1
|
Trayer J, Isaza-Correa J, Kelly L, Kelleher M, Hourihane J, Byrne A, Molloy E. The role of neutrophils in allergic disease. Clin Exp Immunol 2025; 219:uxae126. [PMID: 39721985 PMCID: PMC11747999 DOI: 10.1093/cei/uxae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/13/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024] Open
Abstract
Neutrophils are short-lived cells of the innate immune system and represent 50-70% of the circulating leucocytes. Their primary role is antimicrobial defence which they accomplish through rapid migration to sites of inflammation followed by phagocytosis, degranulation, and the release of neutrophil extracellular traps (NETosis). While previously considered terminally differentiated cells, they have been shown to have great adaptability and to play a role in conditions ranging from cancer to autoimmunity. This review focuses on their role in allergic disease. In particular: their role as potential amplifiers of type 1 hypersensitivity reactions leading to anaphylaxis; their involvement in alternative pathways of food and drug allergy; their role in allergic rhinitis and asthma and neutrophil dysfunction in atopic dermatitis. The use of potential biomarkers and therapeutic targets is also discussed with a view to guiding future research.
Collapse
Affiliation(s)
- James Trayer
- Discipline of Paediatrics, School of Medicine, Trinity College Dublin, Ireland
| | - Johana Isaza-Correa
- Discipline of Paediatrics, School of Medicine, Trinity College Dublin, Ireland
| | - Lynne Kelly
- Discipline of Paediatrics, School of Medicine, Trinity College Dublin, Ireland
| | - Maeve Kelleher
- Department of Allergy, Children’s Health Ireland at Crumlin, Dublin, Ireland
| | - Jonathan Hourihane
- Department of Allergy, Children’s Health Ireland at Temple Street, Dublin, Ireland
- Paediatrics and Child Health, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Aideen Byrne
- Discipline of Paediatrics, School of Medicine, Trinity College Dublin, Ireland
- Department of Allergy, Children’s Health Ireland at Crumlin, Dublin, Ireland
| | - Eleanor Molloy
- Discipline of Paediatrics, School of Medicine, Trinity College Dublin, Ireland
- Department of Neurodisability, Children’s Health Ireland at Tallaght, Dublin, Ireland
- Paediatrics, Coombe Hospital, Dublin, Ireland
| |
Collapse
|
2
|
Houghton V, Eiwegger T, Florsheim EB, Knibb RC, Thuret S, Santos AF. From bite to brain: Neuro-immune interactions in food allergy. Allergy 2024; 79:3326-3340. [PMID: 39462229 DOI: 10.1111/all.16366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/17/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
Immunoglobulin E (IgE)-mediated food allergies are reported to affect around 3.5% of children and 2.4% of adults, with symptoms varying in range and severity. While being the gold standard for diagnosis, oral food challenges are burdensome, and diagnostic tools based on specific IgE can be flawed. Furthering our understanding of the mechanisms behind food allergy onset, severity and persistence could help reveal immune profiles associated with the disease, to ultimately aid in diagnosis. Alterations to cytokine levels and immune cell ratios have been identified, though further research is needed to fully capture the heterogenous nature of food allergy. Moreover, the existence of such immune alterations also raises the question of potential wider systemic effects. For example, recent research has emphasised the existence and impact of neuro-immune interactions and implicated behavioural and neurological changes associated with food allergy. This review will provide an overview of such food allergy-driven neuro-immune interactions, with the aim of emphasising the importance of furthering our understanding of the immune mechanisms underlying IgE-mediated food allergy.
