1
|
Chen Y, Xiong W, Lu L, Wu X, Cao L, Chen J, Xiao Y, Sander JW, Wu B, Zhou D. The thickness of the retinal nerve fiber layer, macula, and ganglion cell-inner plexiform layer in people with drug-resistant epilepsy. Epilepsia Open 2024; 9:1783-1792. [PMID: 39139018 PMCID: PMC11450591 DOI: 10.1002/epi4.13004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/15/2024] [Accepted: 06/23/2024] [Indexed: 08/15/2024] Open
Abstract
OBJECTIVE Using Optical coherence tomography (OCT), we evaluated the association between peripapillary retinal nerve fiber, macular thickness, macular ganglion cell-inner plexiform layer, and drug resistance. METHODS In this cross-sectional study, we recruited people diagnosed with epilepsy and healthy controls. People with epilepsy were further stratified as drug-resistant or non-drug-resistant based on their response to anti-seizure medications. OCT measurements were conducted, and findings in right eye were analyzed. RESULTS Fifty-one drug-resistant participants, 37 non-drug-resistant, and 45 controls were enrolled. The average peripapillary retinal nerve fiber layer, ganglion cell-inner plexiform layer, and macular thickness were thinner in the epilepsy groups than in controls. The drug-resistant group had significantly lower average ganglion cell-inner plexiform layer thickness (p = 0.004) and a higher proportion of abnormal/borderline GC/IPL thickness (p = 5.40E-04) than the non-drug-resistant group. Nevertheless, no significant differences were seen between the average thickness of peripapillary retinal nerve fiber and macular thickness. The temporal sectors of these three parameters were also significantly thinner in the drug-resistant group than in the non-drug-resistant. In a multivariate regression model, drug resistance was an independent predictor of reduced ganglion cell-inner plexiform thickness (Odds ratios OR = 10.25, 95% CI 2.82 to 37.28). Increased seizure frequency (r = -0.23, p = 0.039) and a higher number of anti-seizure medications ever used (r = -0.27, p = 0.013) were negatively associated with ganglion cell-inner plexiform layer thickness. SIGNIFICANCE Individuals with drug-resistant epilepsy had a consistent reduction in average ganglion cell-inner plexiform layer thickness and the temporal sector of peripapillary retinal nerve fiber layer and macular thickness. This suggests that ganglion cell-inner plexiform layer thickness could potentially serve as an indicator of the burden of drug resistance, as it correlated with reduced thickness in individuals having more frequent seizures and greater exposure to ASMs. PLAIN LANGUAGE SUMMARY In our study, we used a special tool called OCT to measure how thick the retina is in people with epilepsy and in healthy control. We found that the retina was consistently thinner in all areas for those with epilepsy compared to healthy control. Particularly, a specific layer called the ganglion cell-inner plexiform layer was a lot thinner in the group that didn't respond to medications, and this thinning was related to how often seizures occurred and how much medications were taken. Also, certain parts of the retina were thinner in the drug-resistant group.
Collapse
Affiliation(s)
- Yujie Chen
- London WC1N 3BG & Chalfont Centre for EpilepsyUCL Queen Square Institute of NeurologyChalfont St PeterBuckinghamshireUK
| | - Weixi Xiong
- London WC1N 3BG & Chalfont Centre for EpilepsyUCL Queen Square Institute of NeurologyChalfont St PeterBuckinghamshireUK
| | - Lu Lu
- London WC1N 3BG & Chalfont Centre for EpilepsyUCL Queen Square Institute of NeurologyChalfont St PeterBuckinghamshireUK
| | - Xintong Wu
- London WC1N 3BG & Chalfont Centre for EpilepsyUCL Queen Square Institute of NeurologyChalfont St PeterBuckinghamshireUK
| | - Le Cao
- London WC1N 3BG & Chalfont Centre for EpilepsyUCL Queen Square Institute of NeurologyChalfont St PeterBuckinghamshireUK
| | - Jiani Chen
- London WC1N 3BG & Chalfont Centre for EpilepsyUCL Queen Square Institute of NeurologyChalfont St PeterBuckinghamshireUK
| | - Yingfeng Xiao
- London WC1N 3BG & Chalfont Centre for EpilepsyUCL Queen Square Institute of NeurologyChalfont St PeterBuckinghamshireUK
| | - Josemir W. Sander
- London WC1N 3BG & Chalfont Centre for EpilepsyUCL Queen Square Institute of NeurologyChalfont St PeterBuckinghamshireUK
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Stichting Epilepsie Instellingen Nederland (SEIN)HeemstedeThe Netherlands
| | - Bo Wu
- London WC1N 3BG & Chalfont Centre for EpilepsyUCL Queen Square Institute of NeurologyChalfont St PeterBuckinghamshireUK
| | - Dong Zhou
- London WC1N 3BG & Chalfont Centre for EpilepsyUCL Queen Square Institute of NeurologyChalfont St PeterBuckinghamshireUK
| |
Collapse
|
2
|
Kim HM, Han JW, Kim KW, Woo SJ. LONGITUDINAL CHANGE OF RETINAL LAYER THICKNESS IN COGNITIVELY NORMAL ELDERLY SUBJECTS: Population-Based Cohort Study. Retina 2024; 44:1633-1638. [PMID: 39167584 DOI: 10.1097/iae.0000000000004141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
PURPOSE To identify longitudinal retinal layer thickness changes in normal eyes of cognitively healthy elderly people. METHODS Post hoc analysis was performed on 57 cognitively healthy elderly participants from the population-based Korean Longitudinal Study on Health and Aging and Korean Longitudinal Study on Cognitive Aging and Dementia cohort studies who underwent baseline and final optical coherence tomography scans. The peripapillary retinal nerve fiber layer, subfoveal choroid, and average retinal layer thickness at four quadrant (nasal, temporal, superior, and inferior) points 1 mm, 2 mm, and 3 mm from the center of the fovea were measured. RESULTS The mean age of subjects was 75.1 years and the mean follow-up period was 55.9 months. Among the analyzed retinal layers, both the ganglion cell-inner plexiform layer and the outer nuclear layer at all 1 mm, 2 mm, and 3 mm points showed a statistically significant decrease in thickness at the final visit compared with baseline. The annual decrease rates were -1.2 µm/year at 1 mm (total -6.6%), -1.3 µm/year at 2 mm (total -8.4%), and -1.1 µm/year at 3 mm (total -9.7%) for ganglion cell-inner plexiform layer and -0.6 µm/year at 1 mm (total -4.2%), -0.5 µm/year at 2 mm (total -3.9%), and -0.4 µm/year at 3 mm (total -4.1%) for outer nuclear layer. CONCLUSION Aging plays a significant role in the reduction of ganglion cell-inner plexiform layer and outer nuclear layer thicknesses in cognitively healthy elderly individuals.
Collapse
Affiliation(s)
- Hyeong Min Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Ophthalmology, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Ji Won Han
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seoul National University, Seongnam, Republic of Korea
| | - Ki Woong Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seoul National University, Seongnam, Republic of Korea
- Department of Neuropsychiatry, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seoul, Republic of Korea
- Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, Republic of Korea; and
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| |
Collapse
|
3
|
Sampani K, Ness S, Tuz-Zahra F, Aytan N, Spurlock EE, Alluri S, Chen X, Siegel NH, Alosco ML, Xia W, Tripodis Y, Stein TD, Subramanian ML. Neurodegenerative biomarkers in different chambers of the eye relative to plasma: an agreement validation study. Alzheimers Res Ther 2024; 16:192. [PMID: 39187891 PMCID: PMC11346268 DOI: 10.1186/s13195-024-01556-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/11/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Protein biomarkers have been broadly investigated in cerebrospinal fluid and blood for the detection of neurodegenerative diseases, yet a clinically useful diagnostic test to detect early, pre-symptomatic Alzheimer's disease (AD) remains elusive. We conducted this study to quantify Aβ40, Aβ42, total Tau (t-Tau), hyperphosphorylated Tau (ptau181), glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) in eye fluids relative to blood. METHODS In this cross-sectional study we collected vitreous humor, aqueous humor, tear fluid and plasma in patients undergoing surgery for eye disease. All six biomarkers were quantitatively measured by digital immunoassay. Spearman and Bland-Altman correlation analyses were performed to assess the agreement of levels between ocular fluids and plasma. RESULTS Seventy-nine adults underwent pars-plana vitrectomy in at least one eye. Of the 79, there were 77 vitreous, 67 blood, 56 tear fluid, and 51 aqueous samples. All six biomarkers were quantified in each bio-sample, except GFAP and NfL in tear fluid due to low sample volume. All six biomarkers were elevated in vitreous humor compared to plasma samples. T-Tau, ptau181, GFAP and NfL were higher in aqueous than in plasma, and t-Tau and ptau181 concentrations were higher in tear fluid than in plasma. Significant correlations were found between Aβ40 in plasma and tears (r = 0.5; p = 0.019), t-Tau in plasma and vitreous (r = 0.4; p = 0.004), NfL in plasma and vitreous (r = 0.3; p = 0.006) and plasma and aqueous (r = 0.5; p = 0.004). No significant associations were found for Aβ42, ptau181 and GFAP among ocular fluids relative to plasma. Bland-Altman analysis showed aqueous humor had the closest agreement to plasma across all biomarkers. Biomarker levels in ocular fluids revealed statistically significant associations between vitreous and aqueous for t-Tau (r = 0.5; p = 0.001), GFAP (r = 0.6; p < 0.001) and NfL (r = 0.7; p < 0.001). CONCLUSION AD biomarkers are detectable in greater quantities in eye fluids than in plasma and show correlations with levels in plasma. Future studies are needed to assess the utility of ocular fluid biomarkers as diagnostic and prognostic markers for AD, especially in those at risk with eye disease.
Collapse
Affiliation(s)
- Konstantina Sampani
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Steven Ness
- Department of Ophthalmology, Boston Medical Center, Boston, MA, 02118, USA
- Department of Ophthalmology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Fatima Tuz-Zahra
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Nurgul Aytan
- Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Elizabeth E Spurlock
- Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Sreevardhan Alluri
- Department of Ophthalmology, Boston Medical Center, Boston, MA, 02118, USA
| | - Xuejing Chen
- Department of Ophthalmology, Boston Medical Center, Boston, MA, 02118, USA
- Department of Ophthalmology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Nicole H Siegel
- Department of Ophthalmology, Boston Medical Center, Boston, MA, 02118, USA
- Department of Ophthalmology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Michael L Alosco
- Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Weiming Xia
- Department of Pharmacology and Experimental Therapeutics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Geriatric Research Education and Clinical Center, Bedford Veterans Affairs Medical Center, Bedford, MA, USA
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- Department of Pathology and Laboratory Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA.
- Department of Veterans Affairs Medical Center, VA Boston Healthcare System, Boston, MA, USA.
- Department of Veterans Affairs Medical Center, VA Bedford Healthcare System, Bedford, MA, USA.
| | - Manju L Subramanian
- Department of Ophthalmology, Boston Medical Center, Boston, MA, 02118, USA.
- Department of Ophthalmology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
4
|
Gaire BP, Koronyo Y, Fuchs DT, Shi H, Rentsendorj A, Danziger R, Vit JP, Mirzaei N, Doustar J, Sheyn J, Hampel H, Vergallo A, Davis MR, Jallow O, Baldacci F, Verdooner SR, Barron E, Mirzaei M, Gupta VK, Graham SL, Tayebi M, Carare RO, Sadun AA, Miller CA, Dumitrascu OM, Lahiri S, Gao L, Black KL, Koronyo-Hamaoui M. Alzheimer's disease pathophysiology in the Retina. Prog Retin Eye Res 2024; 101:101273. [PMID: 38759947 PMCID: PMC11285518 DOI: 10.1016/j.preteyeres.2024.101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
The retina is an emerging CNS target for potential noninvasive diagnosis and tracking of Alzheimer's disease (AD). Studies have identified the pathological hallmarks of AD, including amyloid β-protein (Aβ) deposits and abnormal tau protein isoforms, in the retinas of AD patients and animal models. Moreover, structural and functional vascular abnormalities such as reduced blood flow, vascular Aβ deposition, and blood-retinal barrier damage, along with inflammation and neurodegeneration, have been described in retinas of patients with mild cognitive impairment and AD dementia. Histological, biochemical, and clinical studies have demonstrated that the nature and severity of AD pathologies in the retina and brain correspond. Proteomics analysis revealed a similar pattern of dysregulated proteins and biological pathways in the retina and brain of AD patients, with enhanced inflammatory and neurodegenerative processes, impaired oxidative-phosphorylation, and mitochondrial dysfunction. Notably, investigational imaging technologies can now detect AD-specific amyloid deposits, as well as vasculopathy and neurodegeneration in the retina of living AD patients, suggesting alterations at different disease stages and links to brain pathology. Current and exploratory ophthalmic imaging modalities, such as optical coherence tomography (OCT), OCT-angiography, confocal scanning laser ophthalmoscopy, and hyperspectral imaging, may offer promise in the clinical assessment of AD. However, further research is needed to deepen our understanding of AD's impact on the retina and its progression. To advance this field, future studies require replication in larger and diverse cohorts with confirmed AD biomarkers and standardized retinal imaging techniques. This will validate potential retinal biomarkers for AD, aiding in early screening and monitoring.
