1
|
Güngör Ş, Kırıkkulak M, Denk B, Gülhan MF, Güleş Ö, Budak D, İnanç ME, Avdatek F, Yeni D, Taşdemir U. Potential Protective Effect of Hesperidin (Vitamin P) against Glyphosate-Induced Spermatogenesis Damage in Male Rats: Biochemical and Histopathological Findings on Reproductive Parameters. Life (Basel) 2024; 14:1190. [PMID: 39337973 PMCID: PMC11433275 DOI: 10.3390/life14091190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
The aim of this study was to investigate the effectiveness of hesperidin (HES) on testicular histopathological changes, biochemical changes, and semen characteristics in rats exposed to glyphosate (GLP). The control group was given a normal diet devoid of GLP and HES, the HES group was given 100 mg/kg/day HES with the normal diet, the GLP group was given GLP at the LD50/10 dose of normal feed, which was 787.85 mg/kg/day, and the GLP + HES group was given normal feed containing 787.85 mg/kg/day LD50/10 dose of GLP in addition to 100 mg/kg/day HES. GLP administration reduced sperm motility, sperm plasma membrane integrity, glutathione levels, and total antioxidant levels in the testicular tissues of rats. Moreover, it caused an increase in right testis and left epididymis weights, abnormal sperm counts, malondialdehyde levels, total oxidant status, and DNA damage. The HES treatment showed curative effects on these parameters. Furthermore, HES was effective in lessening the histopathological damage that was caused by GLP. The results showedthat HES protects spermatological parameters and DNA integrity, improves antioxidant defenses, and lowers the damage and lipid peroxidation caused by GLP in testicular tissue.
Collapse
Affiliation(s)
- Şükrü Güngör
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur 15030, Türkiye
| | - Murat Kırıkkulak
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, AfyonKocatepe University, Afyonkarahisar 03200, Türkiye
| | - Barış Denk
- Department of Biochemistry, Faculty of Veterinary Medicine, AfyonKocatepe University, Afyonkarahisar 03200, Türkiye
| | - Mehmet Fuat Gülhan
- Department of Medicinal and Aromatic Plants, Technical Sciences Vocational School, Aksaray University, Aksaray 68100, Türkiye
| | - Özay Güleş
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, Aydın 09016, Türkiye
| | - Duygu Budak
- Department of Zootechnics and Animal Nutrition, Faculty of Veterinary Medicine, Aksaray University, Aksaray 68100, Türkiye
| | - Muhammed Enes İnanç
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur 15030, Türkiye
| | - Fatih Avdatek
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, AfyonKocatepe University, Afyonkarahisar 03200, Türkiye
| | - Deniz Yeni
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, AfyonKocatepe University, Afyonkarahisar 03200, Türkiye
| | - Umut Taşdemir
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Ankara University, Ankara 06110, Türkiye
| |
Collapse
|
2
|
Vasseur C, Serra L, El Balkhi S, Lefort G, Ramé C, Froment P, Dupont J. Glyphosate presence in human sperm: First report and positive correlation with oxidative stress in an infertile French population. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116410. [PMID: 38696871 DOI: 10.1016/j.ecoenv.2024.116410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/15/2024] [Accepted: 04/27/2024] [Indexed: 05/04/2024]
Abstract
Environmental exposure to endocrine disruptors, such as pesticides, could contribute to a decline of human fertility. Glyphosate (GLY) is the main component of Glyphosate Based Herbicides (GBHs), which are the most commonly herbicides used in the world. Various animal model studies demonstrated its reprotoxicity. In Europe, GLY authorization in agriculture has been extended until 2034. Meanwhile the toxicity of GLY in humans is still in debate. The aims of our study were firstly to analyse the concentration of GLY and its main metabolite, amino-methyl-phosphonic acid (AMPA) by LC/MS-MS in the seminal and blood plasma in an infertile French men population (n=128). We secondly determined Total Antioxidant Status (TAS) and Total Oxidant Status (TOS) using commercial colorimetric kits and some oxidative stress biomarkers including malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) by ELISA assays. We next analysed potential correlations between GLY and oxidative stress biomarkers concentration and sperm parameters (sperm concentration, progressive speed, anormal forms). Here, we detected for the first time GLY in the human seminal plasma in significant proportions and we showed that its concentration was four times higher than those observed in blood plasma. At the opposite, AMPA was undetectable. We also observed a strong positive correlation between plasma blood GLY concentrations and plasma seminal GLY and 8-OHdG concentrations, the latter reflecting DNA impact. In addition, TOS, Oxidative Stress Index (OSI) (TOS/TAS), MDA blood and seminal plasma concentrations were significantly higher in men with glyphosate in blood and seminal plasma, respectively. Taken together, our results suggest a negative impact of GLY on the human reproductive health and possibly on his progeny. A precaution principle should be applied at the time of the actual discussion of GLY and GBHs formulants uses in Europe by the authorities.
Collapse
Affiliation(s)
- Claudine Vasseur
- Centre de fertilité, Pôle Santé Léonard de Vinci, Chambray-lès-Tours, France.
| | - Loïse Serra
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly F-37380, France
| | - Souleiman El Balkhi
- Service de Pharmacologie, Toxicologie et Pharmacovigilance, Limoges, CHU F-87042, France
| | - Gaëlle Lefort
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly F-37380, France
| | - Christelle Ramé
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly F-37380, France
| | - Pascal Froment
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly F-37380, France
| | - Joëlle Dupont
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly F-37380, France.
