and Tolerance Group; Allergy and Clinical Immunology, Section of Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK.,the MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK.,Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, UK
| | - Paolo Maria Matricardi
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité Medical University, Berlin, Germany
| | - Antonella Muraro
- The Referral Centre for Food Allergy Diagnosis and Treatment Veneto Region, Department of Women and Child Health, University of Padua, Padua, Italy
| | - Cevdet Ozdemir
- Institute of Child Health, Department of Pediatric Basic Sciences, Istanbul University, Istanbul, Turkey.,Faculty of Medicine, Department of Pediatrics, Division of Pediatric Allergy and Immunology, Istanbul University, Istanbul, Turkey
| | | | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Ekaterina Potapova
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité Medical University, Berlin, Germany
| | - Carmen Riggioni
- Pediatric Allergy and Clinical Immunology Service, Institut de Reserca Sant Joan de Deú, Barcelona, Spain
| | - Graham Roberts
- The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Newport, Isle of Wight, UK.,NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Paediatric Allergy and Respiratory Medicine (MP803), Clinical & Experimental Sciences & Human Development in Health Academic Units University of Southampton Faculty of Medicine & University Hospital Southampton, Southampton, UK
| | | | - Mohamed H Shamji
- Immunomodulation and Tolerance Group; Allergy and Clinical Immunology, Section of Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK.,the MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Gunter J Sturm
- Department of Dermatology and Venerology, Medical University of Graz, Graz, Austria
| | | |
Collapse
|
43
|
Decuyper II, Pascal M, Van Gasse AL, Mertens C, Díaz‐Perales A, Araujo G, Torradeflot M, Rius J, Balsells S, Muñoz‐Cano RM, Bartra J, Li L, Sabato V, Hagendorens MM, Bridts CH, De Clerck LS, Ebo DG, Faber MA. Performance of basophil activation test and specific IgG4 as diagnostic tools in nonspecific lipid transfer protein allergy: Antwerp-Barcelona comparison. Allergy 2020; 75:616-624. [PMID: 31512256 DOI: 10.1111/all.14040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 07/23/2019] [Accepted: 08/07/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Recent studies show that nsLTP sensitization is not limited to the Mediterranean basin and can present diverse clinical phenotypes. It remains challenging to predict clinical outcome when specific IgE antibodies (sIgE) to nsLTPs are present. This study compares both clinical and in vitro allergy characteristics but also diagnostic performance of a basophil activation test (BAT) and sIgG4 in nsLTP-sensitized patients from Antwerp (ANT, Belgium) and Barcelona (BCN, Spain). METHODS Adult subjects with positive sIgE rPru p 3 and/or rMal d 3 ≥ 0.10 kUA /L (n = 182) and healthy controls (n = 37) were included. NsLTP-sensitized individuals were stratified according to clinical symptoms with peach/apple, respectively. BAT rPru p 3 and rMal d 3 were performed and sIgG4 antibodies to both components quantified. RESULTS In BCN, only ratios of sIgG4/sIgE rMal d 3 and BAT rMal d 3 (0.001 µg/mL) can identify clinically relevant Mal d 3 sensitization (sensitivity of 60%-63% and a specificity of 75%-67%, respectively). In ANT, only the sIgE/total IgE rPru p 3 ratio shows added value (sensitivity 60% and specificity 83%). Finally, it appears that symptomatic patients in BCN are more sensitive to lower allergen concentrations compared to ANT. In addition, it was shown that ANT patients were more often sensitized to pollen and that specific pollen sources differed between regions. CONCLUSIONS NsLTP-related allergy profiles and diagnostic performance differ significantly between regions and are component-specific, which makes extrapolation of data difficult to do. In addition, it seems that basophil sensitivity might show geographical differences. Additional research is needed to confirm these findings.