Collapse
Affiliation(s)
- Vikki Houghton
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Thomas Eiwegger
- Department of Pediatric and Adolescent Medicine, University Hospital St. Pölten, St. Pölten, Austria
- Translational Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Esther Borges Florsheim
- Center for Health Through Microbiomes, Biodesign Institute Arizona State University Tempe, Arizona, USA
- School of Life Sciences, Arizona State University Tempe, Arizona, USA
| | - Rebecca C Knibb
- Institute of Health and Neurodevelopment, Aston University, Birmingham, UK
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alexandra F Santos
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- Department of Women and Children's Health (Paediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Children's Allergy Service, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
3
|
Kawasaki-Nagano M, Tamagawa-Mineoka R, Kurioka T, Arakawa Y, Nakanishi M, Kishida M, Nishigaki H, Hashidate-Yoshida T, Shindou H, Katoh N. Lysophosphatidylcholine Acyltransferase 2 Contributes to Increased Allergic and Irritant Inflammation in Mice. Exp Dermatol 2024; 33:e70015. [PMID: 39513758 DOI: 10.1111/exd.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/25/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024]
Abstract
Platelet-activating factor (PAF) is an important chemical mediator in the field of inflammation, but its function in the skin is unclear. To unravel the role of PAF, we focused on lysophosphatidylcholine acyltransferase 2 (LPCAT2 also called LPLAT9), a biosynthetic enzyme involved in PAF production, and investigated the role of PAF in allergic contact dermatitis (ACD) and irritant contact dermatitis (ICD). We measured the amount of PAF in the skin and investigated the ear swelling responses and leukocyte infiltration into the skin following the application of 2,4,6-trinitro-1-chlorobenzene (TNCB) or croton oil in wild-type (WT) and LPCAT2 knockout (LPCAT2-KO) mice. The amount of PAF was increased in the skin of WT mice after TNCB or croton oil application but not detected in LPCAT2-KO mice. The ear swelling response was decreased in LPCAT2-KO mice compared with that in WT mice. In the ACD model, the numbers of lymphocytes, eosinophils, macrophages, mast cells and neutrophils were smaller in LPCAT2-KO mice than in WT mice. In the ICD model, the ear swelling response was also decreased in LPCAT2-KO mice compared with that in WT mice. When double staining of each inflammatory cell type and LPCAT2 was performed in ACD tissue, marked co-staining of the eosinophil marker and LPCAT2 was observed. In addition, LPCAT2 expression was observed in the epidermis. These results indicate that PAF is involved in the infiltration of several cell types into the sites of allergic and non-allergic skin inflammation. Furthermore, eosinophils and keratinocytes are primarily responsible for PAF production in skin inflammation.
Collapse
Affiliation(s)
- Midori Kawasaki-Nagano
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Risa Tamagawa-Mineoka
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomoki Kurioka
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yukiyasu Arakawa
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mari Nakanishi
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Megumi Kishida
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiromi Nishigaki
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Hideo Shindou
- Department of Lipid Life Science, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Medical Lipid Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Norito Katoh
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
4
|
Pouessel G, Dribin TE, Tacquard C, Tanno LK, Cardona V, Worm M, Deschildre A, Muraro A, Garvey LH, Turner PJ. Management of Refractory Anaphylaxis: An Overview of Current Guidelines. Clin Exp Allergy 2024; 54:470-488. [PMID: 38866583 PMCID: PMC11439156 DOI: 10.1111/cea.14514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024]
Abstract
In this review, we compare different refractory anaphylaxis (RA) management guidelines focusing on cardiovascular involvement and best practice recommendations, discuss postulated pathogenic mechanisms underlining RA and highlight knowledge gaps and research priorities. There is a paucity of data supporting existing management guidelines. Therapeutic recommendations include the need for the timely administration of appropriate doses of aggressive fluid resuscitation and intravenous (IV) adrenaline in RA. The preferred second-line vasopressor (noradrenaline, vasopressin, metaraminol and dopamine) is unknown. Most guidelines recommend IV glucagon for patients on beta-blockers, despite a lack of evidence. The use of methylene blue or extracorporeal life support (ECLS) is also suggested as rescue therapy. Despite recent advances in understanding the pathogenesis of anaphylaxis, the factors that lead to a lack of response to the initial adrenaline and thus RA are unclear. Genetic factors, such as deficiency in platelet activating factor-acetyl hydrolase or hereditary alpha-tryptasaemia, mastocytosis may modulate reaction severity or response to treatment. Further research into the underlying pathophysiology of RA may help define potential new therapeutic approaches and reduce the morbidity and mortality of anaphylaxis.