| |
Collapse
|
3
|
Hariti M, Kamel A, Ghozlani A, Djennane N, Djenouhat K, Aksas K, Hamouli-Saïd Z. Disruption of spermatogenesis in testicular adult Wistar rats after short-term exposure to high dose of glyphosate based-herbicide: Histopathological and biochemical changes. Reprod Biol 2024; 24:100865. [PMID: 38402720 DOI: 10.1016/j.repbio.2024.100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
Glyphosate is an endocrine disruptor and can act on the activity of certain enzymes of metabolism subsequently altering some functions such as reproduction. The goal of the present study is to evaluate the involvement of glyphosate based-herbicide (GBH) in spermatogenesis disruption and to investigate which cells of the adult Wistar rat testis are most affected by short-term exposure to GBH. Treated groups received a diluted solution of GBH orally for 21 days (D1: 102.5 mg/Kg; D2: 200 mg/Kg; D3: 400 mg/Kg). The control group (C) received water in the same manner. Hormone levels, oxidative stress markers were evaluated, histological and morphometric analysis were performed, AR and p53 expression was conducted. Seminiferious epithelium sloughing associated to erosion of Sertoli and spermatogonia from the basement of the seminiferous tubules, with intraluminal exfoliated cells among with immature spermatids were observed. A significant change in morphometric measurement and significant decrease in AR expression in Sertoli cells were noted for all treated groups. A significant increase in NO level and p53 expression in Leydig cells were showed for animals treated with 200 and 400 mg/kg BW/day. These data demonstrate that short-term exposure to high doses of GBH has led to a disruption of certain parameters that could disturb spermatogenesis. The treatment showed that both Leydig and Sertoli cells are affected in the same manner by GBH, the activation of p53 expression in both Leydig cells and peritubular myloid cells nuclei, and the reduction in AR expression in Sertoli cells, which resulted in important testicular damage.
Collapse
Affiliation(s)
- Meriem Hariti
- L.B.P.O/Section Endocrinology, Faculty of Biological Sciences, USTHB, BP 32 El-Alia, Bab Ezzouar, 16 111 Algiers, Algeria.
| | - Assia Kamel
- L.B.P.O/Section Endocrinology, Faculty of Biological Sciences, USTHB, BP 32 El-Alia, Bab Ezzouar, 16 111 Algiers, Algeria
| | - Amel Ghozlani
- L.B.P.O/Section Endocrinology, Faculty of Biological Sciences, USTHB, BP 32 El-Alia, Bab Ezzouar, 16 111 Algiers, Algeria
| | - Nacima Djennane
- Faculty of Medicine - University of Algiers1 / Pathological Anatomy and Cytology Department, Mohammed Lamine Debaghine Hospital, Bab El Oued, Algeria
| | - Kamel Djenouhat
- Faculty of Medicine - University of Algiers1 / Central Laboratory, Public Hospital Etablishment of Rouiba, Algeria
| | - Kahina Aksas
- Faculty of Medicine - University of Algiers1 / Central Laboratory, Mohammed Lamine Debaghine Hospital, Bab El Oued, Algeria
| | - Zohra Hamouli-Saïd
- L.B.P.O/Section Endocrinology, Faculty of Biological Sciences, USTHB, BP 32 El-Alia, Bab Ezzouar, 16 111 Algiers, Algeria
| |
Collapse
|
4
|
Akbel E, Kucukkurt I, Ince S, Demirel HH, Acaroz DA, Zemheri-Navruz F, Kan F. Investigation of protective effect of resveratrol and coenzyme Q 10 against cyclophosphamide-induced lipid peroxidation, oxidative stress and DNA damage in rats. Toxicol Res (Camb) 2024; 13:tfad123. [PMID: 38173543 PMCID: PMC10758596 DOI: 10.1093/toxres/tfad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
It is seen that cyclophosphamide, which is used in treating many diseases, especially cancer, causes toxicity in studies, and its metabolites induce oxidative stress. This study aimed to investigate the protective effects of resveratrol and Coenzyme Q10, known for their antioxidant properties, separately and together, against oxidative stress induced by cyclophosphamide. In this study, 35 Wistar albino male rats were divided into five groups. Groups; Control group, cyclophosphamide (CP) group (CP as 75 mg kg i.p. on day 14), coenzyme Q10 (CoQ10) + CP group (20 mg/kg i.p. CoQ10 + 75 mg kg i.p. CP), resveratrol (Res) + CP group (20 mg/kg i.p. Res + 75 mg/kg i.p. CP), CoQ10 + Res + CP group (20 mg/kg i.p Res + 20 mg/kg i.p CoQ10 and 75 mg/kg i.p.CP). At the end of the experiment, the cholesterol, creatinine and urea levels of the group given CP increased, while a decrease was observed in the groups given Res and CoQ10. Malondialdehyde level was high, glutathione level, superoxide dismutase and catalase activities were decreased in the blood and all tissues (liver, kidney, brain, heart and testis) of the CP given group. DNA damage and histopathological changes were also observed. In contrast, Res and CoQ10, both separately and together, reversed the CP-induced altered level and enzyme activities and ameliorated DNA damage and histopathological changes. In this study, the effects of Res and CoQ10 against CP toxicity were examined both separately and together.
Collapse
Affiliation(s)
- Erten Akbel
- Usak Health Training School, Usak University, 64200, Uşak, Turkey
| | - Ismail Kucukkurt
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| | - Sinan Ince
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| | | | - Damla Arslan Acaroz
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| | - Fahriye Zemheri-Navruz
- Faculty of Science, Department of Molecular Biology and Genetics, Bartın University, 74110, Bartın, Turkey
| | - Fahriye Kan
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| |
Collapse
|
5
|
Wang Y, Su M, Chen Y, Huang X, Ruan L, Lv Q, Li L. Research progress on the role and mechanism of DNA damage repair in germ cell development. Front Endocrinol (Lausanne) 2023; 14:1234280. [PMID: 37529603 PMCID: PMC10390305 DOI: 10.3389/fendo.2023.1234280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 06/28/2023] [Indexed: 08/03/2023] Open
Abstract
In the complex and dynamic processes of replication, transcription, and translation of DNA molecules, a large number of replication errors or damage can occur which lead to obstacles in the development process of germ cells and result in a decreased reproductive rate. DNA damage repair has attracted widespread attention due to its important role in the maintenance and regulation of germ cells. This study reports on a systematic review of the role and mechanism of DNA damage repair in germline development. First, the causes, detection methods, and repair methods of DNA damage, and the mechanism of DNA damage repair are summarized. Second, a summary of the causes of abnormal DNA damage repair in germ cells is introduced along with common examples, and the relevant effects of germ cell damage. Third, we introduce the application of drugs related to DNA damage repair in the treatment of reproductive diseases and related surgical treatment of abnormal DNA damage, and summarize various applications of DNA damage repair in germ cells. Finally, a summary and discussion is given of the current deficiencies in DNA damage repair during germ cell development and future research development. The purpose of this paper is to provide researchers engaged in relevant fields with a further systematic understanding of the relevant applications of DNA damage repair in germ cells and to gain inspiration from it to provide new research ideas for related fields.
