1
|
Al-Shibli R, Al-Asmi A, Islam MM, Al Sabahi F, Al-Aamri A, Butt M, Al-Lawati M, Al-Hashmi L, Al-Yahmadi J. Seasonal Variations in Multiple Sclerosis Relapses in Oman: A Single Tertiary Centre Experience. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1371. [PMID: 39457344 PMCID: PMC11507384 DOI: 10.3390/ijerph21101371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/25/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
(1) Background and Aims: The seasonal factors influencing multiple sclerosis (MS) relapses remain elusive. This study aims to investigate the seasonal variation of MS relapses in Oman and compare it globally. (2) Subject and Methods: This retrospective study was conducted on N = 183 Omani MS patients treated at Sultan Qaboos University Hospital, a tertiary hospital in Muscat, Oman, over sixteen-year period (2007-2022). Demographic and clinical data of all MS patients were juxtaposed with the monthly weather data during this period, using descriptive and inferential statistical techniques. (3) Results: Among the N = 183 MS patients studied, 508 relapses were recorded during the study period. The average number of relapses per patient was 2.8 (range: 1-15). There were significant seasonal variations in MS relapse rate, with the highest prevalence in the winter months of January and February. However, no correlation was found between MS relapses and other climatic parameters (humidity, temperature, and rainfall). (4) Conclusion: The seasonal patterns of MS relapses in Oman differ from other parts of the world, which the local clinicians should take into account while diagnosing and making management decisions. The potential impact of climate change on the anomalous changes in the seasonality of MS relapses warrants further investigation.
Collapse
Affiliation(s)
- Rashid Al-Shibli
- College of Medicine & Health Sciences, Sultan Qaboos University, P.O. Box 17, Muscat 123, Oman; (R.A.-S.); (M.A.-L.); (L.A.-H.); (J.A.-Y.)
| | - Abdullah Al-Asmi
- Neurology Unit, Department of Medicine, College of Medicine & Health Sciences, Sultan Qaboos University, P.O. Box 17, Muscat 123, Oman
| | - M. Mazharul Islam
- Department of Statistics, College of Science, Sultan Qaboos University, P.O. Box 36, Al-Khoud, Muscat 123, Oman;
| | - Fatema Al Sabahi
- Neurology Unit, Department of Medicine, College of Medicine & Health Sciences, Sultan Qaboos University, P.O. Box 17, Muscat 123, Oman
| | - Amira Al-Aamri
- Department of Operation Management & Business Statistics, College of Economics and Political Science, Sultan Qaboos University, P.O. Box 20, Muscat 123, Oman;
| | - Mehwish Butt
- Neurology Unit, Department of Medicine, Sultan Qaboos University Hospital, University Medical City, P.O. Box 35, Al-Khoud, Muscat 123, Oman;
| | - Meetham Al-Lawati
- College of Medicine & Health Sciences, Sultan Qaboos University, P.O. Box 17, Muscat 123, Oman; (R.A.-S.); (M.A.-L.); (L.A.-H.); (J.A.-Y.)
| | - Lubna Al-Hashmi
- College of Medicine & Health Sciences, Sultan Qaboos University, P.O. Box 17, Muscat 123, Oman; (R.A.-S.); (M.A.-L.); (L.A.-H.); (J.A.-Y.)
| | - Jihad Al-Yahmadi
- College of Medicine & Health Sciences, Sultan Qaboos University, P.O. Box 17, Muscat 123, Oman; (R.A.-S.); (M.A.-L.); (L.A.-H.); (J.A.-Y.)
| |
Collapse
|
2
|
Eckert S, Jakimovski D, Zivadinov R, Hicar M, Weinstock-Guttman B. How to and should we target EBV in MS? Expert Rev Clin Immunol 2024; 20:703-714. [PMID: 38477887 DOI: 10.1080/1744666x.2024.2328739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
INTRODUCTION The etiology of multiple sclerosis (MS) remains unknown. Pathogenesis likely relies on a complex interaction between multiple environmental, genetic, and behavioral risk factors. However, a growing body of literature supports the role of a preceding Epstein-Barr virus (EBV) infection in the majority of cases. AREAS COVERED In this narrative review, we summarize the latest findings regarding the potential role of EBV as a predisposing event inducing new onset of MS. EBV interactions with the genetic background and other infectious agents such as human endogenous retrovirus are explored. Additional data regarding the role of EBV regarding the rate of mid- and long-term disease progression is also discussed. Lastly, the effect of currently approved disease-modifying therapies (DMT) for MS treatment on the EBV-based molecular mechanisms and the development of new EBV-specific therapies are further reviewed. EXPERT OPINION Recent strong epidemiological findings support that EBV may be the primary inducing event in certain individuals that shortly thereafter develop MS. More studies are needed in order to better understand the significant variability in susceptibility based on environmental factors such as EBV exposure. Future investigations should focus on determining the specific EBV-related risk antigen(s) and phenotyping people with likely EBV-induced MS. Targeting EBV via several different avenues, including development of an EBV vaccine, may become the mainstay of MS treatment in the future.
Collapse
Affiliation(s)
- Svetlana Eckert
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Dejan Jakimovski
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Mark Hicar
- Department of Pediatrics Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
3
|
Pawełczyk A, Donskow-Łysoniewska K, Szewczak L, Kierasińska M, Machcińska M, Rola R, Welc-Falęciak R. Seroprevalence of Toxoplasma gondii and Borrelia burgdorferi infections in patients with multiple sclerosis in Poland. Sci Rep 2024; 14:11015. [PMID: 38744898 PMCID: PMC11094124 DOI: 10.1038/s41598-024-61714-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic, demyelinating disease of the central nervous system that affects mainly young people. It is believed that the autoimmune process observed in the pathogenesis of MS is influenced by a complex interaction between genetic and environmental factors, including infectious agents. The results of this study suggest the protective role of Toxoplasma gondii infections in MS. Interestingly, high Toxoplasma IgM seropositivity in MS patients receiving immunomodulatory drugs (IMDs) was identified. On the other hand, Borrelia infections seem to be positively associated with MS. Although the interpretation of our results is limited by the retrospective nature of the studies, the results strongly indicate that further experimental and clinical studies are needed to explain the role of infectious agents in the development and pathophysiological mechanisms of MS.
Collapse
Affiliation(s)
- Agnieszka Pawełczyk
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 3C Pawińskiego Street, 02-106, Warsaw, Poland
| | - Katarzyna Donskow-Łysoniewska
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Kozielska 4 Street, 01-163, Warsaw, Poland
- Department of Experimental Immunotherapy, Faculty of Medicine, Lazarski University, 43 Świeradowska Street, 02-662, Warsaw, Poland
| | - Ludmiła Szewczak
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Kozielska 4 Street, 01-163, Warsaw, Poland
- Department of Parasitology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Magdalena Kierasińska
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Kozielska 4 Street, 01-163, Warsaw, Poland
| | - Maja Machcińska
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Kozielska 4 Street, 01-163, Warsaw, Poland
- Department of Experimental Immunotherapy, Faculty of Medicine, Lazarski University, 43 Świeradowska Street, 02-662, Warsaw, Poland
| | - Rafał Rola
- Department of Neurology, Military Institute of Aviation Medicine, Krasińskiego 54/56 Street, 01-755, Warsaw, Poland
| | - Renata Welc-Falęciak
- Department of Parasitology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland.
| |
Collapse
|
4
|
Carnero Contentti E, Rojas JI, Giachello S, Henestroza P, Lopez PA. Smoking and Health-Related Quality of Life in Patients With Multiple Sclerosis From Latin America. Int J MS Care 2024; 26:187-193. [PMID: 39072226 PMCID: PMC11273276 DOI: 10.7224/1537-2073.2023-053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
BACKGROUND Tobacco smoking is an important, modifiable, environmental risk factor for multiple sclerosis (MS) with a relevant impact on health-related quality of life (HRQOL). We aimed to assess the use of tobacco in individuals with MS from Latin America (LATAM), and its impact on HRQOL. METHODS We conducted a cross-sectional study based on a LATAM web-based survey. Demographics, social and clinical data, information on physical disability, and HRQOL scores were collected using the MS Impact Scale-29 (MSIS-29), the Fatigue Severity Scale (FSS), and the Hospital Anxiety and Depression Scale-Anxiety (HADS-A). Individuals with MS were classified at the time of the survey as follows: never-smokers (ie, patients who reported they had never smoked), past smokers (those who had smoked tobacco but not during the past year), or current smokers. For the analysis, groups were compared. RESULTS 425 patients (74.6% female) from 17 LATAM countries were included, mean age 43.6 ± 11 years and median Expanded Disability Status Scale score 2. There were 122 (28.7%) current smokers, 178 (41.9%) past smokers, and 125 (30.4%) never-smokers. Current smokers had significantly higher MSIS-29 physical (physical worsening), FSS (fatigue), and HADS-A (anxiety) scores compared with past and never-smokers after being adjusted for covariables. No significant differences were observed in any of the other analyzed demographic, clinical, and therapeutic variables. Thirty percent of the current and past smokers groups had never had their neurologists discuss smoking cessation with them. CONCLUSIONS Individuals with MS who were current smokers had higher fatigue and anxiety scores and worse HRQOL compared with past and never-smokers.
Collapse
Affiliation(s)
- Edgar Carnero Contentti
- From the Neuroimmunology Unit, Department of Neuroscience, Hospital Alemán, Buenos Aires, Argentina
| | - Juan I. Rojas
- From the Centro de Esclerosis Múltiple de Buenos Aires, Buenos Aires, Argentina
| | - Susana Giachello
- From the Asociación de Lucha Contra la Esclerosis Múltiple, Buenos Aires, Argentina
| | - Paula Henestroza
- From the Asociación de Lucha Contra la Esclerosis Múltiple, Buenos Aires, Argentina
| | - Pablo A. Lopez
- From the Neuroimmunology Unit, Department of Neuroscience, Hospital Alemán, Buenos Aires, Argentina
| |
Collapse
|
5
|
Seyedolmohadesin M, Ashkani M, Ghadikolaei TS, Mirshekar M, Bostanghadiri N, Aminzadeh S. Unraveling the complex relationship: Multiple sclerosis, urinary tract infections, and infertility. Mult Scler Relat Disord 2024; 84:105512. [PMID: 38428292 DOI: 10.1016/j.msard.2024.105512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is an immune system disorder that affects the central nervous system (CNS) and progressively damages nerve fibers and protective myelin. People with MS often experience a wide range of complications, including lower urinary tract dysfunction, urinary tract infections (UTIs) and sexual dysfunction. MS is common in young people and can lead to sexual dysfunction (SD) and infertility, which becomes more pronounced as the disease progresses. RESULTS Over the past two decades, significant advances have been made in the management of MS, which may slow the progression of the disease and alter its course. However, UTI and SD remain significant challenges for these patients. Awareness of the underlying complications of MS, such as UTIs and infertility, is crucial for prevention, early detection and appropriate treatment, as there is a causal relationship between UTIs and the use of corticosteroids during an attack. CONCLUSION This article provides an overview of potential microbial pathogens that contribute to the development of MS, as well as an assessment of people with MS who report UTIs and infertility.