Collapse
Affiliation(s)
- Bhakta Prasad Gaire
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Haoshen Shi
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ron Danziger
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jean-Philippe Vit
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jonah Doustar
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Andrea Vergallo
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Miyah R Davis
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ousman Jallow
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Filippo Baldacci
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | | | - Ernesto Barron
- Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Vivek K Gupta
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Stuart L Graham
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia; Department of Clinical Medicine, Macquarie University, Sydney, NSW, Australia
| | - Mourad Tayebi
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Roxana O Carare
- Department of Clinical Neuroanatomy, University of Southampton, Southampton, UK
| | - Alfredo A Sadun
- Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Carol A Miller
- Department of Pathology Program in Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Shouri Lahiri
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Liang Gao
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Singlas M, Tran THC, Boucenna W, Diouf M, Godefroy O. Is internal retinal thickness an early marker of Alzheimer's and Lewy body diseases? Rev Neurol (Paris) 2024; 180:220-223. [PMID: 37925357 DOI: 10.1016/j.neurol.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 08/30/2023] [Accepted: 10/04/2023] [Indexed: 11/06/2023]
Affiliation(s)
- M Singlas
- Department of Ophthalmology, Amiens University Hospital, Amiens, France
| | - T H C Tran
- Department of Ophthalmology, Amiens University Hospital, Amiens, France; Laboratory of Lille Neurosiences &Cognition, INSERM U1172, Lille, France
| | - W Boucenna
- Department of Ophthalmology, Amiens University Hospital, Amiens, France
| | - M Diouf
- Department of Biostatistic, Amiens University Hospital, Amiens, France
| | - O Godefroy
- Department of Neurology, Amiens University Hospital, 80054 Amiens, France; Laboratory of and Neurosciences Functional Pathology, (UR 4559), Picardie Jules Verne University, Picardie, France.
| |
Collapse
|
6
|
Lee CS, Ferguson AN, Gibbons LE, Walker R, Su YR, Krakauer C, Brush M, Kam J, Larson EB, Arterburn DE, Crane PK. Eye Adult Changes in Thought (Eye ACT) Study: Design and Report on the Inaugural Cohort. J Alzheimers Dis 2024; 100:309-320. [PMID: 38875039 PMCID: PMC11556780 DOI: 10.3233/jad-240203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Background Conflicting research on retinal biomarkers of Alzheimer's disease and related dementias (AD/ADRD) is likely related to limited sample sizes, study design, and protocol differences. Objective The prospective Eye Adult Changes in Thought (Eye ACT) seeks to address these gaps. Methods Eye ACT participants are recruited from ACT, an ongoing cohort of dementia-free, older adults followed biennially until AD/ADRD, and undergo visual function and retinal imaging assessment either in clinic or at home. Results 330 participants were recruited as of 03/2023. Compared to ACT participants not in Eye ACT (N = 1868), Eye ACT participants (N = 330) are younger (mean age: 70.3 versus 71.2, p = 0.014), newer to ACT (median ACT visits since baseline: 3 versus 4, p < 0.001), have more years of education (17.7 versus 16.2, p < 0.001) and had lower rates of visual impairment (12% versus 22%, p < 0.001). Compared to those seen in clinic (N = 300), Eye ACT participants seen at home (N = 30) are older (77.2 versus 74.9, p = 0.015), more frequently female (60% versus 49%, p = 0.026), and have significantly worse visual acuity (71.1 versus 78.9 Early Treatment Diabetic Retinopathy Study letters, p < 0.001) and contrast sensitivity (-1.9 versus -2.1 mean log units at 3 cycles per degree, p = 0.002). Cognitive scores and retinal imaging measurements are similar between the two groups. Conclusions Participants assessed at home had significantly worse visual function than those seen in clinic. By including these participants, Eye ACT provides a unique longitudinal cohort for evaluating potential retinal biomarkers of dementia.
Collapse
Affiliation(s)
- Cecilia S Lee
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
- The Roger and Angie Karalis Johnson Retina Center, Seattle, Washington
| | - Alina N Ferguson
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
- The Roger and Angie Karalis Johnson Retina Center, Seattle, Washington
- University of Washington School of Medicine, Seattle, Washington
| | - Laura E Gibbons
- Department of Medicine, University of Washington, Seattle, Washington
| | - Rod Walker
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington
| | - Yu-Ru Su
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington
| | - Chloe Krakauer
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington
| | | | - Jason Kam
- Kaiser Permanente Washington, Seattle, Washington
| | - Eric B Larson
- Department of Medicine, University of Washington, Seattle, Washington
| | - David E Arterburn
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington
| | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
7
|
Ibrahim Y, Xie J, Macerollo A, Sardone R, Shen Y, Romano V, Zheng Y. A Systematic Review on Retinal Biomarkers to Diagnose Dementia from OCT/OCTA Images. J Alzheimers Dis Rep 2023; 7:1201-1235. [PMID: 38025800 PMCID: PMC10657718 DOI: 10.3233/adr-230042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/22/2023] [Indexed: 12/01/2023] Open
Abstract
Background Traditional methods for diagnosing dementia are costly, time-consuming, and somewhat invasive. Since the retina shares significant anatomical similarities with the brain, retinal abnormalities detected via optical coherence tomography (OCT) and OCT angiography (OCTA) have been studied as a potential non-invasive diagnostic tool for neurodegenerative disorders; however, the most effective retinal changes remain a mystery to be unraveled in this review. Objective This study aims to explore the relationship between retinal abnormalities in OCT/OCTA images and cognitive decline as well as evaluating biomarkers' effectiveness in detecting neurodegenerative diseases. Methods A systematic search was conducted on PubMed, Web of Science, and Scopus until December 2022, resulted in 64 papers using agreed search keywords, and inclusion/exclusion criteria. Results The superior peripapillary retinal nerve fiber layer (pRNFL) is a trustworthy biomarker to identify most Alzheimer's disease (AD) cases; however, it is inefficient when dealing with mild AD and mild cognitive impairment (MCI). The global pRNFL (pRNFL-G) is another reliable biomarker to discriminate frontotemporal dementia from mild AD and healthy controls (HCs), moderate AD and MCI from HCs, as well as identifing pathological Aβ42/tau in cognitively healthy individuals. Conversely, pRNFL-G fails to realize mild AD and the progression of AD. The average pRNFL thickness variation is considered a viable biomarker to monitor the progression of AD. Finally, the superior and average pRNFL thicknesses are considered consistent for advanced AD but not for early/mild AD. Conclusions Retinal changes may indicate dementia, but further research is needed to confirm the most effective biomarkers for early and mild AD.
Collapse
Affiliation(s)
- Yehia Ibrahim
- Department of Eye and Vision Sciences, University of Liverpool, Liverpool, UK
| | - Jianyang Xie
- Department of Eye and Vision Sciences, University of Liverpool, Liverpool, UK
| | - Antonella Macerollo
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Rodolfo Sardone
- Department of Eye and Vision Sciences, University of Liverpool, Liverpool, UK
- Statistics and Epidemiology Unit, Local Healthcare Authority of Taranto, Taranto, Italy
| | - Yaochun Shen
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK
| | - Vito Romano
- Department of Eye and Vision Sciences, University of Liverpool, Liverpool, UK
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Yalin Zheng
- Department of Eye and Vision Sciences, University of Liverpool, Liverpool, UK
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, UK
| |
Collapse
|
8
|
Kao CC, Hsieh HM, Chang YC, Chu HC, Yang YH, Sheu SJ. Optical Coherence Tomography Assessment of Macular Thickness in Alzheimer's Dementia with Different Neuropsychological Severities. J Pers Med 2023; 13:1118. [PMID: 37511731 PMCID: PMC10381874 DOI: 10.3390/jpm13071118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/03/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
This retrospective case-control study aimed to investigate associations between disease severity of Alzheimer's dementia (AD) and macular thickness. Data of patients with AD who were under medication (n = 192) between 2013 and 2020, as well as an age- and sex-matched control group (n = 200) with normal cognitive function, were included. AD patients were divided into subgroups according to scores of the Mini-Mental State Examination (MMSE) and Clinical Dementia Rating (CDR). Macular thickness was analyzed via the Early Treatment Diabetic Retinopathy Study (ETDRS) grid map. AD patients had significant reductions in full macula layers, including inner circle, outer inferior area, and outer nasal area of the macula. Similar retinal thinning was noted in ganglion cells and inner plexiform layers. Advanced AD patients (MMSE score < 18 or CDR ≥ 1) showed more advanced reduction of macular thickness than the AD group (CDR = 0.5 or MMSE ≥ 18), indicating that severe cognitive impairment was associated with thinner macular thickness. Advanced AD is associated with significant macula thinning in full retina and inner plexiform layers, especially at the inner circle of the macula. Macular thickness may be a useful biomarker of AD disease severity. Retinal imaging may be a non-invasive, low-cost surrogate for AD.
Collapse
Affiliation(s)
- Chia-Chen Kao
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hui-Min Hsieh
- Department of Public Health, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Department of Community Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Center for Big Data Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yo-Chen Chang
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Ophthalmology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 812, Taiwan
| | - Hui-Chen Chu
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Yuan-Han Yang
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung 812, Taiwan
- Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shwu-Jiuan Sheu
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
9
|
Kim BJ, Grossman M, Aleman TS, Song D, Cousins KAQ, McMillan CT, Saludades A, Yu Y, Lee EB, Wolk D, Van Deerlin VM, Shaw LM, Ying GS, Irwin DJ. Retinal photoreceptor layer thickness has disease specificity and distinguishes predicted FTLD-Tau from biomarker-determined Alzheimer's disease. Neurobiol Aging 2023; 125:74-82. [PMID: 36857870 PMCID: PMC10038934 DOI: 10.1016/j.neurobiolaging.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
While Alzheimer's disease (AD) is associated with inner retina thinning (retinal nerve fiber layer and ganglion cell layer), we have observed photoreceptor outer nuclear layer (ONL) thinning in patients with frontotemporal lobar degeneration tauopathy (FTLD-Tau) compared to normal controls. We hypothesized that ONL thinning may distinguish FTLD-Tau from patients with biomarker evidence of AD neuropathologic change (ADNC) and will correlate with FTLD-Tau disease severity. Predicted FTLD-Tau (pFTLD-Tau; n = 21; 33 eyes) and predicted ADNC (pADNC; n = 24; 46 eyes) patients were consecutively enrolled, underwent optical coherence tomography macula imaging, and disease was categorized (pFTLD-Tau vs. pADNC) with cerebrospinal fluid biomarkers, genetic testing, and autopsy data when available. Adjusting for age, sex, and race, pFTLD-Tau patients had a thinner ONL compared to pADNC, while retinal nerve fiber layer and ganglion cell layer were not significantly different. Reduced ONL thickness correlated with worse performance on Folstein Mini-Mental State Examination and clinical dementia rating plus frontotemporal dementia sum of boxes for pFTLD-Tau but not pADNC. Photoreceptor ONL thickness may serve as an important noninvasive diagnostic marker that distinguishes FTLD-Tau from AD neuropathologic change.
Collapse
Affiliation(s)
- Benjamin J Kim
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Murray Grossman
- Department of Neurology, Frontotemporal Degeneration Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tomas S Aleman
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Delu Song
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katheryn A Q Cousins
- Department of Neurology, Frontotemporal Degeneration Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Corey T McMillan
- Department of Neurology, Frontotemporal Degeneration Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adrienne Saludades
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yinxi Yu
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, Translational Neuropathology Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Wolk
- Department of Neurology, Penn Alzheimer's Disease Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vivianna M Van Deerlin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gui-Shuang Ying
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David J Irwin
- Department of Neurology, Frontotemporal Degeneration Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
10
|
Moussa M, Falfoul Y, Nasri A, El Matri K, Kacem I, Mrabet S, Chebil A, Gharbi A, Gouider R, El Matri L. Optical coherence tomography and angiography in Alzheimer's disease and other cognitive disorders. Eur J Ophthalmol 2023:11206721221148952. [PMID: 36617984 DOI: 10.1177/11206721221148952] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AIMS The aims of this study were to analyze retinal and choroidal changes on optical coherence tomography (OCT) and OCT-Angiography (OCT-A) in Alzheimer's disease (AD) patients and compare them to other forms of major dementia. We also aimed to analyze the correlation between clinical severity of global cognitive deficiency assessed by the mini-mental state exam (MMSE) score and OCT/OCT-A parameters. METHODS Retrospective cross-sectional evaluative study of AD, and age-and gender-matched patients with other dementias. Fundus examination, OCT and OCT-A were compared. RESULTS Ninety-one eyes of AD patients and 53 eyes of patients with other dementias were included. Retinal deposits were found in 6.59% of AD cases. OCT highlighted the presence of hyperreflective deposits and localized areas of outer retina and ellipsoid zone disruption, respectively in 20.87% and 15.38% of AD cases. Hyperreflective foci were noted within inner retinal layers in 4.39% of AD cases. Quantitative analysis revealed a thicker nasal retinal nerve fiber layer (p = 0.001) and ganglion cell complex in superior (p = 0.011) and temporal quadrants (p = 0.009) in eyes of AD patients, compared to other dementias. OCT-A showed a significantly higher fractal dimension of both superficial and deep capillary plexus (p = 0.005), with lower choriocapillaris density (p = 0.003) in AD patients. CONCLUSIONS Structural OCT could highlight the presence of hyperreflective deposits in AD, probably reflecting beta-amyloid deposits, associated to outer retinal disruptions. Quantitative OCT analysis showed structural differences between AD patients and other dementias, and combined OCT-A could identify microvascular changes in AD patients representing new potential differential diagnosis criteria.
Collapse
Affiliation(s)
- Mohamed Moussa
- Department of Ophthalmology B, 383447Hedi Raies Institute of Ophthalmology, Tunis, Tunisia
- Faculty of Medicine of Tunis, 37964University of Tunis El Manar, Tunis, Tunisia
| | - Yousra Falfoul
- Department of Ophthalmology B, 383447Hedi Raies Institute of Ophthalmology, Tunis, Tunisia
- Faculty of Medicine of Tunis, 37964University of Tunis El Manar, Tunis, Tunisia
| | - Amina Nasri
- Faculty of Medicine of Tunis, 37964University of Tunis El Manar, Tunis, Tunisia
- Department of Neurology, LR18SP03, Clinical Investigation Center "Neurosciences and Mental Health", Razi University Hospital, Tunis, Manouba, Tunisia
| | - Khaled El Matri
- Department of Ophthalmology B, 383447Hedi Raies Institute of Ophthalmology, Tunis, Tunisia
- Faculty of Medicine of Tunis, 37964University of Tunis El Manar, Tunis, Tunisia
| | - Imen Kacem
- Faculty of Medicine of Tunis, 37964University of Tunis El Manar, Tunis, Tunisia
- Department of Neurology, LR18SP03, Clinical Investigation Center "Neurosciences and Mental Health", Razi University Hospital, Tunis, Manouba, Tunisia
| | - Saloua Mrabet
- Faculty of Medicine of Tunis, 37964University of Tunis El Manar, Tunis, Tunisia
- Department of Neurology, LR18SP03, Clinical Investigation Center "Neurosciences and Mental Health", Razi University Hospital, Tunis, Manouba, Tunisia
| | - Ahmed Chebil
- Department of Ophthalmology B, 383447Hedi Raies Institute of Ophthalmology, Tunis, Tunisia
- Faculty of Medicine of Tunis, 37964University of Tunis El Manar, Tunis, Tunisia
| | - Alya Gharbi
- Faculty of Medicine of Tunis, 37964University of Tunis El Manar, Tunis, Tunisia
- Department of Neurology, LR18SP03, Clinical Investigation Center "Neurosciences and Mental Health", Razi University Hospital, Tunis, Manouba, Tunisia
| | - Riadh Gouider
- Faculty of Medicine of Tunis, 37964University of Tunis El Manar, Tunis, Tunisia
- Department of Neurology, LR18SP03, Clinical Investigation Center "Neurosciences and Mental Health", Razi University Hospital, Tunis, Manouba, Tunisia
| | - Leila El Matri
- Department of Ophthalmology B, 383447Hedi Raies Institute of Ophthalmology, Tunis, Tunisia
- Faculty of Medicine of Tunis, 37964University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
11
|
Park KW, Joo JY, Kim ST. Comparison of brain-derived neurotrophic factor among subtypes of exudative age-related macular degeneration. Eur J Ophthalmol 2023; 33:408-414. [PMID: 35505604 DOI: 10.1177/11206721221099488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE To compare the levels of brain-derived neurotrophic factor (BDNF) in serum and aqueous humor (AH) in eyes with typical neovascular age-related macular degeneration (tAMD), polypoidal choroidal vasculopathy (PCV), and retinal angiomatous proliferation (RAP). METHODS This prospective study included 20 patients with tAMD, 20 patients with PCV, 20 patients with RAP, and 20 healthy controls. BDNF levels in the serum and AH were assessed using enzyme-linked immunosorbent assay. RESULTS Serum and AH BDNF levels were significantly lower in the age-related macular degeneration groups (tAMD, PCV, and RAP) than in the control group (p < 0.05). There was no significant difference in the mean BDNF levels in the serum and AH among the different nAMD subtypes (p = 0.538). CONCLUSIONS We confirmed that serum and AH BDNF levels were independent of the nAMD subtype.