Collapse
Affiliation(s)
- Yan Wang
- College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- College of Biology & Pharmacy, Yulin Normal University, Yulin, China
| | - Mengrong Su
- College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- College of Biology & Pharmacy, Yulin Normal University, Yulin, China
| | - Yujie Chen
- College of Biology & Pharmacy, Yulin Normal University, Yulin, China
| | - Xinyu Huang
- College of Biology & Pharmacy, Yulin Normal University, Yulin, China
| | - Lian Ruan
- College of Biology & Pharmacy, Yulin Normal University, Yulin, China
| | - Qizhuang Lv
- College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- College of Biology & Pharmacy, Yulin Normal University, Yulin, China
| | - Li Li
- College of Biology & Pharmacy, Yulin Normal University, Yulin, China
| |
Collapse
|
6
|
Nechalioti PM, Karampatzakis T, Mesnage R, Antoniou MN, Ibragim M, Tsatsakis A, Docea AO, Nepka C, Kouretas D. Evaluation of perinatal exposure of glyphosate and its mixture with 2,4-D and dicamba οn liver redox status in Wistar rats. ENVIRONMENTAL RESEARCH 2023; 228:115906. [PMID: 37062480 DOI: 10.1016/j.envres.2023.115906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023]
Abstract
Wide-scale emergence of glyphosate-resistant weeds has led to an increase in the simultaneous application of herbicide mixtures exacerbated by the introduction of crops tolerant to glyphosate plus dicamba or glyphosate plus 2,4-D. This raises serious concerns regarding the environmental and health risks resulting from increased exposure to a mixture of herbicide active ingredients. We evaluated hepatotoxic effects following perinatal exposure to glyphosate alone or in combination with 2,4-D and dicamba from gestational day-6 until adulthood in Wistar rats. Animals were administered with glyphosate at the European Union (EU) acceptable daily intake (ADI; 0.5 mg/kg bw/day) and no-observed-adverse-effect level (NOAEL; 50 mg/kg bw/day). A mixture of glyphosate with 2,4-D (0.3 mg/kg bw/day) and dicamba (0.02 mg/kg bw/day) with each at their EU ADI was evaluated. Redox status was determined by measuring levels of reduced glutathione, decomposition rate of Η2Ο2, glutathione reductase, glutathione peroxidase, total antioxidant capacity, thiobarbituric reactive substances, and protein carbonyls. Gene expression analysis of Nr1d1, Nr1d2, Clec2g, Ier3, and Gadd45g associated with oxidative damage to DNA, was also performed. Analysis of liver samples showed that exposure to the mixture of the three herbicides induced a marked increase in the concentration of glutathione and malondialdehyde indicative of a disturbance in redox balance. Nevertheless, the effect of increased lipid peroxidation was not discernible following a 3-month recuperation period where animals were withdrawn from pesticide exposure post-weaning. Interestingly, toxic effects caused by prenatal exposure to the glyphosate NOAEL were present after the same 3-month recovery period. No statistically significant changes in the expression of genes linked with genotoxicity were observed. Our findings reinforce the importance of assessing the combined effects of chemical pollutants at doses that are asserted by regulatory agencies to be safe individually.
Collapse
Affiliation(s)
- Paraskevi-Maria Nechalioti
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500, Larissa, Greece
| | - Thomas Karampatzakis
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500, Larissa, Greece
| | - Robin Mesnage
- King's College London, Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, Guy's Hospital, London, SE1 9RT, UK
| | - Michael N Antoniou
- King's College London, Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, Guy's Hospital, London, SE1 9RT, UK
| | - Mariam Ibragim
- King's College London, Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, Guy's Hospital, London, SE1 9RT, UK
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003, Heraklion, Greece
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| | - Charitini Nepka
- Department of Pathology, University Hospital of Larissa, 41110, Larissa, Greece
| | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500, Larissa, Greece.
| |
Collapse
|
7
|
Dcunha R, Kumari S, Najar MA, Aravind A, Suvarna KS, Hanumappa A, Mutalik SP, Mutalik S, Kalthur SG, Rajanikant GK, Siddiqui S, Alrumman S, Alamri SAM, Raghu SV, Adiga SK, Kannan N, Thottethodi Subrahmanya KP, Kalthur G. High doses of GrassOut Max poses reproductive hazard by affecting male reproductive function and early embryogenesis in Swiss albino mice. CHEMOSPHERE 2023:139215. [PMID: 37336444 DOI: 10.1016/j.chemosphere.2023.139215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/16/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Clethodim is a widely used and approved class II herbicide, with little information about its impact on the reproductive system. Herein, we investigated the male reproductive toxicity of clethodim using a mouse model. GrassOut Max (26% clethodim-equivalent) or 50 mg kg-1 body weight analytical grade clethodim (≥90%) were given orally to male mice for 10 d in varying doses. All parameters were assessed at 35 d from the first day of treatment. Significant decrease in testicular weight, decreased germ cell population, elevated DNA damage in testicular cells and lower serum testosterone level was observed post clethodim-equivalent exposure. Epididymal spermatozoa were characterized with significant decrease in motility, elevated DNA damage, abnormal morphology, chromatin immaturity and, decreased acetylated-lysine of sperm proteins. In the testicular cells of clethodim-equivalent treated mice, the expression of Erβ and Gper was significantly higher. Proteomic analysis revealed lower metabolic activity, poor sperm-oocyte binding potential and defective mitochondrial electron transport in spermatozoa of clethodim-equivalent treated mice. Further, fertilizing ability of spermatozoa was compromised and resulted in defective preimplantation embryo development. Together, our data suggest that clethodim exposure risks male reproductive function and early embryogenesis in Swiss albino mice via endocrine disrupting function.