Collapse
Affiliation(s)
- Guillaume Pouessel
- Department of Paediatrics, Children’s Hospital, Roubaix, France
- Paediatric Pulmonology and Allergy Department, Jeanne de Flandre Hospital, CHU Lille, Lille, France
- Univ Lille, ULR 2694: METRICS, Lille, France
| | - Timothy E. Dribin
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Emergency Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Charles Tacquard
- Department of Anaesthesia and Intensive Care, Strasbourg University Hospital, Strasbourg, France
| | - Luciana Kase Tanno
- University Hospital of Montpellier, Montpellier, France
- Desbrest Institute of Epidemiology and Public Health, University of Montpellier – INSERM, Montpellier, France
- WHO Collaborating Centre on Scientific Classification Support, Montpellier, France
| | - Victoria Cardona
- Department of Allergy, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Margitta Worm
- Division of Allergy and Immunology, Department of Dermatology, Venerology and Allergology, Charité—Universitätsmedizin Berlin, Berlin Institute of Health, Berlin, Germany
| | - Antoine Deschildre
- Paediatric Pulmonology and Allergy Department, Jeanne de Flandre Hospital, CHU Lille, Lille, France
| | - Antonella Muraro
- Food Allergy Referral Centres, Padua University Hospital, Padua, Italy
| | - Lene H. Garvey
- Department of Dermatology and Allergy, Danish Anaesthesia Allergy Centre, Allergy Clinic, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Paul J. Turner
- National Heart & Lung Institute, Imperial College London, London, UK
| |
Collapse
|
5
|
Wahid HH, Anahar FN, Isahak NH, Mohd Zoharodzi J, Mohammad Khoiri SNL, Mohamad Zainal NH, Kamarudin N, Ismail H, Mustafa Mahmud MIA. Role of Platelet Activating Factor as a Mediator of Inflammatory Diseases and Preterm Delivery. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:862-878. [PMID: 38403163 DOI: 10.1016/j.ajpath.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/16/2024] [Accepted: 01/31/2024] [Indexed: 02/27/2024]
Abstract
Nearly 70% of preterm deliveries occur spontaneously, and the clinical pathways involved include preterm labor and preterm premature rupture of membranes. Prediction of preterm delivery is considered crucial due to the significant effects of preterm birth on health and the economy at both the personal and community levels. Although similar inflammatory processes occur in both term and preterm delivery, the premature activation of these processes or exaggerated inflammatory response triggered by infection or sterile factors leads to preterm delivery. Platelet activating factor (PAF) is a phosphoglycerylether lipid mediator of inflammation that is implicated in infections, cancers, and various chronic diseases and disorders including cardiovascular, renal, cerebrovascular, and central nervous system diseases. In gestational tissues, PAF mediates the inflammatory pathways that stimulate the effector mechanisms of labor, including myometrial contraction, cervical dilation, and fetal membrane rupture. Women with preterm labor and preterm premature rupture of membranes have increased levels of PAF in their amniotic fluid. In mice, the intrauterine or intraperitoneal administration of carbamyl PAF activates inflammation in gestational tissues, thereby eliciting preterm delivery. This review summarizes recent research on PAF as an important inflammatory mediator in preterm delivery and in other inflammatory disorders, highlighting its potential value for prediction, intervention, and prevention of these diseases.
Collapse
Affiliation(s)
- Hanan H Wahid
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia.
| | - Fatin N Anahar
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Nurul H Isahak
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Juwairiyah Mohd Zoharodzi
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Siti N L Mohammad Khoiri
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Nurul H Mohamad Zainal
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University of Putra Malaysia, Selangor, Malaysia
| | - Norhidayah Kamarudin
- Department of Pathology, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Hamizah Ismail
- Department of Obstetrics & Gynaecology, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Mohammed I A Mustafa Mahmud
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| |
Collapse
|
6
|
Pouessel G, Tacquard C, Tanno LK, Mertes PM, Lezmi G. Anaphylaxis mortality in the perioperative setting: Epidemiology, elicitors, risk factors and knowledge gaps. Clin Exp Allergy 2024; 54:11-20. [PMID: 38168878 DOI: 10.1111/cea.14434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024]
Abstract
Perioperative anaphylaxis (PA) is a severe condition that can be fatal, but data on PA mortality are scarce. The aim of this article is to review the epidemiology, elicitors and risk factors for PA mortality and identify knowledge gaps and areas for improvement regarding the management of severe PA. PA affects about 100 cases per million procedures. Mortality is rare, estimated at 3 to 5 cases per million procedures, but the PA mortality rate is higher than for other anaphylaxis aetiologies, at 1.4% to 4.8%. However, the data are incomplete. Published data mention neuromuscular blocking agents and antibiotics, mainly penicillin and cefazolin, as the main causes of fatal PA. Reported risk factors for fatal PA vary in different countries. Most frequently occurring comorbidities are obesity, male gender, cardiovascular diseases and ongoing treatment with beta-blockers. However, there are no clues about how these factors interact and the impact of individual risk factors. The pathophysiology of fatal PA is still not completely known. Genetic factors such as deficiency in PAF-acetyl hydrolase and hereditary alpha-tryptasemia, have been reported as modulators of severe anaphylaxis and possible targets for specific treatments. Our review underlines unmet needs in the field of fatal PA. Although we confirmed the need for timely administration of an adequate dose of adrenaline and the proper infusion of fluids, there is no evidence-based data on the proper dose of intravenous titrated adrenaline and which clinical manifestations would flag the need for fluid therapy. There are no large clinical studies supporting the administration of alternative vasopressors, such as glucagon and methylene blue. Further research on pathophysiological mechanisms of PA and its severity may address these issues and help clinicians to define new therapeutic approaches.