Collapse
Affiliation(s)
- Maryam Seyedolmohadesin
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Azad University, Tehran, Iran
| | - Maedeh Ashkani
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Taravat Sadeghi Ghadikolaei
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Mirshekar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soheila Aminzadeh
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
6
|
Armon-Omer A, Mansor T, Edelstein M, Bukovetzky E, Groisman L, Rorman E, Nov AS, Shahien R. Association between multiple sclerosis and urinary levels of toxic metals and organophosphates: A cross-sectional study in Israel. Mult Scler Relat Disord 2024; 83:105445. [PMID: 38242049 DOI: 10.1016/j.msard.2024.105445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is a multifactorial disease of uncertain etiology damaging myelin sheaths around axons of the central nervous system. Myelin protects the axon from potentially harmful exogenous factors. The aetiological role of environmental exposure metals and organophosphates is unclear. OBJECTIVE Identify whether urinary levels of metals and organophosphates differed in MS patients and controls. METHODS We recruited MS patients from Ziv Medical Centre and healthy controls. MS patients were evaluated according to Expanded Disability Status Scale into mild and moderate-severe conditions. Each participant provided a urine sample and completed epidemiological questionnaires. The levels of six metal (Aluminum, Cadmium, Chromium, Lead, Mercury, Nickel) and one metalloid (Arsenic) and common organophosphates pesticide metabolites (6 dialkylphosphates, DAP) were measured in urine using inductively coupled plasma-mass spectrometry and gas-chromatography mass-spectrometry. We compared cases with controls in terms of urinary levels of these compounds using Mann-Whitney and Kruskall-Wallis tests. RESULTS Urinary cadmium and mercury levels were higher in the 49 MS patients than the 37 controls (p < 0.01). Cadmium levels were higher in moderate-severe MS patients (n = 24) than mild MS patients (n = 25) (p = 0.003). CONCLUSION Urinary cadmium and mercury levels were higher among MS patients than controls. Cadmium levels correlated with disease severity. Further studies are needed to explore potential causal pathways between these compounds and MS pathogenesis.
Collapse
Affiliation(s)
| | - Tarek Mansor
- Department of Neurology, Ziv Medical Center, Zefat, Israel
| | - Michael Edelstein
- Ziv Medical Center, Research Institute, Zefat, Israel; Azrieli Faculty of Medicine, Bar Ilan University, Zefat, Israel
| | | | - Luda Groisman
- National Public Health Laboratories, Tel Aviv, Israel
| | - Efrat Rorman
- National Public Health Laboratories, Tel Aviv, Israel
| | | | - Radi Shahien
- Department of Neurology, Ziv Medical Center, Zefat, Israel; Azrieli Faculty of Medicine, Bar Ilan University, Zefat, Israel.
| |
Collapse
|
7
|
Bakhshi A, Eslami N, Norouzi N, Letafatkar N, Amini-Salehi E, Hassanipour S. The association between various viral infections and multiple sclerosis: An umbrella review on systematic review and meta-analysis. Rev Med Virol 2024; 34:e2494. [PMID: 38010852 DOI: 10.1002/rmv.2494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Multiple Sclerosis (MS) is one of the immune-mediated demyelinating disorders. Multiple components, including the environment and genetics, are possible factors in the pathogenesis of MS. Also, it can be said that infections are a key component of the host's response to MS development. Finally, we evaluated the relationship between different pathogens and MS disease in this umbrella research. We systematically collected and analysed multiple meta-analyses focused on one particular topic. We utilised the Scopus, PubMed, and Web of Science databases starting with inception until 30 May 2023. The methodological quality of the analysed meta-analysis has been determined based on Assessing the Methodological Quality of Systematic Reviews 2 and Grade, and graph construction and statistical analysis were conducted using Comprehensive Meta-Analysis. The Confidence Interval of effect size was 95% in meta-analyses, and p < 0.05 indicated a statistically meaningful relationship. The included studies evaluated the association between MS and 12 viruses containing SARS-CoV-2, Epstein-Barr virus (EBV), Hepatitis B virus, varicella-zoster virus (VZV), human herpesvirus 6 (HHV-6), HHV-7, HHV-8, HSV-1, HSV-2, Cytomegalovirus, Human Papillomavirus, and influenza. SARS-CoV-2, with a 3.74 odds ratio, has a significantly more potent negative effect on MS among viral infections. After that, EBV, HHV-6, HSV-2, and VZV, respectively, with 3.33, 2.81, 1.76, and 1.72 odds ratios, had a significantly negative relationship with MS (p < 0.05). Although the theoretical evidence mostly indicates that EBV has the greatest effect on MS, recent epidemiological studies have challenged this conclusion and put forward possibilities that SARS-CoV-2 is the culprit. Hence, it was necessary to investigate the effects of SARS-CoV-2 and EBV on MS.
Collapse
Affiliation(s)
- Arash Bakhshi
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Narges Eslami
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Naeim Norouzi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Negin Letafatkar
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Ehsan Amini-Salehi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Soheil Hassanipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
8
|
Sevimligul G, Polat ZA, Gokce SF. Toxoplasma gondii and multiple sclerosis: a population-based case-control seroprevalence study, Central Anatolia, Turkey. Mult Scler Relat Disord 2023; 78:104871. [PMID: 37499340 DOI: 10.1016/j.msard.2023.104871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/23/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Toxoplasma gondii, an obligate intracellular parasite, is prevalent in various mammalian species, as well as certain avian, reptilian, and cold-blooded organisms. While immunocompetent individuals generally remain asymptomatic, immunocompromised individuals may experience severe and life-threatening conditions. Multiple sclerosis (MS), a chronic autoimmune disease affecting the central nervous system (CNS), is characterized by inflammation, demyelination, and axonal damage. Despite extensive research, the etiology and pathogenesis of MS remain incompletely understood. Given the strong affinity of T. gondii for the CNS, researchers have explored the potential association between T. gondii and autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, type 1 diabetes, and MS. This study aimed to investigate the possible relationship between MS and T. gondii. METHODS A population-based incident cohort of MS patients in Sivas, Turkey, was used to randomly select MS patients. Age- and sex-matched controls were also randomly selected from the general population. A total of 182 MS patients and 182 controls were included in the study. Clinical and socio-demographic variables were recorded using a structured questionnaire. Blood samples were collected from MS patients, and Toxoplasma IgG and IgM antibodies were measured using the enzyme-linked immunosorbent assay technique. RESULTS Anti-Toxoplasma IgG antibodies were detected in 78 cases (42.9%) and 73 controls (40.1%) (p>0.05). Age, female sex, and consumption of raw meat were identified as risk factors for toxoplasmosis in both MS patients and controls. CONCLUSION In contrast to previous studies, this study did not find a significant difference in T. gondii seropositivity between the control group and MS patients. Further investigations are recommended to elucidate the precise relationship between MS patients and T. gondii.
Collapse
Affiliation(s)
- Gülgün Sevimligul
- Department of Parasitology, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey..
| | - Zubeyda Akın Polat
- Department of Parasitology, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Seyda Figul Gokce
- Department of Neurology, Cumhuriyet University School of Medicine, Sivas, Turkey
| |
Collapse
|
9
|
Pogoda-Wesołowska A, Dziedzic A, Maciak K, Stȩpień A, Dziaduch M, Saluk J. Neurodegeneration and its potential markers in the diagnosing of secondary progressive multiple sclerosis. A review. Front Mol Neurosci 2023; 16:1210091. [PMID: 37781097 PMCID: PMC10535108 DOI: 10.3389/fnmol.2023.1210091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
Approximately 70% of relapsing-remitting multiple sclerosis (RRMS) patients will develop secondary progressive multiple sclerosis (SPMS) within 10-15 years. This progression is characterized by a gradual decline in neurological functionality and increasing limitations of daily activities. Growing evidence suggests that both inflammation and neurodegeneration are associated with various pathological processes throughout the development of MS; therefore, to delay disease progression, it is critical to initiate disease-modifying therapy as soon as it is diagnosed. Currently, a diagnosis of SPMS requires a retrospective assessment of physical disability exacerbation, usually over the previous 6-12 months, which results in a delay of up to 3 years. Hence, there is a need to identify reliable and objective biomarkers for predicting and defining SPMS conversion. This review presents current knowledge of such biomarkers in the context of neurodegeneration associated with MS, and SPMS conversion.
Collapse
Affiliation(s)
| | - Angela Dziedzic
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Karina Maciak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Adam Stȩpień
- Clinic of Neurology, Military Institute of Medicine–National Research Institute, Warsaw, Poland
| | - Marta Dziaduch
- Medical Radiology Department of Military Institute of Medicine – National Research Institute, Warsaw, Poland
| | - Joanna Saluk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
10
|
Zhanel GG, Keynan R, Keynan Y, Karlowsky JA. The role of Fecal Microbiota Transplantation (FMT) in treating patients with multiple sclerosis. Expert Rev Neurother 2023; 23:921-930. [PMID: 37615494 DOI: 10.1080/14737175.2023.2250919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
INTRODUCTION The associations between multiple sclerosis (MS) and altered intestinal microbiomes have clinicians considering the use of fecal microbiota transplantation (FMT). Animal data suggests that administering FMT from people with MS into healthy mice results in a microbiome with decreased abundance of Sutterella, reduced anti-inflammatory signals, increase in inflammation and experimental autoimmune encephalomyelitis (EAE). Animal studies that administered FMT (from normal healthy donors) into mice resulted in slowing down EAE development relieving symptoms, improving BBB integrity and restoration of microbiota diversity. Human studies indicated clinical benefits of FMT (from healthy donors) in people with MS including: improved intestinal motility and motor ability which lasted at least for the duration of the studies, ranging from 2 to 15 years. AREAS COVERED The authors discuss the efficacy and safety of FMT in treatment of experimental MS in animals and humans with MS. A literature search was performed via PubMed (up to July 2023), using the key words: multiple sclerosis, fecal microbiota transplantation, microbiome. EXPERT OPINION Limited associative data do not provide an understanding of role of FMT in the treatment for MS. Until appropriately designed randomized comparative trials which are underway, are completed, we cannot recommend routine use of FMT in people with MS.
Collapse
Affiliation(s)
- George G Zhanel
- Department of Medical Microbiology/Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rotem Keynan
- Department of Medical Microbiology/Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yoav Keynan
- Department of Medical Microbiology/Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James A Karlowsky
- Department of Medical Microbiology/Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
11
|
Hashemi B, Abdollahi M, Abbaspour-Aghdam S, Hazrati A, Malekpour K, Meshgi S, Kafil HS, Ghazi F, Yousefi M, Roshangar L, Ahmadi M. The effect of probiotics on immune responses and their therapeutic application: A new treatment option for multiple sclerosis. Biomed Pharmacother 2023; 159:114195. [PMID: 36630847 DOI: 10.1016/j.biopha.2022.114195] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/10/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Multiple sclerosis (MS) is known as a chronic inflammatory disease (CID) that affects the central nervous system and leads to nerve demyelination. However, the exact cause of MS is unknown, but immune system regulation and inhibiting the function of inflammatory pathways may have a beneficial effect on controlling and improving the disease. Studies show that probiotics can alter the gut microbiome, thereby improving and affecting the immune system and inflammatory responses in patients with MS. The results show that probiotics have a good effect on the recovery of patients with MS in humans and animals. The present study investigated the effect of probiotics and possible therapeutic mechanisms of probiotics on immune cells and inflammatory cytokines. This review article showed that probiotics could improve immune cells and inflammatory cytokines in patients with MS and can play an effective role in disease management and control.
Collapse
Affiliation(s)
- Behnam Hashemi
- Department of Bacteriology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Maryam Abdollahi
- Department of Bacteriology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Sanaz Abbaspour-Aghdam
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shahla Meshgi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhood Ghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Potentially toxic elements in the brains of people with multiple sclerosis. Sci Rep 2023; 13:655. [PMID: 36635465 PMCID: PMC9837144 DOI: 10.1038/s41598-022-27169-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/26/2022] [Indexed: 01/14/2023] Open
Abstract
Potentially toxic elements such as lead and aluminium have been proposed to play a role in the pathogenesis of multiple sclerosis (MS), since their neurotoxic mechanisms mimic many of the pathogenetic processes in MS. We therefore examined the distribution of several potentially toxic elements in the autopsied brains of people with and without MS, using two methods of elemental bio-imaging. Toxicants detected in the locus ceruleus were used as indicators of past exposures. Autometallography of paraffin sections from multiple brain regions of 21 MS patients and 109 controls detected inorganic mercury, silver, or bismuth in many locus ceruleus neurons of both groups, and in widespread blood vessels, oligodendrocytes, astrocytes, and neurons of four MS patients and one control. Laser ablation-inductively coupled plasma-mass spectrometry imaging of pons paraffin sections from all MS patients and 12 controls showed that combinations of iron, silver, lead, aluminium, mercury, nickel, and bismuth were present more often in the locus ceruleus of MS patients and were located predominantly in white matter tracts. Based on these results, we propose that metal toxicants in locus ceruleus neurons weaken the blood-brain barrier, enabling multiple interacting toxicants to pass through blood vessels and enter astrocytes and oligodendroglia, leading to demyelination.