Collapse
Affiliation(s)
- Reyon Dcunha
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sandhya Kumari
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Mohd Altaf Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Anjana Aravind
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Keerthana Sandesh Suvarna
- Division of Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Ananda Hanumappa
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sadhana P Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sneha Guruprasad Kalthur
- Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - G K Rajanikant
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Sazada Siddiqui
- Department of Biology, College of Sciences, King Khalid University, Abha, 11362, Saudi Arabia
| | - Sulaiman Alrumman
- Department of Biology, College of Sciences, King Khalid University, Abha, 11362, Saudi Arabia
| | | | - Shamprasad Varija Raghu
- Neurogenetics Lab, Department of Applied Zoology, Mangalore University, Mangalagangotri, 574199, Karnataka, India
| | - Satish Kumar Adiga
- Division of Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Nagarajan Kannan
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA; Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA; Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Guruprasad Kalthur
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
8
|
Qi L, Li Y, Dong Y, Ma S, Li G. Integrated metabolomics and transcriptomics reveal glyphosate based-herbicide induced reproductive toxicity through disturbing energy and nucleotide metabolism in mice testes. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37087751 DOI: 10.1002/tox.23808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Glyphosate is a widely used herbicide that has deleterious effects on animal reproduction. However, details regarding the systematic mechanisms of glyphosate-induced reproductive toxicity are limited. This study aimed to investigate the toxic effects of glyphosate-based herbicide (GBH) on reproduction in mice exposed to 0 (control group), 50 (low-dose group), 250 (middle-dose group), and 500 (high-dose group) mg/kg/day GBH for 30 days. Toxicological parameters, metabolomics, and transcriptomics were performed to reveal GBH-induced reproductive toxicity. Our findings demonstrated that GBH exposure damaged mitochondrial pyknosis and the nuclear membrane of spermatogonia. GBH triggered a significant increase in sperm malformations in the high-dose group. Omics data showed that GBH impaired the Krebs cycle and respiratory chain, blocked pyruvate metabolism and glycolysis/gluconeogenesis, and influenced the pentose phosphate pathway and nucleotide synthesis and metabolism. Overall, the multi-omics results revealed systematic and comprehensive evidence of the adverse effects of GBH exposure, providing new insights into the reproductive toxicity of organophosphorus pesticides.
Collapse
Affiliation(s)
- Lei Qi
- Department of Nutrition and Food Hygiene, Public Health College, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Yupeng Li
- Physical Examination Center, the Third Affiliated Hospital, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Yanmei Dong
- Department of Nutrition and Food Hygiene, Public Health College, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Shuli Ma
- Public Health Experimental Center, Public Health College, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Gang Li
- Department of Preventive Medicine, Public Health College, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| |
Collapse
|
9
|
Khattabi L, Chettoum A, Hemida H, Boussebaa W, Atanassova M, Messaoudi M. Pirimicarb Induction of Behavioral Disorders and of Neurological and Reproductive Toxicities in Male Rats: Euphoric and Preventive Effects of Ephedra alata Monjauzeana. Pharmaceuticals (Basel) 2023; 16:402. [PMID: 36986501 PMCID: PMC10051897 DOI: 10.3390/ph16030402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Carbamate pesticides are a risk to human well-being, and pirimicarb is the most widely employed carbamate insecticide. This ongoing investigation aimed to reveal its toxicity on neurobehavioral and reproductive function. The study was carried out on male Wistar rats by assessment of behavioral changes via experiments, such as the forced swim test and the elevated plus maze; determination of oxidative stress (checking parameters such as catalase activity, etc.); measurement of cortisol and testosterone serum titers, and IL-1β levels in the plasma and brain; and evaluation of histopathological lesions that induced pirimicarb after 28 days of gavage, specifically in the brain and testis. Traces of pirimicarb were analyzed in tissue extracts using LCMS/MS. At the same time, the beneficial and protective effect of EamCE (Ephedra alata monjauzeana Crude Extract) were tested. The outcomes showed considerable anxiety and depressive status, with an evident increase in cortisol and IL-1β titers and an important decrease in oxidative enzymes and testosterone. Significant histological lesions were also recorded. In addition, the LCMS/MS analysis affirmed the accumulation of pirimicarb in organ tissue from rats force-fed with pirimicarb. Conversely, EamCE demonstrated outstanding potential as a preventive treatment, restoring cognitive and physical performance, boosting fertility, enhancing antioxidant and anti-inflammatory activities and preserving tissue integrity. We concluded that pirimicarb has critical deleterious impacts on health, affecting the neuroimmune-endocrine axis, and EamCE has a general euphoric and preventive effect.