Collapse
Affiliation(s)
- Guillaume Pouessel
- Department of Pediatrics, Children's Hospital, CH Roubaix, Roubaix, France
- Pediatric Pulmonology and Allergy Department, Pôle enfant, Hôpital Jeanne de Flandre, CHU Lille, Lille, France
- ULR 2694: METRICS, Univ Lille, Lille, France
| | - Charles Tacquard
- Department of Anaesthesia and Intensive Care, Strasbourg University Hospital, Strasbourg, France
| | - Luciana Kase Tanno
- Division of Allergy, Department of Pulmonology, Allergy and Thoracic Oncology, University Hospital of Montpellier, Montpellier, France
- Desbrest Institute of Epidemiology and Public Health, UMR UA11 University of Montpellier - INSERM, Montpellier, France
- WHO Collaborating Centre on Scientific Classification Support, Montpellier, France
| | - Paul Michel Mertes
- Department of Anaesthesia and Intensive Care, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, FMTS de Strasbourg, Strasbourg, France
| | - Guillaume Lezmi
- Paediatric Pneumology and Allergology Unit, Children's Hospital Necker, Paris, France
| |
Collapse
|
7
|
Pałgan K, Tretyn A. Platelet-activating factor as an endogenous cofactor of food anaphylaxis. Biofactors 2023; 49:976-983. [PMID: 37203358 DOI: 10.1002/biof.1956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 03/02/2023] [Indexed: 05/20/2023]
Abstract
Anaphylaxis is a severe, acute, life-threatening generalized or systemic hypersensitivity reaction. The incidence of anaphylaxis is increasing worldwide, with medications and food contributing to most cases. Physical exercise, acute infections, drugs, alcohol, and menstruation are the external cofactors associated with more severe systemic reaction. The aim of this review is to show that platelet-activating factor contributes to the development of severe anaphylactic reaction, and even to anaphylactic shock.
Collapse
Affiliation(s)
- Krzysztof Pałgan
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Andrzej Tretyn
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
8
|
Locke A, Hung L, Upton JEM, O'Mahony L, Hoang J, Eiwegger T. An update on recent developments and highlights in food allergy. Allergy 2023; 78:2344-2360. [PMID: 37087637 DOI: 10.1111/all.15749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/06/2023] [Accepted: 04/19/2023] [Indexed: 04/24/2023]
Abstract
While both the incidence and general awareness of food allergies is increasing, the variety and clinical availability of therapeutics remain limited. Therefore, investigations into the potential factors contributing to the development of food allergy (FA) and the mechanisms of natural tolerance or induced desensitization are required. In addition, a detailed understanding of the pathophysiology of food allergies is needed to generate compelling, enduring, and safe treatment options. New findings regarding the contribution of barrier function, the effect of emollient interventions, mechanisms of allergen recognition, and the contributions of specific immune cell subsets through rodent models and human clinical studies provide novel insights. With the first approved treatment for peanut allergy, the clinical management of FA is evolving toward less intensive, alternative approaches involving fixed doses, lower maintenance dose targets, coadministration of biologicals, adjuvants, and tolerance-inducing formulations. The ultimate goal is to improve immunotherapy and develop precision-based medicine via risk phenotyping allowing optimal treatment for each food-allergic patient.
