1
|
Ying T, Yu Y, Yu Q, Zhou G, Chen L, Gu Y, Zhu L, Ying H, Chen M. The involvement of Sting in exacerbating acute lung injury in sepsis via the PARP-1/NLRP3 signaling pathway. Pulm Pharmacol Ther 2024; 86:102303. [PMID: 38848887 DOI: 10.1016/j.pupt.2024.102303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/30/2024] [Accepted: 05/26/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Interferon gene stimulator (Sting) is an indispensable adaptor protein that plays a crucial role in acute lung injury (ALI) induced by sepsis, and the PARP-1/NLRP3 signaling pathway may be an integral component of the inflammatory response mediated by Sting. However, the regulatory role of Sting in the PARP-1/NLRP3 pathway in ALI remains insufficiently elucidated. METHODS Using lipopolysaccharide (LPS) to induce ALI in C57BL/6 mice and HUVEC cells, an in vivo and in vitro model was established. In vivo, Sting agonists and inhibitors were administered, while in vitro, Sting was knocked down using siRNA. ELISA was employed to quantify the levels of IL-1β, IL-6, and TNF-α. TUNEL staining was conducted to assess cellular apoptosis, while co-immunoprecipitation was utilized to investigate the interaction between Sting and NLRP3. Expression levels of Sting, NLRP3, PARP-1, among others, were assessed via Western blotting and RT-qPCR. Lung HE staining and lung wet/dry ratio were evaluated in the in vivo mouse model. To validate the role of the PARP-1/NLRP3 signaling pathway, PARP-1 inhibitors were employed both in vivo and in vitro. RESULTS In vitro experiments revealed that the Sting agonist group exacerbated LPS-induced pulmonary pathological damage, pulmonary edema, inflammatory response (increased levels of IL-6, TNF-α, and IL-1β), and cellular injury, whereas the Sting inhibitor group significantly ameliorated the aforementioned injuries, with further improvement observed in the combination therapy of Sting inhibitor and PARP-1 inhibitor. Western blotting and RT-qPCR results demonstrated significant suppression of ICAM-1, VCAM-1, NLRP3, and PARP-1 expression in the Sting inhibitor group, with this reduction further enhanced in the Sting inhibitor + PARP-1 inhibitor treatment group, exhibiting opposite outcomes to the agonist. Furthermore, in vitro experiments using HUVEC cell lines validated these findings. CONCLUSIONS Our study provides new insights into the roles of Sting and the PARP-1/NLRP3 signaling pathway in inflammatory responses, offering novel targets for the development of therapeutic interventions against inflammatory reactions.
Collapse
Affiliation(s)
- Tingting Ying
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, China
| | - Yulong Yu
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, China
| | - Qimin Yu
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, China
| | - Gang Zhou
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, China
| | - Lingyang Chen
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, China
| | - Yixiao Gu
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, China
| | - Lijun Zhu
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, China
| | - Haifeng Ying
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, China
| | - Minjuan Chen
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, China.
| |
Collapse
|
2
|
Ali HS, Al-Amodi HS, Hamady S, Roushdy MMS, Helmy Hasanin A, Ellithy G, Elmansy RA, Ahmed HHT, Ahmed EME, Elzoghby DMA, Kamel HFM, Hassan G, ELsawi HA, Farid LM, Abouelkhair MB, Habib EK, Elesawi M, Fikry H, Saleh LA, Matboli M. Rosavin improves insulin resistance and alleviates hepatic and kidney damage via modulating the cGAS-STING pathway and autophagy signaling in HFD/STZ-induced T2DM animals. RSC Med Chem 2024; 15:2098-2113. [PMID: 38911169 PMCID: PMC11187545 DOI: 10.1039/d4md00023d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/14/2024] [Indexed: 06/25/2024] Open
Abstract
Background: Inflammation-mediated insulin resistance in type 2 diabetes mellitus (T2DM) increases complications, necessitating investigation of its mechanism to find new safe therapies. This study investigated the effect of rosavin on the autophagy and the cGAS-STING pathway-related signatures (ZBP1, STING1, DDX58, LC3B, TNF-α) and on their epigenetic modifiers (miR-1976 and lncRNA AC074117.2) that were identified from in silico analysis in T2DM animals. Methods: A T2DM rat model was established by combining a high-fat diet (HFD) and streptozotocin (STZ). After four weeks from T2DM induction, HFD/STZ-induced T2DM rats were subdivided into an untreated group (T2DM group) and three treated groups which received 10, 20, or 30 mg per kg of R. rosea daily for 4 weeks. Results: The study found that rosavin can affect the cGAS-STING pathway-related RNA signatures by decreasing the expressions of ZBP1, STING1, DDX58, and miR-1976 while increasing the lncRNA AC074117.2 level in the liver, kidney, and adipose tissues. Rosavin prevented further weight loss, reduced serum insulin and glucose, improved insulin resistance and the lipid panel, and mitigated liver and kidney damage compared to the untreated T2DM group. The treatment also resulted in reduced inflammation levels and improved autophagy manifested by decreased immunostaining of TNF-α and increased immunostaining of LC3B in the liver and kidneys of the treated T2DM rats. Conclusion: Rosavin has shown potential in attenuating T2DM, inhibiting inflammation in the liver and kidneys, and improving metabolic disturbances in a T2DM animal model. The observed effect was linked to the activation of autophagy and suppression of the cGAS-STING pathway.
Collapse
Affiliation(s)
- Hebatallah S Ali
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University Cairo 11566 Egypt
| | - Hiba S Al-Amodi
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Shaimaa Hamady
- Biochemistry Department, Faculty of Science, Ain Shams University Cairo Egypt
| | - Marian M S Roushdy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University Cairo 11566 Egypt
| | - Amany Helmy Hasanin
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University Cairo Egypt
| | - Ghada Ellithy
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University Cairo Egypt
| | - Rasha A Elmansy
- Anatomy Unit, Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University Buraydah Saudi Arabia
- Department of Anatomy and Cell Biology, Faculty of Medicine, Ain Shams University Egypt
| | - Hagir H T Ahmed
- Anatomy Unit, Department of Basic Medical Sciences, College of Medicine and Medical Sciences, AlNeelain University Sudan
| | - Enshrah M E Ahmed
- Pathology unit, Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Gassim University Saudi Arabia
| | | | - Hala F M Kamel
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University Cairo 11566 Egypt
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Ghida Hassan
- Physiology Department, Faculty of Medicine, Ain Shams University Egypt
| | - Hind A ELsawi
- Department of Internal Medicine, Badr University in Cairo Badr City Egypt
| | - Laila M Farid
- Pathology Department Faculty of Medicine, Ain Shams University Egypt
| | | | - Eman K Habib
- Department of Anatomy and Cell Biology, Faculty of Medicine, Ain Shams University Egypt
- Department of Anatomy and Cell Biology, Faculty of Medicine, Galala University Egypt
| | - Mohamed Elesawi
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University Cairo 11566 Egypt
| | - Heba Fikry
- Department of Histology, Faculty of Medicine, Ain Shams University Cairo Egypt
| | - Lobna A Saleh
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University Cairo Egypt
| | - Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University Cairo 11566 Egypt
| |
Collapse
|
3
|
Han Y, Qiu L, Wu H, Song Z, Ke P, Wu X. Focus on the cGAS-STING Signaling Pathway in Sepsis and Its Inflammatory Regulatory Effects. J Inflamm Res 2024; 17:3629-3639. [PMID: 38855170 PMCID: PMC11162626 DOI: 10.2147/jir.s465978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024] Open
Abstract
Sepsis is a severe systemic inflammatory response commonly occurring in infectious diseases, caused by infection with virulent pathogens. In the pathogenesis of sepsis, the cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase-stimulator of interferon genes (cGAS-STING) signaling pathway serves a crucial role as a fundamental immunoregulatory mechanism. This signaling pathway activates STING upon recognizing intracellular DNA damage and pathogen-derived DNA, subsequently inducing the production of numerous inflammatory mediators, including interferon and inflammatory cytokines, which in turn trigger an inflammatory response. The aim of this paper is to explore the activation mechanism of the cGAS-STING signaling pathway in sepsis and its impact on inflammatory regulation. By delving into the mechanism of action of the cGAS-STING signaling pathway in sepsis, we aim to identify new therapeutic strategies for the treatment and prevention of sepsis.