Collapse
Affiliation(s)
- Latifa Khattabi
- Faculty of Nature and Life Sciences, University of Brothers Mentouri, Constantine1 (UFMC1), BP, 325 Route de Ain El Bey, Constantine 25017, Algeria
- Biotechnology Research Center, Constantine (CRBt), Ali Mendjli Nouvelle Ville UV 03 BP E73, Constantine 25016, Algeria
| | - Aziez Chettoum
- Faculty of Nature and Life Sciences, University of Brothers Mentouri, Constantine1 (UFMC1), BP, 325 Route de Ain El Bey, Constantine 25017, Algeria
| | - Houari Hemida
- Institute of Veterinary Sciences, University of Tiaret, Tiaret 14000, Algeria
| | - Walid Boussebaa
- Scientific and Technical Research Center in Physico-Chemical Analysis (CRAPC), BP384, Bou-Ismail, Tipaza 42004, Algeria
| | - Maria Atanassova
- Nutritional Scientific Consulting, Chemical Engineering, University of Chemical Technology and Metalurgy, 1734 Sofia, Bulgaria
| | | |
Collapse
|
10
|
de Batista DG, de Batista EG, Miragem AA, Ludwig MS, Heck TG. Disturbance of cellular calcium homeostasis plays a pivotal role in glyphosate-based herbicide-induced oxidative stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:9082-9102. [PMID: 36441326 DOI: 10.1007/s11356-022-24361-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Glyphosate-based herbicides (GBHs) are the most worldwide used pesticides. The wide application of GBHs contaminates the soil and, consequently, water and food resources reaching human consumption. GBHs induce oxidative stress in non-target organisms, leading to a pro-inflammatory and pro-apoptotic cellular status, promoting tissue dysfunction and, thus, metabolic and neurobehavioral changes. This review presents evidence of oxidative damage induced by GBHs and the mechanism of cell damage and health consequences. To summarize, exposure to GBHs may induce disorders in calcium homeostasis related to the activation of ion channels. Also, alterations in pathways related to redox state regulation must have a primordial role in oxidative stress caused by GBHs.
Collapse
Affiliation(s)
- Diovana Gelati de Batista
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State, Rio Grande Do Sul State, Ijuí, Brazil.
- Postgraduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State, Rio Grande Do Sul State, Ijuí, Brazil.
- Research Group in Cell Stress Response, Federal Institute of Education, Science and Technology Farroupilha, Rio Grande Do Sul State, Santa Rosa, Brazil.
- Postgraduate Program in Mathematical and Computational Modeling, Regional University of Northwestern Rio Grande Do Sul State, Rio Grande Do Sul State, Ijuí, Brazil.
| | - Edivania Gelati de Batista
- Research Group in Cell Stress Response, Federal Institute of Education, Science and Technology Farroupilha, Rio Grande Do Sul State, Santa Rosa, Brazil
| | - Antônio Azambuja Miragem
- Research Group in Cell Stress Response, Federal Institute of Education, Science and Technology Farroupilha, Rio Grande Do Sul State, Santa Rosa, Brazil
| | - Mirna Stela Ludwig
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State, Rio Grande Do Sul State, Ijuí, Brazil
- Postgraduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State, Rio Grande Do Sul State, Ijuí, Brazil
| | - Thiago Gomes Heck
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State, Rio Grande Do Sul State, Ijuí, Brazil
- Postgraduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State, Rio Grande Do Sul State, Ijuí, Brazil
- Postgraduate Program in Mathematical and Computational Modeling, Regional University of Northwestern Rio Grande Do Sul State, Rio Grande Do Sul State, Ijuí, Brazil
| |
Collapse
|
11
|
Yang X, Yu X, Sun N, Shi X, Niu C, Shi A, Cheng Y. Glyphosate-based herbicide causes spermatogenesis disorder and spermatozoa damage of the Chinese mitten crab (Eriocheir sinensis) by affecting testes characteristic enzymes, antioxidant capacities and inducing apoptosis. Toxicol Appl Pharmacol 2022; 447:116086. [PMID: 35643123 DOI: 10.1016/j.taap.2022.116086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 10/18/2022]
Abstract
Glyphosate-based herbicide (GBH) is a popular herbicide, which may contaminate the water environment and affect aquatic animals. In this study, testes morphology, physiology function, apoptosis pathway, and spermatozoa quality of Chinese mitten crab (Eriocheir sinensis) were evaluated after 7 days of GBH exposure (48.945 mg/l,1/2 of the 96 h LC50 value of GBH). Results showed that GBH induced spermatogenesis disorder by H.E. staining. The obvious vacuolar degenerations and fewer spermatids of the testes accompanied by decreased primary spermatocytes-type seminiferous tubules (PSc-STs) were observed. The extensive apoptosis of spermatids by TUNEL staining was visible. Meanwhile, testes'' characteristic enzyme activities associated with spermatogenesis, including lactate dehydrogenase (LDH) and acid phosphatase (ACP) were significantly decreased. Testes suffered oxidative damage as reflected by the significant decrease in superoxide dismutase (SOD) activities, the significant increase in malondialdehyde (MDA) contents, and heat shock proteins (HSP-70) mRNA expression. Further studies demonstrated that GBH induced apoptosis of testes through the mitochondrial apoptotic pathway by upregulating the relative mRNA expression of cysteinyl aspartate specific proteinase 3 (Caspase-3), Bcl-2-associated X protein (Bax), and downregulating B-cell lymphoma 2 (Bcl-2). Oxidative damage may be one of the causes of GBH-induced apoptosis in testes. After GBH exposure, the morphology of spermatophores was changed. The survival and the acrosome reaction (AR) ratio of spermatozoa was significantly decreased. Altogether, these results demonstrated that GBH affects spermatogenesis, spermatophore and spermatozoa quality of E.sinensis, which provides novel knowledge about the toxic effects of GBH on the reproductive system of crustaceans.