Collapse
Affiliation(s)
- Keon Woo Park
- Department of Ophthalmology, School of Medicine, Chosun University, Gwang-ju, Republic of Korea
| | - Jung Yeon Joo
- Department of Pediatrics, 92203Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Seong Taeck Kim
- Department of Ophthalmology, School of Medicine, Chosun University, Gwang-ju, Republic of Korea
| |
Collapse
|
12
|
Xia X, Qin Q, Peng Y, Wang M, Yin Y, Tang Y. Retinal Examinations Provides Early Warning of Alzheimer's Disease. J Alzheimers Dis 2022; 90:1341-1357. [PMID: 36245377 DOI: 10.3233/jad-220596] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Patients with Alzheimer's disease have difficulty maintaining independent living abilities as the disease progresses, causing an increased burden of care on family caregivers and the healthcare system and related financial strain. This patient group is expected to continue to expand as life expectancy climbs. Current diagnostics for Alzheimer's disease are complex, unaffordable, and invasive without regard to diagnosis quality at early stages, which urgently calls for more technical improvements for diagnosis specificity. Optical coherence tomography or tomographic angiography has been shown to identify retinal thickness loss and lower vascular density present earlier than symptom onset in these patients. The retina is an extension of the central nervous system and shares anatomic and functional similarities with the brain. Ophthalmological examinations can be an efficient tool to offer a window into cerebral pathology with the merit of easy operation. In this review, we summarized the latest observations on retinal pathology in Alzheimer's disease and discussed the feasibility of retinal imaging in diagnostic prediction, as well as limitations in current retinal examinations for Alzheimer's disease diagnosis.
Collapse
Affiliation(s)
- Xinyi Xia
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qi Qin
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yankun Peng
- Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Meng Wang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yunsi Yin
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yi Tang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Chua J, Li C, Ho LKH, Wong D, Tan B, Yao X, Gan A, Schwarzhans F, Garhöfer G, Sng CCA, Hilal S, Venketasubramanian N, Cheung CY, Fischer G, Vass C, Wong TY, Chen CLH, Schmetterer L. A multi-regression framework to improve diagnostic ability of optical coherence tomography retinal biomarkers to discriminate mild cognitive impairment and Alzheimer’s disease. Alzheimers Res Ther 2022; 14:41. [PMID: 35272711 PMCID: PMC8908577 DOI: 10.1186/s13195-022-00982-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 02/23/2022] [Indexed: 11/24/2022]
Abstract
Background Diagnostic performance of optical coherence tomography (OCT) to detect Alzheimer’s disease (AD) and mild cognitive impairment (MCI) remains limited. We assessed whether compensating the circumpapillary retinal nerve fiber layer (cpRNFL) thickness for multiple demographic and anatomical factors as well as the combination of macular layers improves the detection of MCI and AD. Methods This cross-sectional study of 62 AD (n = 92 eyes), 108 MCI (n = 158 eyes), and 55 cognitively normal control (n = 86 eyes) participants. Macular ganglion cell complex (mGCC) thickness was extracted. Circumpapillary retinal nerve fiber layer (cpRNFL) measurement was compensated for several ocular factors. Thickness measurements and their corresponding areas under the receiver operating characteristic curves (AUCs) were compared between the groups. The main outcome measure was OCT thickness measurements. Results Participants with MCI/AD showed significantly thinner measured and compensated cpRNFL, mGCC, and altered retinal vessel density (p < 0.05). Compensated RNFL outperformed measured RNFL for discrimination of MCI/AD (AUC = 0.74 vs 0.69; p = 0.026). Combining macular and compensated cpRNFL parameters provided the best detection of MCI/AD (AUC = 0.80 vs 0.69; p < 0.001). Conclusions and relevance Accounting for interindividual variations of ocular anatomical features in cpRNFL measurements and incorporating macular information may improve the identification of high-risk individuals with early cognitive impairment. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-00982-0.
Collapse
|
14
|
Vij R, Arora S. A systematic survey of advances in retinal imaging modalities for Alzheimer's disease diagnosis. Metab Brain Dis 2022; 37:2213-2243. [PMID: 35290546 DOI: 10.1007/s11011-022-00927-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/04/2022] [Indexed: 01/06/2023]
Abstract
Recent advances in retinal imaging pathophysiology have shown a new function for biomarkers in Alzheimer's disease diagnosis and prognosis. The significant improvements in Optical coherence tomography (OCT) retinal imaging have led to significant clinical translation, particularly in Alzheimer's disease detection. This systematic review will provide a comprehensive overview of retinal imaging in clinical applications, with a special focus on biomarker analysis for use in Alzheimer's disease detection. Articles on OCT retinal imaging in Alzheimer's disease diagnosis were identified in PubMed, Google Scholar, IEEE Xplore, and Research Gate databases until March 2021. Those studies using simultaneous retinal imaging acquisition were chosen, while those using sequential techniques were rejected. "Alzheimer's disease" and "Dementia" were searched alone and in combination with "OCT" and "retinal imaging". Approximately 1000 publications were searched, and after deleting duplicate articles, 145 relevant studies focused on the diagnosis of Alzheimer's disease utilizing retinal imaging were chosen for study. OCT has recently been demonstrated to be a valuable technique in clinical practice as according to this survey, 57% of the researchers employed optical coherence tomography, 19% used ocular fundus imaging, 13% used scanning laser ophthalmoscopy, and 11% have used multimodal imaging to diagnose Alzheimer disease. Retinal imaging has become an important diagnostic technique for Alzheimer's disease. Given the scarcity of available literature, it is clear that future prospective trials involving larger and more homogeneous groups are necessary, and the work can be expanded by evaluating its significance utilizing a machine-learning platform rather than simply using statistical methodologies.
Collapse
Affiliation(s)
- Richa Vij
- School of Computer Science & Engineering, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182320, India
| | - Sakshi Arora
- School of Computer Science & Engineering, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182320, India.
| |
Collapse
|
15
|
Jeevakumar V, Sefton R, Chan J, Gopinath B, Liew G, Shah TM, Siette J. Association between retinal markers and cognition in older adults: a systematic review. BMJ Open 2022; 12:e054657. [PMID: 35728906 PMCID: PMC9214387 DOI: 10.1136/bmjopen-2021-054657] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES To appraise the existing literature reporting an association between retinal markers and cognitive impairment in adults aged 65 years and over and to provide directions for future use of retinal scanning as a potential tool for dementia diagnosis. DESIGN Systematic review of peer-reviewed empirical articles investigating the association of retinal markers in assessing cognitive impairment. DATA SOURCES Three electronic databases, Medline, PsycINFO and EMBASE were searched from inception until March 2022. ELIGIBILITY CRITERIA All empirical articles in English investigating the association between retinal markers and cognition in humans aged ≥65 years using various retinal scanning methodologies were included. Studies with no explicit evaluation of retinal scanning and cognitive outcomes were excluded. Risk of bias was assessed using the Quality Assessment of Diagnostic Accuracy Studies tool. DATA EXTRACTION AND SYNTHESIS Data extraction was conducted by two authors (VJ, RS) and reviewed by another author (JS). Results were synthesised and described narratively. RESULTS Sixty-seven eligible studies examining 6815 older adults were included. Majority of studies were cross-sectional (n=60; 89.6%). Optical coherence tomography (OCT) was the most commonly used retinal scanning methodology to measure the thickness of retinal nerve fibre layer, the ganglion cell complex, choroid and macula. 51.1% of cross-sectional studies using OCT reported an association between the thinning of at least one retinal parameter and poor cognition. Longitudinal studies (n=6) using OCT also mostly identified significant reductions in retinal nerve fibre layer thickness with cognitive decline. Study quality was overall moderate. CONCLUSION Retinal nerve fibre layer thickness is linked with cognitive performance and therefore may have the potential to detect cognitive impairment in older adults. Further longitudinal studies are required to validate our synthesis and understand underlying mechanisms before recommending implementation of OCT as a dementia screening tool in clinical practice. PROSPERO REGISTRATION NUMBER CRD42020176757.
Collapse
Affiliation(s)
- Varshanie Jeevakumar
- Australian Institute of Health Innovation, Macquarie University, Macquarie Park, New South Wales, Australia
| | - Rebekah Sefton
- Australian Institute of Health Innovation, Macquarie University, Macquarie Park, New South Wales, Australia
| | - Joyce Chan
- New Look Eyewear, Maitland, New South Wales, Australia
| | - Bamini Gopinath
- Department of Linguistics, Australian Hearing Hub, Macquarie University, Macquarie Park, New South Wales, Australia
| | - Gerald Liew
- Centre for Vision Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Tejal M Shah
- Macquarie Medical School, Macquarie University, North Ryde, New South Wales, Australia
| | - Joyce Siette
- Australian Institute of Health Innovation, Macquarie University, Macquarie Park, New South Wales, Australia
- MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Westmead, New South Wales, Australia
| |
Collapse
|
16
|
Association of inner retinal reflectivity with qualitative and quantitative changes in retinal layers over time in diabetic eyes without retinopathy. Eye (Lond) 2022; 36:1253-1260. [PMID: 34117378 PMCID: PMC9151723 DOI: 10.1038/s41433-021-01607-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 05/05/2021] [Accepted: 05/13/2021] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE To assess the course of neurodegeneration based on retinal layer thickness and integrity analysis in diabetic patients without retinopathy and to evaluate its association with inner retinal reflectivity. METHODS This retrospective case-control study included 80 eyes of 80 patients with DM without retinopathy and 40 eyes of 40 healthy subjects with a follow-up of ≥1 year. SD-OCT was used for assessment of retinal reflectivity and macular layer thicknesses. Optical intensity ratios (OIRs) were defined as the mean OCT reflectivity of ganglion cell and inner nuclear layer to the mean reflectivity of RPE. RESULTS After Bonferroni correction, thinning in pericentral, superior and nasal sectors in total retina, superior ganglion cell, pericentral and nasal inner plexiform, and superior inner retinal layers, as well as thickening in inferior and pericentral outer plexiform layer remained significant in the study group (p < 0.0125). Ganglion cell layer OIR significantly correlated with the changes in superior retina (r = 0.278, p = 0.013), central inner retina (r = 0.247, p = 0.027), and pericentral retinal thickness (r = 0.240, p = 0.032), and no eyes had disruption of retinal layers in the study group initially or finally. CONCLUSION Ganglion cell layer reflectivity significantly correlated with the amount of pericentral retinal thinning during the time course in the diabetic group, which was more prominent in the inner retinal layers.
Collapse
|
17
|
Kim HM, Han JW, Park YJ, Bae JB, Woo SJ, Kim KW. Association Between Retinal Layer Thickness and Cognitive Decline in Older Adults. JAMA Ophthalmol 2022; 140:683-690. [PMID: 35616950 PMCID: PMC9136677 DOI: 10.1001/jamaophthalmol.2022.1563] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Question Is retinal layer thickness associated with cognitive decline in an older population? Findings In this cohort study including 430 community-dwelling participants in Korea, baseline macular retinal nerve fiber layer (RNFL) thickness was associated with baseline cognitive function scores and follow-up cognitive decline. Meaning These findings suggest that macular RNFL thickness could be considered a predictive biomarker for evaluating cognitive function in older individuals. Importance Retinal layer thickness is hypothesized to be related to cognitive function in patients with mild cognitive impairment (MCI) and Alzheimer disease (AD). However, longitudinal cohort studies of the healthy older population are scarce. Objective To investigate the association between retinal layer thickness and cognitive impairment and future cognitive decline in a community-based population cohort. Design, Setting, and Participants A total of 430 randomly sampled community-dwelling Korean individuals 60 years or older participated in the baseline assessment (mean [SD], 76.3 [6.6] years) 215 of whom completed a mean (SD) of 5.4 (0.6) years (range, 4.1-6.2 years) of follow-up. Using spectral-domain optical coherence tomography, the study team assessed the thickness of 6 retinal layers in the macular region, the peripapillary retinal nerve fiber layers (RNFLs), and the subfoveal choroid at baseline. Exposures Age, sex, education, diabetes, hypertension, and apolipoprotein E4 gene status. Main Outcomes and Measures Retinal layer thickness and cognitive function test scores were analyzed. Results This study included 430 participants (female, 208 [48.6%]). Baseline macular RNFL thickness was associated with baseline Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) score (coefficient [β] = 0.077; 95% CI, 0.054-0.100; P = .04 for total macular area) and Mini-Mental State Examination (MMSE) score (coefficient [β] = 0.082; 95% CI, 0.063-0.101; P = .03 for total macular area). A thinner baseline total macular RNFL thickness (lowest quartile, <231 μm) was associated with a larger decline in the CERAD and MMSE scores during the follow-up period (P = .003 and P = .01, respectively). Furthermore, participants with baseline total macular RNFL thickness below the lowest quartile cutoff value presented a greater decline in cognitive scores and a higher prevalence of cognitive impairment and Alzheimer disease than those with RNFL thickness above the lowest quartile cutoff value. Conclusions and Relevance In this study, macular RNFL thickness could be used as a prognostic biomarker of long-term cognitive decline in adults 60 years or older. However, to confirm these results, further large-scale population-based studies should be performed.
Collapse
Affiliation(s)
- Hyeong Min Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ji Won Han
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Young Joo Park
- Department of Ophthalmology, Kangwon National University School of Medicine, Kangwon National University Hospital, Chuncheon, Republic of Korea
| | - Jong Bin Bae
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ki Woong Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.,Department of Psychiatry and Behavioral Science, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| |
Collapse
|
18
|
Zhang J, Shi L, Shen Y. The retina: A window in which to view the pathogenesis of Alzheimer's disease. Ageing Res Rev 2022; 77:101590. [PMID: 35192959 DOI: 10.1016/j.arr.2022.101590] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/14/2022] [Accepted: 02/12/2022] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is the most familiar type of dementia affecting elderly populations worldwide. Studies of AD patients and AD transgenic mice have revealed alterations in the retina similar to alterations which occur in the AD brain. Moreover, AD retinal pathology occurs even earlier than AD brain pathology. Importantly, non-invasive imaging techniques can be utilized for retinal observation due to the unique optical transparency of the eye, which acts as a convenient window in which preclinical pathology in the AD brain can be monitored. In this review, we overview the existing literature covering different forms of AD retinal pathology and propose a basis for the clinical application of using the retina as a window to view AD during preclinical and clinical stages.