Collapse
Affiliation(s)
- Yupeng Han
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Liangcheng Qiu
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Haixing Wu
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Zhiwei Song
- Department of Neurology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Peng Ke
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Xiaodan Wu
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, Fujian, People’s Republic of China
| |
Collapse
|
4
|
Zhong S, Zhou Q, Yang J, Zhang Z, Zhang X, Liu J, Chang X, Wang H. Relationship between the cGAS-STING and NF-κB pathways-role in neurotoxicity. Biomed Pharmacother 2024; 175:116698. [PMID: 38713946 DOI: 10.1016/j.biopha.2024.116698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024] Open
Abstract
Neurotoxicity can cause a range of symptoms and disorders in humans, including neurodegenerative diseases, neurodevelopmental disorders, nerve conduction abnormalities, neuroinflammation, autoimmune disorders, and cognitive deficits. The cyclic guanosine-adenosine synthase (cGAS)-stimulator of interferon genes (STING) pathway and NF-κB pathway are two important signaling pathways involved in the innate immune response. The cGAS-STING pathway is activated by the recognition of intracellular DNA, which triggers the production of type I interferons and pro-inflammatory cytokines, such as tumor necrosis factor, IL-1β, and IL-6. These cytokines play a role in oxidative stress and mitochondrial dysfunction in neurons. The NF-κB pathway is activated by various stimuli, such as bacterial lipopolysaccharide, viral particle components, and neurotoxins. NF-κB activation may lead to the production of pro-inflammatory cytokines, which promote neuroinflammation and cause neuronal damage. A potential interaction exists between the cGAS-STING and NF-κB pathways, and NF-κB activation blocks STING degradation by inhibiting microtubule-mediated STING transport. This review examines the progress of research on the roles of these pathways in neurotoxicity and their interrelationships. Understanding the mechanisms of these pathways will provide valuable therapeutic insights for preventing and controlling neurotoxicity.
Collapse
Affiliation(s)
- Shiyin Zhong
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Qiongli Zhou
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Jirui Yang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Zhimin Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Xin Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Jingjing Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Hui Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China.
| |
Collapse
|
5
|
Jia X, Ju J, Li Z, Peng X, Wang J, Gao F. Inhibition of spinal BRD4 alleviates pyroptosis and M1 microglia polarization via STING-IRF3 pathway in morphine-tolerant rats. Eur J Pharmacol 2024; 969:176428. [PMID: 38432572 DOI: 10.1016/j.ejphar.2024.176428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Morphine tolerance has been a challenging medical issue. Neuroinflammation is considered as a critical mechanism for the development of morphine tolerance. Bromodomain-containing protein 4 (BRD4), a key regulator in cell damage and inflammation, participates in the development of chronic pain. However, whether BRD4 is involved in morphine tolerance and the underlying mechanisms remain unknown. METHODS The morphine-tolerant rat model was established by intrathecal administration of morphine twice daily for 7 days. Behavior test was assessed by a tail-flick latency test. The roles of BRD4, pyroptosis, microglia polarization and related signaling pathways in morphine tolerance were elucidated by Western blot, real-time quantitative polymerase chain reaction, and immunofluorescence. RESULTS Repeated morphine administration upregulated BRD4 level, induced pyroptosis, and promoted microglia M1-polarization in spinal cord, accompanied by the release of proinflammatory cytokines, such as TNF-α and IL-1β. JQ-1, a BRD4 antagonist, alleviated the development of morphine tolerance, diminished pyroptosis and induced the switch of microglia from M1 to M2 phenotype. Mechanistically, stimulator of interferon gene (STING)- interferon regulatory factor 3 (IRF3) pathway was activated and the protective effect of JQ-1 against morphine tolerance was at least partially mediated by inhibition of STING-IRF3 pathway. CONCLUSION This study demonstrated for the first time that spinal BRD4 contributes to pyroptosis and switch of microglia polarization via STING-IRF3 signaling pathway during the development of morphine tolerance, which extend the understanding of the neuroinflammation mechanism of morphine tolerance and provide an alternative strategy for the precaution against of this medical condition.
Collapse
Affiliation(s)
- Xiaoqian Jia
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jie Ju
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zheng Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoling Peng
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jihong Wang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng Gao
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
6
|
Elahi R, Hozhabri S, Moradi A, Siahmansouri A, Jahani Maleki A, Esmaeilzadeh A. Targeting the cGAS-STING pathway as an inflammatory crossroad in coronavirus disease 2019 (COVID-19). Immunopharmacol Immunotoxicol 2023; 45:639-649. [PMID: 37335770 DOI: 10.1080/08923973.2023.2215405] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 05/14/2023] [Indexed: 06/21/2023]
Abstract
CONTEXT AND OBJECTIVE The emerging pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has imposed significant mortality and morbidity on the world. An appropriate immune response is necessary to inhibit SARS-CoV-2 spread throughout the body. RESULTS During the early stages of infection, the pathway of stimulators of interferon genes (STING), known as the cGAS-STING pathway, has a significant role in the induction of the antiviral immune response by regulating nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and Interferon regulatory factor 3 (IRF3), two key pathways responsible for proinflammatory cytokines and type I IFN secretion, respectively. DISCUSSION During the late stages of COVID-19, the uncontrolled inflammatory responses, also known as cytokine storm, lead to the progression of the disease and poor prognosis. Hyperactivity of STING, leading to elevated titers of proinflammatory cytokines, including Interleukin-I (IL-1), IL-4, IL-6, IL-18, and tissue necrosis factor-α (TNF-α), is considered one of the primary mechanisms contributing to the cytokine storm in COVID-19. CONCLUSION Exploring the underlying molecular processes involved in dysregulated inflammation can bring up novel anti-COVID-19 therapeutic options. In this article, we aim to discuss the role and current studies targeting the cGAS/STING signaling pathway in both early and late stages of COVID-19 and COVID-19-related complications and the therapeutic potential of STING agonists/antagonists. Furthermore, STING agonists have been discussed as a vaccine adjuvant to induce a potent and persistent immune response.
Collapse
Affiliation(s)
- Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Salar Hozhabri
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amirhosein Moradi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amir Siahmansouri
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
7
|
Zou Y, Zhang M, Zhou J. Recent trends in STING modulators: Structures, mechanisms, and therapeutic potential. Drug Discov Today 2023; 28:103694. [PMID: 37393985 DOI: 10.1016/j.drudis.2023.103694] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/05/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
The cyclic GMP-AMP synthase stimulator (cGAS)-stimulator of interferon gene (STING) signaling pathway has an integral role in the host immune response through DNA sensing followed by inducing a robust innate immune defense program. STING has become a promising therapeutic target associated with multiple diseases, including various inflammatory diseases, cancer, and infectious diseases, among others. Thus, modulators of STING are regarded as emerging therapeutic agents. Recent progress has been made in STING research, including recently identified STING-mediated regulatory pathways, the development of a new STING modulator, and the new association of STING with disease. In this review, we focus on recent trends in the development of STING modulators, including structures, mechanisms, and clinical application.
Collapse
Affiliation(s)
- Yan Zou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Min Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China.
| |
Collapse
|
8
|
Talotta R. COVID-19 mRNA vaccines as hypothetical epigenetic players: Results from an in silico analysis, considerations and perspectives. Vaccine 2023; 41:5182-5194. [PMID: 37453842 DOI: 10.1016/j.vaccine.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVES To investigate in silico the occurrence of epigenetic crosstalk by nucleotide sequence complementarity between the BNT162b2 mRNA vaccine and whole human genome, including coding and noncoding (nc)RNA genes. To correlate these results with those obtained with the original spike (S) gene of Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2). METHODS The publicly available FASTA sequence of the BNT162b2 mRNA vaccine and the SARS-CoV-2 isolate Wuhan-Hu-1 S gene (NC_045512.2) were used separately as key input to the Ensembl.org library to evaluate base pair match to human GRCh38 genome. Human coding and noncoding genes harboring hits were assessed for functional activity and health effects using bioinformatics tools and GWAS databases. RESULTS The BLAT analysis against the human GRCh38 genome revealed a total of 37 hits for BNT162b2 mRNA and no hits for the SARS-CoV-2 S gene. More specifically, BNT162b2 mRNA matched 19 human genes whose protein products are variously involved in enzyme reactions, nucleotide or cation binding, signaling, and carrier functions. In BLASTN analysis of ncRNA genes, BNT162b2 mRNA and SARS-CoV-2 S gene matched 17 and 24 different human genomic regions, respectively. Overall, characterization of the matched noncoding sequences revealed stronger interference with epigenetic pathways for BNT162b2 mRNA compared with the original S gene. CONCLUSION This pivotal in silico analysis shows that SARS-CoV-2 S gene and the BNT162b2 mRNA vaccine exhibit Watson-Crick nucleotide complementarity with human coding or noncoding genes. Although they do not share the same complementarity pattern, both may disrupt epigenetic mechanisms in target cells, potentially leading to long-term complications.