Collapse
Affiliation(s)
- Xiaozhen Yang
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| | - Xiaowen Yu
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Ningbo Sun
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xingliang Shi
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Chao Niu
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Aoya Shi
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yongxu Cheng
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
12
|
Özay Güleş, Doğan G, Ercins UH, Eren Ü. Effects of Quercetin against Doxorubicin-Induced Testicular Toxicity in Male Rats. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022030086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Verderame M, Chianese T, Rosati L, Scudiero R. Molecular and Histological Effects of Glyphosate on Testicular Tissue of the Lizard Podarcis siculus. Int J Mol Sci 2022; 23:4850. [PMID: 35563240 PMCID: PMC9100619 DOI: 10.3390/ijms23094850] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
The expansion of agriculture produces a steady increase in habitat fragmentation and degradation due to the increased use of pesticides and herbicides. Habitat loss and alteration associated with crop production play an important role in reptile decline, among which lizards are particularly endangered. In this study, we evaluated testicular structure, steroidogenesis, and estrogen receptor expression/localization after three weeks of oral exposure to glyphosate at 0.05 and 0.5 μg/kg body weight every other day in the field lizard Podarcis siculus. Our results show that glyphosate affected testicular morphology, reduced spermatogenesis, altered gap junctions and changed the localization of estrogen receptors in germ cells, increasing their expression; the effects were mostly dose-dependent. The result also demonstrates that glyphosate, at least at these concentrations, did not influence steroidogenesis. Overall, the data indicate that this herbicide can disturb the morphophysiology of the male lizard's reproductive system, with obviously detrimental effects on their reproductive fitness. The effects of glyphosate must be considered biologically relevant and could endanger the reproductive capacity not only of lizards but also of other vertebrates, including humans; a more controlled and less intensive use of glyphosate in areas devoted to crop production would therefore be advisable.
Collapse
Affiliation(s)
- Mariailaria Verderame
- Department of Human, Philosophic and Education Sciences (DISUFF), University of Salerno, 84084 Fisciano, Italy;
| | - Teresa Chianese
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy; (T.C.); (L.R.)
| | - Luigi Rosati
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy; (T.C.); (L.R.)
- Center for Studies on Bioinspired Agro-Environmental Technology (BAT), 80055 Portici, Italy
| | - Rosaria Scudiero
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy; (T.C.); (L.R.)
| |
Collapse
|
14
|
Hashim AR, Bashir DW, Yasin NAE, Rashad MM, El-Gharbawy SM. Ameliorative effect of N-acetylcysteine on the testicular tissue of adult male albino rats after glyphosate-based herbicide exposure. J Biochem Mol Toxicol 2022; 36:e22997. [PMID: 35174928 DOI: 10.1002/jbt.22997] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 12/14/2021] [Accepted: 01/28/2022] [Indexed: 01/15/2023]
Abstract
Glyphosate (GLP) is a broad-spectrum herbicide that is frequently used in crop production, but its residues remain in foodstuffs. This, in turn, has led to potential adverse effects on both human and animal health. Recent studies emphasized that GLP induces teratogenic effects and reproductive disorders, but its mechanism of toxicity is highly debated. N-acetylcysteine (NAC) is well known for its potent antioxidant capacity in addition to anti-inflammatory and cytoprotective properties. Therefore, our study aimed to investigate the reproductive toxicity of GLP in mature rats and evaluate the possible ameliorative effect of NAC against this toxicity. To this end, 30 adult male rats were assigned into three groups (10 rats per group) as follows: Group I, negative control; group II, GLP-exposed; 375 mg/kg GLP, orally; group III, NAC-cotreated, 160 mg/kg NAC 1 h before GLP, plus GLP, 375 mg/kg orally for 6 weeks. At the end of the experiment, the testicles were collected for semen analysis and biochemical, histopathological, and immunohistochemical studies. GLP-exposed rats exhibited disturbances in seminal parameters and a significant increase in malondialdehyde levels and expression of apoptotic markers. Several histopathological changes were observed, including strong immunoreactions for caspase-3 and proliferating cell nuclear antigen. Conversely, the administration of NAC before GLP was able to improve seminal parameters, attenuate the induced oxidative stress and apoptosis in addition to the regeneration of testicular damage. In conclusion, NAC can ameliorate the reproductive toxicity induced by GLP to an acceptable degree.
Collapse
Affiliation(s)
- Asmaa R Hashim
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Dina W Bashir
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Noha A E Yasin
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Maha M Rashad
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Saad M El-Gharbawy
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
15
|
Wang X, Lu Q, Guo J, Ares I, Martínez M, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Oxidative Stress and Metabolism: A Mechanistic Insight for Glyphosate Toxicology. Annu Rev Pharmacol Toxicol 2022; 62:617-639. [PMID: 34990202 DOI: 10.1146/annurev-pharmtox-020821-111552] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glyphosate (GLYP) is a widely used pesticide; it is considered to be a safe herbicide for animals and humans because it targets 5-enolpyruvylshikimate-3-phosphate synthase. However, there has been increasing evidence that GLYP causes varying degrees of toxicity. Moreover, oxidative stress and metabolism are highly correlated with toxicity. This review provides a comprehensive introduction to the toxicity of GLYP and, for the first time, systematically summarizes the toxicity mechanism of GLYP from the perspective of oxidative stress, including GLYP-mediated oxidative damage, changes in antioxidant status, altered signaling pathways, and the regulation of oxidative stress by exogenous substances. In addition, the metabolism of GLYP is discussed, including metabolites,metabolic pathways, metabolic enzymes, and the toxicity of metabolites. This review provides new ideas for the toxicity mechanism of GLYP and proposes effective strategies for reducing its toxicity.