Collapse
Affiliation(s)
- Jie Zhang
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disorder Research Center, School of Life Science, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Lei Shi
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disorder Research Center, School of Life Science, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yong Shen
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disorder Research Center, School of Life Science, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China; Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
19
|
Klyucherev TO, Olszewski P, Shalimova AA, Chubarev VN, Tarasov VV, Attwood MM, Syvänen S, Schiöth HB. Advances in the development of new biomarkers for Alzheimer's disease. Transl Neurodegener 2022; 11:25. [PMID: 35449079 PMCID: PMC9027827 DOI: 10.1186/s40035-022-00296-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 03/28/2022] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is a complex, heterogeneous, progressive disease and is the most common type of neurodegenerative dementia. The prevalence of AD is expected to increase as the population ages, placing an additional burden on national healthcare systems. There is a large need for new diagnostic tests that can detect AD at an early stage with high specificity at relatively low cost. The development of modern analytical diagnostic tools has made it possible to determine several biomarkers of AD with high specificity, including pathogenic proteins, markers of synaptic dysfunction, and markers of inflammation in the blood. There is a considerable potential in using microRNA (miRNA) as markers of AD, and diagnostic studies based on miRNA panels suggest that AD could potentially be determined with high accuracy for individual patients. Studies of the retina with improved methods of visualization of the fundus are also showing promising results for the potential diagnosis of the disease. This review focuses on the recent developments of blood, plasma, and ocular biomarkers for the diagnosis of AD.
Collapse
Affiliation(s)
- Timofey O Klyucherev
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden.,Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Pawel Olszewski
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden
| | - Alena A Shalimova
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden.,Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir N Chubarev
- Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vadim V Tarasov
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Misty M Attwood
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden
| | - Stina Syvänen
- Department of Public Health and Caring Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden.
| |
Collapse
|
20
|
Dreyer-Alster S, Gal A, Achiron A. Optical Coherence Tomography Is Associated With Cognitive Impairment in Multiple Sclerosis. J Neuroophthalmol 2022; 42:e14-e21. [PMID: 34294657 PMCID: PMC8834165 DOI: 10.1097/wno.0000000000001326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Optical coherence tomography (OCT) is a sensitive method for quantifying retinal neuronal and axonal structures. Reductions in retinal nerve fiber layer (RNFL) and ganglion cell inner plexiform layer (GCIPL) thicknesses have a reported association with white and grey matter atrophy in multiple sclerosis (MS). We hypothesized that the thinning of intraretinal layer measurements associates with cognitive decline in MS patients with no prior event of optic neuritis (ON). METHODS OCT and NeuroTrax computerized cognitive assessments were performed in 204 relapsing remitting MS patients with no history of ON or other conditions affecting the eye. Data were collected between 2010 and 2020 and retrospectively analyzed. Correlations were examined between cognitive performance and a lower RNFL or GCIPL thickness. A multilinear regression model was generated to assess the significance of these correlations regarding the disability score and disease duration. RESULTS The 204 study participants had a mean age of 40.52 ± 11.8 years (mean ± SD) and disease duration of 9.80 ± 9.40 years. The mean RNFL thickness in this whole cohort was 82.22 ± 10.85 μm and the global cognitive score was 95.32 ± 12.32. The mean GCIPL thickness measured in a subgroup of 104 patients was 74.27 ± 10.37 μm. The RNFL and GCIPL both correlated with the global cognitive score (r = 0.174, P = 0.013 and r = 0.29, P = 0.03, respectively), and with various cognitive domains. However, the GCIPL showed stronger correlations than RNFL, particularly with executive function (r = 0.29, P = 0.003), attention (r = 0.332, P = 0.001), and the information processing speed (r = 0.25, P = 0.012). These correlations remained significant after correcting for confounders. CONCLUSION OCT measurements correlate with cognitive performance in MS patients. OCT can thus be used to evaluate central nervous system neurodegeneration in MS, as reflected by cognitive decline.
Collapse
|
21
|
Abstract
ABSTRACT Alzheimer disease (AD) is a significant cause of morbidity and mortality worldwide, with limited treatment options and considerable diagnostic challenges. Identification and validation of retinal changes that correlate with clinicopathologic features of AD could provide a noninvasive method of screening and monitoring progression of disease, with notable implications for developing new therapies, particularly in its preclinical stages. Retinal biomarkers that have been studied to date include structural changes in neurosensory retinal layers, alterations in vascular architecture and function, and pathologic deposition of proteins within the retina, which have all demonstrated variable correlation with the presence of preclinical or clinical AD. Evolution of specialized retinal imaging modalities and advances in artificial intelligence hold great promise for future study in this burgeoning field. The current status of research in retinal biomarkers, and some of the challenges that will need to be addressed in future work, are reviewed herein.
Collapse
Affiliation(s)
- Yuan Amy
- Department of Ophthalmology, University of Washington, Seattle WA, US
| | - Cecilia S. Lee
- Department of Ophthalmology, University of Washington, Seattle WA, US
- Karalis Johnson Retina Center, Seattle WA, US
| |
Collapse
|
22
|
Alzheimer's Disease Seen through the Eye: Ocular Alterations and Neurodegeneration. Int J Mol Sci 2022; 23:ijms23052486. [PMID: 35269629 PMCID: PMC8910735 DOI: 10.3390/ijms23052486] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s Disease (AD) is one of the main neurodegenerative diseases worldwide. Unfortunately, AD shares many similarities with other dementias at early stages, which impedes an accurate premortem diagnosis. Therefore, it is urgent to find biomarkers to allow for early diagnosis of the disease. There is increasing scientific evidence highlighting the similarities between the eye and other structures of the CNS, suggesting that knowledge acquired in eye research could be useful for research and diagnosis of AD. For example, the retina and optic nerve are considered part of the central nervous system, and their damage can result in retrograde and anterograde axon degeneration, as well as abnormal protein aggregation. In the anterior eye segment, the aqueous humor and tear film may be comparable to the cerebrospinal fluid. Both fluids are enriched with molecules that can be potential neurodegenerative biomarkers. Indeed, the pathophysiology of AD, characterized by cerebral deposits of amyloid-beta (Aβ) and tau protein, is also present in the eyes of AD patients, besides numerous structural and functional changes observed in the structure of the eyes. Therefore, all this evidence suggests that ocular changes have the potential to be used as either predictive values for AD assessment or as diagnostic tools.
Collapse
|
23
|
Augustin AJ, Atorf J. The Value of Optical Coherence Tomography Angiography (OCT-A) in Neurological Diseases. Diagnostics (Basel) 2022; 12:diagnostics12020468. [PMID: 35204559 PMCID: PMC8871393 DOI: 10.3390/diagnostics12020468] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/26/2022] [Accepted: 02/09/2022] [Indexed: 12/05/2022] Open
Abstract
Optical coherence tomography angiography (OCT-A) was commercially introduced in 2014. OCT-A allows a fast, non-invasive, three-dimensional analysis of the retinal vasculature from the vitreoretinal interface to the choriocapillaris. The results can be evaluated separately in automated or custom-defined retinal layers. Since its introduction, OCT-A has also been used in patients with neurological diseases in order to find and characterize retinal biomarkers. Many neurological diseases have retinal manifestations, often preceding the key symptoms of the neurological disease. Anatomically and developmentally, the retina is a part of the brain. In contrast to the brain, the retina is easily accessible for imaging methods; moreover, retinal imaging is more cost-effective than brain imaging. In this review, the current knowledge about OCT-A findings and possible OCT-A biomarkers in neurological diseases is summarized and discussed regarding the value of OCT-A as a diagnostic tool in neurological diseases.
Collapse
|
24
|
Rotenstreich Y, Sharvit‐Ginon I, Sher I, Zloto O, Fabian ID, Abd‐Elkader A, Weller A, Heymann A, Beeri MS, Ravona‐Springer R. Thicker macula in asymptomatic APOE Ɛ4 middle-aged adults at high AD risk. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12275. [PMID: 35155732 PMCID: PMC8828987 DOI: 10.1002/dad2.12275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/12/2022]
Abstract
INTRODUCTION We compared retinal layers' thickness between apolipoprotein E (APOE) Ɛ4 carriers and non-carriers in a cohort of cognitively normal middle-aged adults enriched for Alzheimer's disease (AD) risk. METHODS Participants (N = 245) underwent spectral domain optical coherence tomography. Multivariate analyses of covariance adjusting for age, sex, education, and best corrected vision acuity was used to compare retinal thickness between APOE groups. RESULTS Participants' mean age was 59.60 (standard deviation = 6.42) with 66.4% women and 32.2% APOE Ɛ4 carriers. Greater macular full thickness was observed in APOE Ɛ4 carriers compared to non-carriers (P = .017), reaching statistical significance for the inner and outer nasal (P = .009 and P = .005, respectively), inner superior (P = .041), and inner and outer inferior (P = .013 and P = .033, respectively) sectors. The differences between APOE groups were mainly driven by the ganglion cell layer (P < .05) and the inner plexiform layer (P < .05). DISCUSSION A thicker macula is observed already in midlife asymptomatic APOE Ɛ4 carriers at high AD risk.
Collapse
Affiliation(s)
- Ygal Rotenstreich
- Goldschleger Eye InstituteSheba Medical CenterTel HashomerIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| | - Inbal Sharvit‐Ginon
- Psychology DepartmentBar Ilan UniversityRamat‐GanIsrael
- The Joseph Sagol Neuroscience Center at the Sheba Medical CenterTel HashomerIsrael
| | - Ifat Sher
- Goldschleger Eye InstituteSheba Medical CenterTel HashomerIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Ofira Zloto
- Goldschleger Eye InstituteSheba Medical CenterTel HashomerIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Ido Didi Fabian
- Goldschleger Eye InstituteSheba Medical CenterTel HashomerIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Amir Abd‐Elkader
- Goldschleger Eye InstituteSheba Medical CenterTel HashomerIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Aron Weller
- Psychology DepartmentBar Ilan UniversityRamat‐GanIsrael
- Gonda Brain Research CenterBar Ilan UniversityRamat‐GanIsrael
| | - Anthony Heymann
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Maccabi Healthcare ServicesTel AvivIsrael
| | - Michal Schnaider Beeri
- The Joseph Sagol Neuroscience Center at the Sheba Medical CenterTel HashomerIsrael
- Department of PsychiatryThe Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ramit Ravona‐Springer
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- The Joseph Sagol Neuroscience Center at the Sheba Medical CenterTel HashomerIsrael
- Department of PsychiatrySheba Medical CenterTel HashomerIsrael
| |
Collapse
|
25
|
Radial peripapillary vessel density as early biomarker in preperimetric glaucoma and amnestic mild cognitive impairment. Graefes Arch Clin Exp Ophthalmol 2022; 260:2321-2328. [PMID: 35064364 PMCID: PMC9203372 DOI: 10.1007/s00417-022-05561-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/08/2021] [Accepted: 01/11/2022] [Indexed: 01/15/2023] Open
Abstract
PURPOSE To investigate the vessel density (VD) of the radial peripapillary capillary (RPC) plexus in patients affected by preperimetric glaucoma (PPG), amnestic mild cognitive impairment (aMCI) and in a healthy control group using optical coherence tomography angiography (OCTA) in order to clarify the pathogenetic mechanisms of these neurodegenerative diseases. METHODS In this prospective study, we studied 54 eyes of 54 patients with PPG, 54 eyes of 54 patients with aMCI and 54 healthy controls. All subjects underwent structural spectral domain optical coherence tomography (SD)-OCT to assess the ganglion cell complex (GCC) and the retinal nerve fibre layer (RNFL). OCTA was used to evaluate the VD of the RPC in different regions (whole image, inside disc and peripapillary). RESULTS The PPG and aMCI groups showed a statistically significant reduction in SD-OCT and parameters with respect to controls (p < 0.001). No statistically significant difference was found in GCC and RNFL parameters between the two study groups (p > 0.05). At OCTA examination, PPG and aMCI patients exhibited a statistically significant reduction in the VD of the RPC in whole image, inside and peripapillary regions compared to healthy controls (p < 0.001). When comparing the two study groups, the OCTA parameters were significantly impaired in PPG with respect to aMCI patients. Significant correlations were found between structural OCT and OCTA parameters in PPG and aMCI groups (p < 0.05). CONCLUSIONS RPC vessel density could represent a helpful and sensible biomarker to identify early retinal microvascular changes in PPG and MCI in order to better understand the vascular pathophysiological mechanisms involved in these neurodegenerative diseases.
Collapse
|
26
|
Santangelo R, Huang SC, Bernasconi MP, Falautano M, Comi G, Magnani G, Leocani L. Neuro-Retina Might Reflect Alzheimer's Disease Stage. J Alzheimers Dis 2021; 77:1455-1468. [PMID: 32925026 DOI: 10.3233/jad-200043] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) pathological hallmarks were found in retinas of AD patients. Several studies showed a significant reduction of neuro-retina thickness measured through optical coherence tomography (OCT) in AD patients, but possible correlations between retina morphology, cognition, and cerebrospinal fluid (CSF) AD biomarkers (Aβ42, t-tau, and p-tau) have been poorly investigated so far. OBJECTIVE In the present cross-sectional study, we measured the thickness of neuro-retinal layers through OCT searching for possible correlations with patients' cognitive performances and CSF AD biomarkers. METHODS 137 consecutive subjects [43 with AD, 37 with mild cognitive impairment (MCI), and 57 healthy controls (HC)], received an OCT scan acquisition to measure the peripapillary retinal nerve fiber layer (RNFL) thickness. In a subsample of 21 AD, 18 MCI, and 18 HC, the macular volume of ganglion cell layer (GCL), inner plexiform layer (IPL), and inner nuclear layer was computed. A comprehensive neuropsychological assessment and CSF AD biomarkers' concentrations were available in AD and MCI patients. RESULTS Peripapillary RNFL, global, and in superior quadrant was significantly thinner in AD and MCI patients when compared to HC, while macular GCL volume was significantly reduced only in AD. RNFL thickness in nasal and inferior quadrants was correlated with single CSF AD biomarker concentrations, but no differences were found in retina morphology depending on the presence of a CSF profile typical for AD. Memory performances were positively associated with GCL and IPL volume. CONCLUSION Our findings might propose OCT as a reliable and easy to handle tool able to detect neuro-retinal atrophy in AD in relation with cognitive performances.