Collapse
Affiliation(s)
- Ine I. Decuyper
- Department of Immunology‐Allergology‐Rheumatology University of Antwerp and Antwerp University Hospital Antwerp Belgium
- Pediatric Department University of Antwerp and Antwerp University Hospital Antwerp Belgium
| | - Mariona Pascal
- Immunology Department Centre de Diagnòstic Biomèdic (CDB)Hospital Clínic de Barcelona Barcelona Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Universitat de Barcelona Barcelona Spain
- Spanish Network for Allergy – RETIC de Asma, Reacciones adversas y Alérgicas (ARADYAL) Madrid Spain
| | - Athina L. Van Gasse
- Department of Immunology‐Allergology‐Rheumatology University of Antwerp and Antwerp University Hospital Antwerp Belgium
- Pediatric Department University of Antwerp and Antwerp University Hospital Antwerp Belgium
| | - Christel Mertens
- Department of Immunology‐Allergology‐Rheumatology University of Antwerp and Antwerp University Hospital Antwerp Belgium
| | - Araceli Díaz‐Perales
- Spanish Network for Allergy – RETIC de Asma, Reacciones adversas y Alérgicas (ARADYAL) Madrid Spain
- Plant Biotechnology Institute (UPM‐INIA) Madrid Spain
| | - Giovanna Araujo
- Allergy Section Pneumology Department Institut Clínic Respiratori (ICR)Hospital Clínic de Barcelona Barcelona Spain
| | - Maria Torradeflot
- Immunology Department Centre de Diagnòstic Biomèdic (CDB)Hospital Clínic de Barcelona Barcelona Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Universitat de Barcelona Barcelona Spain
| | - Josefina Rius
- Immunology Department Centre de Diagnòstic Biomèdic (CDB)Hospital Clínic de Barcelona Barcelona Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Universitat de Barcelona Barcelona Spain
| | - Sara Balsells
- Immunology Department Centre de Diagnòstic Biomèdic (CDB)Hospital Clínic de Barcelona Barcelona Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Universitat de Barcelona Barcelona Spain
| | - Rosa M. Muñoz‐Cano
- Spanish Network for Allergy – RETIC de Asma, Reacciones adversas y Alérgicas (ARADYAL) Madrid Spain
- Allergy Section Pneumology Department Institut Clínic Respiratori (ICR)Hospital Clínic de Barcelona Barcelona Spain
| | - Joan Bartra
- Spanish Network for Allergy – RETIC de Asma, Reacciones adversas y Alérgicas (ARADYAL) Madrid Spain
- Allergy Section Pneumology Department Institut Clínic Respiratori (ICR)Hospital Clínic de Barcelona Barcelona Spain
| | - Lynne Li
- Department of Medicine University of British Columbia Vancouver BC Canada
| | - Vito Sabato
- Department of Immunology‐Allergology‐Rheumatology University of Antwerp and Antwerp University Hospital Antwerp Belgium
| | - Margo M. Hagendorens
- Department of Immunology‐Allergology‐Rheumatology University of Antwerp and Antwerp University Hospital Antwerp Belgium
- Pediatric Department University of Antwerp and Antwerp University Hospital Antwerp Belgium
| | - Chris H. Bridts
- Department of Immunology‐Allergology‐Rheumatology University of Antwerp and Antwerp University Hospital Antwerp Belgium
| | - Luc S. De Clerck
- Department of Immunology‐Allergology‐Rheumatology University of Antwerp and Antwerp University Hospital Antwerp Belgium
| | - Didier G. Ebo
- Department of Immunology‐Allergology‐Rheumatology University of Antwerp and Antwerp University Hospital Antwerp Belgium
| | - Margaretha A. Faber
- Department of Immunology‐Allergology‐Rheumatology University of Antwerp and Antwerp University Hospital Antwerp Belgium
| |
Collapse
|
44
|
Doña I, Pérez‐Sánchez N, Eguiluz‐Gracia I, Muñoz-Cano R, Bartra J, Torres MJ, Cornejo‐García JA. Progress in understanding hypersensitivity reactions to nonsteroidal anti-inflammatory drugs. Allergy 2020; 75:561-575. [PMID: 31469167 DOI: 10.1111/all.14032] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs), the medications most commonly used for treating pain and inflammation, are the main triggers of drug hypersensitivity reactions. The latest classification of NSAIDs hypersensitivity by the European Academy of Allergy and Clinical Immunology (EAACI) differentiates between cross-hypersensitivity reactions (CRs), associated with COX-1 inhibition, and selective reactions, associated with immunological mechanisms. Three phenotypes fill into the first group: NSAIDs-exacerbated respiratory disease, NSAIDs-exacerbated cutaneous disease and NSAIDs-induced urticaria/angioedema. Two phenotypes fill into the second one: single-NSAID-induced urticaria/angioedema/anaphylaxis and single-NSAID-induced delayed reactions. Diagnosis of NSAIDs hypersensitivity is hampered by different factors, including the lack of validated in vitro biomarkers and the uselessness of skin tests. The advances achieved over recent years recommend a re-evaluation of the EAACI classification, as it does not consider other phenotypes such as blended reactions (coexistence of cutaneous and respiratory symptoms) or food-dependent NSAID-induced anaphylaxis. In addition, it does not regard the natural evolution of phenotypes and their potential interconversion, the development of tolerance over time or the role of atopy. Here, we address these topics. A state of the art on the underlying mechanisms and on the approaches for biomarkers discovery is also provided, including genetic studies and available information on transcriptomics and metabolomics.