Collapse
|
13
|
Miyauchi E, Shimokawa C, Steimle A, Desai MS, Ohno H. The impact of the gut microbiome on extra-intestinal autoimmune diseases. Nat Rev Immunol 2023; 23:9-23. [PMID: 35534624 DOI: 10.1038/s41577-022-00727-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 133.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 02/08/2023]
Abstract
The prevalence of autoimmune diseases (ADs) worldwide has rapidly increased over the past few decades. Thus, in addition to the classical risk factors for ADs, such as genetic polymorphisms, infections and smoking, environmental triggers have been considered. Recent sequencing-based approaches have revealed that patients with extra-intestinal ADs, such as multiple sclerosis, rheumatoid arthritis, type 1 diabetes and systemic lupus erythematosus, have distinct gut microbiota compositions compared to healthy controls. Faecal microbiota transplantation or inoculation with specific microbes in animal models of ADs support the hypothesis that alterations of gut microbiota influence autoimmune responses and disease outcome. Here, we describe the compositional and functional changes in the gut microbiota in patients with extra-intestinal AD and discuss how the gut microbiota affects immunity. Moreover, we examine how the gut microbiota might be modulated in patients with ADs as a potential preventive or therapeutic approach.
Collapse
Affiliation(s)
- Eiji Miyauchi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Institute for Molecular and Cellular Regulation, Gunma University, Haebashi, Gunma, Japan
| | - Chikako Shimokawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Department of Parasitology, National Institute of Infectious Disease, Tokyo, Japan
| | - Alex Steimle
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Mahesh S Desai
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.
- Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark.
| | - Hiroshi Ohno
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan.
- Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan.
- Laboratory for Immune Regulation, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan.
| |
Collapse
|
14
|
Kong S, Li Z, Wang Y, Zhang Z, Jia X, Gao X, Cong B, Zhang F, Zhang J, Zheng C. A Wnt-related gene expression signature to improve the prediction of prognosis and tumor microenvironment in gastric cancer. Front Genet 2022; 13:1035099. [PMID: 36561311 PMCID: PMC9763457 DOI: 10.3389/fgene.2022.1035099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/04/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Most gastric cancer (GC) patients were diagnosed in the advanced stages without obvious symptoms, which resulted in the increased risk of death. Although the combination therapies have showed survival benefit of patients, there is still urgent need to explore the underlying mechanisms of GC development and potential novel targets for clinical applications. Numerous studies have reported the upregulation of Wnt signaling pathway in human GC, which play important role during GC development and progression. However, the current understanding of Wnt signaling pathway is still limited due to its complexity and contradictory effect on different stages of GC tumor microenvironment. Method: We used The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) dataset to screen Wnt signaling pathway-associated genes by ssGSEA and correlation analysis. Three molecular subtypes were constructed based on a consistent clustering analysis. The key Wnt-related genes were screened through univariate cox analysis, lasso, and stepwise regression. In addition, the Gene Set Enrichment Analysis (GSEA) were performed to explore potential molecular pathways regulated by the Wnt-related gene signatures. ESTIMATE was utilized for evaluating the immune cell populations in GC tumor microenvironment. Results: Three molecular subtypes associated to Wnt were identified, and 7 key Wnt-related genes were screened to establish a predictive RiskScore model. These three molecular subtypes showed significant prognostic differences and distinct functional signaling pathways. We also found the downregulated immune checkpoint expression in the clust1 with good prognosis. The RiskScore model was successfully validated in GSE26942 dataset. Nomogram based on RiskScore and Gender had better prognostic predictive ability. Conclusion: In summary, our study showed that the Wnt-related genes could be used to predict prognosis of GC patients. The risk model we established showed high accuracy and survival prediction capability.
Collapse
Affiliation(s)
- Shuai Kong
- Gastrointestinal Surgery, Shandong Provincial Hospital, Jinan, China
| | - Zhi Li
- Department of Pharmacy, The Fourth People’s Hospital of Jinan, Jinan, China
| | - Yuanyuan Wang
- Department of Oncology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zheming Zhang
- General Surgery, Weifang Medical University, Weifang, China
| | - Xianghao Jia
- General Surgery, Weifang Medical University, Weifang, China
| | - Xinxin Gao
- General Foreign Major, Shandong First Medical University, Tai’an, China
| | - Bicong Cong
- Gastrointestinal Surgery, Shandong First Medical University, Jinan, China
| | - Fangxu Zhang
- General Surgery, The Fourth People’s Hospital of Jinan, Jinan, China
| | - Jing Zhang
- Department of Oncology, HaploX Biotechnology, Shenzhen, China
| | - Chunning Zheng
- Gastrointestinal Surgery, Shandong Provincial Hospital, Jinan, China,*Correspondence: Chunning Zheng,
| |
Collapse
|
15
|
Miele G, Abbadessa G, Cavalla P, Valentino P, Marfia GA, Landi D, Bosa C, Vercellino M, De Martino A, Ponzano M, Lavorgna L, Bonavita S. Association of vitamin D serum levels and vitamin D supplementation with B cell kinetics and disease activity in Multiple Sclerosis patients treated with ocrelizumab: an Italian multi-center study. Mult Scler Relat Disord 2022; 68:104395. [PMID: 36544324 DOI: 10.1016/j.msard.2022.104395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Several observational studies have shown an association between low circulating levels of 25-hydroxy- vitamin D (25(OH)D) and an increase in inflammatory activity in Multiple Sclerosis (MS). Among its immunomodulatory functions, 25(OH)D suppresses proliferation and immunoglobulin production of B cells. 25(OH)D supplementation has been associated with better radiological outcomes in MS patients treated with interferon (IFN)-B, glatiramer acetate, fingolimod, natalizumab and rituximab. Our study is aimed at analyzing the association of 25(OH)D serum levels and supplementation with B cell kinetics and clinical-radiological outcomes of people with MS treated with ocrelizumab. METHODS We have retrospectively collected clinical and radiological data from 136 MS patients who have been treated with ocrelizumab, have undergone at least two treatment cycles and for whom data on serum 25(OH)D levels and intake were available. The patients were divided into three groups according to baseline 25(OH)D serum levels: deficient (≤19,9 ng/ml), insufficient (20-29,9 ng/ml), and normal range 25(OH)D (>30 ng/ml). According to 25(OH)D intake, we divided our population into users and non-users. To explore B cell kinetics at six- and twelve-month follow-ups, the patients were divided into two groups: with fast repopulation (FR) and slow repopulation rate (SR), based on the reappearance or non- appearance of CD19 at each time point. RESULTS When considering the entire population, the mean 25(OH)D serum level (sd) was 26.27 ng/ml (14.15). 43 (31,62%) patients were classified as deficient, 52 (38,24%) were classified as insufficient, and 41 (30,14%) showed 25(OH)D serum levels within the normal range. 60.29% (82/136) of the patients were classified as users, and 39.70% (54/136) as non-users. Over the eighteen-month treatment period, we observed a significant difference between the 25(OH)D users and the non-users as concerns the number of scans with at least one new/enlarging T2 lesion (2% vs 15.38%, respectively; p= 0.025). In the multinomial regression model, 25(OH)D deficiency (serum levels ≤19,9 ng/ml) was significantly associated with a higher likelihood of disease activity during a follow-up of eighteen months (p = 0.029, RRR = 4.84, Confidence Interval (CI) 1.17 - 20.01). After six months, there were 30/136 FR patients (22,05%), whereas only 22/136 (16,17%) showed early B cell reappearance at twelve month follow up. 86.66% of the patients in the FR group showed 25(OH)D levels lower than 30 ng/ml (25(OH)D deficiency or insufficiency), whereas only 65.09% of the SR patients presented vitamin D levels lower than 30 ng/ml (p= 0.024). In the logistic regression model, 25(OH)D serum levels below 30 ng/ml were associated with a higher likelihood of early B cell reappearance at six month follow up (p= 0.042). CONCLUSIONS 25(OH)D supplementation and serum levels might be associated with B cell kinetics and radiological activity of patients with MS treated with ocrelizumab.
Collapse
Affiliation(s)
- Giuseppina Miele
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli. Naples, Italy
| | - Gianmarco Abbadessa
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli. Naples, Italy
| | - Paola Cavalla
- Multiple Sclerosis Center, City of Health and Science University Hospital, Turin, Italy
| | - Paola Valentino
- Institute of Neurology, University "Magna Graecia", Catanzaro, Italy
| | - Girolama Alessandra Marfia
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata, University, Rome, Italy
| | - Doriana Landi
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata, University, Rome, Italy
| | - Chiara Bosa
- Multiple Sclerosis Center, City of Health and Science University Hospital, Turin, Italy
| | - Marco Vercellino
- Multiple Sclerosis Center, City of Health and Science University Hospital, Turin, Italy
| | | | - Marta Ponzano
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Luigi Lavorgna
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli. Naples, Italy
| | - Simona Bonavita
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli. Naples, Italy.
| |
Collapse
|
16
|
Makkawi S, Aljabri A, Bin Lajdam G, Albakistani A, Aljohani A, Labban S, Felemban R. Effect of Seasonal Variation on Relapse Rate in Patients With Relapsing-Remitting Multiple Sclerosis in Saudi Arabia. Front Neurol 2022; 13:862120. [PMID: 35359633 PMCID: PMC8964008 DOI: 10.3389/fneur.2022.862120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is becoming a global subject of study in which some demographic variations are thought to be correlated with its activity. Relapsing-remitting multiple sclerosis (RRMS) is the most common demyelinating disorder, characterized by periods of exacerbating attacks, followed by partial or complete remission. Several factors might play a role in disease progression and relapse frequency, such as vitamin D, ultraviolet B radiation, estrogen levels, smoking, obesity, and unhealthy lifestyles. In this study, we identified the relationship between seasonal variation and relapse rate and correlated the latter with sex, age, and vitamin D levels in patients with RRMS in Jeddah, Saudi Arabia. We retrospectively collected data from 182 RRMS patients between 2016 and 2021. A total of 219 relapses were documented in 106 patients (58.2 %). The relapse per patient ratio showed a sinusoidal pattern, peaking in January at a rate of 0.49 and troughed in June at a rate of 0.18. There was no difference in relapse rates between men and women (p =0.280). There was a significant negative correlation between vitamin D levels and relapse rate (r = −0.312, p =0.024). Therefore, the relapse rate was higher during the winter and was correlated with low vitamin D levels. However, relapses are likely multifactorial, and more population-based studies are needed to understand the role of environmental variables in MS exacerbation. A better understanding of this relationship will allow for improved treatment and possibly better prevention of relapse.