Collapse
Affiliation(s)
- Roberto Santangelo
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, IRCCS San Raffaele Hospital, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Su-Chun Huang
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, IRCCS San Raffaele Hospital, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | | | | | - Giancarlo Comi
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, IRCCS San Raffaele Hospital, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | | | - Letizia Leocani
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, IRCCS San Raffaele Hospital, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Neuropsychology Unit, IRCCS San Raffaele Hospital, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Hospital, Milan, Italy
| |
Collapse
|
27
|
Liu K, Li J, Raghunathan R, Zhao H, Li X, Wong STC. The Progress of Label-Free Optical Imaging in Alzheimer's Disease Screening and Diagnosis. Front Aging Neurosci 2021; 13:699024. [PMID: 34366828 PMCID: PMC8341907 DOI: 10.3389/fnagi.2021.699024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/02/2021] [Indexed: 01/13/2023] Open
Abstract
As the major neurodegenerative disease of dementia, Alzheimer's disease (AD) has caused an enormous social and economic burden on society. Currently, AD has neither clear pathogenesis nor effective treatments. Positron emission tomography (PET) and magnetic resonance imaging (MRI) have been verified as potential tools for diagnosing and monitoring Alzheimer's disease. However, the high costs, low spatial resolution, and long acquisition time limit their broad clinical utilization. The gold standard of AD diagnosis routinely used in research is imaging AD biomarkers with dyes or other reagents, which are unsuitable for in vivo studies owing to their potential toxicity and prolonged and costly process of the U.S. Food and Drug Administration (FDA) approval for human use. Furthermore, these exogenous reagents might bring unwarranted interference to mechanistic studies, causing unreliable results. Several label-free optical imaging techniques, such as infrared spectroscopic imaging (IRSI), Raman spectroscopic imaging (RSI), optical coherence tomography (OCT), autofluorescence imaging (AFI), optical harmonic generation imaging (OHGI), etc., have been developed to circumvent this issue and made it possible to offer an accurate and detailed analysis of AD biomarkers. In this review, we present the emerging label-free optical imaging techniques and their applications in AD, along with their potential and challenges in AD diagnosis.
Collapse
Affiliation(s)
- Kai Liu
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jiasong Li
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
- T. T. and W. F. Chao Center for BRAIN, Houston Methodist Hospital, Houston, TX, United States
| | - Raksha Raghunathan
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
- T. T. and W. F. Chao Center for BRAIN, Houston Methodist Hospital, Houston, TX, United States
| | - Hong Zhao
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
| | - Xuping Li
- T. T. and W. F. Chao Center for BRAIN, Houston Methodist Hospital, Houston, TX, United States
| | - Stephen T. C. Wong
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
- T. T. and W. F. Chao Center for BRAIN, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
28
|
Past, present and future role of retinal imaging in neurodegenerative disease. Prog Retin Eye Res 2021; 83:100938. [PMID: 33460813 PMCID: PMC8280255 DOI: 10.1016/j.preteyeres.2020.100938] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 02/08/2023]
Abstract
Retinal imaging technology is rapidly advancing and can provide ever-increasing amounts of information about the structure, function and molecular composition of retinal tissue in humans in vivo. Most importantly, this information can be obtained rapidly, non-invasively and in many cases using Food and Drug Administration-approved devices that are commercially available. Technologies such as optical coherence tomography have dramatically changed our understanding of retinal disease and in many cases have significantly improved their clinical management. Since the retina is an extension of the brain and shares a common embryological origin with the central nervous system, there has also been intense interest in leveraging the expanding armamentarium of retinal imaging technology to understand, diagnose and monitor neurological diseases. This is particularly appealing because of the high spatial resolution, relatively low-cost and wide availability of retinal imaging modalities such as fundus photography or OCT compared to brain imaging modalities such as magnetic resonance imaging or positron emission tomography. The purpose of this article is to review and synthesize current research about retinal imaging in neurodegenerative disease by providing examples from the literature and elaborating on limitations, challenges and future directions. We begin by providing a general background of the most relevant retinal imaging modalities to ensure that the reader has a foundation on which to understand the clinical studies that are subsequently discussed. We then review the application and results of retinal imaging methodologies to several prevalent neurodegenerative diseases where extensive work has been done including sporadic late onset Alzheimer's Disease, Parkinson's Disease and Huntington's Disease. We also discuss Autosomal Dominant Alzheimer's Disease and cerebrovascular small vessel disease, where the application of retinal imaging holds promise but data is currently scarce. Although cerebrovascular disease is not generally considered a neurodegenerative process, it is both a confounder and contributor to neurodegenerative disease processes that requires more attention. Finally, we discuss ongoing efforts to overcome the limitations in the field and unmet clinical and scientific needs.
Collapse
|
29
|
Jáñez-García L, Bachtoula O, Salobrar-García E, de Hoz R, Ramirez AI, Gil P, Ramirez JM, Jáñez-Escalada L. Roughness of retinal layers in Alzheimer's disease. Sci Rep 2021; 11:11804. [PMID: 34083574 PMCID: PMC8175587 DOI: 10.1038/s41598-021-91097-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/13/2021] [Indexed: 01/20/2023] Open
Abstract
There is growing evidence that thinned retinal regions are interspersed with thickened regions in all retinal layers of patients with Alzheimer's disease (AD), causing roughness to appear on layer thickness maps. The hypothesis is that roughness of retinal layers, assessed by the fractal dimension (FD) of their thickness maps, is an early biomarker of AD. Ten retinal layers have been studied in macular volumes of optical coherence tomography from 24 healthy volunteers and 19 patients with mild AD (Mini-Mental State Examination 23.42 ± 3.11). Results show that FD of retinal layers is greater in the AD group, the differences being statistically significant (p < 0.05). Correlation of layer FD with cognitive score, visual acuity and age reach statistical significance at 7 layers. Nearly all (44 out of 45) FD correlations among layers are positive and half of them reached statistical significance (p < 0.05). Factor analysis unveiled two independent factors identified as the dysregulation of the choroidal vascular network and the retinal inflammatory process. Conclusions: surface roughness is a holistic feature of retinal layers that can be assessed by the FD of their thickness maps and it is an early biomarker of AD.
Collapse
Affiliation(s)
- Lucía Jáñez-García
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Tecnología del Conocimiento, Universidad Complutense de Madrid, Madrid, Spain
| | - Omar Bachtoula
- Instituto de Tecnología del Conocimiento, Universidad Complutense de Madrid, Madrid, Spain
| | - Elena Salobrar-García
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Óptica y Optometría, UCM, IdiSSC, Madrid, Spain
| | - Rosa de Hoz
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Óptica y Optometría, UCM, IdiSSC, Madrid, Spain
| | - Ana I Ramirez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Óptica y Optometría, UCM, IdiSSC, Madrid, Spain
| | - Pedro Gil
- Unidad de Memoria, Servicio de Geriatría, Hospital Clínico San Carlos, Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - José M Ramirez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain.
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Medicina (UCM), IdiSSC, Madrid, Spain.
| | - Luis Jáñez-Escalada
- Instituto de Tecnología del Conocimiento, Universidad Complutense de Madrid, Madrid, Spain.
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
30
|
Fereshetian S, Agranat JS, Siegel N, Ness S, Stein TD, Subramanian ML. Protein and Imaging Biomarkers in the Eye for Early Detection of Alzheimer's Disease. J Alzheimers Dis Rep 2021; 5:375-387. [PMID: 34189409 PMCID: PMC8203283 DOI: 10.3233/adr-210283] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 12/28/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common causes of dementia worldwide. Although no formal curative therapy exists for the treatment of AD, considerable research has been performed to identify biomarkers for early detection of this disease, and thus improved subsequent management. Given that the eye can be examined and imaged non-invasively with relative ease, it has emerged as an exciting area of research for evidence of biomarkers and to aid in the early diagnosis of AD. This review explores the current understanding of both protein and retinal imaging biomarkers in the eye. Herein, primary findings in the literature regarding AD biomarkers associated with the lens, retina, and other ocular structures are reviewed.
Collapse
Affiliation(s)
- Shaunt Fereshetian
- Boston University School of Medicine, Department of Ophthalmology, Boston, MA, USA
| | - Joshua S. Agranat
- Boston University School of Medicine, Department of Ophthalmology, Boston, MA, USA
- Boston Medical Center, Boston, MA, USA
| | - Nicole Siegel
- Boston University School of Medicine, Department of Ophthalmology, Boston, MA, USA
- Boston Medical Center, Boston, MA, USA
| | - Steven Ness
- Boston University School of Medicine, Department of Ophthalmology, Boston, MA, USA
- Boston Medical Center, Boston, MA, USA
| | - Thor D. Stein
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Department of Veterans Affairs Medical Center, Bedford, MA, USA
| | - Manju L. Subramanian
- Boston University School of Medicine, Department of Ophthalmology, Boston, MA, USA
- Boston Medical Center, Boston, MA, USA
| |
Collapse
|
31
|
Srinivasan S, Efron N. Optical coherence tomography in the investigation of systemic neurologic disease. Clin Exp Optom 2021; 102:309-319. [DOI: 10.1111/cxo.12858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 10/21/2018] [Accepted: 10/28/2018] [Indexed: 11/30/2022] Open
Affiliation(s)
- Sangeetha Srinivasan
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia,
| | - Nathan Efron
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia,
| |
Collapse
|
32
|
Asanad S, Felix CM, Fantini M, Harrington MG, Sadun AA, Karanjia R. Retinal ganglion cell dysfunction in preclinical Alzheimer's disease: an electrophysiologic biomarker signature. Sci Rep 2021; 11:6344. [PMID: 33737516 PMCID: PMC7973731 DOI: 10.1038/s41598-021-85010-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/20/2021] [Indexed: 11/09/2022] Open
Abstract
The current study evaluated retinal function using electroretinography (ERG) in cognitively healthy (CH) participants with preclinical Alzheimer's disease (AD), as classified by cerebral spinal fluid (CSF) Aβ42/Tau ratio. Individuals with normal retinal morphology ascertained by spectral-domain optical coherence tomography were enrolled. Full-field ERG, pattern PERG, and photopic negative response (PhNR) were performed in 29 adult participants (58 eyes). Amplitude and implicit times of the ERG wave components were analyzed. Preclinical AD participants showed marked retinal ganglion cell dysfunction relative to controls. The PhNR was significantly diminished in preclinical AD relative to controls. PhNR amplitude and N95 implicit time differentiated CH individuals with CSF biomarkers of AD pathology with 87% sensitivity and 82% specificity. These quantitative electrophysiologic findings expand our understanding of early retinal functional changes that precede cognitive decline in AD. Retinal ganglion cell dysfunction, as detected by ERG, may be a clinically useful, non-invasive in vivo biomarker for early disease detection, which is necessary for ultimately pursuing early intervention.
Collapse
Affiliation(s)
- Samuel Asanad
- Doheny Eye Centers-UCLA, Pasadena, CA, USA. .,Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Christian M Felix
- Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA.,David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michele Fantini
- Department of Ophthalmology, Sacro Cuore Don Calabria Hospital, Negrar, Italy
| | | | - Alfredo A Sadun
- Doheny Eye Centers-UCLA, Pasadena, CA, USA.,David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rustum Karanjia
- Doheny Eye Centers-UCLA, Pasadena, CA, USA.,David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Ophthalmology, University of Ottawa, Ottawa, ON, Canada.,Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
33
|
Zhang Y, Wang Y, Shi C, Shen M, Lu F. Advances in retina imaging as potential biomarkers for early diagnosis of Alzheimer's disease. Transl Neurodegener 2021; 10:6. [PMID: 33517891 PMCID: PMC7849105 DOI: 10.1186/s40035-021-00230-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/07/2021] [Indexed: 12/20/2022] Open
Abstract
As the most common form of dementia, Alzheimer’s disease (AD) is characterized by progressive cognitive impairments and constitutes a major social burden. Currently, the invasiveness and high costs of tests have limited the early detection and intervention of the disease. As a unique window of the brain, retinal changes can reflect the pathology of the brain. In this review, we summarize current understanding of retinal structures in AD, mild cognitive impairment (MCI) and preclinical AD, focusing on neurodegeneration and microvascular changes measured using optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA) technologies. The literature suggests that the impairment of retinal microvascular network and neural microstructure exists in AD, MCI and even preclinical AD. These findings provide valuable insights into a better understanding of disease pathogenesis and demonstrate that retinal changes are potential biomarkers for early diagnosis of AD and monitoring of disease progression.
Collapse
Affiliation(s)
- Ying Zhang
- School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, 325027, China
| | - Yanjiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Ce Shi
- School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, 325027, China
| | - Meixiao Shen
- School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, 325027, China.
| | - Fan Lu
- School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, 325027, China.
| |
Collapse
|
34
|
Lian TH, Jin Z, Qu YZ, Guo P, Guan HY, Zhang WJ, Ding DY, Li DN, Li LX, Wang XM, Zhang W. The Relationship Between Retinal Nerve Fiber Layer Thickness and Clinical Symptoms of Alzheimer's Disease. Front Aging Neurosci 2021; 12:584244. [PMID: 33584241 PMCID: PMC7878673 DOI: 10.3389/fnagi.2020.584244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/17/2020] [Indexed: 12/23/2022] Open
Abstract
Background/Aim: Retinal nerve fiber layer (RNFL) thickness (RT), which can reflect the status of the retinal optic nerve cells, may be affected in patients with Alzheimer's disease (AD). There are few studies on the correlation of RT of patients with AD (AD-RT) with clinical symptoms of various cognitive domains, neuropsychiatric symptoms, and activities of daily living (ADL). This study is to investigate the relationships between RT and the abovementioned clinical symptoms of AD. Methods: A total of 96 patients with AD were included in this study. RT was measured in these patients using optical coherence tomography (OCT). Demographic variables, RT, and clinical symptoms were compared between the normal and the abnormal AD-RT groups. Clinical symptoms, including cognitive symptoms, neuropsychiatric symptoms, and ADL, were evaluated using a series of rating scales. Results: The relationships between RT and cognitive symptoms scores were analyzed in patients with AD. Reduced RT was found in 54.4% of patients with AD. The average RT, RT of the superior 1/2 quadrant, and RT of the inferior 1/2 quadrant of both eyes were all significantly decreased in the abnormal AD-RT group (p < 0.001). Overall cognitive function and performance in multiple cognitive domains, including memory, language, attention, and executive function, were also significantly impaired in the abnormal AD-RT group (p < 0.05). For lower RT value, the global cognitive function and the performance in multiple cognitive domains were worse. ADL was significantly compromised in patients with AD having lower RT values (p < 0.05). Conclusions: Lower RT value appear to be correlated with cognitive impairment, and RT may be an indicator of cognitive decline in patients with AD. Further studies are required to confirm our findings.