Collapse
Affiliation(s)
- Inmaculada Doña
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA ARADyAL Malaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga Malaga Spain
| | - Natalia Pérez‐Sánchez
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA ARADyAL Malaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga Malaga Spain
- Departamento de Medicina Universidad de Málaga Malaga Spain
| | - Ibon Eguiluz‐Gracia
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA ARADyAL Malaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga Malaga Spain
| | - Rosa Muñoz-Cano
- Allergy Section Pneumology Department Hospital Clinic ARADyAL Universitat de Barcelona Barcelona Spain
- Clinical and Experimental Respiratory Immunoallergy (IRCE) August Pi i Sunyer Biomedical Research Institute (IDIBAPS) ARADyAL Barcelona Spain
| | - Joan Bartra
- Allergy Section Pneumology Department Hospital Clinic ARADyAL Universitat de Barcelona Barcelona Spain
- Clinical and Experimental Respiratory Immunoallergy (IRCE) August Pi i Sunyer Biomedical Research Institute (IDIBAPS) ARADyAL Barcelona Spain
| | - María José Torres
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA ARADyAL Malaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga Malaga Spain
- Departamento de Medicina Universidad de Málaga Malaga Spain
- Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory Andalusian Center for Nanomedicine and Biotechnology‐BIONAND Malaga Spain
| | | |
Collapse
|
45
|
Nilsson C, Berthold M, Mascialino B, Orme M, Sjölander S, Hamilton R. Allergen components in diagnosing childhood hazelnut allergy: Systematic literature review and meta-analysis. Pediatr Allergy Immunol 2020; 31:186-196. [PMID: 31301691 DOI: 10.1111/pai.13110] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/24/2019] [Accepted: 07/05/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Hazelnut-specific IgE antibodies (sIgEs) in serum support the diagnosis of hazelnut allergy, but extract-based tests have low diagnostic specificity, commonly leading to over-diagnosis. Measuring sensitization to individual allergen components may enhance the diagnosis of hazelnut allergy. We systematically examined data on diagnostic accuracy of sIgE to commercially available hazelnut components to compare their individual contributions in diagnosing hazelnut allergy. METHODS Seven databases were searched for diagnostic studies on patients suspected of having hazelnut allergy. Studies employing component-specific IgE testing on patients whose final diagnosis was determined by oral food challenges were included in the meta-analysis. Study quality was assessed as recommended by Cochrane. RESULTS Seven cross-sectional studies and one case-control study were identified, seven presenting data on children (N = 635), and one on a mixed age population. Overall, the diagnostic accuracies of sIgE to both Cor a 9 and Cor a 14 were significantly higher than for Cor a 1-sIgE (P < .05). In children, the specificity of Cor a 14-sIgE at 0.35 kUA /L cutoff was 81.7% (95% CI 77.1, 85.6), and 67.3% (60.3, 73.6) for Cor a 9-sIgE. The specificities for Cor a 1-sIgE and hazelnut-sIgE were 22.5% (7.4, 51.2) and 10.8% (3.4, 29.8), respectively. The sensitivity of Cor a 1-sIgE (60.2% [46.9, 72.2]) was lower than for hazelnut extract-sIgE (95.7% [88.7, 98.5]), while their specificities did not differ significantly. CONCLUSION sIgE to Cor a 14 and Cor a 9 hazelnut storage proteins increases diagnostic specificity in assessing hazelnut allergy in children. The combined use of hazelnut extract and hazelnut storage proteins may improve diagnostic value.