Collapse
Affiliation(s)
- Seraj Makkawi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,King Abdullah International Medical Research Center, Jeddah, Saudi Arabia.,Department of Medicine, Ministry of the National Guard-Health Affairs, Jeddah, Saudi Arabia
| | - Ammar Aljabri
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Ghassan Bin Lajdam
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Ammar Albakistani
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Abdulrahman Aljohani
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Suhail Labban
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Razaz Felemban
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| |
Collapse
|
17
|
Sorboni SG, Moghaddam HS, Jafarzadeh-Esfehani R, Soleimanpour S. A Comprehensive Review on the Role of the Gut Microbiome in Human Neurological Disorders. Clin Microbiol Rev 2022; 35:e0033820. [PMID: 34985325 PMCID: PMC8729913 DOI: 10.1128/cmr.00338-20] [Citation(s) in RCA: 182] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The human body is full of an extensive number of commensal microbes, consisting of bacteria, viruses, and fungi, collectively termed the human microbiome. The initial acquisition of microbiota occurs from both the external and maternal environments, and the vast majority of them colonize the gastrointestinal tract (GIT). These microbial communities play a central role in the maturation and development of the immune system, the central nervous system, and the GIT system and are also responsible for essential metabolic pathways. Various factors, including host genetic predisposition, environmental factors, lifestyle, diet, antibiotic or nonantibiotic drug use, etc., affect the composition of the gut microbiota. Recent publications have highlighted that an imbalance in the gut microflora, known as dysbiosis, is associated with the onset and progression of neurological disorders. Moreover, characterization of the microbiome-host cross talk pathways provides insight into novel therapeutic strategies. Novel preclinical and clinical research on interventions related to the gut microbiome for treating neurological conditions, including autism spectrum disorders, Parkinson's disease, schizophrenia, multiple sclerosis, Alzheimer's disease, epilepsy, and stroke, hold significant promise. This review aims to present a comprehensive overview of the potential involvement of the human gut microbiome in the pathogenesis of neurological disorders, with a particular emphasis on the potential of microbe-based therapies and/or diagnostic microbial biomarkers. This review also discusses the potential health benefits of the administration of probiotics, prebiotics, postbiotics, and synbiotics and fecal microbiota transplantation in neurological disorders.
Collapse
Affiliation(s)
| | | | - Reza Jafarzadeh-Esfehani
- Blood Borne Infectious Research Center, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Centre, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Wu J, Zhu Y, Zhou L, Lu Y, Feng T, Dai M, Liu J, Xu W, Cheng W, Sun F, Liu H, Pan W, Yang X. Parasite-Derived Excretory-Secretory Products Alleviate Gut Microbiota Dysbiosis and Improve Cognitive Impairment Induced by a High-Fat Diet. Front Immunol 2021; 12:710513. [PMID: 34745091 PMCID: PMC8564115 DOI: 10.3389/fimmu.2021.710513] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/30/2021] [Indexed: 12/29/2022] Open
Abstract
High-fat (HF) diet-induced neuroinflammation and cognitive decline in humans and animals have been associated with microbiota dysbiosis via the gut-brain axis. Our previous studies revealed that excretory-secretory products (ESPs) derived from the larval Echinococcus granulosus (E. granulosus) function as immunomodulators to reduce the inflammatory response, while the parasitic infection alleviates metabolic disorders in the host. However, whether ESPs can improve cognitive impairment under obese conditions remain unknown. This study aimed to investigate the effects of E. granulosus-derived ESPs on cognitive function and the microbiota-gut-brain axis in obese mice. We demonstrated that ESPs supplementation prevented HF diet-induced cognitive impairment, which was assessed behaviorally by nest building, object location, novel object recognition, temporal order memory, and Y-maze memory tests. In the hippocampus (HIP) and prefrontal cortex (PFC), ESPs suppressed neuroinflammation and HF diet-induced activation of the microglia and astrocytes. Moreover, ESPs supplementation improved the synaptic ultrastructural impairments and increased both pre- and postsynaptic protein levels in the HIP and PFC compared to the HF diet-treated group. In the colon, ESPs reversed the HF diet-induced gut barrier dysfunction, increased the thickness of colonic mucus, upregulated the expression of zonula occludens-1 (ZO-1), attenuated the translocation of bacterial endotoxins, and decreased the colon inflammation. Notably, ESPs supplementation alleviated the HF diet-induced microbiota dysbiosis. After clarifying the role of antibiotics in obese mice, we found that broad-spectrum antibiotic intervention abrogated the effects of ESPs on improving the gut microbiota dysbiosis and cognitive decline. Overall, the present study revealed for the first time that the parasite-derived ESPs alleviate gut microbiota dysbiosis and improve cognitive impairment induced by a high-fat diet. This finding suggests that parasite-derived molecules may be used to explore novel drug candidates against obesity-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiacheng Wu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,The Second School of Clinical Medicine, Xuzhou Medical University, Xuzhou, China.,National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China
| | - Yuqi Zhu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China.,The First School of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Limian Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Yang Lu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China.,The First School of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Tingting Feng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Mengyu Dai
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,The Second School of Clinical Medicine, Xuzhou Medical University, Xuzhou, China.,National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China
| | - Jiaxue Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,The Second School of Clinical Medicine, Xuzhou Medical University, Xuzhou, China.,National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China
| | - Wen Xu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China.,The School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Wanpeng Cheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China
| | - Fenfen Sun
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China
| | - Hua Liu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); National Health Commission (NHC) Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai, China
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
19
|
Cicero CE, Allibrio FE, Giuliano L, Luna J, Preux PM, Nicoletti A. Toxoplasma gondii and multiple sclerosis: A systematic review and meta-analysis. Eur J Neurol 2021; 28:4251-4257. [PMID: 34374174 DOI: 10.1111/ene.15055] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/09/2021] [Accepted: 08/05/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND PURPOSE According to the hygiene hypothesis, infections by agents such as parasites have a protective role against the risk of developing multiple sclerosis (MS). Among parasites, Toxoplasma gondii, an intracellular parasite, showed evidence of a protective effect. This study was undertaken to summarize the available evidence on the association between T. gondii infection and MS. METHODS A systematic review of all the available articles published up to November 2020 has been conducted independently by two investigators in the following databases: PubMed, Scopus, Lissa, and SciELO. The association between T. gondii infection and MS has been pooled with a random effects model. RESULTS From 562 articles, seven were included in the systematic review and meta-analysis for a global population of 752 MS cases and 1282 controls. T. gondii infection was associated with MS with a pooled odds ratio of 0.68 (95% confidence interval = 0.50-0.93). CONCLUSIONS The available evidence supports the hypothesis that T. gondii infection represents a protective factor against the development of MS.
Collapse
Affiliation(s)
- Calogero Edoardo Cicero
- Section of Neurosciences, Department of Medical, Surgical, and Advanced Technologies G. F. Ingrassia, University of Catania, Catania, Italy
| | - Francesca Elsa Allibrio
- Section of Neurosciences, Department of Medical, Surgical, and Advanced Technologies G. F. Ingrassia, University of Catania, Catania, Italy
| | - Loretta Giuliano
- Section of Neurosciences, Department of Medical, Surgical, and Advanced Technologies G. F. Ingrassia, University of Catania, Catania, Italy
| | - Jaime Luna
- IRD, U1094 Tropical Neuroepidemiology, Institute of Epidemiology and Tropical Neurology, GEIST, INSERM, University of Limoges, Limoges University Hospital Center, Limoges, France
| | - Pierre-Marie Preux
- IRD, U1094 Tropical Neuroepidemiology, Institute of Epidemiology and Tropical Neurology, GEIST, INSERM, University of Limoges, Limoges University Hospital Center, Limoges, France
| | - Alessandra Nicoletti
- Section of Neurosciences, Department of Medical, Surgical, and Advanced Technologies G. F. Ingrassia, University of Catania, Catania, Italy
| |
Collapse
|
20
|
Bello-Morales R, Andreu S, Ripa I, López-Guerrero JA. HSV-1 and Endogenous Retroviruses as Risk Factors in Demyelination. Int J Mol Sci 2021; 22:ijms22115738. [PMID: 34072259 PMCID: PMC8199333 DOI: 10.3390/ijms22115738] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/19/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a neurotropic alphaherpesvirus that can infect the peripheral and central nervous systems, and it has been implicated in demyelinating and neurodegenerative processes. Transposable elements (TEs) are DNA sequences that can move from one genomic location to another. TEs have been linked to several diseases affecting the central nervous system (CNS), including multiple sclerosis (MS), a demyelinating disease of unknown etiology influenced by genetic and environmental factors. Exogenous viral transactivators may activate certain retrotransposons or class I TEs. In this context, several herpesviruses have been linked to MS, and one of them, HSV-1, might act as a risk factor by mediating processes such as molecular mimicry, remyelination, and activity of endogenous retroviruses (ERVs). Several herpesviruses have been involved in the regulation of human ERVs (HERVs), and HSV-1 in particular can modulate HERVs in cells involved in MS pathogenesis. This review exposes current knowledge about the relationship between HSV-1 and human ERVs, focusing on their contribution as a risk factor for MS.
Collapse
Affiliation(s)
- Raquel Bello-Morales
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (S.A.); (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
- Correspondence:
| | - Sabina Andreu
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (S.A.); (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| | - Inés Ripa
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (S.A.); (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| | - José Antonio López-Guerrero
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (S.A.); (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
21
|
Marrodan M, Farez MF, Balbuena Aguirre ME, Correale J. Obesity and the risk of Multiple Sclerosis. The role of Leptin. Ann Clin Transl Neurol 2020; 8:406-424. [PMID: 33369280 PMCID: PMC7886048 DOI: 10.1002/acn3.51291] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/03/2020] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE To investigate the effects of leptin on different T-cell populations, in order to gain more insight into the link between leptin and obesity. METHODS Three hundred and nine RRMS patients and 322 controls participated in a cross-sectional survey, to confirm whether excess weight/obesity in adolescence or early adulthood increased the risk of MS. Serum leptin levels were determined by ELISA. MBP83-102 , and MOG63-87 peptide-specific T cells lines were expanded from peripheral blood mononuclear cells. Leptin receptor expression was measured by RT-PCR and flow cytometry. Bcl-2, p-STAT3, pERK1/2, and p27kip1 expression were assayed using ELISA, and apoptosis induction was determined by Annexin V detection. Cytokines were assessed by ELISPOT and ELISA, and regulatory T cells (Tregs) by flow cytometry. RESULTS Logistic regression analysis, showed excess weight at age 15, and obesity at 20 years of age increased MS risk (OR = 2.16, P = 0.01 and OR = 3.9, P = 0.01). Leptin levels correlated with BMI in both groups. The addition of Leptin increased autoreactive T-cell proliferation, reduced apoptosis induction, and promoted proinflammatory cytokine secretion. Obese patients produced more proinflammatory cytokines compared to overweight/normal/underweight subjects. Inverse correlation was found between leptin levels and circulating Treg cells (r = -0.97, P < 0.0001). Leptin inhibited Treg proliferation. Effects of leptin on CD4+ CD25- effector T cells were mediated by increased STAT3 and ERK1/2 phosphorylation, and down modulation of the cell cycle inhibitor P27kip1 . In contrast, leptin effects on Tregs resulted from decreased phosphorylation of ERK1/2 and upregulation of p27kip1 . INTERPRETATION Leptin promotes autoreactive T-cell proliferation and proinflammatory cytokine secretion, but inhibits Treg-cell proliferation.
Collapse
|
22
|
Sá MJ, Soares Dos Reis R, Altintas A, Celius EG, Chien C, Comi G, Graus F, Hillert J, Hobart J, Khan G, Kissani N, Langdon D, Leite MI, Okuda DT, Palace J, Papais-Alvarenga RM, Mendes-Pinto I, Shi FD. State of the Art and Future Challenges in Multiple Sclerosis Research and Medical Management: An Insight into the 5th International Porto Congress of Multiple Sclerosis. Neurol Ther 2020; 9:281-300. [PMID: 32666470 PMCID: PMC7606370 DOI: 10.1007/s40120-020-00202-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Indexed: 02/07/2023] Open
Abstract
The 5th International Porto Congress of Multiple Sclerosis took place between the 14th and 16th of February 2019 in Porto, Portugal. Its intensive programme covered a wide-range of themes-including many of the hot topics, challenges, pitfalls and yet unmet needs in the field of multiple sclerosis (MS)-led by a number of well-acknowledged world experts. This meeting review summarizes the talks that took place during the congress, which focussed on issues in MS as diverse as the development and challenges of progressive MS, epidemiology, differential diagnosis, medical management, molecular research and imaging tools.