Collapse
Affiliation(s)
- Rossella Talotta
- Department of Clinical and Experimental Medicine, Rheumatology Unit, AOU "Gaetano Martino", University of Messina, Messina, Italy.
| |
Collapse
|
9
|
Chu J, Xiang Y, Lin X, He M, Wang Y, Ma Q, Duan J, Sun S. Handelin protects human skin keratinocytes against ultraviolet B-induced photodamage via autophagy activation by regulating the AMPK-mTOR signaling pathway. Arch Biochem Biophys 2023; 743:109646. [PMID: 37225010 DOI: 10.1016/j.abb.2023.109646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023]
Abstract
Handelin is a natural ingredient extracted from Chrysanthemum boreale flowers that has been shown to decrease stress-related cell death, prolong lifespan, and promote anti-photoaging. However, whether handelin inhibits ultraviolet (UV) B stress-induced photodamage remains unclear. In the present study, we investigate whether handelin has protective properties on skin keratinocytes under UVB irradiation. Human immortalized keratinocytes (HaCaT keratinocytes) were pretreated with handelin for 12 h before UVB irradiation. The results indicated that handelin protects keratinocytes against UVB-induced photodamage by activating autophagy. However, the photoprotective effect of handelin was suppressed by an autophagic inhibitor (wortmannin) or the transfection of keratinocytes with a small interfering RNA targeting ATG5. Notably, handelin reduced mammalian target of rapamycin (mTOR) activity in UVB-irradiated cells in a manner similar to that shown by the mTOR inhibitor rapamycin. Adenosine monophosphate-activated protein kinase (AMPK) activity was also induced by handelin in UVB-damaged keratinocytes. Finally, certain effects of handelin, including autophagy induction, mTOR activity inhibition, AMPK activation, and reduction of cytotoxicity, were suppressed by an AMPK inhibitor (compound C). Our data suggest that handelin effectively prevents photodamage by protecting skin keratinocytes against UVB-induced cytotoxicity via the regulation of AMPK/mTOR-mediated autophagy. These findings provide novel insights that can aid the development of therapeutic agents against UVB-induced keratinocyte photodamage.
Collapse
Affiliation(s)
- Jimin Chu
- School of Clinical Medicine, Dali University, Dali, 671013, Yunnan, China
| | - Yang Xiang
- Metabolic Control and Aging, Human Aging Research Institute (HARI), Jiangxi Key Laboratory of Human Aging, School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Xianghong Lin
- School of Clinical Medicine, Dali University, Dali, 671013, Yunnan, China
| | - Miao He
- School of Pharmacy, Dali University, Dali, 671013, Yunnan, China
| | - Yan Wang
- Medical Cosmetology Teaching and Research Section, School of Clinical Medicine, Dali University, Dali, 671013, Yunnan, China
| | - Qiong Ma
- Medical Cosmetology Teaching and Research Section, School of Clinical Medicine, Dali University, Dali, 671013, Yunnan, China
| | - Jingxian Duan
- Medical Cosmetology Teaching and Research Section, School of Clinical Medicine, Dali University, Dali, 671013, Yunnan, China
| | - Sunjiao Sun
- Medical Cosmetology Teaching and Research Section, School of Clinical Medicine, Dali University, Dali, 671013, Yunnan, China.
| |
Collapse
|
10
|
Zhang X, Liu J, Wang H. The cGAS-STING-autophagy pathway: Novel perspectives in neurotoxicity induced by manganese exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120412. [PMID: 36240967 DOI: 10.1016/j.envpol.2022.120412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/28/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Chronic high-level heavy metal exposure increases the risk of developing different neurodegenerative diseases. Chronic excessive manganese (Mn) exposure is known to lead to neurodegenerative diseases. In addition, some evidence suggests that autophagy dysfunction plays an important role in the pathogenesis of various neurodegenerative diseases. Over the past decade, the DNA-sensing receptor cyclic GMP-AMP synthase (cGAS) and its downstream signal-efficient interferon gene stimulator (STING), as well as the molecular composition and regulatory mechanisms of this pathway have been well understood. The cGAS-STING pathway has emerged as a crucial mechanism to induce effective innate immune responses by inducing type I interferons in mammalian cells. Moreover, recent studies have found that Mn2+ is the second activator of the cGAS-STING pathway besides dsDNA, and inducing autophagy is a primitive function for the activation of the cGAS-STING pathway. However, overactivation of the immune response can lead to tissue damage. This review discusses the mechanism of neurotoxicity induced by Mn exposure from the cGAS-STING-autophagy pathway. Future work exploiting the cGAS-STING-autophagy pathway may provide a novel perspective for manganese neurotoxicity.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Jingjing Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Hui Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
11
|
Zhang M, Zou Y, Zhou X, Zhou J. Inhibitory targeting cGAS-STING-TBK1 axis: Emerging strategies for autoimmune diseases therapy. Front Immunol 2022; 13:954129. [PMID: 36172373 PMCID: PMC9511411 DOI: 10.3389/fimmu.2022.954129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The cGAS-STING signaling plays an integral role in the host immune response, and the abnormal activation of cGAS-STING is highly related to various autoimmune diseases. Therefore, targeting the cGAS-STING-TBK1 axis has become a promising strategy in therapy of autoimmune diseases. Herein, we summarized the key pathways mediated by the cGAS-STING-TBK1 axis and various cGAS-STING-TBK1 related autoimmune diseases, as well as the recent development of cGAS, STING, or TBK1 selective inhibitors and their potential application in therapy of cGAS-STING-TBK1 related autoimmune diseases. Overall, the review highlights that inhibiting cGAS-STING-TBK1 signaling is an attractive strategy for autoimmune disease therapy.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, China
- Drug development and innovation center, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Yan Zou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, China
- Drug development and innovation center, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Xujun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, China
- Drug development and innovation center, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, China
- Drug development and innovation center, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
- *Correspondence: Jinming Zhou,
| |
Collapse
|
12
|
NAT10 regulates neutrophil pyroptosis in sepsis via acetylating ULK1 RNA and activating STING pathway. Commun Biol 2022; 5:916. [PMID: 36068299 PMCID: PMC9448771 DOI: 10.1038/s42003-022-03868-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 08/22/2022] [Indexed: 11/28/2022] Open
Abstract
Emerging evidence suggests that pyroptosis is involved in sepsis. However, the role of neutrophil pyroptosis in sepsis and the mechanisms remains elusive. We find that N-acetyltransferase 10 (NAT10), an acetyltransferase responsible for the N4-acetylation of Cytidine (ac4C) in mRNA, is significantly downregulated in neutrophils from septic mice. Neutrophil-specific over-expression of NAT10 improves the survival and ameliorates lung injury in septic mice by inhibiting neutrophil pyroptosis. Notably, UNC-52-like kinase 1 (ULK1) is identified as the target of NAT10 in neutrophils. The decreased expression of NAT10 resultes in the decay of ULK1 transcripts and therefore the reduced expression of ULK1. As a regulator of STING phosphorylation, the loss of ULK1 enhances the activation of STING-IRF3 signaling and subsequently the elevated pyroptosis-inducing NLRP3 inflammasome in neutrophils. While over-expression of NAT10 restrains pyroptosis in neutrophils as well as septic lethality in mice by reversing the ULK1-STING-NLRP3 axis. The decreased expression of NAT10 are also observed in sepsis patients and its correlation with clinical severity is found. Collectively, our findings disclose that NAT10 is a negative regulator of neutrophil pyroptosis and its downregulation contributes to the progress of sepsis by exacerbating pyroptosis via the ULK1-STING-NLRP3 axis, therefore revealing a potential therapeutic target for sepsis. The enzyme N-acetyltransferase NAT10 is a negative regulator of neutrophil pyroptosis and its downregulation contributes to the progress of sepsis by exacerbating pyroptosis via the ULK1-STING-NLRP3 pathway.
Collapse
|
13
|
Ding R, Li H, Liu Y, Ou W, Zhang X, Chai H, Huang X, Yang W, Wang Q. Activating cGAS-STING axis contributes to neuroinflammation in CVST mouse model and induces inflammasome activation and microglia pyroptosis. J Neuroinflammation 2022; 19:137. [PMID: 35689216 PMCID: PMC9188164 DOI: 10.1186/s12974-022-02511-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 05/31/2022] [Indexed: 11/24/2022] Open
Abstract
Background Neuroinflammation-induced injury is intimately associated with poor prognosis in patients with cerebral venous sinus thrombosis (CVST). The cyclic GMP-AMP synthase–stimulator of interferon gene (cGAS–STING) axis is a cytoplasmic double-stranded DNA (dsDNA) sensing pathway has recently emerged as a crucial mediator of neuroinflammation in ischemic stroke. However, the role of the cGAS–STING pathway in modulating post-CVST inflammation and the underlying mechanisms involved remain unclear. Methods A CVST model was induced by ferric chloride in male C57BL/6J mice. The selective cGAS inhibitor RU.521, STING agonist 2′3′-cGAMP, and STING siRNA were delivered by intranasal administration or intraventricular injection. Post-CVST assessments included rotarod test, TUNEL staining, Fluoro-Jade C staining, dihydroethidium staining, western blotting, qPCR, immunofluorescence, immunohistochemistry, ELISA and flow cytometry. Results cGAS, STING, NLRP3 and GSDMD were significantly upregulated after CVST and mostly in the microglia of the mouse brain. CVST triggered the release of dsDNA into the cytoplasm and elicited an inflammatory response via activating the cGAS–STING axis. RU.521 decreased the levels of 2′3′-cGAMP, STING and downstream inflammatory cytokines, and suppressed the expressions of NLRP3 inflammasome and pyroptosis-pertinent components containing cleaved caspase-1, GSDMD, GSDMD-C, pro- and cleaved IL-1β, and cleaved IL-1β/pro-IL-1β. Besides, RU.521 treatment also reduced oxidative stress, lessened the numbers of microglia and neutrophils, and ameliorated neuronal apoptosis, degeneration along with neurological deficits post-CVST. 2′3'-cGAMP delivery enhanced the expressions of STING and related inflammatory mediators, NLRP3 inflammasome and pyroptosis-relevant proteins, whereas these alterations were significantly abrogated by the silencing of STING by siRNA. Conclusions Our data demonstrate that repression of the cGAS–STING pathway diminishes the neuroinflammatory burden of CVST and highlight this approach as a potential therapeutic tactic in CVST-mediated pathologies. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02511-0.