Collapse
Affiliation(s)
- Caroline Nilsson
- Institute Education and Clinical Research, Karolinska Institutet and Sachs' Children and Youth Hospital, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
46
|
Anantharachagan A, Sammour R, Vijayadurai P. Non-specific lipid transfer protein allergy in United Kingdom. Ann Allergy Asthma Immunol 2019; 123:618-620. [PMID: 31539595 DOI: 10.1016/j.anai.2019.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Ariharan Anantharachagan
- Department of Allergy and Clinical Immunology, Lancashire Teaching Hospitals, NHS Foundation Trust, Preston, United Kingdom; Department of Immunology, Cambridge University Hospitals, NHS Foundation Trust, Cambridge, United Kingdom.
| | - Roweida Sammour
- Department of Medicine, Royal Albert Edward Infirmary, Wrightington Wigan and Leigh, NHS Foundation Trust, Wigan, United Kingdom
| | - Pavaladurai Vijayadurai
- Department of Allergy and Clinical Immunology, Lancashire Teaching Hospitals, NHS Foundation Trust, Preston, United Kingdom
| |
Collapse
|
47
|
Eichhorn S, Hörschläger A, Steiner M, Laimer J, Jensen BM, Versteeg SA, Pablos I, Briza P, Jongejan L, Rigby N, Asturias JA, Portolés A, Fernandez‐Rivas M, Papadopoulos NG, Mari A, Poulsen LK, Lackner P, van Ree R, Ferreira F, Gadermaier G. Rational Design, Structure-Activity Relationship, and Immunogenicity of Hypoallergenic Pru p 3 Variants. Mol Nutr Food Res 2019; 63:e1900336. [PMID: 31207117 PMCID: PMC6790652 DOI: 10.1002/mnfr.201900336] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/28/2019] [Indexed: 11/09/2022]
Abstract
SCOPE Allergies to lipid transfer proteins involve severe adverse reactions; thus, effective and sustainable therapies are desired. Previous attempts disrupting disulfide bonds failed to maintain immunogenicity; thus, the aim is to design novel hypoallergenic Pru p 3 variants and evaluate the applicability for treatment of peach allergy. METHODS AND RESULTS Pru p 3 proline variant (PV) designed using in silico mutagenesis, cysteine variant (CV), and wild-type Pru p 3 (WT) are purified from Escherichia coli. Variants display homogenous and stable protein conformations with an altered secondary structure in circular dichroism. PV shows enhanced long-term storage capacities compared to CV similar to the highly stable WT. Using sera of 33 peach allergic patients, IgE-binding activity is reduced by 97% (PV) and 71% (CV) compared to WT. Both molecules show strong hypoallergenicity in Pru p 3 ImmunoCAP cross-inhibition and histamine release assays. Immunogenicity of PV is demonstrated with a phosphate-based adjuvant formulation in a mouse model. CONCLUSIONS An in silico approach is used to generate a PV without targeting disulfide bonds, T cell epitopes, or previously reported IgE epitopes of Pru p 3. PV is strongly hypoallergenic while structurally stable and immunogenic, thus representing a promising candidate for peach allergen immunotherapy.