Collapse
Affiliation(s)
- María José Sá
- Department of Neurology, Centro Hospitalar Universitário de São João, Alameda Prof. Hernáni Monteiro, Porto, Portugal.
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, Porto, Portugal.
| | - Ricardo Soares Dos Reis
- Department of Neurology, Centro Hospitalar Universitário de São João, Alameda Prof. Hernáni Monteiro, Porto, Portugal.
- Department of Clinical Neurosciences and Mental Health, Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Ayse Altintas
- Department of Neurology, School of Medicine, Koç University, Istanbul, Turkey
| | - Elisabeth Gulowsen Celius
- Department of Neurology, Oslo University Hospital, Ullevål, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Claudia Chien
- NeuroCure Clinical Research Center, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Giancarlo Comi
- Department of Neurology, University Vita-Salute San Raffaele, Milan, Italy
| | - Francesc Graus
- Department of Neurology, August Pi i Sunyer Biomedical Research Institute (IDIBAPS) Hospital Clínic, Barcelona, Spain
| | - Jan Hillert
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jeremy Hobart
- Department of Neurology, University Hospitals Plymouth, Plymouth, UK
- Peninsula Schools of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - Gulfaraz Khan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Najib Kissani
- Neurology Department, Marrakech University Hospital Mohammed VI, Marrakech, Morocco
- Neuroscience Research Laboratory, Marrakesh Medical School, Cadi Ayyad University, Marrakech, Morocco
| | - Dawn Langdon
- Department of Psychology, Royal Holloway, University of London, London, UK
| | - Maria Isabel Leite
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Darin T Okuda
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | | | - Fu-Dong Shi
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| |
Collapse
|
23
|
The Role of Extracellular Vesicles in Demyelination of the Central Nervous System. Int J Mol Sci 2020; 21:ijms21239111. [PMID: 33266211 PMCID: PMC7729475 DOI: 10.3390/ijms21239111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/21/2022] Open
Abstract
It is being increasingly demonstrated that extracellular vesicles (EVs) are deeply involved in the physiology of the central nervous system (CNS). Processes such as synaptic activity, neuron-glia communication, myelination and immune response are modulated by EVs. Likewise, these vesicles may participate in many pathological processes, both as triggers of disease or, on the contrary, as mechanisms of repair. EVs play relevant roles in neurodegenerative disorders such as Alzheimer’s or Parkinson’s diseases, in viral infections of the CNS and in demyelinating pathologies such as multiple sclerosis (MS). This review describes the involvement of these membrane vesicles in major demyelinating diseases, including MS, neuromyelitis optica, progressive multifocal leukoencephalopathy and demyelination associated to herpesviruses.
Collapse
|
24
|
Toxoplasma gondii and multiple sclerosis: a population-based case-control study. Sci Rep 2020; 10:18855. [PMID: 33139781 PMCID: PMC7606604 DOI: 10.1038/s41598-020-75830-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 10/09/2020] [Indexed: 01/02/2023] Open
Abstract
According to the hygiene hypothesis, parasites could have a protective role in the development of Multiple Sclerosis (MS). Our aim was to assess the association between presence of anti-Toxoplasma gondii antibodies and MS. MS patients were randomly selected from a population-based incident cohort of MS patients in the city of Catania. Age and sex-matched controls were randomly selected from the general population. Clinical and sociodemographic variables were recorded with a structured questionnaire and a blood sample was taken for serological analysis. Specific T. gondii IgG have been detected with a commercial kit. Adjusted Odds Ratios (ORs) were estimated using unconditional logistic regression. 129 MS subjects (66.7% women with a mean age 44.7 ± 11.0 years) and 287 controls (67.3% women with a mean age 48.1 ± 15.6 years) have been enrolled in the study. Anti-T. gondii antibodies were found in 38 cases (29.5%) and 130 controls (45.4%) giving an adjusted OR of 0.56 (95%CI 0.34–0.93). History of mononucleosis and high educational level were significantly associated with MS (adjOR 2.22 and 1.70 respectively) while an inverse association was found between high educational level and T. gondii seropositivity (adjOR 0.42). Our results further support the protective role of parasitic infections in MS.
Collapse
|
25
|
Esmaeil Amini M, Shomali N, Bakhshi A, Rezaei S, Hemmatzadeh M, Hosseinzadeh R, Eslami S, Babaie F, Aslani S, Torkamandi S, Mohammadi H. Gut microbiome and multiple sclerosis: New insights and perspective. Int Immunopharmacol 2020; 88:107024. [PMID: 33182024 DOI: 10.1016/j.intimp.2020.107024] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
The human gastrointestinal microbiota, also known as the gut microbiota living in the human gastrointestinal tract, has been shown to have a significant impact on several human disorders including rheumatoid arthritis, diabetes, obesity, and multiple sclerosis (MS). MS is an inflammatory disease characterized by the destruction of the spinal cord and nerve cells in the brain due to an attack of immune cells, causing a wide range of harmful symptoms related to inflammation in the central nervous system (CNS). Despite extensive studies on MS that have shown that many external and genetic factors are involved in its pathogenesis, the exact role of external factors in the pathophysiology of MS is still unclear. Recent studies on MS and experimental autoimmune encephalomyelitis (EAE), an animal model of encephalitis, have shown that intestinal microbiota may play a key role in the pathogenesis of MS. Therefore, modification of the intestinal microbiome could be a promising strategy for the future treatment of MS. In this study, the characteristics of intestinal microbiota, the relationship between intestine and brain despite the blood-brain barrier, various factors involved in intestinal microbiota modification, changes in intestinal microbial composition in MS, intestinal microbiome modification strategies, and possible use of intestinal microbiome and factors affecting it have been discussed.
Collapse
Affiliation(s)
- Mohammad Esmaeil Amini
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, Guilan University of Medical Sciences, Rasht, Iran
| | - Navid Shomali
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arash Bakhshi
- Student Research Committee, Guilan University of Medical Sciences, Rasht, Iran
| | - Somaye Rezaei
- Department of Neurology, Imam Khomeini Hospital, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Hosseinzadeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solat Eslami
- Dietary Supplements & Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farhad Babaie
- Department of Medical Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Saeed Aslani
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Torkamandi
- Department of Medical Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
26
|
Bello-Morales R, Andreu S, López-Guerrero JA. The Role of Herpes Simplex Virus Type 1 Infection in Demyelination of the Central Nervous System. Int J Mol Sci 2020; 21:ijms21145026. [PMID: 32708697 PMCID: PMC7404202 DOI: 10.3390/ijms21145026] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022] Open
Abstract
Herpes simplex type 1 (HSV-1) is a neurotropic virus that infects the peripheral and central nervous systems. After primary infection in epithelial cells, HSV-1 spreads retrogradely to the peripheral nervous system (PNS), where it establishes a latent infection in the trigeminal ganglia (TG). The virus can reactivate from the latent state, traveling anterogradely along the axon and replicating in the local surrounding tissue. Occasionally, HSV-1 may spread trans-synaptically from the TG to the brainstem, from where it may disseminate to higher areas of the central nervous system (CNS). It is not completely understood how HSV-1 reaches the CNS, although the most accepted idea is retrograde transport through the trigeminal or olfactory tracts. Once in the CNS, HSV-1 may induce demyelination, either as a direct trigger or as a risk factor, modulating processes such as remyelination, regulation of endogenous retroviruses, or molecular mimicry. In this review, we describe the current knowledge about the involvement of HSV-1 in demyelination, describing the pathways used by this herpesvirus to spread throughout the CNS and discussing the data that suggest its implication in demyelinating processes.
Collapse
Affiliation(s)
- Raquel Bello-Morales
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (S.A.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
- Correspondence:
| | - Sabina Andreu
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (S.A.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| | - José Antonio López-Guerrero
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (S.A.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
27
|
Cannas D, Loi E, Serra M, Firinu D, Valera P, Zavattari P. Relevance of Essential Trace Elements in Nutrition and Drinking Water for Human Health and Autoimmune Disease Risk. Nutrients 2020; 12:E2074. [PMID: 32668647 PMCID: PMC7400883 DOI: 10.3390/nu12072074] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023] Open
Abstract
Trace elements produce double-edged effects on the lives of animals and particularly of humans. On one hand, these elements represent potentially toxic agents; on the other hand, they are essentially needed to support growth and development and confer protection against disease. Certain trace elements and metals are particularly involved in humoral and cellular immune responses, playing the roles of cofactors for essential enzymes and antioxidant molecules. The amount taken up and the accumulation in human tissues decisively control whether the exerted effects are toxic or beneficial. For these reasons, there is an urgent need to re-consider, harmonize and update current legislative regulations regarding the concentrations of trace elements in food and in drinking water. This review aims to provide information on the interrelation of certain trace elements with risk of autoimmune disease, with a particular focus on type 1 diabetes and multiple sclerosis. In addition, an overview of the current regulations and regulatory gaps is provided in order to highlight the importance of this issue for everyday nutrition and human health.
Collapse
Affiliation(s)
- Daniela Cannas
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Cagliari, Italy; (D.C.); (E.L.)
| | - Eleonora Loi
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Cagliari, Italy; (D.C.); (E.L.)
| | - Matteo Serra
- Department of Civil, Environmental Engineering and Architecture, University of Cagliari, 09123 Cagliari, Italy;
| | - Davide Firinu
- Department of Medical Sciences and Public Health, Monserrato Campus, University of Cagliari, 09042 Cagliari, Italy;
| | - Paolo Valera
- Department of Civil, Environmental Engineering and Architecture, University of Cagliari, 09123 Cagliari, Italy;
| | - Patrizia Zavattari
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Cagliari, Italy; (D.C.); (E.L.)
| |
Collapse
|
28
|
A Virus Hosted in Malaria-Infected Blood Protects against T Cell-Mediated Inflammatory Diseases by Impairing DC Function in a Type I IFN-Dependent Manner. mBio 2020; 11:mBio.03394-19. [PMID: 32265335 PMCID: PMC7157782 DOI: 10.1128/mbio.03394-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Coinfections shape immunity and influence the development of inflammatory diseases, resulting in detrimental or beneficial outcome. Coinfections with concurrent Plasmodium species can alter malaria clinical evolution, and malaria infection itself can modulate autoimmune reactions. Yet, the underlying mechanisms remain ill defined. Here, we demonstrate that the protective effects of some rodent malaria strains on T cell-mediated inflammatory pathologies are due to an RNA virus cohosted in malaria-parasitized blood. We show that live and extracts of blood parasitized by Plasmodium berghei K173 or Plasmodium yoelii 17X YM, protect against P. berghei ANKA-induced experimental cerebral malaria (ECM) and myelin oligodendrocyte glycoprotein (MOG)/complete Freund's adjuvant (CFA)-induced experimental autoimmune encephalomyelitis (EAE), and that protection is associated with a strong type I interferon (IFN-I) signature. We detected the presence of the RNA virus lactate dehydrogenase-elevating virus (LDV) in the protective Plasmodium stabilates and we established that LDV infection alone was necessary and sufficient to recapitulate the protective effects on ECM and EAE. In ECM, protection resulted from an IFN-I-mediated reduction in the abundance of splenic conventional dendritic cell and impairment of their ability to produce interleukin (IL)-12p70, leading to a decrease in pathogenic CD4+ Th1 responses. In EAE, LDV infection induced IFN-I-mediated abrogation of IL-23, thereby preventing the differentiation of granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing encephalitogenic CD4+ T cells. Our work identifies a virus cohosted in several Plasmodium stabilates across the community and deciphers its major consequences on the host immune system. More generally, our data emphasize the importance of considering contemporaneous infections for the understanding of malaria-associated and autoimmune diseases.IMPORTANCE Any infection modifies the host immune status, potentially ameliorating or aggravating the pathophysiology of a simultaneous inflammatory condition. In the course of investigating how malaria infection modulates the severity of contemporaneous inflammatory diseases, we identified a nonpathogenic mouse virus in stabilates of two widely used rodent parasite lines: Plasmodium berghei K173 and Plasmodium yoelii 17X YM. We established that the protective effects of these Plasmodium lines on cerebral malaria and multiple sclerosis are exclusively due to this virus. The virus induces a massive type I interferon (IFN-I) response and causes quantitative and qualitative defects in the ability of dendritic cells to promote pathogenic T cell responses. Beyond revealing a possible confounding factor in rodent malaria models, our work uncovers some bases by which a seemingly innocuous viral (co)infection profoundly changes the immunopathophysiology of inflammatory diseases.
