1
|
Martin E, Chowdury A, Kopchick J, Thomas P, Khatib D, Rajan U, Zajac-Benitez C, Haddad L, Amirsadri A, Robison AJ, Thakkar KN, Stanley JA, Diwadkar VA. The mesolimbic system and the loss of higher order network features in schizophrenia when learning without reward. Front Psychiatry 2024; 15:1337882. [PMID: 39355381 PMCID: PMC11443173 DOI: 10.3389/fpsyt.2024.1337882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 08/16/2024] [Indexed: 10/03/2024] Open
Abstract
Introduction Schizophrenia is characterized by a loss of network features between cognition and reward sub-circuits (notably involving the mesolimbic system), and this loss may explain deficits in learning and cognition. Learning in schizophrenia has typically been studied with tasks that include reward related contingencies, but recent theoretical models have argued that a loss of network features should be seen even when learning without reward. We tested this model using a learning paradigm that required participants to learn without reward or feedback. We used a novel method for capturing higher order network features, to demonstrate that the mesolimbic system is heavily implicated in the loss of network features in schizophrenia, even when learning without reward. Methods fMRI data (Siemens Verio 3T) were acquired in a group of schizophrenia patients and controls (n=78; 46 SCZ, 18 ≤ Age ≤ 50) while participants engaged in associative learning without reward-related contingencies. The task was divided into task-active conditions for encoding (of associations) and cued-retrieval (where the cue was to be used to retrieve the associated memoranda). No feedback was provided during retrieval. From the fMRI time series data, network features were defined as follows: First, for each condition of the task, we estimated 2nd order undirected functional connectivity for each participant (uFC, based on zero lag correlations between all pairs of regions). These conventional 2nd order features represent the task/condition evoked synchronization of activity between pairs of brain regions. Next, in each of the patient and control groups, the statistical relationship between all possible pairs of 2nd order features were computed. These higher order features represent the consistency between all possible pairs of 2nd order features in that group and embed within them the contributions of individual regions to such group structure. Results From the identified inter-group differences (SCZ ≠ HC) in higher order features, we quantified the respective contributions of individual brain regions. Two principal effects emerged: 1) SCZ were characterized by a massive loss of higher order features during multiple task conditions (encoding and retrieval of associations). 2) Nodes in the mesolimbic system were over-represented in the loss of higher order features in SCZ, and notably so during retrieval. Discussion Our analytical goals were linked to a recent circuit-based integrative model which argued that synergy between learning and reward circuits is lost in schizophrenia. The model's notable prediction was that such a loss would be observed even when patients learned without reward. Our results provide substantial support for these predictions where we observed a loss of network features between the brain's sub-circuits for a) learning (including the hippocampus and prefrontal cortex) and b) reward processing (specifically constituents of the mesolimbic system that included the ventral tegmental area and the nucleus accumbens. Our findings motivate a renewed appraisal of the relationship between reward and cognition in schizophrenia and we discuss their relevance for putative behavioral interventions.
Collapse
Affiliation(s)
- Elizabeth Martin
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Psychiatry, University of Texas Austin, Austin, TX, United States
| | - Asadur Chowdury
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - John Kopchick
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Patricia Thomas
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Dalal Khatib
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Usha Rajan
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Caroline Zajac-Benitez
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Luay Haddad
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Alireza Amirsadri
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Alfred J. Robison
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Katherine N. Thakkar
- Department of Psychology, Michigan State University, East Lansing, MI, United States
| | - Jeffrey A. Stanley
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Vaibhav A. Diwadkar
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
2
|
Abbasi H, Ghavami-Kia S, Davoodian N, Davoodian N. Maternal quercetin supplementation improved lipopolysaccharide-induced cognitive deficits and inflammatory response in a rat model of maternal immune activation. Toxicol Appl Pharmacol 2024; 483:116830. [PMID: 38246289 DOI: 10.1016/j.taap.2024.116830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/27/2023] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND There is strong evidence that prenatal infection during a specific period of brain development increases the risk of neurodevelopmental disorders, partly through immune-inflammatory pathways. This suggests that anti-inflammatory agents could prevent these disorders by targeting the maternal inflammatory response. In the present study, we used a rat model of maternal immune activation (MIA) to examine whether maternal quercetin (QE) supplementation can alleviate behavioral deficits and inflammatory mediators in the prefrontal cortex (PFC) and hippocampus of adult male offspring. METHODS Pregnant rats were supplemented with QE (50 mg/kg) or vehicle throughout pregnancy and injected with either lipopolysaccharide (0.5 mg/kg) or saline on gestational days 15/16. At postnatal day 60, we evaluated the offspring's behavior, hippocampal and prefrontal cortex glial density, pro-inflammatory gene expression, and neuronal survival. RESULTS Our data showed that maternal QE supplementation can prevent working and recognition memory impairments in adult MIA offspring. This behavioral improvement correlates with the decrease in MIA-induced expression of pro-inflammatory genes, microglia, and astrocyte densities, without affecting neuronal survival, in both PFC and CA1 hippocampus areas. CONCLUSION Therefore, our study supports the potential preventive effect of QE on MIA-induced behavioral dysfunctions, at least in part, by suppressing the glial-mediated inflammatory response.