Collapse
Affiliation(s)
- Teng-Hong Lian
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhao Jin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuan-Zhen Qu
- Department of Ophthalmology, Beijing Tiantan Hospital, Capital University of Medical Sciences, Beijing, China
| | - Peng Guo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hui-Ying Guan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei-Jiao Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Du-Yu Ding
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Da-Ning Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Li-Xia Li
- Department of Internal Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiao-Min Wang
- Department of Physiology, Capital Medical University, Beijing, China
| | - Wei Zhang
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory on Parkinson Disease, Beijing, China
| |
Collapse
|
35
|
Eleftheriou A, Huang-Link Y, Lundin F. Optical Coherence Tomography Revealing Ganglion Cell Loss in Idiopathic Normal Pressure Hydrocephalus. World Neurosurg 2021; 149:e1061-e1066. [PMID: 33444824 DOI: 10.1016/j.wneu.2021.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/01/2021] [Accepted: 01/02/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Although there may theoretically be a disturbance in the eye or the visual pathways due to abnormal cerebrospinal fluid (CSF) dynamics in idiopathic normal pressure hydrocephalus (iNPH), it has not been studied systemically. Optical coherence tomography (OCT) is a noninvasive, reproducible procedure for quantitative and qualitative analysis of retinal morphology. METHODS OCT was used to study the eye fundus before and after a CSF tap test in patients with iNPH compared with healthy individuals (HIs). Twelve patients with iNPH (6 females and 6 males) with a median age of 76 years (64-84 years) and 21 HIs (11 females and 10 males) with a median age of 73 years (64-79 years) were included. The patients underwent neurological, cognitive, and physiotherapeutic evaluation. Brain magnetic resonance imaging, CSF tap test via lumbar puncture, and subsequently CSF analysis were performed. OCT was performed before and after CSF removal. HIs underwent OCT once. RESULTS The patients had significantly reduced retinal ganglion cell layer thickness 71 μm (56-81 μm) compared with the HIs, 79.5 μm (72-90 μm) (P = 0.001), but no significant changes were observed before or after the CSF tap test. All patients improved in motor function in a 10-m walk test after the CSF tap test. The median CSF pressure was 15 and 1 cm H2O, respectively, before and after lumbar puncture with removal of median 43.5 mL CSF. CONCLUSIONS This pilot study shows OCT findings that differ from HIs and implies a rational for becoming a valuable tool in the diagnosis of iNPH. Further studies are warranted to elucidate the pathology of the retina in iNPH.
Collapse
Affiliation(s)
- Andreas Eleftheriou
- Department of Neurology, Division of Neurobiology, Linköping University, Linköping, Sweden; Department of Biomedical and Clinical Sciences, Division of Neurobiology, Linköping University, Linköping, Sweden.
| | - Yumin Huang-Link
- Department of Neurology, Division of Neurobiology, Linköping University, Linköping, Sweden; Department of Biomedical and Clinical Sciences, Division of Neurobiology, Linköping University, Linköping, Sweden
| | - Fredrik Lundin
- Department of Neurology, Division of Neurobiology, Linköping University, Linköping, Sweden; Department of Biomedical and Clinical Sciences, Division of Neurobiology, Linköping University, Linköping, Sweden
| |
Collapse
|
36
|
Song A, Johnson N, Ayala A, Thompson AC. Optical Coherence Tomography in Patients with Alzheimer's Disease: What Can It Tell Us? Eye Brain 2021; 13:1-20. [PMID: 33447120 PMCID: PMC7802785 DOI: 10.2147/eb.s235238] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/09/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Although Alzheimer's disease (AD) is a leading cause of dementia worldwide, its clinical diagnosis remains a challenge. Optical coherence tomography (OCT) and OCT with angiography (OCTA) are non-invasive ophthalmic imaging tools with the potential to detect retinal structural and microvascular changes in patients with AD, which may serve as biomarkers for the disease. In this systematic review, we evaluate whether certain OCT and OCTA parameters are significantly associated with AD and mild cognitive impairment (MCI). METHODS PubMed database was searched using a combination of MeSH terms to identify studies for review. Studies were organized by participant diagnostic groups, type of imaging modality, and OCT/OCTA parameters of interest. Participant demographic data was also collected and baseline descriptive statistics were calculated for the included studies. RESULTS Seventy-one studies were included for review, representing a total of 6757 patients (2350 AD, 793 MCI, 2902 healthy controls (HC), and 841 others with a range of other neurodegenerative diagnoses). The mean baseline ages were 72.78±3.69, 71.52±2.88, 70.55±3.85 years for AD, MCI and HC groups, respectively. The majority of studies noted significant structural and functional decline in AD patients when compared to HC. Although analysis of MCI groups yielded more mixed results, a similar pattern of decline was often noted amongst patients with MCI relative to HC. OCT and OCTA measurements were also shown to correlate with established measures of AD such as neuropsychological testing or neuroimaging. CONCLUSION OCT and OCTA show great potential as non-invasive technologies for the diagnosis of AD. However, further research is needed to determine whether there are AD-specific patterns of structural or microvascular change in the retina and optic nerve that distinguish AD from other neurodegenerative diseases. Development of sensitive and specific OCT/OCTA parameters will be necessary before they can be used to detect AD in clinical settings.
Collapse
Affiliation(s)
- Ailin Song
- Duke University School of Medicine, Durham, NC, USA
| | | | | | | |
Collapse
|
37
|
Czakó C, Kovács T, Ungvari Z, Csiszar A, Yabluchanskiy A, Conley S, Csipo T, Lipecz A, Horváth H, Sándor GL, István L, Logan T, Nagy ZZ, Kovács I. Retinal biomarkers for Alzheimer's disease and vascular cognitive impairment and dementia (VCID): implication for early diagnosis and prognosis. GeroScience 2020; 42:1499-1525. [PMID: 33011937 PMCID: PMC7732888 DOI: 10.1007/s11357-020-00252-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Cognitive impairment and dementia are major medical, social, and economic public health issues worldwide with significant implications for life quality in older adults. The leading causes are Alzheimer's disease (AD) and vascular cognitive impairment/dementia (VCID). In both conditions, pathological alterations of the cerebral microcirculation play a critical pathogenic role. Currently, the main pathological biomarkers of AD-β-amyloid peptide and hyperphosphorylated tau proteins-are detected either through cerebrospinal fluid (CSF) or PET examination. Nevertheless, given that they are invasive and expensive procedures, their availability is limited. Being part of the central nervous system, the retina offers a unique and easy method to study both neurodegenerative disorders and cerebral small vessel diseases in vivo. Over the past few decades, a number of novel approaches in retinal imaging have been developed that may allow physicians and researchers to gain insights into the genesis and progression of cerebromicrovascular pathologies. Optical coherence tomography (OCT), OCT angiography, fundus photography, and dynamic vessel analyzer (DVA) are new imaging methods providing quantitative assessment of retinal structural and vascular indicators-such as thickness of the inner retinal layers, retinal vessel density, foveal avascular zone area, tortuosity and fractal dimension of retinal vessels, and microvascular dysfunction-for cognitive impairment and dementia. Should further studies need to be conducted, these retinal alterations may prove to be useful biomarkers for screening and monitoring dementia progression in clinical routine. In this review, we seek to highlight recent findings and current knowledge regarding the application of retinal biomarkers in dementia assessment.
Collapse
Affiliation(s)
- Cecilia Czakó
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Tibor Kovács
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Andriy Yabluchanskiy
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shannon Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tamas Csipo
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Agnes Lipecz
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Ophthalmology, Josa Andras Hospital, Nyiregyhaza, Hungary
| | - Hajnalka Horváth
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | | | - Lilla István
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Trevor Logan
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Zoltán Zsolt Nagy
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Illés Kovács
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary.
- Department of Ophthalmology, Weill Cornell Medical College, New York City, NY, USA.
| |
Collapse
|
38
|
Lemmens S, Van Craenendonck T, Van Eijgen J, De Groef L, Bruffaerts R, de Jesus DA, Charle W, Jayapala M, Sunaric-Mégevand G, Standaert A, Theunis J, Van Keer K, Vandenbulcke M, Moons L, Vandenberghe R, De Boever P, Stalmans I. Combination of snapshot hyperspectral retinal imaging and optical coherence tomography to identify Alzheimer's disease patients. Alzheimers Res Ther 2020; 12:144. [PMID: 33172499 PMCID: PMC7654576 DOI: 10.1186/s13195-020-00715-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The eye offers potential for the diagnosis of Alzheimer's disease (AD) with retinal imaging techniques being explored to quantify amyloid accumulation and aspects of neurodegeneration. To assess these changes, this proof-of-concept study combined hyperspectral imaging and optical coherence tomography to build a classification model to differentiate between AD patients and controls. METHODS In a memory clinic setting, patients with a diagnosis of clinically probable AD (n = 10) or biomarker-proven AD (n = 7) and controls (n = 22) underwent non-invasive retinal imaging with an easy-to-use hyperspectral snapshot camera that collects information from 16 spectral bands (460-620 nm, 10-nm bandwidth) in one capture. The individuals were also imaged using optical coherence tomography for assessing retinal nerve fiber layer thickness (RNFL). Dedicated image preprocessing analysis was followed by machine learning to discriminate between both groups. RESULTS Hyperspectral data and retinal nerve fiber layer thickness data were used in a linear discriminant classification model to discriminate between AD patients and controls. Nested leave-one-out cross-validation resulted in a fair accuracy, providing an area under the receiver operating characteristic curve of 0.74 (95% confidence interval [0.60-0.89]). Inner loop results showed that the inclusion of the RNFL features resulted in an improvement of the area under the receiver operating characteristic curve: for the most informative region assessed, the average area under the receiver operating characteristic curve was 0.70 (95% confidence interval [0.55, 0.86]) and 0.79 (95% confidence interval [0.65, 0.93]), respectively. The robust statistics used in this study reduces the risk of overfitting and partly compensates for the limited sample size. CONCLUSIONS This study in a memory-clinic-based cohort supports the potential of hyperspectral imaging and suggests an added value of combining retinal imaging modalities. Standardization and longitudinal data on fully amyloid-phenotyped cohorts are required to elucidate the relationship between retinal structure and cognitive function and to evaluate the robustness of the classification model.
Collapse
Affiliation(s)
- Sophie Lemmens
- Department of Ophthalmology, University Hospitals UZ Leuven, Herestraat 49, 3000 Leuven, Belgium
- Department of Neurosciences, Research Group Ophthalmology, KU Leuven, Biomedical Sciences Group, Herestraat 49, 3000 Leuven, Belgium
- VITO (Flemish Institute for Technological Research), Health Unit, Boeretang 200, 2400 Mol, Belgium
| | - Toon Van Craenendonck
- VITO (Flemish Institute for Technological Research), Health Unit, Boeretang 200, 2400 Mol, Belgium
| | - Jan Van Eijgen
- Department of Ophthalmology, University Hospitals UZ Leuven, Herestraat 49, 3000 Leuven, Belgium
- Department of Neurosciences, Research Group Ophthalmology, KU Leuven, Biomedical Sciences Group, Herestraat 49, 3000 Leuven, Belgium
- VITO (Flemish Institute for Technological Research), Health Unit, Boeretang 200, 2400 Mol, Belgium
| | - Lies De Groef
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Naamsestraat 61, 3000 Leuven, Belgium
| | - Rose Bruffaerts
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Department of Neurology, University Hospitals UZ Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Danilo Andrade de Jesus
- Department of Neurosciences, Research Group Ophthalmology, KU Leuven, Biomedical Sciences Group, Herestraat 49, 3000 Leuven, Belgium
| | | | | | - Gordana Sunaric-Mégevand
- Clinical Research Center, Mémorial A. de Rothschild, 22 Chemin Beau Soleil, 1208 Geneva, Switzerland
| | - Arnout Standaert
- VITO (Flemish Institute for Technological Research), Health Unit, Boeretang 200, 2400 Mol, Belgium
| | - Jan Theunis
- VITO (Flemish Institute for Technological Research), Health Unit, Boeretang 200, 2400 Mol, Belgium
| | - Karel Van Keer
- Department of Ophthalmology, University Hospitals UZ Leuven, Herestraat 49, 3000 Leuven, Belgium
- Department of Neurosciences, Research Group Ophthalmology, KU Leuven, Biomedical Sciences Group, Herestraat 49, 3000 Leuven, Belgium
| | - Mathieu Vandenbulcke
- Division of Psychiatry, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Naamsestraat 61, 3000 Leuven, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Department of Neurology, University Hospitals UZ Leuven, Herestraat 49, 3000 Leuven, Belgium
- Alzheimer Research Center KU Leuven, Leuven Brain Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Patrick De Boever
- VITO (Flemish Institute for Technological Research), Health Unit, Boeretang 200, 2400 Mol, Belgium
- Hasselt University, Center of Environmental Sciences, Agoralaan, 3590 Diepenbeek, Belgium
- Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Ingeborg Stalmans
- Department of Ophthalmology, University Hospitals UZ Leuven, Herestraat 49, 3000 Leuven, Belgium
- Department of Neurosciences, Research Group Ophthalmology, KU Leuven, Biomedical Sciences Group, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
39
|
Alber J, Goldfarb D, Thompson LI, Arthur E, Hernandez K, Cheng D, DeBuc DC, Cordeiro F, Provetti-Cunha L, den Haan J, Van Stavern GP, Salloway SP, Sinoff S, Snyder PJ. Developing retinal biomarkers for the earliest stages of Alzheimer's disease: What we know, what we don't, and how to move forward. Alzheimers Dement 2020; 16:229-243. [PMID: 31914225 DOI: 10.1002/alz.12006] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/23/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022]
Abstract
The last decade has seen a substantial increase in research focused on the identification, development, and validation of diagnostic and prognostic retinal biomarkers for Alzheimer's disease (AD). Sensitive retinal biomarkers may be advantageous because they are cost and time efficient, non-invasive, and present a minimal degree of patient risk and a high degree of accessibility. Much of the work in this area thus far has focused on distinguishing between symptomatic AD and/or mild cognitive impairment (MCI) and cognitively normal older adults. Minimal work has been done on the detection of preclinical AD, the earliest stage of AD pathogenesis characterized by the accumulation of cerebral amyloid absent clinical symptoms of MCI or dementia. The following review examines retinal structural changes, proteinopathies, and vascular alterations that have been proposed as potential AD biomarkers, with a focus on studies examining the earliest stages of disease pathogenesis. In addition, we present recommendations for future research to move beyond the discovery phase and toward validation of AD risk biomarkers that could potentially be used as a first step in a multistep screening process for AD risk detection.
Collapse
Affiliation(s)
- Jessica Alber
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA.,George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA.,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Butler Hospital Memory & Aging Program, Providence, Rhode Island, USA
| | | | - Louisa I Thompson
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Butler Hospital Memory & Aging Program, Providence, Rhode Island, USA
| | - Edmund Arthur
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA.,George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA.,Butler Hospital Memory & Aging Program, Providence, Rhode Island, USA
| | | | - Derrick Cheng
- Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Delia Cabrera DeBuc
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | - Francesca Cordeiro
- Imperial College London, London, UK.,University College London, London, UK.,Western Eye Hospital, London, UK
| | - Leonardo Provetti-Cunha
- Federal University of Juiz de Fora Medical School, Juiz de Fora, Minas Gerais, Brazil.,Juiz de Fora Eye Hospital, Juiz de Fora, Minas Gerais, Brazil.,University of São Paulo Medical School, São Paulo, Brazil
| | - Jurre den Haan
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Gregory P Van Stavern
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Stephen P Salloway
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Butler Hospital Memory & Aging Program, Providence, Rhode Island, USA.,Department of Neurology, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | | | - Peter J Snyder
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA.,George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA.,Department of Neurology and Department of Surgery (Ophthalmology), Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
40
|
Ganglion Cell Layer Thinning in Alzheimer's Disease. ACTA ACUST UNITED AC 2020; 56:medicina56100553. [PMID: 33096909 PMCID: PMC7590216 DOI: 10.3390/medicina56100553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022]
Abstract
The main advantages of optical retinal imaging may allow researchers to achieve deeper analysis of retinal ganglion cells (GC) in vivo using optical coherence tomography (OCT). Using this device to elucidate the impact of Alzheimer’s disease (AD) on retinal health with the aim to identify a new AD biomarker, a large amount of studies has analyzed GC in different stages of the disease. Our review highlights recent knowledge into measuring retinal morphology in AD making distinctive between whether those studies included patients with clinical dementia stage or also mild cognitive impairment (MCI), which selection criteria were applied to diagnosed patients included, and which device of OCT was employed. Despite several differences, previous works found a significant thinning of GC layer in patients with AD and MCI. In the long term, an important future direction is to achieve a specific ocular biomarker with enough sensitivity to reveal preclinical AD disorder and to monitor progression.