Collapse
Affiliation(s)
- Rui Ding
- Department of Cerebrovascular Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Haiyan Li
- Department of Cerebrovascular Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No 600 Tianhe Road, Guangzhou, 510630, Guangdong, China.,Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, No 600 Tianhe Road, Guangzhou, Guangdong, China
| | - Yaqi Liu
- Department of Cerebrovascular Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Weiyang Ou
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Xifang Zhang
- Dongguan Kanghua Hospital, 1000# Dongguan Avenue, Dongguan, 523000, Guangdong Province, China
| | - Huihui Chai
- Department of Cerebrovascular Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Xiaofei Huang
- Department of Cerebrovascular Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Weijie Yang
- Department of Cerebrovascular Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Qiujing Wang
- Department of Cerebrovascular Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No 600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
14
|
Gong W, Liu P, Zhao F, Liu J, Hong Z, Ren H, Gu G, Wang G, Wu X, Zheng T, Zhao Y, Ren J. STING-mediated Syk Signaling Attenuates Tumorigenesis of Colitis‑associated Colorectal Cancer Through Enhancing Intestinal Epithelium Pyroptosis. Inflamm Bowel Dis 2022; 28:572-585. [PMID: 34473281 DOI: 10.1093/ibd/izab217] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Stimulator of interferon genes (STING) has essential functions in the immune responses and can induce cancer cell apoptosis. However, it is not completely clear how STING plays a role in colitis-associated colorectal cancer (CAC) and whether it can trigger pyroptosis during the tumorigenesis of CAC. METHODS To investigate the role of STING-modulated pyroptosis in the development of CAC, STING knockout and Wild type mice were challenged with azoxymethane (AOM) and dextran sodium sulfate (DSS) to establish a murine CAC model. STING pharmacological agonist was used to further study the functions of STING signaling in the tumorigenesis. Moreover, STING endogenous ligand was employed to verify the effects of STING in human colon cancer cells. RESULTS STING deficiency mice were more susceptible to CAC by reducing pyroptosis of tumor cells, whereas overactivation of STING with the agonist suppressed tumorigenesis of CAC. STING also managed CAC development by modulating tumor cells proliferation, adhesion, and invasion, as well as inflammatory response. The ex vivo studies indicated that STING could induce pyroptosis via spleen tyrosine kinase (Syk), and Syk knockdown weakened such pyroptotic tumor cells death. In addition, the visible physical interaction between STING and Syk was observed in colorectal tumor samples of CAC patients. CONCLUSIONS STING-mediated Syk signaling may regulate the tumorigenesis of CAC by modulating pyroptosis of tumor cells, and modulation of STING/Syk serves as a novel therapeutic strategy for CAC therapy.
Collapse
Affiliation(s)
- Wenbin Gong
- School of Medicine, Southeast University, Research Institute of General Surgery, Jinling Hospital, Nanjing, China
| | - Peizhao Liu
- Medical School of Nanjing University, Nanjing, China
| | - Fan Zhao
- Medical School of Nanjing University, Nanjing, China
| | - Juanhan Liu
- Medical School of Nanjing University, Nanjing, China
| | - Zhiwu Hong
- School of Medicine, Southeast University, Research Institute of General Surgery, Jinling Hospital, Nanjing, China
| | - Huajian Ren
- School of Medicine, Southeast University, Research Institute of General Surgery, Jinling Hospital, Nanjing, China
| | - Guosheng Gu
- School of Medicine, Southeast University, Research Institute of General Surgery, Jinling Hospital, Nanjing, China
| | - Gefei Wang
- School of Medicine, Southeast University, Research Institute of General Surgery, Jinling Hospital, Nanjing, China
| | - Xiuwen Wu
- School of Medicine, Southeast University, Research Institute of General Surgery, Jinling Hospital, Nanjing, China
| | - Tao Zheng
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Yun Zhao
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Jianan Ren
- School of Medicine, Southeast University, Research Institute of General Surgery, Jinling Hospital, Nanjing, China.,Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
15
|
Tong Y, Zhou Z, Tang J, Feng Q. MiR-29b-3p Inhibits the Inflammation Injury in Human Umbilical Vein Endothelial Cells by Regulating SEC23A. Biochem Genet 2022; 60:2000-2014. [PMID: 35190931 DOI: 10.1007/s10528-022-10194-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/25/2022] [Indexed: 11/24/2022]
Abstract
This study aims to investigate the effects of miR-29b-3p on the inflammation injury of human umbilical vein endothelial cells (HUVECs) induced by lipopolysaccharide (LPS) and explore the underlying mechanisms. The effects of different concentrations of LPS (0, 1, 5 and 10 μg/mL) on inflammation injury in HUVECs are detected by ELISA, CCK-8, EdU, flow cytometry and western blot analyses to determine the optimal stimulus concentration. After stimulating HUVECs with 10 μg/mL LPS, the expression levels of miR-29b-3p are detected, and the effects of miR-29b-3p on inflammation injury are detected by ELISA, CCK-8, EdU, flow cytometry and western blot analyses. Bioinformatic analysis, luciferase reporter assay and confirmatory experiments are applied to identify the target gene bound with miR-29b-3p. Rescue experiments have verified the roles of miR-29b-3p and the target gene in inflammation injury. We found that pro-inflammatory factor was increased, apoptosis was promoted, and cell proliferation was inhibited after the treatment of LPS in HUVECs. Overexpression of miR-29b-3p inhibited LPS-induced inflammatory response and apoptosis while promoting proliferation in HUVECs. Besides, bioinformatics analysis indicated that SEC23A was the target gene of miR-29b-3p and the confirmatory experiments showed that SEC23A was negatively correlated with miR-29b-3p and positively correlated with LPS concentration. Rescue experiments revealed that overexpression of SEC23A partially enhanced the inflammation injury effects in LPS-induced HUVECs with overexpression of miR-29b-3p. Hence, miR-29b-3p repressed inflammatory response, cell apoptosis and promoted cell proliferation in LPS-induced HUVECs by targeting SEC23A, providing a potential target for treating sepsis.
Collapse
Affiliation(s)
- Yiqing Tong
- Emergency Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Ziyang Zhou
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, PR China
| | - Jianguo Tang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, PR China.
| | - Qiming Feng
- Emergency Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
16
|
Zhang K, Wang S, Gou H, Zhang J, Li C. Crosstalk Between Autophagy and the cGAS-STING Signaling Pathway in Type I Interferon Production. Front Cell Dev Biol 2021; 9:748485. [PMID: 34926445 PMCID: PMC8678597 DOI: 10.3389/fcell.2021.748485] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/01/2021] [Indexed: 12/23/2022] Open
Abstract
Innate immunity is the front-line defense against infectious microorganisms, including viruses and bacteria. Type I interferons are pleiotropic cytokines that perform antiviral, antiproliferative, and immunomodulatory functions in cells. The cGAS–STING pathway, comprising the main DNA sensor cyclic guanosine monophosphate/adenosine monophosphate synthase (cGAS) and stimulator of IFN genes (STING), is a major pathway that mediates immune reactions and is involved in the strong induction of type I IFN production, which can fight against microbial infections. Autophagy is an evolutionarily conserved degradation process that is required to maintain host health and facilitate capture and elimination of invading pathogens by the immune system. Mounting evidence indicates that autophagy plays an important role in cGAS–STING signaling pathway-mediated type I IFN production. This review briefly summarizes the research progress on how autophagy regulates the cGAS–STING pathway, regulating type I IFN production, with a particular focus on the crosstalk between autophagy and cGAS–STING signaling during infection by pathogenic microorganisms.