Collapse
|
29
|
de Jong JM, Wang P, Oomkens M, Baron W. Remodeling of the interstitial extracellular matrix in white matter multiple sclerosis lesions: Implications for remyelination (failure). J Neurosci Res 2020; 98:1370-1397. [PMID: 31965607 DOI: 10.1002/jnr.24582] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/29/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022]
Abstract
The extracellular matrix (ECM) provides protection, rigidity, and structure toward cells. It consists, among others, of a wide variety of glycoproteins and proteoglycans, which act together to produce a complex and dynamic environment, most relevant in transmembrane events. In the brain, the ECM occupies a notable proportion of its volume and maintains the homeostasis of central nervous system (CNS). In addition, remodeling of the ECM, that is transient changes in ECM proteins regulated by matrix metalloproteinases (MMPs), is an important process that modulates cell behavior upon injury, thereby facilitating recovery. Failure of ECM remodeling plays an important role in the pathogenesis of multiple sclerosis (MS), a neurodegenerative demyelinating disease of the CNS with an inflammatory response against protective myelin sheaths that surround axons. Remyelination of denuded axons improves the neuropathological conditions of MS, but this regeneration process fails over time, leading to chronic disease progression. In this review, we uncover abnormal ECM remodeling in MS lesions by discussing ECM remodeling in experimental demyelination models, that is when remyelination is successful, and compare alterations in ECM components to the ECM composition and MMP expression in the parenchyma of demyelinated MS lesions, that is when remyelination fails. Inter- and intralesional differences in ECM remodeling in the distinct white matter MS lesions are discussed in terms of consequences for oligodendrocyte behavior and remyelination (failure). Hence, the review will aid to understand how abnormal ECM remodeling contributes to remyelination failure in MS lesions and assists in developing therapeutic strategies to promote remyelination.
Collapse
Affiliation(s)
- Jody M de Jong
- Section Molecular Neurobiology, Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Peng Wang
- Section Molecular Neurobiology, Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Michelle Oomkens
- Section Molecular Neurobiology, Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Wia Baron
- Section Molecular Neurobiology, Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
30
|
Wasko NJ, Nichols F, Clark RB. Multiple sclerosis, the microbiome, TLR2, and the hygiene hypothesis. Autoimmun Rev 2020; 19:102430. [DOI: 10.1016/j.autrev.2019.102430] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022]
|
31
|
Al Wutayd O. Association of infections with multiple sclerosis in Gulf Cooperation Council countries: a review. J Int Med Res 2019; 48:300060519884151. [PMID: 31880177 PMCID: PMC7607054 DOI: 10.1177/0300060519884151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease that affects the central nervous system, causing inflammation, demyelination, and neurodegeneration. Infection can play a role in its etiology. Herein, a review is presented of studies that have reported an association between infection and MS risk in countries of the Arabian Gulf region. Searches of the PubMed, Google Scholar, and Science Direct databases were carried out using various search terms, and relevant studies published through January 2019 on the epidemiology of MS in Gulf Cooperation Council countries identified. MS has been found to be associated with measles in Saudi Arabia and Epstein–Barr virus in Kuwait whereas no association has been identified between risk of MS and varicella-zoster virus, mumps, or human herpesvirus-6. However, few epidemiological studies on this topic have been conducted in countries of the Gulf region. Longitudinal and serological studies to establish robust evidence between infection and risk of MS are highly recommended, and a regional MS registry is needed.
Collapse
Affiliation(s)
- O Al Wutayd
- O Al Wutayd, Department of Family and Community Medicine, Unaizah College of Medicine, Qassim University, P.O. Box 3174, Unaizah 51911, Saudi Arabia.
| |
Collapse
|
32
|
Marrodan M, Alessandro L, Farez MF, Correale J. The role of infections in multiple sclerosis. Mult Scler 2019; 25:891-901. [DOI: 10.1177/1352458518823940] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Several lines of evidence suggest that multiple sclerosis (MS), like other autoimmune diseases, may be triggered by microbial infections. Pathogens associated with development or exacerbation of MS include bacteria, such as Chlamydia pneumoniae, Staphylococcus aureus-produced enterotoxins that function as superantigens, and viruses of the Herpesviridae (Epstein–Barr virus and human herpes virus 6) and human endogenous retrovirus families. However, to date, no single pathogen has been accepted as causal agent. In addition, common upper respiratory, gastrointestinal, and urogenital tract infections have also been associated with MS exacerbations. Although evidence of an infectious etiology as cause of MS in humans remains inconclusive, microbial agents may modulate the neuroimmunological system of genetically susceptible individuals. Decoding the epidemiological contribution of different microorganisms to MS, along with their pathogenic mechanisms, may help develop new treatment strategies and prevent relapses.
Collapse
Affiliation(s)
| | | | - Mauricio F Farez
- Center for Research on Neuroimmunological Diseases, FLENI, Buenos Aires, Argentina
| | - Jorge Correale
- Department of Neurology, FLENI, Buenos Aires, Argentina; Center for Research on Neuroimmunological Diseases, FLENI, Buenos Aires, Argentina
| |
Collapse
|
33
|
General Principles of Immunotherapy in Neurological Diseases. CONTEMPORARY CLINICAL NEUROSCIENCE 2019. [DOI: 10.1007/978-3-030-19515-1_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Tang Y, Luo M, Pan K, Ahmad T, Zhou T, Miao Z, Zhou H, Sun H, Xu X, Namaka M, Wang Y. DNA hydroxymethylation changes in response to spinal cord damage in a multiple sclerosis mouse model. Epigenomics 2018; 11:323-335. [PMID: 30426768 DOI: 10.2217/epi-2018-0162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
AIM Roles of DNA 5-hydroxymethylcytosine (5hmC) in myelin repair were investigated in an experimental autoimmune encephalomyelitis (EAE) mouse model via its regulation on BDNF. METHODS DNA 5hmC level and its limiting enzymes were detected in EAE mice. RESULTS Global 5hmC modification, Tet1 and Tet2 significantly decreased in the spinal cord tissues of EAE mice. BDNF protein and mRNA decreased and were highly associated with BDNF 5hmC. Vitamin C, a Tet co-factor, increased global DNA 5hmC and reduced the neurological deficits at least by increasing BDNF 5hmC modification and protein levels. CONCLUSION Tet protein-mediated 5hmC modifications represent a critical target involved in EAE-induced myelin damage. Targeting epigenetic modification may be a therapeutic strategy for multiple sclerosis.
Collapse
Affiliation(s)
- Yan Tang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou City, PR China.,Faculty of Health Sciences, College of Pharmacy, University of Manitoba, Manitoba, Winnipeg R3E 3P4, Canada.,Institute of Neuroscience, Soochow University, Suzhou City, PR China
| | - Man Luo
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou City, PR China
| | - Kailing Pan
- Institute of Neuroscience, Soochow University, Suzhou City, PR China
| | - Tina Ahmad
- Faculty of Health Sciences, College of Pharmacy, University of Manitoba, Manitoba, Winnipeg R3E 3P4, Canada
| | - Ting Zhou
- Faculty of Health Sciences, College of Pharmacy, University of Manitoba, Manitoba, Winnipeg R3E 3P4, Canada
| | - Zhigang Miao
- Institute of Neuroscience, Soochow University, Suzhou City, PR China
| | - Hang Zhou
- Institute of Neuroscience, Soochow University, Suzhou City, PR China
| | - Hao Sun
- Department of Orthopedics, Clinical Medical College, Yangzhou University, Yangzhou City, PR China
| | - Xingshun Xu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou City, PR China.,Institute of Neuroscience, Soochow University, Suzhou City, PR China
| | - Michael Namaka
- Faculty of Health Sciences, College of Pharmacy, University of Manitoba, Manitoba, Winnipeg R3E 3P4, Canada
| | - Yongxiang Wang
- Department of Orthopedics, Clinical Medical College, Yangzhou University, Yangzhou City, PR China.,Department of Orthopedics, Northern Jiangsu People's Hospital, Yangzhou City, PR China
| |
Collapse
|
35
|
Nourbakhsh B, Bhargava P, Tremlett H, Hart J, Graves J, Waubant E. Altered tryptophan metabolism is associated with pediatric multiple sclerosis risk and course. Ann Clin Transl Neurol 2018; 5:1211-1221. [PMID: 30349856 PMCID: PMC6186945 DOI: 10.1002/acn3.637] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 12/23/2022] Open
Abstract
Objective To determine if altered tryptophan (Trp) metabolism is associated with MS risk or disease severity in children. Methods Participants with pediatric‐onset MS and clinically isolated syndrome (CIS) within 4 years of disease onset and healthy controls underwent collection of serum. Longitudinal disability and processing speed measures and relapse data were collected in cases. Global metabolomics were conducted in 69/67 cases/controls. Targeted Trp measurement was performed in a discovery group (82 cases, 50 controls) and a validation group (92 cases, 50 controls), while functional gut microbiome analysis was done in 17 cases. Adjusted logistic, linear and negative binomial regression and Cox‐proportional hazard models were used. Results Using global metabolomics data, higher relative abundances of Trp and indole lactate, a known gut microbiota‐derived Trp metabolite, were associated with lower risk of MS. In cases, higher relative abundances of gut microbiota‐derived Trp metabolites were associated with lower disability and higher processing speed scores and higher relative abundance of kynurenine was associated with higher relapse rate. Using targeted tryptophan measures, in the discovery and validation groups, each 1 mcg/mL increase in serum Trp level was associated with 20% (95% CI: 4–34%) and 32% (95% CI: 16–44%) decrease in adjusted odds of having MS, respectively. A lower relative abundance of gut microbial genes involved in Trp catabolism was associated with higher relapse risk. Interpretation Trp metabolism by the gut microbiota and the kynurenine pathway may be relevant to the risk of MS in children as well as MS activity and severity.
Collapse
Affiliation(s)
| | - Pavan Bhargava
- Department of Neurology Johns Hopkins University Baltimore Maryland
| | - Helen Tremlett
- Faculty of Medicine (Neurology) and The Djavad Mowafaghian Centre for Brain Health University of British Columbia Vancouver British Columbia Canada
| | - Janace Hart
- Department of Neurology University of California San Francisco San Francisco California
| | - Jennifer Graves
- Department of Neurology University of California San Francisco San Francisco California
| | - Emmanuelle Waubant
- Department of Neurology University of California San Francisco San Francisco California
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW This article reviews the rationale and approach to symptom management and lifestyle modifications in multiple sclerosis (MS). RECENT FINDINGS MS symptoms are important to treat because they affect quality of life and daily activity. Appreciation of cluster symptoms (where one symptom contributes to another), changes over time, and multimodality therapeutic approaches are guiding optimized symptom management. Equally important are lifestyle modifications that enhance central nervous system reserve and function. These modifications are the foundation for a health maintenance, wellness, and vascular risk factor control program. SUMMARY Symptom management and lifestyle modifications are important therapeutic targets to improve the lives of patients with MS.