Collapse
|
41
|
Rojas P, Ramírez AI, Fernández-Albarral JA, López-Cuenca I, Salobrar-García E, Cadena M, Elvira-Hurtado L, Salazar JJ, de Hoz R, Ramírez JM. Amyotrophic Lateral Sclerosis: A Neurodegenerative Motor Neuron Disease With Ocular Involvement. Front Neurosci 2020; 14:566858. [PMID: 33071739 PMCID: PMC7544921 DOI: 10.3389/fnins.2020.566858] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that causes degeneration of the lower and upper motor neurons and is the most prevalent motor neuron disease. This disease is characterized by muscle weakness, stiffness, and hyperreflexia. Patients survive for a short period from the onset of the disease. Most cases are sporadic, with only 10% of the cases being genetic. Many genes are now known to be involved in familial ALS cases, including some of the sporadic cases. It has also been observed that, in addition to genetic factors, there are numerous molecular mechanisms involved in these pathologies, such as excitotoxicity, mitochondrial disorders, alterations in axonal transport, oxidative stress, accumulation of misfolded proteins, and neuroinflammation. This pathology affects the motor neurons, the spinal cord, the cerebellum, and the brain, but recently, it has been shown that it also affects the visual system. This impact occurs not only at the level of the oculomotor system but also at the retinal level, which is why the retina is being proposed as a possible biomarker of this pathology. The current review discusses the main aspects mentioned above related to ALS, such as the main genes involved, the most important molecular mechanisms that affect this pathology, its ocular involvement, and the possible usefulness of the retina as a biomarker.
Collapse
Affiliation(s)
- Pilar Rojas
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain.,Hospital General Universitario Gregorio Marañón, Instituto Oftálmico de Madrid, Madrid, Spain
| | - Ana I Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain.,OFTARED, ISCIII, Madrid, Spain.,Departamento de Inmunología Oftalmología y ORL, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - José A Fernández-Albarral
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain
| | - Inés López-Cuenca
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain
| | - Elena Salobrar-García
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain.,OFTARED, ISCIII, Madrid, Spain.,Departamento de Inmunología Oftalmología y ORL, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - Manuel Cadena
- Hospital General Universitario Gregorio Marañón, Instituto Oftálmico de Madrid, Madrid, Spain
| | - Lorena Elvira-Hurtado
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan J Salazar
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain.,OFTARED, ISCIII, Madrid, Spain.,Departamento de Inmunología Oftalmología y ORL, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - Rosa de Hoz
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain.,OFTARED, ISCIII, Madrid, Spain.,Departamento de Inmunología Oftalmología y ORL, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - José M Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain.,OFTARED, ISCIII, Madrid, Spain.,Departamento de Inmunología Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
42
|
Subramanian ML, Vig V, Chung J, Fiorello MG, Xia W, Zetterberg H, Blennow K, Zetterberg M, Shareef F, Siegel NH, Ness S, Jun GR, Stein TD. Neurofilament light chain in the vitreous humor of the eye. Alzheimers Res Ther 2020; 12:111. [PMID: 32943089 PMCID: PMC7500015 DOI: 10.1186/s13195-020-00677-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Neurofilament light chain (NfL) is a promising biomarker of neurodegeneration in the cerebrospinal fluid and blood. This study investigated the presence of NfL in the vitreous humor and its associations with amyloid beta, tau, inflammatory cytokines and vascular proteins, apolipoprotein E (APOE) genotypes, Mini-Mental State Examination (MMSE) scores, systemic disease, and ophthalmic diseases. METHODS This is a single-site, prospective, cross-sectional cohort study. Undiluted vitreous fluid (0.5-1.0 mL) was aspirated during vitrectomy, and whole blood was drawn for APOE genotyping. NfL, amyloid beta (Aβ), total Tau (t-Tau), phosphorylated Tau (p-Tau181), inflammatory cytokines, chemokines, and vascular proteins in the vitreous were quantitatively measured by immunoassay. The main outcome measures were the detection of NfL levels in the vitreous humor and its associations with the aforementioned proteins. Linear regression was used to test the associations of NfL with other proteins, APOE genotypes, MMSE scores, and ophthalmic and systemic diseases after adjustment for age, sex, education level, and other eye diseases. RESULTS NfL was detected in all 77 vitreous samples. NfL was not found to be associated with ophthalmic conditions, APOE genotypes, MMSE scores, or systemic disease (p > 0.05). NfL levels were positively associated with increased vitreous levels of Aβ40 (p = 7.7 × 10-5), Aβ42 (p = 2.8 × 10-4), and t-tau (p = 5.5 × 10-7), but not with p-tau181 (p = 0.53). NfL also had significant associations with inflammatory cytokines such as interleukin-15 (IL-15, p = 5.3 × 10-4), IL-16 (p = 2.2 × 10-4), monocyte chemoattractant protein-1 (MCP1, p = 4.1 × 10-4), and vascular proteins such as vascular endothelial growth factor receptor-1 (VEGFR1, p = 2.9 × 10-6), Vegf-C (p = 8.6 × 10-6), vascular cell adhesion molecule-1 (VCAM-1, p = 5.0 × 10-4), Tie-2 (p = 6.3 × 10-4), and intracellular adhesion molecular-1 (ICAM-1, p = 1.6 × 10-4). CONCLUSION NfL is detectable in the vitreous humor of the eye and significantly associated with amyloid beta, t-tau, and select inflammatory and vascular proteins in the vitreous. Additionally, NfL was not associated with patients' clinical eye condition. Our results serve as a foundation for further investigation of NfL in the ocular fluids to inform us about the potential utility of its presence in the eye.
Collapse
Affiliation(s)
- Manju L Subramanian
- Department of Ophthalmology, Boston Medical Center, Boston University School of Medicine, 85 E Concord St. #8813, Boston, MA, 02118, USA.
| | - Viha Vig
- Department of Ophthalmology, Boston Medical Center, Boston University School of Medicine, 85 E Concord St. #8813, Boston, MA, 02118, USA
| | - Jaeyoon Chung
- Department of Medicine (Biomedical Genetics Section), Boston University School of Medicine, Boston, MA, USA
| | - Marissa G Fiorello
- Department of Ophthalmology, Boston Medical Center, Boston University School of Medicine, 85 E Concord St. #8813, Boston, MA, 02118, USA
| | - Weiming Xia
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Geriatric Research Education and Clinical Center, Bedford Veterans Affairs Medical Center, Bedford, MA, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry at Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry at Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Madeleine Zetterberg
- Department of Clinical Neuroscience at Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Farah Shareef
- Department of Ophthalmology, University of Illinois at Chicago School of Medicine, Chicago, IL, USA
| | - Nicole H Siegel
- Department of Ophthalmology, Boston Medical Center, Boston University School of Medicine, 85 E Concord St. #8813, Boston, MA, 02118, USA
| | - Steven Ness
- Department of Ophthalmology, Boston Medical Center, Boston University School of Medicine, 85 E Concord St. #8813, Boston, MA, 02118, USA
| | - Gyungah R Jun
- Department of Medicine (Biomedical Genetics Section), Boston University School of Medicine, Boston, MA, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
- Department of Veterans Affairs Medical Center, VA Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
43
|
Wu SZ, Masurkar AV, Balcer LJ. Afferent and Efferent Visual Markers of Alzheimer's Disease: A Review and Update in Early Stage Disease. Front Aging Neurosci 2020; 12:572337. [PMID: 33061906 PMCID: PMC7518395 DOI: 10.3389/fnagi.2020.572337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/20/2020] [Indexed: 01/06/2023] Open
Abstract
Vision, which requires extensive neural involvement, is often impaired in Alzheimer's disease (AD). Over the last few decades, accumulating evidence has shown that various visual functions and structures are compromised in Alzheimer's dementia and when measured can detect those with dementia from those with normal aging. These visual changes involve both the afferent and efferent parts of the visual system, which correspond to the sensory and eye movement aspects of vision, respectively. There are fewer, but a growing number of studies, that focus on the detection of predementia stages. Visual biomarkers that detect these stages are paramount in the development of successful disease-modifying therapies by identifying appropriate research participants and in identifying those who would receive future therapies. This review provides a summary and update on common afferent and efferent visual markers of AD with a focus on mild cognitive impairment (MCI) and preclinical disease detection. We further propose future directions in this area. Given the ease of performing visual tests, the accessibility of the eye, and advances in ocular technology, visual measures have the potential to be effective, practical, and non-invasive biomarkers of AD.
Collapse
Affiliation(s)
- Shirley Z. Wu
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, United States
| | - Arjun V. Masurkar
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Laura J. Balcer
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
44
|
Wright LM, Stein TD, Jun G, Chung J, McConnell K, Fiorello M, Siegel N, Ness S, Xia W, Turner KL, Subramanian ML. Association of Cognitive Function with Amyloid-β and Tau Proteins in the Vitreous Humor. J Alzheimers Dis 2020; 68:1429-1438. [PMID: 30856114 DOI: 10.3233/jad-181104] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The eye may serve as source for diagnostic testing for early detection of Alzheimer's disease (AD). Examination of amyloid-β (Aβ) and tau protein content in human vitreous and its correlation to neuro-cognition may improve ocular-based AD detection methods. OBJECTIVE To evaluate levels of Aβ and tau protein in human vitreous humor and investigate the clinical predictive role of these proteins as early diagnostic markers of AD. METHODS A prospective, single-center, multi-surgeon cohort study. Vitreous humor samples from 80 eyes were measured quantitatively for Aβ40-42, pTau, and tTau. Linear regression was used to test associations between AD biomarker levels, Mini-Mental State Exam (MMSE), and serum apolipoprotein E (APOE) allele status, with adjustment for age, sex, and education level of patients. RESULTS Lower MMSE scores were significantly associated with lower levels of vitreous Aβ40 (p = 0.015), Aβ42 (p = 0.0066), and tTau (p = 0.0085), and these biomarkers were not associated with any pre-existing eye conditions. Presence of the ɛ4 allele and the ɛ2 allele approached significance with reduced Aβ40 level (p = 0.053) and increased p-Tau level (p = 0.056), respectively. CONCLUSION Patients with poor cognitive function have significantly lower vitreous humor levels of AD-related biomarkers Aβ40, Aβ42, and tTau. These biomarkers do not correlate with underlying eye conditions, suggesting their specificity in association with cognitive change. This is the first study to our knowledge to correlate cognition with AD-related proteins in the vitreous humor. Results suggest ocular proteins may have a role for early dementia detection in individuals at risk for AD.
Collapse
Affiliation(s)
- Lauren M Wright
- Department of Ophthalmology, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA
| | - Thor D Stein
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA.,Department of Veterans Affairs Medical Center, Bedford, MA, USA.,VA Boston Healthcare System, Boston, MA, USA.,Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
| | - Gyungah Jun
- Department of Genetics, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA.,Department of Epidemiology and Biostatistics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jaeyoon Chung
- Department of Genetics, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA.,Department of Epidemiology and Biostatistics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Kate McConnell
- Department of Ophthalmology, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA
| | - Marissa Fiorello
- Department of Ophthalmology, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA
| | - Nicole Siegel
- Department of Ophthalmology, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA
| | - Steven Ness
- Department of Ophthalmology, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA
| | - Weiming Xia
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA.,Department of Pharmacology and Experimental Therapeutics, Veterans Affairs Medical Center, Bedford, MA, USA
| | - Kelley L Turner
- Department of Ophthalmology, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA
| | - Manju L Subramanian
- Department of Ophthalmology, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA
| |
Collapse
|
45
|
Tsokolas G, Tsaousis KT, Diakonis VF, Matsou A, Tyradellis S. Optical Coherence Tomography Angiography in Neurodegenerative Diseases: A Review. Eye Brain 2020; 12:73-87. [PMID: 32765149 PMCID: PMC7368556 DOI: 10.2147/eb.s193026] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022] Open
Abstract
Background Optical coherence tomography angiography (OCT-A) has emerged as a novel, fast, safe and non-invasive imaging technique of analyzing the retinal and choroidal microvasculature in vivo. OCT-A captures multiple sequential B-scans performed repeatedly over a specific retinal area at high speed, thus enabling the composition of a vascular map with areas of contrast change (high flow zones) and areas of steady contrast (slow or no flow zones). It therefore provides unique insight into the exact retinal or choroidal layer and location at which abnormal blood flow develops. OCTA has evolved into a useful tool for understanding a number of retinal pathologies such as diabetic retinopathy, age-related macular degeneration, central serous chorioretinopathy, vascular occlusions, macular telangiectasia and choroidal neovascular membranes of other causes. OCT-A technology is also increasingly being used in the evaluation of optic disc perfusion and has been suggested as a valuable tool in the early detection of glaucomatous damage and monitoring progression. Objective To review the existing literature on the applications of optical coherence tomography angiography in neurodegenerative diseases. Summary A meticulous literature was performed until the present day. Google Scholar, PubMed, Mendeley search engines were used for this purpose. We used 123 published manuscripts as our references. OCT-A has been utilized so far to describe abnormalities in multiple sclerosis (MS), Alzheimer’s disease, arteritic and non-arteritic optic neuropathy (AION and NAION), Leber’s hereditary optic neuropathy (LHON) papilloedema, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis (ALS), Wolfram syndrome, migraines, lesions of the visual pathway and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). It appears that OCT-A findings correlate quite well with the severity of the aforementioned diseases. However, OCT-A has its own limitations, namely its lack of wide-field view of the peripheral retina and the inaccurate interpretation due to motion artifacts in uncooperative groups of patients (e.g. children). Larger prospective longitudinal studies will need to be conducted in order to eliminate the aforementioned limitations.