Collapse
Affiliation(s)
- Kunli Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Sutian Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hongchao Gou
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Jianfeng Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, China
| | - Chunling Li
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
17
|
Wang N, Wang X, Li Y, Shen H, Liu Z, Ma Z, Li Q, Zhao M. The STING-IRF3 pathway contributes to paraquat-induced acute lung injury. Toxicol Mech Methods 2021; 32:145-157. [PMID: 34455893 DOI: 10.1080/15376516.2021.1974133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Immune and inflammatory responses play significant roles in paraquat (PQ)-induced acute lung injury (ALI), but the specific mechanisms remain unclear. Our study aimed to investigate the action of STING-IRF3 signaling on PQ-induced ALI in mice. Following PQ administration, samples were collected at 2, 12, 24, and 48 h for in vivo studies, and 24 h for in vitro studies. Following PQ administration (30 mg/kg, i.p.), injury to mouse lungs was evaluated by H&E staining and wet/dry ratios, and lung oxidative damage was evaluated by MDA and SOD assays. The mRNA levels of Sting, Irf3, and Ifnβ were detected by RT-PCR, the expression of STING and IRF3 were assessed by western blotting and IHC/IF, and the secretion of IFNβ was detected by ELISA. In vivo, PQ administration induced pathological changes and increased wet/dry ratios in lungs after 48 h. Sting, Irf3, and Ifnβ mRNA levels in lung tissues, STING and pIRF3 protein levels in lung tissues, and IFNβ secretion in serum, were upregulated by PQ in a time-dependent manner. PQ administration promoted IRF3 nuclear translocation in lung tissues after 48 h. The above changes were all attenuated by dexamethasone treatment (5 mg/kg, i.p., qd). In vitro, PQ induced STING and IRF3 translocation. Irf3 or Sting silencing decreased the mRNA levels and supernatant secretion of IFNβ in PQ-treated RAW264.7 mouse macrophages. Sting silencing also inhibited the protein and mRNA levels of IRF3 in vitro. Our study suggests that STING-IRF3 signaling contributes to PQ-induced ALI, providing new information for future treatment strategies.
Collapse
Affiliation(s)
- Na Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.,Occupational Disease and Occupational Health Prevention and Control Institute, Liaoning Center for Disease Control and Prevention, Shenyang, Liaoning, China
| | - Xiaofeng Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuhua Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haitao Shen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhenning Liu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhongliang Ma
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qiuhe Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Min Zhao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
18
|
Manes NP, Nita-Lazar A. Molecular Mechanisms of the Toll-Like Receptor, STING, MAVS, Inflammasome, and Interferon Pathways. mSystems 2021; 6:e0033621. [PMID: 34184910 PMCID: PMC8269223 DOI: 10.1128/msystems.00336-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pattern recognition receptors (PRRs) form the front line of defense against pathogens. Many of the molecular mechanisms that facilitate PRR signaling have been characterized in detail, which is critical for the development of accurate PRR pathway models at the molecular interaction level. These models could support the development of therapeutics for numerous diseases, including sepsis and COVID-19. This review describes the molecular mechanisms of the principal signaling interactions of the Toll-like receptor, STING, MAVS, and inflammasome pathways. A detailed molecular mechanism network is included as Data Set S1 in the supplemental material.
Collapse
Affiliation(s)
- Nathan P. Manes
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Aleksandra Nita-Lazar
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
19
|
Autophagy Regulation on Pyroptosis: Mechanism and Medical Implication in Sepsis. Mediators Inflamm 2021; 2021:9925059. [PMID: 34257519 PMCID: PMC8253640 DOI: 10.1155/2021/9925059] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Sepsis is defined as a life-threatening disease involving multiple organ dysfunction caused by dysregulated host responses to infection. To date, sepsis remains a dominant cause of death among critically ill patients. Pyroptosis is a unique form of programmed cell death mediated by the gasdermin family of proteins and causes lytic cell death and release of proinflammatory cytokines. Although there might be some positive aspects to pyroptosis, it is regarded as harmful during sepsis and needs to be restricted. Autophagy was originally characterized as a homeostasis-maintaining mechanism in living cells. In the past decade, its function in negatively modulating pyroptosis and inflammation during sepsis has attracted increased attention. Here, we present a comprehensive review of the regulatory effect of autophagy on pyroptosis during sepsis, including the latest advances in our understanding of the mechanism and signaling pathways involved, as well as the potential therapeutic application in sepsis.
Collapse
|
20
|
Mohsin M, Tabassum G, Ahmad S, Ali S, Ali Syed M. The role of mitophagy in pulmonary sepsis. Mitochondrion 2021; 59:63-75. [PMID: 33894359 DOI: 10.1016/j.mito.2021.04.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022]
Abstract
Sepsis is a systemic inflammatory disease with an unacceptably high mortality rate caused by an infection or trauma that involves both innate and adaptive immune systems. Inflammatory events activate different downstream pathways leading to tissue damage and ultimately multi-organ failure. Mitochondria are responsible for cellular energy, thermoregulation, metabolite biosynthesis, intracellular calcium regulation, and cell death. Damaged mitochondria induce the high Ca2+ influx through mitochondrial calcium uniporter (MCU). It also generates excessive Reactive oxygen species (ROS) and releases mtDNA into the cytoplasm, which causes induction of NLRP3 inflammasome and apoptosis. Mitophagy (Autophagy of damaged mitochondria) controls mitochondrial dynamics and function. It also maintains cellular homeostasis. This review is about how pulmonary sepsis affects the body. What is the aftermath of sepsis, and how mitophagy affects Acute Lung Injury and macrophage polarisation to overcome the damages.
Collapse
Affiliation(s)
- Mohd Mohsin
- Translational Research Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Gulnaz Tabassum
- Translational Research Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Shaniya Ahmad
- Translational Research Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Shakir Ali
- Department of Biochemistry, Jamia Hamdard, New Delhi 110019, India
| | - Mansoor Ali Syed
- Translational Research Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
21
|
Hu Z, Yang Y, Fang L, Zhou J, Zhang H. Insight into the dichotomous regulation of STING activation in immunotherapy. Immunopharmacol Immunotoxicol 2021; 43:126-137. [PMID: 33618600 DOI: 10.1080/08923973.2021.1890118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) signaling pathway (cGAS-STING) is a hub linking innate immunity and adaptive immunity against pathogen infection by inducing the production of type I interferon (IFN-I). It also plays pivotal roles in modulating tumorigenesis by ensuring the antigen presentation, T cell priming, activation, and tumor regression. Given its antitumor immune properties, cGAS-STING has attracted intense focus and several STING agonists have entered into clinical trials. However, some problems still exist when activating STING for use in oncological indications. It is remarkable that multiple downstream cytokines such as TNF-α, IL-6 may lead to inflammatory disease and even tumor metastasis in practical trials. Besides, there is a synergistic effect when STING agonists are combined with other immunotherapies. In this review, we discussed the advanced understanding between STING and anti-tumor immunity, as well as a variety of promising clinical treatment strategies.