Collapse
Affiliation(s)
- Xiaojing Wang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China;
| | - Qirong Lu
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China;
| | - Jingchao Guo
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China;
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, and Research Institute Hospital 12 de Octubre, 28040 Madrid, Spain;
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, and Research Institute Hospital 12 de Octubre, 28040 Madrid, Spain;
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, and Research Institute Hospital 12 de Octubre, 28040 Madrid, Spain;
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China;
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, and Research Institute Hospital 12 de Octubre, 28040 Madrid, Spain;
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei 430023, China
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, and Research Institute Hospital 12 de Octubre, 28040 Madrid, Spain;
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, and Research Institute Hospital 12 de Octubre, 28040 Madrid, Spain;
| |
Collapse
|
16
|
Marino M, Mele E, Viggiano A, Nori SL, Meccariello R, Santoro A. Pleiotropic Outcomes of Glyphosate Exposure: From Organ Damage to Effects on Inflammation, Cancer, Reproduction and Development. Int J Mol Sci 2021; 22:12606. [PMID: 34830483 PMCID: PMC8618927 DOI: 10.3390/ijms222212606] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/07/2021] [Accepted: 11/19/2021] [Indexed: 12/29/2022] Open
Abstract
Glyphosate is widely used worldwide as a potent herbicide. Due to its ubiquitous use, it is detectable in air, water and foodstuffs and can accumulate in human biological fluids and tissues representing a severe human health risk. In plants, glyphosate acts as an inhibitor of the shikimate pathway, which is absent in vertebrates. Due to this, international scientific authorities have long-considered glyphosate as a compound that has no or weak toxicity in humans. However, increasing evidence has highlighted the toxicity of glyphosate and its formulations in animals and human cells and tissues. Thus, despite the extension of the authorization of the use of glyphosate in Europe until 2022, several countries have begun to take precautionary measures to reduce its diffusion. Glyphosate has been detected in urine, blood and maternal milk and has been found to induce the generation of reactive oxygen species (ROS) and several cytotoxic and genotoxic effects in vitro and in animal models directly or indirectly through its metabolite, aminomethylphosphonic acid (AMPA). This review aims to summarize the more relevant findings on the biological effects and underlying molecular mechanisms of glyphosate, with a particular focus on glyphosate's potential to induce inflammation, DNA damage and alterations in gene expression profiles as well as adverse effects on reproduction and development.
Collapse
Affiliation(s)
- Marianna Marino
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana”, Università degli Studi di Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.M.); (A.V.)
| | - Elena Mele
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli Parthenope, 80133 Naples, Italy;
| | - Andrea Viggiano
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana”, Università degli Studi di Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.M.); (A.V.)
| | - Stefania Lucia Nori
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy;
| | - Rosaria Meccariello
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli Parthenope, 80133 Naples, Italy;
| | - Antonietta Santoro
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana”, Università degli Studi di Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.M.); (A.V.)
| |
Collapse
|
17
|
Serra L, Estienne A, Vasseur C, Froment P, Dupont J. Review: Mechanisms of Glyphosate and Glyphosate-Based Herbicides Action in Female and Male Fertility in Humans and Animal Models. Cells 2021; 10:3079. [PMID: 34831302 PMCID: PMC8622223 DOI: 10.3390/cells10113079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Glyphosate (G), also known as N-(phosphonomethyl)glycine is the declared active ingredient of glyphosate-based herbicides (GBHs) such as Roundup largely used in conventional agriculture. It is always used mixed with formulants. G acts in particular on the shikimate pathway, which exists in bacteria, for aromatic amino acids synthesis, but this pathway does not exist in vertebrates. In recent decades, researchers have shown by using various animal models that GBHs are endocrine disruptors that might alter reproductive functions. Our review describes the effects of exposure to G or GBHs on the hypothalamic-pituitary-gonadal (HPG) axis in males and females in terms of endocrine disruption, cell viability, and proliferation. Most of the main regulators of the reproductive axis (GPR54, GnRH, LH, FSH, estradiol, testosterone) are altered at all levels of the HPG axis (hypothalamus, pituitary, ovaries, testis, placenta, uterus) by exposure to GBHs which are considered more toxic than G alone due to the presence of formulants such as polyoxyethylene tallow amine (POEA)." In addition, we report intergenerational impacts of exposure to G or GBHs and, finally, we discuss different strategies to reduce the negative effects of GBHs on fertility.
Collapse
Affiliation(s)
- Loïse Serra
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; (L.S.); (A.E.); (P.F.)
| | - Anthony Estienne
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; (L.S.); (A.E.); (P.F.)
| | - Claudine Vasseur
- Assisted Medical Procreation, Pôle Santé Léonard de Vinci, F-37380 Chambray-lès-Tours, France;
| | - Pascal Froment
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; (L.S.); (A.E.); (P.F.)
| | - Joëlle Dupont
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; (L.S.); (A.E.); (P.F.)
| |
Collapse
|
18
|
Bhardwaj JK, Kumar V, Panchal H, Sachdeva SN. Transmission electron microscopic analysis of glyphosate induced cytotoxicity and its attenuation by N-acetyl-L-cysteine in caprine testicular germ cells in vitro. Ultrastruct Pathol 2021; 45:407-413. [PMID: 34698588 DOI: 10.1080/01913123.2021.1993400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
The agricultural pesticide poisoning is currently the most thrust area of human health concern. Pesticide-induced cytotoxicity and the corresponding reproductive toxicity in today's scenario is not a concealed reality that has to be considered for the continuation of respective race. Here, the transmission electron microscopy (TEM) technique was employed to investigate the adverse impact of glyphosate (GLY) and its mitigation by N-acetyl-L-cysteine (NAC) in goat testicular germ cells under in vitro conditions. The ultrastructural observations of testicular tissue from GLY-treated groups at different concentrations (0.1 and 4 mg/ml) and exposure durations (8 and 12 h) revealed that this organophosphate herbicide induced different apoptotic characteristics in testicular germ cells in a time- and dose-dependent manner. However, NAC (10 mM), being a potent antioxidant, was found to mitigate GLY-induced cytotoxicity in testicular cells as evidenced by fewer apoptotic characteristics in GLY plus NAC-treated groups, suggesting its beneficial potential in alleviating the GLY-induced gonadotoxicity in males.Abbreviations: GLY (Glyphosate), NAC (N-acetyl-L-cysteine), TEM (Transmission electron microscopic), GE (genetic engineered), Organophosphate (OPs).