Collapse
Affiliation(s)
- Georgios Tsokolas
- Ophthalmology Department, Leicester Royal Infirmary, University Hospitals of Leicester, Leicester, UK
| | - Konstantinos T Tsaousis
- Ophthalmology Department, Leicester Royal Infirmary, University Hospitals of Leicester, Leicester, UK
| | | | - Artemis Matsou
- Ophthalmology Department, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
| | - Straton Tyradellis
- Ophthalmology Department, Leicester Royal Infirmary, University Hospitals of Leicester, Leicester, UK
| |
Collapse
|
46
|
López-Cuenca I, de Hoz R, Salobrar-García E, Elvira-Hurtado L, Rojas P, Fernández-Albarral JA, Barabash A, Salazar JJ, Ramírez AI, Ramírez JM. Macular Thickness Decrease in Asymptomatic Subjects at High Genetic Risk of Developing Alzheimer's Disease: An OCT Study. J Clin Med 2020; 9:jcm9061728. [PMID: 32503282 PMCID: PMC7355697 DOI: 10.3390/jcm9061728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022] Open
Abstract
In this case control study, we examined the retinal thickness of the different layers in the macular region and peripapillary retinal nerve fiber layer (RNFL) with optical coherence tomography (OCT) in healthy cognitive subjects (from 51 to 74 years old) at high genetic risk for developing Alzheimer’s disease (AD). Thirty-five subjects with a family history of Alzheimer disease (AD) (FH+) and ApoE ɛ4 carriers and 29 age-matched control subjects without a family history of AD (FH−) and ApoE ɛ4 non-carriers were included. Compared to FH− ApoE ɛ4 non-carriers, in FH+ ApoE ɛ4 carriers, there were statistically significant decreases (p < 0.05) in (i) the foveal area of mRNFL; (ii) the inferior and nasal sectors in the outer and inner macular ring in the inner plexiform layer (IPL); (iii) the foveal area and the inferior sector in the outer macular ring in the inner nuclear layer (INL); and (iv) the inferior sector of the outer macular ring in the outer plexiform layer (OPL). However, no statistically significant differences were found in the peripapillary thickness of RNFL between both study groups. In subjects with cognitive health and high genetic risk for the development of AD, initial changes appeared in the macular area. OCT could be a promising, cost-effective and non-invasive test useful in early AD, before the onset of clinical symptoms.
Collapse
Affiliation(s)
- Inés López-Cuenca
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.L.-C.); (R.d.H.); (E.S.-G.); (L.E.-H.); (P.R.); (J.A.F.-A.); (J.J.S.)
| | - Rosa de Hoz
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.L.-C.); (R.d.H.); (E.S.-G.); (L.E.-H.); (P.R.); (J.A.F.-A.); (J.J.S.)
- IIORC, Faculty of Medicine, 28011 Madrid, Spain
- Facultad de Óptica y Optometría, Departamento de Inmunología, Oftalmología y ORL, UCM, 28037 Madrid, Spain
| | - Elena Salobrar-García
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.L.-C.); (R.d.H.); (E.S.-G.); (L.E.-H.); (P.R.); (J.A.F.-A.); (J.J.S.)
- IIORC, Faculty of Medicine, 28011 Madrid, Spain
- Facultad de Óptica y Optometría, Departamento de Inmunología, Oftalmología y ORL, UCM, 28037 Madrid, Spain
| | - Lorena Elvira-Hurtado
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.L.-C.); (R.d.H.); (E.S.-G.); (L.E.-H.); (P.R.); (J.A.F.-A.); (J.J.S.)
| | - Pilar Rojas
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.L.-C.); (R.d.H.); (E.S.-G.); (L.E.-H.); (P.R.); (J.A.F.-A.); (J.J.S.)
- Hospital General Universitario Gregorio Marañón, Instituto Oftálmico de Madrid, 28007 Madrid, Spain
| | - José A. Fernández-Albarral
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.L.-C.); (R.d.H.); (E.S.-G.); (L.E.-H.); (P.R.); (J.A.F.-A.); (J.J.S.)
| | - Ana Barabash
- Endocrinology and Nutrition Department, Hospital Clínico Universitario San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| | - Juan J. Salazar
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.L.-C.); (R.d.H.); (E.S.-G.); (L.E.-H.); (P.R.); (J.A.F.-A.); (J.J.S.)
- IIORC, Faculty of Medicine, 28011 Madrid, Spain
- Facultad de Óptica y Optometría, Departamento de Inmunología, Oftalmología y ORL, UCM, 28037 Madrid, Spain
| | - Ana I. Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.L.-C.); (R.d.H.); (E.S.-G.); (L.E.-H.); (P.R.); (J.A.F.-A.); (J.J.S.)
- IIORC, Faculty of Medicine, 28011 Madrid, Spain
- Facultad de Óptica y Optometría, Departamento de Inmunología, Oftalmología y ORL, UCM, 28037 Madrid, Spain
- Correspondence: (A.I.R.); (J.M.R.)
| | - José M. Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.L.-C.); (R.d.H.); (E.S.-G.); (L.E.-H.); (P.R.); (J.A.F.-A.); (J.J.S.)
- IIORC, Faculty of Medicine, 28011 Madrid, Spain
- Facultad de Medicina, Departamento de Inmunología, Oftalmología y ORL, UCM, 28040 Madrid, Spain
- Correspondence: (A.I.R.); (J.M.R.)
| |
Collapse
|
47
|
Asanad S, Fantini M, Sultan W, Nassisi M, Felix CM, Wu J, Karanjia R, Ross-Cisneros FN, Sagare AP, Zlokovic BV, Chui HC, Pogoda JM, Arakaki X, Fonteh AN, Sadun A. A. AA, Harrington MG. Retinal nerve fiber layer thickness predicts CSF amyloid/tau before cognitive decline. PLoS One 2020; 15:e0232785. [PMID: 32469871 PMCID: PMC7259639 DOI: 10.1371/journal.pone.0232785] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022] Open
Abstract
Background Alzheimer’s disease (AD) pathology precedes symptoms and its detection can identify at-risk individuals who may benefit from early treatment. Since the retinal nerve fiber layer (RNFL) is depleted in established AD, we tested whether its thickness can predict whether cognitively healthy (CH) individuals have a normal or pathological cerebrospinal fluid (CSF) Aß42 (A) and tau (T) ratio. Methods As part of an ongoing longitudinal study, we enrolled CH individuals, excluding those with cognitive impairment and significant ocular pathology. We classified the CH group into two sub-groups, normal (CH-NAT, n = 16) or pathological (CH-PAT, n = 27), using a logistic regression model from the CSF AT ratio that identified >85% of patients with a clinically probable AD diagnosis. Spectral-domain optical coherence tomography (OCT) was acquired for RNFL, ganglion cell-inner plexiform layer (GC-IPL), and macular thickness. Group differences were tested using mixed model repeated measures and a classification model derived using multiple logistic regression. Results Mean age (± standard deviation) in the CH-PAT group (n = 27; 75.2 ± 8.4 years) was similar (p = 0.50) to the CH-NAT group (n = 16; 74.1 ± 7.9 years). Mean RNFL (standard error) was thinner in the CH-PAT group by 9.8 (2.7) μm; p < 0.001. RNFL thickness classified CH-NAT vs. CH-PAT with 87% sensitivity and 56.3% specificity. Conclusions Our retinal data predict which individuals have CSF biomarkers of AD pathology before cognitive deficits are detectable with 87% sensitivity. Such results from easy-to-acquire, objective and non-invasive measurements of the RNFL merit further study of OCT technology to monitor or screen for early AD pathology.
Collapse
Affiliation(s)
- Samuel Asanad
- Doheny Eye Institute, Los Angeles, CA, United States of America
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Michele Fantini
- Doheny Eye Institute, Los Angeles, CA, United States of America
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
- Department of Medicine, Ophthalmology, University of Udine, Udine, Italy
| | - William Sultan
- Doheny Eye Institute, Los Angeles, CA, United States of America
| | - Marco Nassisi
- Doheny Eye Institute, Los Angeles, CA, United States of America
- Department of Clinical Sciences and Community Health, Ophthalmological Unit, IRCCS-Cà Granda Foundation—Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Christian M. Felix
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Jessica Wu
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Rustum Karanjia
- Doheny Eye Institute, Los Angeles, CA, United States of America
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
- Department of Ophthalmology, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | - Abhay P. Sagare
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Berislav V. Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Helena C. Chui
- Department of Neurology, University of Southern California, Los Angeles, CA, United States of America
| | - Janice M. Pogoda
- Cipher Biostatistics & Reporting, Reno, NV, United States of America
| | - Xianghong Arakaki
- Huntington Medical Research Institutes, Pasadena, CA, United States of America
| | - Alfred N. Fonteh
- Huntington Medical Research Institutes, Pasadena, CA, United States of America
| | - Alfredo A. Sadun A. A.
- Doheny Eye Institute, Los Angeles, CA, United States of America
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Michael G. Harrington
- Huntington Medical Research Institutes, Pasadena, CA, United States of America
- * E-mail:
| |
Collapse
|
48
|
Sun JQ, McGeehan B, Firn K, Irwin D, Grossman M, Ying GS, Kim BJ. Comparison of the Iowa Reference Algorithm to the Heidelberg Spectralis optical coherence tomography segmentation algorithm. JOURNAL OF BIOPHOTONICS 2020; 13:e201960187. [PMID: 32057191 DOI: 10.1002/jbio.201960187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/23/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
For spectral-domain optical coherence tomography (SD-OCT) studies of neurodegeneration, it is important to understand how segmentation algorithms differ in retinal layer thickness measurements, segmentation error locations and the impact of manual correction. Using macular SD-OCT images of frontotemporal degeneration patients and controls, we compare the individual and aggregate retinal layer thickness measurements provided by two commonly used algorithms, the Iowa Reference Algorithm and Heidelberg Spectralis, with manual correction of significant segmentation errors. We demonstrate small differences of most retinal layer thickness measurements between these algorithms. Outer sectors of the Early Treatment Diabetic Retinopathy Study grid require a greater percent of eyes to be corrected than inner sectors of the retinal nerve fiber layer (RNFL). Manual corrections affect thickness measurements mildly, resulting in at most a 5% change in RNFL thickness. Our findings can inform researchers how to best use different segmentation algorithms when comparing retinal layer thicknesses.
Collapse
Affiliation(s)
- Jasmine Q Sun
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brendan McGeehan
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kim Firn
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David Irwin
- Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Murray Grossman
- Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gui-Shuang Ying
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Benjamin J Kim
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
49
|
Sánchez D, Castilla-Marti M, Marquié M, Valero S, Moreno-Grau S, Rodríguez-Gómez O, Piferrer A, Martínez G, Martínez J, Rojas ID, Hernández I, Abdelnour C, Rosende-Roca M, Vargas L, Mauleón A, Gil S, Alegret M, Ortega G, Espinosa A, Pérez-Cordón A, Sanabria Á, Roberto N, Ciudin A, Simó R, Hernández C, Tárraga L, Boada M, Ruiz A. Evaluation of macular thickness and volume tested by optical coherence tomography as biomarkers for Alzheimer's disease in a memory clinic. Sci Rep 2020; 10:1580. [PMID: 32005868 PMCID: PMC6994670 DOI: 10.1038/s41598-020-58399-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 01/10/2020] [Indexed: 01/22/2023] Open
Abstract
Building on previous studies that report thinning of the macula in Alzheimer’s disease (AD) and mild cognitive impairment (MCI) patients, the use of optical coherence tomography (OCT) has been proposed as a potential biomarker for AD. However, other studies contradict these results. A total of 930 participants (414 cognitively healthy people, 192 with probable amnestic MCI, and 324 probable AD patients) from a memory clinic were consecutively included in this study and underwent a spectral domain OCT scan (Maestro, Topcon) to assess total macular volume and thickness. Macular width measurements were also taken in several subregions (central, inner, and outer rings) and in layers such as the retinal nerve fiber (RNFL) and ganglion cell (CGL). The study employed a design of high ecological validity, with adjustment by age, education, sex, and OCT image quality. AD, MCI, and control groups did not significantly vary with regard to volume and retinal thickness in different layers. When these groups were compared, multivariate-adjusted analysis disclosed no significant differences in total (p = 0.564), CGL (p = 0.267), RNFL (p = 0.574), and macular thickness and volume (p = 0.380). The only macular regions showing significant differences were the superior (p = 0.040) and nasal (p = 0.040) sectors of the inner macular ring. However, adjustment for multiple comparisons nullified this significance. These results are not supporting existing claims for the usefulness of macular thickness as a biomarker of cognitive impairment in a memory unit. OCT biomarkers for AD should be subject to further longitudinal testing.
Collapse
Affiliation(s)
- Domingo Sánchez
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.
| | - Miguel Castilla-Marti
- Clínica Oftalmológica Dr. Castilla, Barcelona, Spain.,Department of Ophthalmology, Hospital de l'Esperança, Parc de Salut Mar, Barcelona, Spain
| | - Marta Marquié
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Sergi Valero
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Sonia Moreno-Grau
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Octavio Rodríguez-Gómez
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Gabriel Martínez
- Faculty of Medicine and Dentistry, Universidad de Antofagasta, Antofagasta, Chile.,Iberoamerican Cochrane Centre, Barcelona, Spain
| | - Joan Martínez
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Itziar De Rojas
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Isabel Hernández
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Carla Abdelnour
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Maitée Rosende-Roca
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Liliana Vargas
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Ana Mauleón
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Silvia Gil
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Montserrat Alegret
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Gemma Ortega
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Espinosa
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Alba Pérez-Cordón
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Ángela Sanabria
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Natalia Roberto
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Andreea Ciudin
- Diabetes and Metabolism Research Unit and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólica Asociada (CIBERDEM), Vall d'Hebron Research Institute, Barcelona, Spain
| | - Rafael Simó
- Diabetes and Metabolism Research Unit and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólica Asociada (CIBERDEM), Vall d'Hebron Research Institute, Barcelona, Spain
| | - Cristina Hernández
- Diabetes and Metabolism Research Unit and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólica Asociada (CIBERDEM), Vall d'Hebron Research Institute, Barcelona, Spain
| | - Lluís Tárraga
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Mercè Boada
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Agustín Ruiz
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW The incidence of Alzheimer's disease is increasing. Premortem diagnosis of Alzheimer's disease is now possible but require invasive and expensive testing such as PET amyloid beta binding and/or spinal fluid amyloid beta levels. There is a great need for minimally invasive and inexpensive biomarkers to allow for early diagnosis and intervention. RECENT FINDINGS There has been a large volume of literature assessing ocular biomarkers for Alzheimer's disease. Much of the research to date has significant limitations, including sample size, variable diagnostic criteria for Alzheimer's disease, lack of biomarker assessment, and focus on patients with well established dementia. Work that is more recent has included individuals with early and preclinical Alzheimer's disease with biomarkers included in the design. These studies have shown consistent features of visual pathway involvement in Alzheimer's disease, even in the earliest and preclinical stages. SUMMARY It is possible that in the future, ocular biomarkers (particularly retinal imaging techniques) may be part of a multimodality alogorithm screening for preclinical Alzheimer's disease, perhaps combined with other methods, such as blood-based biomarkers.
Collapse
|