Collapse
Affiliation(s)
- Zhaoxue Hu
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, China
| | - Yifei Yang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Lincheng Fang
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, China
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Huibin Zhang
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
22
|
Kumar V. The Trinity of cGAS, TLR9, and ALRs Guardians of the Cellular Galaxy Against Host-Derived Self-DNA. Front Immunol 2021; 11:624597. [PMID: 33643304 PMCID: PMC7905024 DOI: 10.3389/fimmu.2020.624597] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
The immune system has evolved to protect the host from the pathogens and allergens surrounding their environment. The immune system develops in such a way to recognize self and non-self and develops self-tolerance against self-proteins, nucleic acids, and other larger molecules. However, the broken immunological self-tolerance leads to the development of autoimmune or autoinflammatory diseases. Pattern-recognition receptors (PRRs) are expressed by immunological cells on their cell membrane and in the cytosol. Different Toll-like receptors (TLRs), Nod-like receptors (NLRs) and absent in melanoma-2 (AIM-2)-like receptors (ALRs) forming inflammasomes in the cytosol, RIG (retinoic acid-inducible gene)-1-like receptors (RLRs), and C-type lectin receptors (CLRs) are some of the PRRs. The DNA-sensing receptor cyclic GMP–AMP synthase (cGAS) is another PRR present in the cytosol and the nucleus. The present review describes the role of ALRs (AIM2), TLR9, and cGAS in recognizing the host cell DNA as a potent damage/danger-associated molecular pattern (DAMP), which moves out to the cytosol from its housing organelles (nucleus and mitochondria). The introduction opens with the concept that the immune system has evolved to recognize pathogens, the idea of horror autotoxicus, and its failure due to the emergence of autoimmune diseases (ADs), and the discovery of PRRs revolutionizing immunology. The second section describes the cGAS-STING signaling pathway mediated cytosolic self-DNA recognition, its evolution, characteristics of self-DNAs activating it, and its role in different inflammatory conditions. The third section describes the role of TLR9 in recognizing self-DNA in the endolysosomes during infections depending on the self-DNA characteristics and various inflammatory diseases. The fourth section discusses about AIM2 (an ALR), which also binds cytosolic self-DNA (with 80–300 base pairs or bp) that inhibits cGAS-STING-dependent type 1 IFN generation but induces inflammation and pyroptosis during different inflammatory conditions. Hence, this trinity of PRRs has evolved to recognize self-DNA as a potential DAMP and comes into action to guard the cellular galaxy. However, their dysregulation proves dangerous to the host and leads to several inflammatory conditions, including sterile-inflammatory conditions autoinflammatory and ADs.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, St. Lucia, Brisbane, QLD, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, Brisbane, QLD, Australia
| |
Collapse
|
23
|
Sundar V, Dutta A, Ramasamy S, Manickam V, Tamizhselvi R. Sting pathway - A futuristic therapeutic target for acute pancreatitis? Gene 2021; 778:145469. [PMID: 33539941 DOI: 10.1016/j.gene.2021.145469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/17/2020] [Accepted: 01/25/2021] [Indexed: 11/19/2022]
Abstract
Acute Pancreatitis (AP) refers to the inflammatory state of the pancreatic mass caused by an abnormal release of digestive enzymes characterized by pancreatic acinar cell injury. It is mainly caused by gallstones, which primarily block sphincter of Oddi opening into the duodenum, heavyalcohol use, systemic diseases, etc. Stimulator of interferon genes known as STING uniquely senses the apoptotic and necrotic DNA fragments. Through the expression of TMEM173 (transmembrane protein 173) or STING protein in macrophages, downstream signaling pathways are activated in AP and are responsible for promoting inflammation. STING elicits a cascade of downstream signaling events such as activation of TBK1, IRF-3 phosphorylation, and IFN-β production along with other cytokines, which result in the excessive manufacture of the type-I IFNs and different kinds of proinflammatory cytokines that take part in the immune defense system of the host. Research findings suggest that STING regulates an array of innate immunity pathways, and the absence of proper treatment measures for AP provides the opportunity of evaluating STING as a striking therapeutic target for AP associated inflammation. Although the understanding of STING hyperactivation and its association with inflammation is relative of recent interest among researchers, extensive studies are going on to identify inhibitors that can directly target STING and inhibits the downstream signaling in AP. Therefore, this review aims to collectively compile the available pieces of evidence, which could help to better understand the role of STING signaling in AP and its promising role as a therapeutic target.
Collapse
Affiliation(s)
- Vaishnavi Sundar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Anupam Dutta
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Shalini Ramasamy
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Venkatraman Manickam
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Ramasamy Tamizhselvi
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
24
|
Kouroumalis E, Voumvouraki A, Augoustaki A, Samonakis DN. Autophagy in liver diseases. World J Hepatol 2021; 13:6-65. [PMID: 33584986 PMCID: PMC7856864 DOI: 10.4254/wjh.v13.i1.6] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/10/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is the liver cell energy recycling system regulating a variety of homeostatic mechanisms. Damaged organelles, lipids and proteins are degraded in the lysosomes and their elements are re-used by the cell. Investigations on autophagy have led to the award of two Nobel Prizes and a health of important reports. In this review we describe the fundamental functions of autophagy in the liver including new data on the regulation of autophagy. Moreover we emphasize the fact that autophagy acts like a two edge sword in many occasions with the most prominent paradigm being its involvement in the initiation and progress of hepatocellular carcinoma. We also focused to the implication of autophagy and its specialized forms of lipophagy and mitophagy in the pathogenesis of various liver diseases. We analyzed autophagy not only in well studied diseases, like alcoholic and nonalcoholic fatty liver and liver fibrosis but also in viral hepatitis, biliary diseases, autoimmune hepatitis and rare diseases including inherited metabolic diseases and also acetaminophene hepatotoxicity. We also stressed the different consequences that activation or impairment of autophagy may have in hepatocytes as opposed to Kupffer cells, sinusoidal endothelial cells or hepatic stellate cells. Finally, we analyzed the limited clinical data compared to the extensive experimental evidence and the possible future therapeutic interventions based on autophagy manipulation.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Liver Research Laboratory, University of Crete Medical School, Heraklion 71110, Greece
| | - Argryro Voumvouraki
- 1 Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54636, Greece
| | - Aikaterini Augoustaki
- Department of Gastroenterology and Hepatology, University Hospital of Crete, Heraklion 71110, Greece
| | - Dimitrios N Samonakis
- Department of Gastroenterology and Hepatology, University Hospital of Crete, Heraklion 71110, Greece.
| |
Collapse
|
25
|
Hu Q, Zhou Q, Xia X, Shao L, Wang M, Lu X, Liu S, Guan W. Cytosolic sensor STING in mucosal immunity: a master regulator of gut inflammation and carcinogenesis. J Exp Clin Cancer Res 2021; 40:39. [PMID: 33485379 PMCID: PMC7825222 DOI: 10.1186/s13046-021-01850-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
The stimulator of interferon genes (STING) connects microbial cytosolic sensing with host cell effector functions. STING signaling plays a central role in cyclic dinucleotides (CDNs) and DNA sensing to induce secretion of interferons and pro-inflammatory mediators. Although activated STING signaling favors antimicrobial progress and facilitates mucosal would healing, its role in mucosal immunity and gut homeostasis is paradoxical, ranging from positive and negative effects within the gut. In our review, we summarize recent advance of STING signaling in gut homeostasis and inflammation, especially focusing on its molecular basis in mucosal immune response. Deep understanding of the regulatory mechanisms of intestinal STING pathway could promote clinical manipulation of this fundamental signaling as a promising immunomodulatory therapy.
Collapse
Affiliation(s)
- Qiongyuan Hu
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Medical School of Nanjing University, Nanjing, China
| | - Quan Zhou
- Medical School of Nanjing University, Nanjing, China
| | - Xuefeng Xia
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Lihua Shao
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Meng Wang
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaofeng Lu
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Song Liu
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Wenxian Guan
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
26
|
Yu Y, Yang W, Bilotta AJ, Yu Y, Zhao X, Zhou Z, Yao S, Xu J, Zhou J, Dann SM, Li Y, Cong Y. STING controls intestinal homeostasis through promoting antimicrobial peptide expression in epithelial cells. FASEB J 2020; 34:15417-15430. [PMID: 32969062 DOI: 10.1096/fj.202001524r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/19/2022]
Abstract
Stimulator of interferon genes (STING) has been shown to play a critical role in orchestrating immune responses to various pathogens through sensing cyclic dinucleotides. However, how STING regulates intestinal homeostasis is still not completely understood. In this study, we found that STING-/- mice were more susceptible to enteric infection with Citrobacter rodentium compared to wild-type (WT) mice evidenced by more severe intestinal inflammation and impaired bacterial clearance. STING-/- mice demonstrated lower expression of REG3γ but not β-defensins and Cramp in IECs. Consistently, STING-/- IECs showed reduced capacity to inhibit bacterial growth. STING agonists, both 10-carboxymethyl-9-acridanone (CMA) and 5,6-dimethylxanthenone-4-acetic acid (DMXAA), promoted REG3γ expression IECs. Furthermore, STING agonists promoted WT but not REG3γ-deficient IEC bacterial killing. Mechanistically, STING agonists activated STAT3 and promoted glycolysis in IECs. Inhibition of STAT3 pathway and glycolysis suppressed STING-induced REG3γ production in IECs, and abrogated STING-mediated IEC killing of C. rodentium. Additionally, treatment with the STING ligand, 2,3-cGAMP, inhibited C. rodentium-induced colitis in vivo. Overall, STING promotes IEC REG3γ expression to inhibit enteric infection and intestinal inflammation, thus, maintaining the intestinal homeostasis.