Collapse
|
37
|
Hamana A, Takahashi Y, Tanioka A, Nishikawa M, Takakura Y. Safe and effective interferon-beta gene therapy for the treatment of multiple sclerosis by regulating biological activity through the design of interferon-beta-galectin-9 fusion proteins. Int J Pharm 2017; 536:310-317. [PMID: 29217470 DOI: 10.1016/j.ijpharm.2017.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/30/2017] [Accepted: 12/03/2017] [Indexed: 01/05/2023]
Abstract
Multiple sclerosis (MS) is the most common demyelinating disease. Despite the historical use of interferon-beta (IFN-β) for the treatment of patients with MS, concerns exist regarding the side effects of IFN-β. In this study, we designed a series of novel IFN-β fusion proteins containing galectin-9 (gal-9), which exerts immunosuppressive effects through the binding to its receptor on activated Th1 cells. We hypothesized that these fusion proteins would improve the therapeutic effects and reduce the side effects of IFN-β. The IFN-β-gal-9 fusion proteins showed less IFN-β biological activity on non-T cells than IFN-β alone. In vitro experiments using re-stimulated T cells isolated from mice with experimental autoimmune encephalomyelitis (EAE) showed that the IFN-β-gal-9 fusion proteins suppressed activated T cells more effectively than IFN-β. Moreover, in our in vivo experiments, the gene transfer of IFN-β-gal-9 fusion protein-expressing plasmid DNA into EAE mice showed beneficial therapeutic effects without cytopenia, a known side effect of IFN-β. In contrast, the gene transfer of IFN-β-expressing plasmid DNA induced a rapid decrease in the white blood cell count, despite its therapeutic effect. These results indicate that gene therapy using IFN-β-gal-9 fusion proteins is expected to be safe and effective for the treatment of MS.
Collapse
Affiliation(s)
- Atsushi Hamana
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan.
| | - Akane Tanioka
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | - Makiya Nishikawa
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| |
Collapse
|
38
|
Amrouche K, Jamin C. Influence of drug molecules on regulatory B cells. Clin Immunol 2017; 184:1-10. [DOI: 10.1016/j.clim.2017.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/27/2017] [Indexed: 02/07/2023]
|
39
|
Wendel-Haga M, Celius EG. Is the hygiene hypothesis relevant for the risk of multiple sclerosis? Acta Neurol Scand 2017; 136 Suppl 201:26-30. [PMID: 29068485 DOI: 10.1111/ane.12844] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2017] [Indexed: 12/30/2022]
Abstract
The hygiene hypothesis, suggesting that low exposure to pathogens early in life can increase the risk for immune-mediated diseases, has been proposed as an explanation for the increase in incidence of allergy and autoimmune diseases in industrialized countries during the last decades. Several aspects of the hygiene hypothesis have been related to MS. Already in 1966, the risk of MS was suggested to be higher in individuals with high hygienic standard during childhood. Further, an episode of infectious mononucleosis is an independent risk factor for MS and can be regarded as an indicator of low exposure to pathogens early in life, as infection with Epstein-Barr virus often is asymptomatic when it occurs in young children. Conflicting results have been reported regarding number of siblings, attendance in a day care center and exposure to animals during childhood in relation to MS risk, but common childhood infections and vaccinations do not seem to influence the risk of MS. In line with the hygiene hypothesis, two large meta-analyses have recently shown that infection with Helicobacter pylori is negatively correlated with MS. Moreover, a protective influence of helminth infection on MS has been observed in several, small clinical studies, but more knowledge is needed before a potential role of helminth-derived therapy in MS is determined. Also, it has been hypothesized that infection with the parasite Toxoplasma gondii could be protective against MS.
Collapse
Affiliation(s)
- M. Wendel-Haga
- Department of Neurology; Telemark Hospital; Skien Norway
- MS Research Group; Oslo University Hospital; Oslo Norway
| | - E. G. Celius
- MS Research Group; Oslo University Hospital; Oslo Norway
- Department of Neurology; Oslo University Hospital; Oslo Norway
- Institute of Health and Society; University of Oslo; Oslo Norway
| |
Collapse
|
40
|
Novel Therapeutics for Multiple Sclerosis Designed by Parasitic Worms. Int J Mol Sci 2017; 18:ijms18102141. [PMID: 29027962 PMCID: PMC5666823 DOI: 10.3390/ijms18102141] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 10/11/2017] [Accepted: 10/11/2017] [Indexed: 12/17/2022] Open
Abstract
The evolutionary response to endemic infections with parasitic worms (helminth) was the development of a distinct regulatory immune profile arising from the need to encapsulate the helminths while simultaneously repairing tissue damage. According to the old friend's hypothesis, the diminished exposure to these parasites in the developed world has resulted in a dysregulated immune response that contributes to the increased incidence of immune mediated diseases such as Multiple Sclerosis (MS). Indeed, the global distribution of MS shows an inverse correlation to the prevalence of helminth infection. On this basis, the possibility of treating MS with helminth infection has been explored in animal models and phase 1 and 2 human clinical trials. However, the possibility also exists that the individual immune modulatory molecules secreted by helminth parasites may offer a more defined therapeutic strategy.
Collapse
|
41
|
Koskderelioglu A, Afsar I, Pektas B, Gedizlioglu M. Is Toxoplasma gondii infection protective against multiple sclerosis risk? Mult Scler Relat Disord 2017. [DOI: 10.1016/j.msard.2017.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
42
|
Harnett MM, Harnett W. Can Parasitic Worms Cure the Modern World's Ills? Trends Parasitol 2017; 33:694-705. [PMID: 28606411 DOI: 10.1016/j.pt.2017.05.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/11/2017] [Accepted: 05/16/2017] [Indexed: 02/06/2023]
Abstract
There has been increasing recognition that the alarming surge in allergy and autoimmunity in the industrialised and developing worlds shadows the rapid eradication of pathogens, such as parasitic helminths. Appreciation of this has fuelled an explosion in research investigating the therapeutic potential of these worms. This review considers the current state-of-play with a particular focus on exciting recent advances in the identification of potential novel targets for immunomodulation that can be exploited therapeutically. Furthermore, we contemplate the prospects for designing worm-derived immunotherapies for an ever-widening range of inflammatory diseases, including, for example, obesity, cardiovascular disease, and ageing as well as neurodevelopmental disorders like autism.
Collapse
Affiliation(s)
- Margaret M Harnett
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | - William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
43
|
Abdelhak A, Weber MS, Tumani H. Primary Progressive Multiple Sclerosis: Putting Together the Puzzle. Front Neurol 2017; 8:234. [PMID: 28620346 PMCID: PMC5449443 DOI: 10.3389/fneur.2017.00234] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 05/12/2017] [Indexed: 12/23/2022] Open
Abstract
The focus of multiple sclerosis research has recently turned to the relatively rare and clearly more challenging condition of primary progressive multiple sclerosis (PPMS). Many risk factors such as genetic susceptibility, age, and Epstein–Barr virus (EBV) infection may interdepend on various levels, causing a complex pathophysiological cascade. Variable pathological mechanisms drive disease progression, including inflammation-associated axonal loss, continuous activation of central nervous system resident cells, such as astrocytes and microglia as well as mitochondrial dysfunction and iron accumulation. Histological studies revealed diffuse infiltration of the gray and white matter as well as of the meninges with inflammatory cells such as B-, T-, natural killer, and plasma cells. While numerous anti-inflammatory agents effective in relapsing remitting multiple sclerosis basically failed in treatment of PPMS, the B-cell-depleting monoclonal antibody ocrelizumab recently broke the dogma that PPMS cannot be treated by an anti-inflammatory approach by demonstrating efficacy in a phase 3 PPMS trial. Other treatments aiming at enhancing remyelination (MD1003) as well as EBV-directed treatment strategies may be promising agents on the horizon. In this article, we aim to summarize new advances in the understanding of risk factors, pathophysiology, and treatment of PPMS. Moreover, we introduce a novel concept to understand the nature of the disease and possible treatment strategies in the near future.
Collapse
Affiliation(s)
| | - Martin S Weber
- Department of Neuropathology, University Medical Center, Georg August University, Göttingen, Germany.,Department of Neurology, University Medical Center, Georg August University, Göttingen, Germany
| | - Hayrettin Tumani
- Department of Neurology, Ulm University, Ulm, Germany.,Specialty Clinic of Neurology Dietenbronn, Schwendi, Germany
| |
Collapse
|
44
|
The Enigmatic Role of Viruses in Multiple Sclerosis: Molecular Mimicry or Disturbed Immune Surveillance? Trends Immunol 2017; 38:498-512. [PMID: 28549714 PMCID: PMC7185415 DOI: 10.1016/j.it.2017.04.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 01/24/2023]
Abstract
Multiple sclerosis (MS) is a T cell driven autoimmune disease of the central nervous system (CNS). Despite its association with Epstein-Barr Virus (EBV), how viral infections promote MS remains unclear. However, there is increasing evidence that the CNS is continuously surveyed by virus-specific T cells, which protect against reactivating neurotropic viruses. Here, we discuss how viral infections could lead to the breakdown of self-tolerance in genetically predisposed individuals, and how the reactivations of viruses in the CNS could induce the recruitment of both autoaggressive and virus-specific T cell subsets, causing relapses and progressive disability. A disturbed immune surveillance in MS would explain several experimental findings, and has important implications for prognosis and therapy. A huge body of evidence suggests that viral infections promote MS; however, no single causal virus has been identified. Multiple viruses could promote MS via bystander effects. Molecular mimicry is an established pathogenic mechanism in selected autoimmune diseases. It is also well documented in MS, but its contribution to MS pathogenesis is still unclear. Bystander activation upon viral infection could be involved in the generation of the autoreactive and potentially encephalitogenic T helper (Th)-1/17 central memory (Th1/17CM) cells found in the circulation of patients with MS. Autoreactive Th1/17CM cells could expand at the cost of antiviral Th1CM cells in patients with MS, in particular in those undergoing natalizumab therapy, because these cells are expected to compete for the same homeostatic niche. Autoreactive Th1/17 cells and antiviral Th1 cells are recruited to the CSF of patients with MS following attacks, suggesting that viral reactivations in the CNS induce the recruitment of pathogenic Th1/17 cells. Autoreactive Th1/17 cells in the CNS might also induce de novo viral reactivations in a circuit of self-induced inflammation.
Collapse
|
45
|
Pierrot-Deseilligny C, Souberbielle JC. Vitamin D and multiple sclerosis: An update. Mult Scler Relat Disord 2017; 14:35-45. [PMID: 28619429 DOI: 10.1016/j.msard.2017.03.014] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 12/12/2022]
Abstract
The most recent findings linking exposure to sun and vitamin D insufficiency to multiple sclerosis (MS) are reviewed. Due to insufficient sunshine and changing lifestyles, hypovitaminosis D is widespread in temperate countries. Numerous epidemiological studies have strongly suggested that sunshine and vitamin D insufficiency contributes to MS risk in these countries. Moreover, several large genetic studies in MS patients have recently stated unequivocally that diverse abnormalities involving vitamin D metabolism are related to the risk of the disease. The important implications of such results are discussed here. Then, the interactions of hypovitaminosis D with the other genetic and environmental protective and risk factors, such as the allele HLA DRB1*1501, Epstein-Barr virus infection, obesity, smoking and sexual hormones, are summarized. Vitamin D insufficiency and sufficiency could be a risk and a protective factor, respectively, among many other factors possibly continuously modulating the global MS risk from the mother's pregnancy to the triggering of MS in adulthood. However, many interactions between these different factors occur more particularly between conception and the end of adolescence, which corresponds to the period of maturation of the immune system and thymus and may be related to the dysimmune nature of the disease. The main mechanisms of action of vitamin D in MS appear to be immunomodulatory, involving the various categories of T and B lymphocytes in the general immune system, but neuroprotector and neurotrophic mechanisms could also be exerted at the central nervous system level. Furthermore, several controlled immunological studies performed in MS patients have recently confirmed that vitamin D supplementation has multiple beneficial immunomodulatory effects. However, there is still an enduring absence of major conclusive randomized clinical trials testing vitamin D supplementation in MS patients because of the quasi-insurmountable practical difficulties that exist nowadays in conducting and completing over several years such studies involving the use of a vitamin. Nevertheless, it should be noted that similar robust statistical models used in five different association studies have already predicted a favorable vitamin D effect reducing relapses by 50-70%. If there is now little doubt that vitamin D exerts a beneficial action on the inflammatory component of MS, the results are as yet much less clear for the progressive degenerative component. Lastly, until more information becomes available, vitamin D supplementation of MS patients, using a moderate physiological dose essentially correcting their vitamin insufficiency, is recommended.