Collapse
Affiliation(s)
- Hossein Abbasi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Sina Ghavami-Kia
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Nahid Davoodian
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Najmeh Davoodian
- Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
3
|
Kolar D, Krajcovic B, Kleteckova L, Kuncicka D, Vales K, Brozka H. Review: Genes Involved in Mitochondrial Physiology Within 22q11.2 Deleted Region and Their Relevance to Schizophrenia. Schizophr Bull 2023; 49:1637-1653. [PMID: 37379469 PMCID: PMC10686339 DOI: 10.1093/schbul/sbad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia is associated with altered energy metabolism, but the cause and potential impact of these metabolic changes remain unknown. 22q11.2 deletion syndrome (22q11.2DS) represents a genetic risk factor for schizophrenia, which is associated with the loss of several genes involved in mitochondrial physiology. Here we examine how the haploinsufficiency of these genes could contribute to the emergence of schizophrenia in 22q11.2DS. STUDY DESIGN We characterize changes in neuronal mitochondrial function caused by haploinsufficiency of mitochondria-associated genes within the 22q11.2 region (PRODH, MRPL40, TANGO2, ZDHHC8, SLC25A1, TXNRD2, UFD1, and DGCR8). For that purpose, we combine data from 22q11.2DS carriers and schizophrenia patients, in vivo (animal models) and in vitro (induced pluripotent stem cells, IPSCs) studies. We also review the current knowledge about seven non-coding microRNA molecules located in the 22q11.2 region that may be indirectly involved in energy metabolism by acting as regulatory factors. STUDY RESULTS We found that the haploinsufficiency of genes of interest is mainly associated with increased oxidative stress, altered energy metabolism, and calcium homeostasis in animal models. Studies on IPSCs from 22q11.2DS carriers corroborate findings of deficits in the brain energy metabolism, implying a causal role between impaired mitochondrial function and the development of schizophrenia in 22q11.2DS. CONCLUSIONS The haploinsufficiency of genes within the 22q11.2 region leads to multifaceted mitochondrial dysfunction with consequences to neuronal function, viability, and wiring. Overlap between in vitro and in vivo studies implies a causal role between impaired mitochondrial function and the development of schizophrenia in 22q11.2DS.