Collapse
Affiliation(s)
- Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, India
| | - Vijay Kumar
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, India
| | - Harish Panchal
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, India
| | - Som Nath Sachdeva
- Department of Civil Engineering, National Institute of Technology, Kurukshetra and Kurukshetra University, Kurukshetra, India
| |
Collapse
|
19
|
Golmohammadi MG, Khoshdel F, Salimnejad R. Protective effect of resveratrol against bisphenol A-induced reproductive toxicity in male mice. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1965625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Mohammad Ghasem Golmohammadi
- Department of Anatomical Sciences and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Fatemeh Khoshdel
- Department of Anatomical Sciences and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ramin Salimnejad
- Department of Anatomical Sciences and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
20
|
Shalaby AM, Alabiad MA, El Shaer DF. Resveratrol Ameliorates the Seminiferous Tubules Damages Induced by Finasteride in Adult Male Rats. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:1176-1186. [PMID: 33012303 DOI: 10.1017/s1431927620024514] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Finasteride is commonly used in the management of alopecia and nodular prostatic hyperplasia. It was reported to have a harmful effect on spermatogenesis with subsequent infertility. Thus, this research was to determine the ameliorative effect of resveratrol against testicular damage caused by finasteride. Forty adult male rats were randomly divided into four main groups: group I acted as the control, group II was administrated resveratrol 20 mg/kg/day, group III was administrated finasteride 5 mg/kg/day, and group IV was administrated finasteride and resveratrol as in the previous groups. Finasteride induced a significant decrement in the testosterone and dihydrotestosterone levels. The level of malondialdehyde significantly increased, while the levels of glutathione peroxidase, superoxide dismutase, and catalase significantly decreased in the finasteride-administrated rats. Variable histopathological alterations in the testes were revealed in the form of irregular seminiferous tubules. Some seminiferous tubules appeared with degenerated germinal epithelium. Others showed detachment of their germinal epithelium. Congested blood vessels and homogeneous acidophilic substance in-between tubules were also detected. A significant decrement in PCNA positive cells and a significant increment in Bax expression were demonstrated. Ultrastructural examination showed Sertoli cells with rarefied cytoplasm. Vacuolated cytoplasm, shrunken nuclei, and dilated perinuclear spaces were also revealed in the spermatogonia, primary spermatocytes, and early spermatids. On the contrary, few changes were noticed in rats received resveratrol concomitant with finasteride. This study indicated that resveratrol exerted a potent ameliorative effect against testicular injury caused by finasteride.
Collapse
Affiliation(s)
- Amany Mohamed Shalaby
- Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta31527, Egypt
| | - Mohamed Ali Alabiad
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig44519, Egypt
- College of Medicine, Shaqra University, Shaqra, Kingdom of Saudi Arabia
| | - Dina Fouad El Shaer
- Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta31527, Egypt
| |
Collapse
|
21
|
El-Nahhal Y. Pesticide residues in honey and their potential reproductive toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:139953. [PMID: 32599396 DOI: 10.1016/j.scitotenv.2020.139953] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Honey is the sweet natural substance produced by honeybees. It may be contaminated with pesticide residues due to its intensive use. Almost no reviews have addressed pesticide residues in honey, calculated a hazard index or discussed their potential reproductive toxicity. The focus of this article is primarily to summarize advances in research related to pesticide residues, estimate daily intake of pesticide residues from consuming honey only and discuss the potential reproductive toxicity associated with those residues. The results showed that 92 pesticide residues were found in honey samples from 27 countries. Six residues belong to class IA toxicity, eight residues belong to class IB toxicity, 42 residues belong to class II, 35 residues belong to class III and one residue belong to class IV toxicity. The calculated hazard indices (HIs) suggest high potential health risk by consuming honey. In addition, residues found in honey are known to impair semen quality among exposed individuals and experimental animal models. In conclusion, consumption of honey as one of many food items contaminated with pesticide residues may induce male and female reproductive toxicity in consumers.
Collapse
Affiliation(s)
- Yasser El-Nahhal
- Environmental Chemistry and Toxicology, Faculty of Science, The Islamic University-Gaza, Palestine.
| |
Collapse
|
22
|
Ganesan S, Keating AF. Ovarian mitochondrial and oxidative stress proteins are altered by glyphosate exposure in mice. Toxicol Appl Pharmacol 2020; 402:115116. [PMID: 32634520 PMCID: PMC8500330 DOI: 10.1016/j.taap.2020.115116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/18/2020] [Accepted: 06/25/2020] [Indexed: 12/18/2022]
Abstract
Glyphosate (GLY) usage for weed control is extensive. To investigate ovarian impacts of chronic GLY exposure, female C57BL6 mice were orally administered saline as vehicle control (CT) or GLY at 0.25 (G0.25), 0.5 (G0.5), 1.0 (G1.0), 1.5 (G1.5), or 2 (G2.0) mg/kg for five days per wk. for 20 wks. Feed intake increased (P < .05) in G1.5 and G2.0 mice and body weight increased (P < .05) in G1.0 mice. There was no impact of GLY on estrous cyclicity, nor did GLY affect circulating levels of 17β-estradiol or progesterone. Exposure to GLY did not impact heart, liver, spleen, kidney or uterus weight. Both ovarian weight and follicle number were increased (P < .05) by G2.0 but not affected at lower GLY concentrations. There were no detectable effects of GLY on ovarian protein abundance of pAKT, AKT, pAKT:AKT, γH2AX, STAR, CYP11A1, HSD3B, CYP19A, ERA or ERB. Increased (P < .05) abundance of ATM protein was observed at G0.25 but not higher GLY doses. A dose-dependent effect (P < .10) of GLY exposure on ovarian protein abundance as quantified by LC-MS/MS was observed (G0.25-4 increased, 19 decreased; G0.5-5 increased, 25 decreased; G1.0-65 increased, 7 decreased; G1.5-145 increased, 2 decreased; G2.0-159 increased, 4 decreased). Pathway analysis was performed using DAVID and identified glutathione metabolism, metabolic and proteasome pathways as GLY exposure targets. These data indicate that chronic low-level exposure to GLY alters the ovarian proteome and may ultimately impact ovarian function.
Collapse
Affiliation(s)
- Shanthi Ganesan
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|