Collapse
Affiliation(s)
- Charles Pierrot-Deseilligny
- Département de Neurologie, Hôpital de la Salpêtrière, Assistance Publique Hôpitaux de Paris, Université Pierre et Marie Curie (Paris VI), 47 bd de l'Hôpital, 75013 Paris, France.
| | - Jean-Claude Souberbielle
- Service d'explorations fonctionnelles, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Université René Descartes (Paris V),149 rue de Sèvres, 75915 Paris, France.
| |
Collapse
|
46
|
Sidhom Y, Maillart E, Tezenas du Montcel S, Kacem I, Lubetzki C, Gouider R, Papeix C. Fast multiple sclerosis progression in North Africans. Neurology 2017; 88:1218-1225. [DOI: 10.1212/wnl.0000000000003762] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 12/29/2016] [Indexed: 11/15/2022] Open
Abstract
Objective:To compare multiple sclerosis (MS) disability progression among North Africans (NAs) living in France (NAF) and in Tunisia (NAT) and Caucasian patients born and living in France (CF).Methods:Patients with MS admitted to the day hospital in the Neurology Department at Pitié-Salpêtrière Hospital (France) and Razi Hospital (Tunisia) were questioned on their place of birth and the place of birth of their parents. To compare delay to outcomes, log-rank tests were used. Univariate and multivariate Cox models were used to determine factors influencing time to Expanded Disability Status Scale (EDSS) 6.Results:We consecutively included 462 patients: 171 CF, 151 NAT, and 140 NAF. Sex ratio, disease forms, and delay from disease onset to diagnosis were similar between the groups. NAF differed from other groups, with a shorter median time to reach EDSS 3, 4, and 6, and a more frequent incomplete recovery after first relapse (p < 0.0001). Furthermore, the NA second-generation group showed the youngest median age at onset (26.5 ± 8.8 years, p = 0.001), the shortest median time to EDSS 6 in relapsing-remitting patients, and an increased mean number of relapses during the first 5 years of the disease (6.1 ± 3.7, p = 0.01) compared to CF. The Cox proportional hazard models demonstrate that (1) NA ethnicity is a significant predictor of fast progression even when adjusting for major covariates and (2) treatment did not influence the models.Conclusion:Our study further supports severity of MS in NAs and unravels the particular severity in NAs living in France, mainly for the second generation.
Collapse
|
47
|
Sun H. Temperature dependence of multiple sclerosis mortality rates in the United States. Mult Scler 2017; 23:1839-1846. [DOI: 10.1177/1352458516688954] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: It is well known that multiple sclerosis (MS) patients are very sensitive to heat events. However, how MS patients respond to the significant temperature difference between the high- and low-latitude regions is not understood. Objective: The goal is to identify the primary factor responsible for the fact that MS mortality rates of the United States is more than three times higher in the northern states than in the southern states. Methods: Correlation coefficients between the age-adjusted mortality rate of MS as the underlying cause of death and the state average temperature, altitude, latitude, duration of sunshine hours, and solar radiation in the 48 contiguous states were compared. Results: MS mortality rates correlate significantly and inversely with temperatures in the 48 states (correlation coefficient r = −0.812 and significance p = 0.00). Durations of sunshine hours and solar radiation do not correlate significantly with MS mortality rates ( r = −0.245, −0.14, and p = 0.101, 0.342, respectively). Conclusion: High environmental temperature is the primary reason for the low MS mortality rates and likely the low MS prevalence in low-latitude regions. Implication of the study result is that benefits of long-term heat acclimation through gradual and prolonged exposure to environmental heat for MS patients may be greatly underappreciated.
Collapse
Affiliation(s)
- Hongbing Sun
- Center for Healthcare Studies, GEMS Department, Rider University, Lawrenceville, NJ, USA
| |
Collapse
|
48
|
Nourbakhsh B, Graves J, Casper TC, Lulu S, Waldman A, Belman A, Greenberg B, Weinstock-Guttman B, Aaen G, Tillema JM, Hart J, Ness J, Rubin J, Krupp L, Gorman M, Benson L, Rodriguez M, Chitnis T, Rose J, Barcellos L, Waubant E. Dietary salt intake and time to relapse in paediatric multiple sclerosis. J Neurol Neurosurg Psychiatry 2016; 87:1350-1353. [PMID: 27343226 PMCID: PMC5370574 DOI: 10.1136/jnnp-2016-313410] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/09/2016] [Accepted: 06/05/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Salt intake was reported to be associated with increased clinical and MRI activity in adult patients with relapsing-remitting multiple sclerosis (MS). OBJECTIVE To determine if salt intake is associated with time to relapse in patients with paediatric-onset MS. METHODS Paediatric-onset MS and patients with clinically isolated syndrome (CIS) within 4 years of disease onset were recruited from 15 paediatric MS centres in the USA as part of a case-control study. Patients with available prospective relapse data subsequent to enrolment were included in this project. Dietary sodium intake was assessed by self-report questionnaire using the validated Block Kids Food Screener. Cox proportional-hazards regression models were employed to determine the association of sodium density, excess sodium intake and sodium density tertiles with time to relapse following study enrolment, adjusting for several confounders. RESULTS 174 relapsing-remitting MS/CIS patients were included in this analysis (mean age of 15.0 years, and 64.9% females). Median duration of follow-up was 1.8 years. In an unadjusted analysis, density of daily sodium intake was not associated with time to relapse, and patients with excess sodium intake had no decrease in time to relapse as compared with patients with non-excess sodium intake. The multivariable analysis demonstrated that patients in the medium and high tertile of sodium density had a HR of 0.69 (95% CI 0.37 to 1.30, p=0.25) and 1.37 (95% CI 0.74 to 2.51, p=0.32) compared with patients in the lowest tertile, respectively. CONCLUSIONS Higher salt intake was not associated with decreased time to relapse in patients with paediatric-onset MS.
Collapse
Affiliation(s)
| | - Jennifer Graves
- UCSF Regional Paediatric MS Center, San Francisco, California, USA
| | - T Charles Casper
- Department of Paediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Sabeen Lulu
- UCSF Regional Paediatric MS Center, San Francisco, California, USA
| | - Amy Waldman
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anita Belman
- Department of Neurology, SUNY Stony Brook, Stony Brook, New York, USA
| | | | | | - Gregory Aaen
- Department of Child Neurology, Loma Linda University, Loma Linda, California, USA
| | | | - Janace Hart
- UCSF Regional Paediatric MS Center, San Francisco, California, USA
| | - Jayne Ness
- Alabama Paediatric MS Center, Birmingham, Alabama, USA
| | - Jennifer Rubin
- Department of Paediatric Neurology, Northwestern Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lauren Krupp
- Department of Neurology, New York University, New York, New York, USA
| | - Mark Gorman
- Partners Paediatric MS Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Leslie Benson
- Partners Paediatric MS Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Moses Rodriguez
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Tanuja Chitnis
- Partners Paediatric MS Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - John Rose
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Lisa Barcellos
- Department of Epidemiology, UC Berkeley, Berkeley, California, USA
| | | | | |
Collapse
|
49
|
Glenn JD, Mowry EM. Emerging Concepts on the Gut Microbiome and Multiple Sclerosis. J Interferon Cytokine Res 2016; 36:347-57. [PMID: 27145057 DOI: 10.1089/jir.2015.0177] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Microbiota of the human body perform fundamental tasks that contribute to normal development, health, and homeostasis and are intimately associated with numerous organ systems, including the gut. Microbes begin gut inhabitance immediately following birth and promote proper gut epithelial construction and function, metabolism and nutrition, and immune system development. Inappropriate immune recognition of self-tissue can lead to autoimmune disease, including conditions such as multiple sclerosis (MS), in which the immune system recognizes and attacks central nervous system tissue. Preclinical studies have demonstrated a requirement of gut microbiota for neuroinflammatory autoimmune disease in animal models, and a growing number of clinical investigations are finding associations between MS status and the composition of the gut microbiota. In this review, we examine current undertakings into better understanding the role of gut bacteria and their phages in MS development, review associations of the gut microbiota makeup and MS, and discuss potential mechanisms by which the gut microbiota may be manipulated for therapeutic benefit.
Collapse
Affiliation(s)
- Justin D Glenn
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University , School of Medicine, Baltimore, Maryland
| | - Ellen M Mowry
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University , School of Medicine, Baltimore, Maryland
| |
Collapse
|
50
|
Jiang T, Li L, Wang Y, Zhao C, Yang J, Ma D, Guan Y, Zhao D, Bao Y, Wang Y, Yang J. The Association Between Genetic Polymorphism rs703842 in CYP27B1 and Multiple Sclerosis: A Meta-Analysis. Medicine (Baltimore) 2016; 95:e3612. [PMID: 27175669 PMCID: PMC4902511 DOI: 10.1097/md.0000000000003612] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Multiple sclerosis (MS) is the most frequent nontraumatic disabling neurological disease among young adults. Previous studies have examined the association of rs703842 in CYP27B1 with MS susceptibility, with inconsistent results reported.The objective of this study is to conduct a systematic literature search and perform meta-analyses to examine whether rs703842 is associated with MS risk.We searched potential literature in PubMed, Cochrane Library, Embase, Google Scholar, Web of Science, and HuGE by using the following inclusion criteria: studies were on human subjects; the studies were case-control studies; studies included subjects who had MS and those who did not have MS; and the studies provided genotype data for rs703842 for subjects who had and did not have MS, or provided odds ratios (ORs) and the 95% confidence intervals (CIs) for assessing the association of rs703842 with MS, or provided sufficient data for the calculation of OR and the 95% CI. We used random-effects models to calculate the OR as a measure of association. We used I to assess between-study heterogeneity, and a funnel plot and Egger test to assess publication bias.Seven studies published since 2008 met the eligibility criteria and were included in the meta-analyses. We found that the C allele was significantly associated with reduced MS susceptibility (OR = 0.88, 95% CI: 0.80-0.89; P < 0.0001). We also found significant association of rs703842 with MS risk using a dominant and a recessive model (both P < 0.0002). Our results remain unchanged if our meta-analysis was limited to studies that included only Caucasian participants (OR = 0.85, 95% CI: 0.80-0.90; P < 0.0001).Our study has several limitations: The sample size is limited; We were unable to control for some important confounding factors as data for individual participant were not available; and Most of the included studies focus on MS risk in Caucasian. As a result, we could not perform meta-analysis for assessing the relationship in other ethnic groups.In summary, we found that the genetic variant rs703842 in CYP27B1 is associated with MS risk in Caucasians. More studies with larger sample size that control for important confounding factors are needed to validate the findings from this study.
Collapse
Affiliation(s)
- Tao Jiang
- From the Department of Neurology (TJ, JY), Laizhou People's Hospital, Laizhou, Shandong; Department of Critical Care and Emergency Medicine (LL), The Affiliated Hospital of Hainan Medical University, Haikou, Hainan; Emergency Department (LL), Shengjing Hospital of China Medical University, Shenyang, Liaoning; Department of Neurosurgery (YW, DM), Huashan Hospital, Fudan University, Shanghai, China; Brain Tumor Center (CZ), Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Neurosurgery (YG, DZ, YB, YW), The First Hospital of China Medical University, Shenyang, Liaoning; Rush Alzheimer's Disease Center (JY); and Department of Neurological Sciences (JY), Rush University Medical Center, Chicago, IL, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|