Collapse
Affiliation(s)
- Arielle Locke
- School of Medicine, University of Galway, Galway, Ireland
| | - Lisa Hung
- Translational Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Julia E M Upton
- Division of Immunology and Allergy, SickKids Food Allergy and Anaphylaxis Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Liam O'Mahony
- Departments of Medicine and Microbiology, APC Microbiome Ireland, National University of Ireland, Cork, Ireland
| | - Jennifer Hoang
- Translational Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Thomas Eiwegger
- Translational Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- Department of Pediatric and Adolescent Medicine, University Hospital St. Pölten, St. Pölten, Austria
| |
Collapse
|
9
|
Carpio-Escalona LV, González-de-Olano D. Immunological and Non-Immunological Risk Factors in Anaphylaxis. CURRENT TREATMENT OPTIONS IN ALLERGY 2022. [DOI: 10.1007/s40521-022-00319-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Sánchez Crespo M, Montero O, Fernandez N. The role of PAF in immunopathology: From immediate hypersensitivity reactions to fungal defense. Biofactors 2022; 48:1217-1225. [PMID: 36176024 PMCID: PMC10087027 DOI: 10.1002/biof.1888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/03/2022] [Indexed: 12/24/2022]
Abstract
Platelet-activating factor (PAF, 1-alkyl-2-acetyl-sn-glycero-3-phosphorylcholine) was discovered when the mechanisms involved in the deposition of immune complex in tissues were being scrutinized in the experimental model of rabbit serum sickness. The initial adscription of PAF to IgE-dependent anaphylaxis was soon extended after disclosing its release from phagocytes stimulated by calcium mobilizing agents, formylated peptides, and phagocytosable particles. This explains why ongoing research in the field turned to the analysis of immune cell types and stimuli involved in PAF production with the purpose of establishing its role in pathology. This was spurred by the identification of the chemical structure of PAF and the enzymic mechanisms involved in its biosynthesis and degradation, which showed commonalities with those involved in eicosanoid production and the Lands' cycle of phospholipid fatty acid remodeling. The reassignment of PAF function in immunopathology is explained by the finding that the most robust mechanisms leading to PAF production are associated with opsonic and non-opsonic phagocytosis, depending on the cell type. While polymorphonuclear leukocytes exhibit opsonic phagocytosis, monocyte-derived dendritic cells show a marked preference for non-opsonic phagocytosis associated with C-type lectin receptors. This is particularly relevant to the defense against fungal invasion and explains why PAF exerts an autocrine feed-forwarding mechanism required for the selective expression of some cytokines.
Collapse
Affiliation(s)
- Mariano Sánchez Crespo
- Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| | - Olimpio Montero
- Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| | - Nieves Fernandez
- Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
- Departamento de Bioquímica y Biología Molecular, y Fisiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| |
Collapse
|
11
|
Fernández-Gallego N, Castillo-González R, Méndez-Barbero N, López-Sanz C, Obeso D, Villaseñor A, Escribese MM, López-Melgar B, Salamanca J, Benedicto-Buendía A, Jiménez-Borreguero LJ, Ibañez B, Sastre J, Belver MT, Vega F, Blanco C, Barber D, Sánchez-Madrid F, de la Fuente H, Martín P, Esteban V, Jiménez-Saiz R. The impact of type 2 immunity and allergic diseases in atherosclerosis. Allergy 2022; 77:3249-3266. [PMID: 35781885 DOI: 10.1111/all.15426] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 01/28/2023]
Abstract
Allergic diseases are allergen-induced immunological disorders characterized by the development of type 2 immunity and IgE responses. The prevalence of allergic diseases has been on the rise alike cardiovascular disease (CVD), which affects arteries of different organs such as the heart, the kidney and the brain. The underlying cause of CVD is often atherosclerosis, a disease distinguished by endothelial dysfunction, fibrofatty material accumulation in the intima of the artery wall, smooth muscle cell proliferation, and Th1 inflammation. The opposed T-cell identity of allergy and atherosclerosis implies an atheroprotective role for Th2 cells by counteracting Th1 responses. Yet, the clinical association between allergic disease and CVD argues against it. Within, we review different phases of allergic pathology, basic immunological mechanisms of atherosclerosis and the clinical association between allergic diseases (particularly asthma, atopic dermatitis, allergic rhinitis and food allergy) and CVD. Then, we discuss putative atherogenic mechanisms of type 2 immunity and allergic inflammation including acute allergic reactions (IgE, IgG1, mast cells, macrophages and allergic mediators such as vasoactive components, growth factors and those derived from the complement, contact and coagulation systems) and late phase inflammation (Th2 cells, eosinophils, type 2 innate-like lymphoid cells, alarmins, IL-4, IL-5, IL-9, IL-13 and IL-17).