Collapse
Affiliation(s)
- Yanbo Yu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, P.R. China
| | - Wenjing Yang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Anthony J Bilotta
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yu Yu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, P.R. China
| | - Xiaojing Zhao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Zheng Zhou
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Suxia Yao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jimin Xu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Sara M Dann
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, P.R. China
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
27
|
Dong Y, Fan G, Li Y, Zhou Q. TUG1 Represses Apoptosis, Autophagy, and Inflammatory Response by Regulating miR-27a-3p/SLIT2 in Lipopolysaccharide-Treated Vascular Endothelial Cells. J Surg Res 2020; 256:345-354. [PMID: 32738556 DOI: 10.1016/j.jss.2020.05.102] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The dysfunction of vascular endothelial cells is associated with sepsis development. Long noncoding RNAs take part in the regulation of vascular endothelial cell function. This study aimed to explore the role and mechanism of long noncoding RNA taurine-upregulated gene 1 (TUG1) in lipopolysaccharide (LPS)-induced endothelial cell injury. METHODS LPS-treated human umbilical vein endothelial cells (HUVECs) were used as a model of sepsis in vitro. Quantitative real-time polymerase chain reaction was performed to detect the expression of TUG1, microRNA-27a-3p (miR-27a-3p) and slit guidance ligand 2 (SLIT2) messenger RNA. Western blot was conducted to measure the protein levels of SLIT2 as well as those involved in apoptosis, autophagy, and inflammatory response. Flow cytometry was used to detect cell apoptotic rate. The targets of TUG1 and miR-27a-3p were predicted via starBase (http://starbase.sysu.edu.cn/index.php). Dual-luciferase reporter, RNA immunoprecipitation, and pull-down assays were carried out to validate the target correlation between miR-27a-3p and TUG1/SLIT2. RESULTS TUG1 expression was decreased after the treatment of LPS in HUVECs. Overexpression of TUG1 decreased LPS-induced apoptosis, autophagy, and inflammatory response. TUG1 was a sponge of miR-27a-3p. Upregulation of miR-27a-3p reversed the suppressive effect of TUG1 overexpression on LPS-induced apoptosis, autophagy, and inflammatory response. SLIT2 was a target of miR-27a-3p. Knockdown of miR-27a-3p could inhibit LPS-induced injury by increasing SLIT2 in HUVECs. TUG1 could enhance SLIT2 expression by competitively sponging miR-27a-3p. CONCLUSIONS TUG1 could repress cell apoptosis, autophagy, and inflammatory response in LPS-treated HUVECs by sponging miR-27a-3p to target SLIT2, providing a potential target for the treatment of sepsis.
Collapse
Affiliation(s)
- Yuanyuan Dong
- Department of Respiratory Medicine, The People's Hospital of Shiyan, (Affiliated People's Hospital of Hubei University of Medicine), Shiyan, Hubei, China
| | - Gongchun Fan
- Department of Respiratory Medicine, The People's Hospital of Shiyan, (Affiliated People's Hospital of Hubei University of Medicine), Shiyan, Hubei, China
| | - Yanhong Li
- Department of Respiratory Medicine, The People's Hospital of Shiyan, (Affiliated People's Hospital of Hubei University of Medicine), Shiyan, Hubei, China
| | - Qin Zhou
- Department of Respiratory Medicine, The People's Hospital of Shiyan, (Affiliated People's Hospital of Hubei University of Medicine), Shiyan, Hubei, China.
| |
Collapse
|
28
|
Su H, Ma Z, Guo A, Wu H, Yang X. Salvianolic acid B protects against sepsis-induced liver injury via activation of SIRT1/PGC-1α signaling. Exp Ther Med 2020; 20:2675-2683. [PMID: 32765761 PMCID: PMC7401829 DOI: 10.3892/etm.2020.9020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 08/01/2019] [Indexed: 12/15/2022] Open
Abstract
Liver injury occurs frequently during sepsis, which leads to high mortality and morbidity. A previous study has suggested that salvianolic acid B (SalB) is protective against sepsis-induced lung injury. However, whether SalB is able to protect against sepsis-induced liver injury remains unclear. The present study aimed to investigate the effects of SalB on sepsis-induced liver injury and its potential underlying mechanisms. Sepsis was induced in mice using a cecal ligation and puncture (CLP) method. The mice were treated with SalB (30 mg/kg intraperitoneally) at 0.5, 2 and 8 h after CLP induction. Pathological alterations of the liver were assessed using hematoxylin and eosin staining. The serum levels of alanine transaminase (ALT), aspartate aminotransferase (AST), tumor necrosis factor (TNF)-α and interleukin (IL)-6 were measured. The hepatic mRNA levels of TNF-α, IL-6, Bax and Bcl-2 were also detected. The results suggested that treatment with SalB ameliorated sepsis-induced liver injury in the mice, as supported by the mitigated pathologic changes and lowered serum aminotransferase levels. SalB also decreased the levels of the inflammatory cytokines TNF-α and IL-6 in the serum and the liver of the CLP model mice. In addition, SalB significantly downregulated Bax expression and upregulated Bcl-2 expression, and upregulated the expression levels of SIRT1 and PGC-1α. However, when sirtuin 1 (SIRT1) small interfering RNA was co-administered with SalB, the protective effects of SalB were attenuated and the expression levels of SIRT1 and PGC-1α were reduced. In summary, these results indicate that SalB mitigates sepsis-induced liver injury via reduction of the inflammatory response and hepatic apoptosis, and the underlying mechanism may be associated with the activation of SIRT1/PGC-1α signaling.
Collapse
Affiliation(s)
- Hongling Su
- Department of Gastroenterology, Xidian Group Hospital, Xi'an, Shaanxi 710000, P.R. China
| | - Zhisheng Ma
- Department of Gastroenterology, Xidian Group Hospital, Xi'an, Shaanxi 710000, P.R. China
| | - Aixia Guo
- Department of Gastroenterology, Xidian Group Hospital, Xi'an, Shaanxi 710000, P.R. China
| | - Hong Wu
- Department of General Surgery, Xidian Group Hospital, Xi'an, Shaanxi 710000, P.R. China.,Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiangmin Yang
- Department of Gastroenterology, Xidian Group Hospital, Xi'an, Shaanxi 710000, P.R. China
| |
Collapse
|
29
|
Hu Q, Wu J, Ren Y, Wu X, Gao L, Wang G, Gu G, Ren H, Hong Z, Slade DA, Ren J. Degree of STING activation is associated with disease outcomes. Gut 2020; 69:792-794. [PMID: 30996043 DOI: 10.1136/gutjnl-2019-318597] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/01/2019] [Accepted: 04/06/2019] [Indexed: 01/12/2023]
Affiliation(s)
- Qiongyuan Hu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jie Wu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yanhan Ren
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lin Gao
- Pancreatic Center, Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Gefei Wang
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guosheng Gu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Huajian Ren
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhiwu Hong
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Dominic A Slade
- Department of Surgery, Salford Royal NHS Foundation Trust, Salford, UK
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
30
|
Yin X, Xin H, Mao S, Wu G, Guo L. The Role of Autophagy in Sepsis: Protection and Injury to Organs. Front Physiol 2019; 10:1071. [PMID: 31507440 PMCID: PMC6716215 DOI: 10.3389/fphys.2019.01071] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a systemic inflammatory disease with infection, and autophagy has been shown to play an important role in sepsis. This review summarizes the main regulatory mechanisms of autophagy in sepsis and its latest research. Recent studies have shown that autophagy can regulate innate immune processes and acquired immune processes, and the regulation of autophagy in different immune cells is different. Mitophagy can select damaged mitochondria and remove it to deal with oxidative stress damage. The process of mitophagy is regulated by other factors. Non-coding RNA is also an important factor in the regulation of autophagy. In addition, more and more studies in recent years have shown that autophagy plays different roles in different organs. It tends to be protective in the lungs, heart, kidneys, and brain, and tends to be damaging in skeletal muscle. We also mentioned that some drugs can regulate autophagy. The process of modulating autophagy through drug intervention appears to be a new potential hope for the treatment of sepsis.
Collapse
Affiliation(s)
- Xin Yin
- Department of Critical Care Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huang Xin
- Department of Critical Care Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuai Mao
- Department of Critical Care Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangping Wu
- Department of Critical Care Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liheng Guo
- Department of Critical Care Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
31
|
Herold K, Mrowka R. Inflammation-Dysregulated inflammatory response and strategies for treatment. Acta Physiol (Oxf) 2019; 226:e13284. [PMID: 31009174 DOI: 10.1111/apha.13284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Kristina Herold
- Klinik für Innere Medizin III, AG Experimentelle Nephrologie Universitätsklinikum Jena Jena Germany
| | - Ralf Mrowka
- Klinik für Innere Medizin III, AG Experimentelle Nephrologie Universitätsklinikum Jena Jena Germany
| |
Collapse
|
32
|
Li MY, Zhu XL, Zhao BX, Shi L, Wang W, Hu W, Qin SL, Chen BH, Zhou PH, Qiu B, Gao Y, Liu BL. Adrenomedullin alleviates the pyroptosis of Leydig cells by promoting autophagy via the ROS-AMPK-mTOR axis. Cell Death Dis 2019; 10:489. [PMID: 31222000 PMCID: PMC6586845 DOI: 10.1038/s41419-019-1728-5] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 05/22/2019] [Accepted: 06/03/2019] [Indexed: 01/03/2023]
Abstract
Adrenomedullin (ADM) exerts anti-oxidant, anti-inflammatory and anti-apoptotic effects in Leydig cells. However, the role and mechanism of ADM in the pyroptosis of Leydig cells are poorly understood. This study first showed the protective effects of ADM on the pyroptosis and biological functions of Leydig cells exposed to lipopolysaccharide (LPS) by promoting autophagy. Primary rat Leydig cells were treated with various concentrations of LPS and ADM, together with or without N-acetyl-L-cysteine (NAC) or 3-methyladenine (3-MA). Cell proliferation was detected through CCK-8 and BrdU incorporation assays, and ROS level was measured with the DCFDA assay. Real-time PCR, western blot, immunofluorescence, transmission electron microscopy, TUNEL and flow cytometry were performed to examine ADM's effect on the pyroptosis, autophagy and steroidogenic enzymes of Leydig cells and AMPK/mTOR signalling. Like NAC, ADM dose-dependently reduced LPS-induced cytotoxicity and ROS overproduction. ADM also dose-dependently ameliorated LPS-induced pyroptosis by reversing the increased expression of NLRP3, ASC, caspase-1, IL-1β, IL-18, GSDMD, caspase-3, caspase-7, TUNEL-positive and PI and active caspase-1 double-stained positive rate, DNA fragmentation and LDH concentration, which could be rescued via co-incubation with 3-MA. ADM dose-dependently increased autophagy in LPS-induced Leydig cells, as confirmed by the increased expression of LC3-I/II, Beclin-1 and ATG-5; decreased expression of p62 and autophagosomes formation; and increased LC3-II/LC3-I ratio. However, co-treatment with 3-MA evidently decreased autophagy. Furthermore, ADM dose-dependently rescued the expression of steroidogenic enzymes, including StAR, P450scc, 3β-HSD and CYP17, and testosterone production in LPS-induced Leydig cells. Like rapamycin, ADM dose-dependently enhanced AMPK phosphorylation but reduced mTOR phosphorylation in LPS-induced Leydig cells, which could be rescued via co-incubation with 3-MA. In addition, pyroptosis was further decreased, and autophagy was further promoted in LPS-induced Leydig cells upon co-treatment with ADM and rapamycin. ADM may protect the steroidogenic functions of Leydig cells against pyroptosis by activating autophagy via the ROS-AMPK-mTOR axis.