Collapse
Affiliation(s)
- Stephanie Eichhorn
- Department of BiosciencesUniversity of SalzburgHellbrunnerstraße 345020SalzburgAustria
| | - Angelika Hörschläger
- Department of BiosciencesUniversity of SalzburgHellbrunnerstraße 345020SalzburgAustria
| | - Markus Steiner
- Department of BiosciencesUniversity of SalzburgHellbrunnerstraße 345020SalzburgAustria
| | - Josef Laimer
- Department of BiosciencesUniversity of SalzburgHellbrunnerstraße 345020SalzburgAustria
| | - Bettina M Jensen
- Allergy Clinic, Dept. 22Herlev‐Gentofte HospitalKildegaardsvej 282900HellerupDenmark
| | - Serge A Versteeg
- Department of Experimental ImmunologyAmsterdam University Medical CentersMeibergdreef 91105AZAmsterdamThe Netherlands
| | - Isabel Pablos
- Department of BiosciencesUniversity of SalzburgHellbrunnerstraße 345020SalzburgAustria
| | - Peter Briza
- Department of BiosciencesUniversity of SalzburgHellbrunnerstraße 345020SalzburgAustria
| | - Laurian Jongejan
- Department of Experimental ImmunologyAmsterdam University Medical CentersMeibergdreef 91105AZAmsterdamThe Netherlands
| | - Neil Rigby
- Food & Health ProgrammeInst. of Food ResearchNorwichNorfolkNR4 7UQUnited Kingdom
| | - Juan A Asturias
- R&D DepartmentROXALL GroupParque Científico y Tecnológico de BizkaiaEdif. 40148170ZamudioSpain
| | - Antonio Portolés
- Department of Clinical PharmacologyHospital Clinico San Carlosc/ Prof. Martín Lagos s/n28040MadridSpain
| | | | - Nikolaos G Papadopoulos
- Division of Infection, Immunity & Respiratory MedicineUniversity of ManchesterRoyal Manchester Children's HospitalManchesterM13 9WLUnited Kingdom
- Allergy Dpt, 2nd Pediatric Clinic, University of Athens41, FidippidouAthens115 27Greece
| | - Adriano Mari
- Center of Molecular AllergologyIDIVia dei Monti di Creta 104ZIP 00167RomeItaly
- Associated Centers for Molecular AllergologyVia Portuense 700ZIP 00149RomeItaly
| | - Lars K Poulsen
- Allergy Clinic, Dept. 22Herlev‐Gentofte HospitalKildegaardsvej 282900HellerupDenmark
| | - Peter Lackner
- Department of BiosciencesUniversity of SalzburgHellbrunnerstraße 345020SalzburgAustria
| | - Ronald van Ree
- Department of Experimental ImmunologyAmsterdam University Medical CentersMeibergdreef 91105AZAmsterdamThe Netherlands
- Department of OtorhinolaryngologyAmsterdam University Medical CentersMeibergdreef 91105AZAmsterdamThe Netherlands
| | - Fatima Ferreira
- Department of BiosciencesUniversity of SalzburgHellbrunnerstraße 345020SalzburgAustria
| | - Gabriele Gadermaier
- Department of BiosciencesUniversity of SalzburgHellbrunnerstraße 345020SalzburgAustria
| |
Collapse
|
48
|
Skypala IJ, Cecchi L, Shamji MH, Scala E, Till S. Lipid Transfer Protein allergy in the United Kingdom: Characterization and comparison with a matched Italian cohort. Allergy 2019; 74:1340-1351. [PMID: 30762886 PMCID: PMC6767535 DOI: 10.1111/all.13747] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/13/2018] [Accepted: 01/06/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Although pollen-related food allergy occurs in all European populations, lipid transfer protein (LTP) allergy is considered to manifest mainly in Mediterranean countries. We aimed to characterize adults presenting with LTP allergy in a northern European country. METHOD The clinical history and sensitization patterns of subjects born and residing in the United Kingdom (UK), with a prior diagnosis of LTP allergy and sensitization to the peach LTP allergen Pru p 3, were compared to UK subjects with pollen food syndrome (PFS). The sensitization patterns were also evaluated against a matched cohort of Italian subjects diagnosed with LTP allergy. RESULTS None of the 15 UK PFS subjects had a positive SPT to LTP-enriched peach reagent, compared to 91% of the 35 UK LTP subjects. The UK LTP cohort were also more likely to have positive skin prick tests to cabbage, lettuce and mustard and sensitization to the LTP allergens in peach, walnut, mugwort and plane tree These sensitization patterns to individual allergens were not significantly different to those obtained from the Italian LTP subjects, with significant correlations between Pru p 3 and the LTP allergens in peanuts, walnuts, plane tree and mugwort in both groups. CONCLUSION Native UK subjects with LTP allergy are not dissimilar to those with LTP allergy in southern Europe. Testing to LTP-enriched peach SPT reagent and/or LTP allergens in peach, walnut, mugwort and plane tree may enhance diagnostic accuracy.
Collapse
Affiliation(s)
- Isabel J. Skypala
- Royal Brompton & Harefield NHS Foundation Trust London UK
- Imperial College London London UK
| | - Lorenzo Cecchi
- SOS Allergy and Immunology USL Toscana Centro Prato Italy
| | | | - Enrico Scala
- Istituto Dermopatico dell'Immacolata IDI‐IRCCS Roma Italy
| | - Stephen Till
- Guy's & St Thomas’ NHS Foundation Trust London UK
- King's College London London UK
| |
Collapse
|