Collapse
Affiliation(s)
- Nieves Fernández-Gallego
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Raquel Castillo-González
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Department of Pathology, Hospital 12 de Octubre, Madrid, Spain
| | - Nerea Méndez-Barbero
- Vascular Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Celia López-Sanz
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - David Obeso
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.,Department of Chemistry and Biochemistry, Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Alma Villaseñor
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.,Department of Chemistry and Biochemistry, Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - María M Escribese
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Beatriz López-Melgar
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Jorge Salamanca
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Amparo Benedicto-Buendía
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Luis Jesús Jiménez-Borreguero
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Borja Ibañez
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Department of Cardiology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Joaquín Sastre
- Department of Allergy and Immunology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - María Teresa Belver
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Francisco Vega
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Carlos Blanco
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Domingo Barber
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Hortensia de la Fuente
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Martín
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Vanesa Esteban
- Department of Allergy and Immunology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Faculty of Medicine and Biomedicine, Universidad Alfonso X El Sabio, Madrid, Spain
| | - Rodrigo Jiménez-Saiz
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain.,Faculty of Experimental Sciences, Universidad Francisco de Vitoria (UFV), Madrid, Spain.,Department of Medicine, McMaster Immunology Research Centre (MIRC), McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
12
|
Theoharides TC, Antonopoulou S, Demopoulos CA. Platelet activating factor: Have we been missing the forest for the trees? Biofactors 2022; 48:1184-1188. [PMID: 36300767 DOI: 10.1002/biof.1908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 01/19/2023]
Affiliation(s)
- Theoharis C Theoharides
- Institute of Neuro-Immune Medicine, Nova Southeastern University, Clearwater, Florida, USA
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Smaragdi Antonopoulou
- Laboratory of Biology, Biochemistry and Microbiology, Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Constantinos A Demopoulos
- Laboratory of Biochemistry, Faculty of Chemistry, National & Kapodistrian University, Athens, Greece
| |
Collapse
|
13
|
Upton JEM, Grunebaum E, Sussman G, Vadas P. Platelet Activating Factor (PAF): A Mediator of Inflammation. Biofactors 2022; 48:1189-1202. [PMID: 36029481 DOI: 10.1002/biof.1883] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/21/2022] [Indexed: 12/24/2022]
Abstract
Platelet-activating factor (PAF) is a phospholipid-derived mediator with an established role in multiple inflammatory states. PAF is synthesized and secreted by multiple cell types and is then rapidly hydrolyzed and degraded to an inactive metabolite, lyso-PAF, by the enzyme PAF acetylhydrolase. In addition to its role in platelet aggregation and activation, PAF contributes to allergic and nonallergic inflammatory diseases such as anaphylaxis, sepsis, cardiovascular disease, neurological disease, and malignancy as demonstrated in multiple animal models and, increasingly, in human disease states. Recent research has demonstrated the importance of the PAF pathway in multiple conditions including the prediction of severe pediatric anaphylaxis, effects on blood-brain barrier permeability, effects on reproduction, ocular diseases, and further understanding of its role in cardiovascular risk. Investigation of PAF as both a biomarker and a therapeutic target continues because of the need for directed management of inflammation. Collectively, studies have shown that therapies focused on the PAF pathway have the potential to provide targeted and effective treatments for multiple inflammatory conditions.
Collapse
Affiliation(s)
- Julia E M Upton
- Division of Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Eyal Grunebaum
- Division of Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Gordon Sussman
- Division of Clinical Immunology and Allergy, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Peter Vadas
- Division of Clinical Immunology and Allergy, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Abstract
Purpose of Review The purpose of this review is to provide a better understanding of anaphylaxis pathophysiology and describe the underlying mechanisms, effector cells, and the potential biomarkers involved depending on the anaphylaxis endotypes. Recent Findings New insight into the potential relevance of pathways others than IgE-dependent anaphylaxis has been unraveled, as well as other biomarkers than tryptase, such as the role of platelet activation factor, basogranulin, dipeptidyl peptidase I, CCL-2, and other cytokines. Summary Gaining knowledge of all the mediators and cellular activation/communication pathways involved in each endotype of anaphylaxis will allow the application of precision medicine in patients with anaphylactic reactions, providing insights to the most appropriate approach in each case and helping to stratify severity and risk prediction.
Collapse
|