Collapse
Grants
- Hunan Natural Science Foundation, Hunan, China (Grant No.: 2019JJ40269), Health and Family Planning Research Project of Hunan Province, Changsha, China (Grant No.: B2017051)
- National Science Foundation of China, Beijing, China (Grant No.: 81401190)
- Social Development Foundation of Zhenjiang, Zhenjiang, China (Grant No.: SH2016031)
- National Science Foundation of China, Beijing, China (Grant No.: 81501921),Science and Technology Project of Wuhan, China (Grant No.: 2016060101010045)
- National Science Foundation of China, Beijing, China (Grant No.: 81602241)
- National Science Foundation of China, Beijing, China (Grant Nos.: 81471449,81871110 and 81671449),Guangdong Province Natural Science Foundation, Guangzhou, China (Grant No.: 2015A030313141), Guangdong Province Science and Technology Project, Guangzhou, China (Grant Nos.: 2016B030230001 and 2016A040403113), Key Scientific and Technological Program of Guangzhou City, Guangzhou, China (Grant No.: 201604020189)
Collapse
Affiliation(s)
- Ming-Yong Li
- Department of Urology, The First Affiliated Hospital of University of South China, No. 69 Chuan Shan Road, Hengyang, 421001, Hunan Province, China
| | - Xia-Lian Zhu
- Department of Hand Surgery, Affiliated Nanhua Hospital of University of South China, No. 336 Dong Feng South Road, Hengyang, 421002, Hunan Province, China
| | - Bi-Xia Zhao
- Department of Urology, Affiliated Nanhua Hospital of University of South China, No. 336 Dong Feng South Road, Hengyang, 421002, Hunan Province, China
| | - Lei Shi
- Department of Oncology, Renmin Hospital of Wuhan University, No. 238 Liberation Road, Wuhan, 430060, Hubei Province, China
| | - Wei Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui Province, China
| | - Wei Hu
- Department of Andrology, The First Affiliated Hospital of University of South China, No. 69 Chuan Shan Road, Hengyang, 421001, Hunan Province, China.
| | - Song-Lin Qin
- Department of Andrology, The First Affiliated Hospital of University of South China, No. 69 Chuan Shan Road, Hengyang, 421001, Hunan Province, China.
| | - Bing-Hai Chen
- Department of Urology, Affiliated Hospital of Jiangsu University, No. 438 Liberation Road, Zhenjiang, 212000, Jiangsu Province, China.
| | - Pang-Hu Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 238 Liberation Road, Wuhan, 430060, Hubei Province, China
| | - Bo Qiu
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 238 Liberation Road, Wuhan, 430060, Hubei Province, China
| | - Yong Gao
- Reproductive Medicine Centre, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Second Zhongshan Road, Guangzhou, 510080, Guangdong Province, China
| | - Bo-Long Liu
- Department of Andrology, The First Affiliated Hospital of University of South China, No. 69 Chuan Shan Road, Hengyang, 421001, Hunan Province, China
| |
Collapse
|
33
|
Mitochondria-Derived Damage-Associated Molecular Patterns in Sepsis: From Bench to Bedside. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6914849. [PMID: 31205588 PMCID: PMC6530230 DOI: 10.1155/2019/6914849] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/18/2019] [Indexed: 12/15/2022]
Abstract
Sepsis is one of the most serious health hazards. Current research suggests that the pathogenesis of sepsis is mediated by both pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). Mitochondria are among the most important organelles in cells and determine their life and death. A variety of mitochondria-derived DAMPs (mtDAMPs) are similar to bacteria because mitochondria are derived from bacteria according to the mitochondrial endosymbiotic theory. Their activated signaling pathways extensively affect organ functions, the immune system, and metabolic functions in sepsis. In this review, we describe the essential roles of mtDAMPs in sepsis and discuss their research prospects and clinical importance.
Collapse
|
34
|
Hu Q, Ren H, Li G, Wang D, Zhou Q, Wu J, Zheng J, Huang J, Slade DA, Wu X, Ren J. STING-mediated intestinal barrier dysfunction contributes to lethal sepsis. EBioMedicine 2019; 41:497-508. [PMID: 30878597 PMCID: PMC6443583 DOI: 10.1016/j.ebiom.2019.02.055] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/18/2019] [Accepted: 02/26/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Gut integrity is compromised in abdominal sepsis with increased cellular apoptosis and altered barrier permeability. Intestinal epithelial cells (IEC) form a physiochemical barrier that separates the intestinal lumen from the host's internal milieu and is strongly involved in the mucosal inflammatory response and immune response. Recent research indicates the involvement of the stimulator of interferons genes (STING) pathway in uncontrolled inflammation and gut mucosal immune response. METHODS We investigated the role of STING signaling in sepsis and intestinal barrier function using intestinal biopsies from human patients with abdominal sepsis and with an established model of abdominal sepsis in mice. FINDINGS In human abdominal sepsis, STING expression was elevated in peripheral blood mononuclear cells and intestinal biopsies compared with healthy controls, and the degree of STING expression in the human intestinal lamina propria correlated with the intestinal inflammation in septic patients. Moreover, elevated STING expression was associated with high levels of serum intestinal fatty acid binding protein that served as a marker of enterocyte damage. In mice, the intestinal STING signaling pathway was markedly activated following the induction of sepsis induced by cecal ligation perforation (CLP). STING knockout mice showed an alleviated inflammatory response, attenuated gut permeability, and decreased bacterial translocation. Whereas mice treated with a STING agonist (DMXAA) following CLP developed greater intestinal apoptosis and a more severe systemic inflammatory response. We demonstrated that mitochondrial DNA (mtDNA) was released during sepsis, inducing the intestinal inflammatory response through activating the STING pathway. We finally investigated DNase I administration at 5 hours post CLP surgery, showing that it reduced systemic mtDNA and inflammatory cytokines levels, organ damage, and bacterial translocation, suggesting that inhibition of mtDNA-STING signaling pathway protects against CLP-induced intestinal barrier dysfunction. INTERPRETATION Our results indicate that the STING signaling pathway can contribute to lethal sepsis by promoting IEC apoptosis and through disrupting the intestinal barrier. Our findings suggest that regulation of the mtDNA-STING pathway may be a promising therapeutic strategy to promote mucosal healing and protect the intestinal barrier in septic patients. FUND: National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Qiongyuan Hu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China; Medical School of Nanjing University, Nanjing, China
| | - Huajian Ren
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guanwei Li
- Department of colorectal and anal surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Dingyu Wang
- Medical School of Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Collaborative Innovation Center of Genetics and Development, Model Animal Research Center, Nanjing, China
| | - Quan Zhou
- Medical School of Nanjing University, Nanjing, China
| | - Jie Wu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China; Medical School of Nanjing University, Nanjing, China
| | - Jiashuo Zheng
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China; Medical School of Nanjing University, Nanjing, China
| | - Jinjian Huang
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Dominic A Slade
- Medical School of Nanjing University, Nanjing, China; Department of Surgery, Salford Royal NHS Foundation Trust, Stott Lane, Salford, United Kingdom.
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|