Collapse
Affiliation(s)
- David Kolar
- National Institute of Mental Health, Klecany, Czech Republic
| | - Branislav Krajcovic
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Daniela Kuncicka
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Karel Vales
- National Institute of Mental Health, Klecany, Czech Republic
| | - Hana Brozka
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
4
|
Jing H, Zhang C, Yan H, Li X, Liang J, Liang W, Ou Y, Wu W, Guo H, Deng W, Xie G, Guo W. Deviant spontaneous neural activity as a potential early-response predictor for therapeutic interventions in patients with schizophrenia. Front Neurosci 2023; 17:1243168. [PMID: 37727324 PMCID: PMC10505796 DOI: 10.3389/fnins.2023.1243168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/18/2023] [Indexed: 09/21/2023] Open
Abstract
Objective Previous studies have established significant differences in the neuroimaging characteristics between healthy controls (HCs) and patients with schizophrenia (SCZ). However, the relationship between homotopic connectivity and clinical features in patients with SCZ is not yet fully understood. Furthermore, there are currently no established neuroimaging biomarkers available for the diagnosis of SCZ or for predicting early treatment response. The aim of this study is to investigate the association between regional homogeneity and specific clinical features in SCZ patients. Methods We conducted a longitudinal investigation involving 56 patients with SCZ and 51 HCs. The SCZ patients underwent a 3-month antipsychotic treatment. Resting-state functional magnetic resonance imaging (fMRI), regional homogeneity (ReHo), support vector machine (SVM), and support vector regression (SVR) were used for data acquisition and analysis. Results In comparison to HCs, individuals with SCZ demonstrated reduced ReHo values in the right postcentral/precentral gyrus, left postcentral/inferior parietal gyrus, left middle/inferior occipital gyrus, and right middle temporal/inferior occipital gyrus, and increased ReHo values in the right putamen. It is noteworthy that there was decreased ReHo values in the right inferior parietal gyrus after treatment compared to baseline data. Conclusion The observed decrease in ReHo values in the sensorimotor network and increase in ReHo values in the right putamen may represent distinctive neurobiological characteristics of patients with SCZ, as well as a potential neuroimaging biomarker for distinguishing between patients with SCZ and HCs. Furthermore, ReHo values in the sensorimotor network and right putamen may serve as predictive indicators for early treatment response in patients with SCZ.
Collapse
Affiliation(s)
- Huan Jing
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Chunguo Zhang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Jiaquan Liang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Wenting Liang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Yangpan Ou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Weibin Wu
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Huagui Guo
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Wen Deng
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Guojun Xie
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Wang Q, Yao W, Bai D, Yi W, Yan W, Wang J. Schizophrenia MEG Network Analysis Based on Kernel Granger Causality. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1006. [PMID: 37509953 PMCID: PMC10378589 DOI: 10.3390/e25071006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023]
Abstract
Network analysis is an important approach to explore complex brain structures under different pathological and physiological conditions. In this paper, we employ the multivariate inhomogeneous polynomial kernel Granger causality (MKGC) to construct directed weighted networks to characterize schizophrenia magnetoencephalography (MEG). We first generate data based on coupled autoregressive processes to test the effectiveness of MKGC in comparison with the bivariate linear Granger causality and bivariate inhomogeneous polynomial kernel Granger causality. The test results suggest that MKGC outperforms the other two methods. Based on these results, we apply MKGC to construct effective connectivity networks of MEG for patients with schizophrenia (SCZs). We measure three network features, i.e., strength, nonequilibrium, and complexity, to characterize schizophrenia MEG. Our results suggest that MEG of the healthy controls (HCs) has a denser effective connectivity network than that of SCZs. The most significant difference in the in-connectivity strength is observed in the right frontal network (p=0.001). The strongest out-connectivity strength for all subjects occurs in the temporal area, with the most significant between-group difference in the left occipital area (p=0.0018). The total connectivity strength of the frontal, temporal, and occipital areas of HCs exhibits higher values compared with SCZs. The nonequilibrium feature over the whole brain of SCZs is significantly higher than that of the HCs (p=0.012); however, the results of Shannon entropy suggest that healthy MEG networks have higher complexity than schizophrenia networks. Overall, MKGC provides a reliable approach to construct MEG brain networks and characterize the network characteristics.
Collapse
Affiliation(s)
- Qiong Wang
- School of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
- School of Physics and Information Engineering, Jiangsu Second Normal University, Nanjing 210013, China
| | - Wenpo Yao
- Smart Health Big Data Analysis and Location Services Engineering Research Center of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Dengxuan Bai
- School of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
| | - Wanyi Yi
- School of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
| | - Wei Yan
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Jun Wang
- Smart Health Big Data Analysis and Location Services Engineering Research Center of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
6
|
Santarriaga S, Gerlovin K, Layadi Y, Karmacharya R. Human stem cell-based models to study synaptic dysfunction and cognition in schizophrenia: A narrative review. Schizophr Res 2023:S0920-9964(23)00084-1. [PMID: 36925354 PMCID: PMC10500041 DOI: 10.1016/j.schres.2023.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Cognitive impairment is the strongest predictor of functional outcomes in schizophrenia and is hypothesized to result from synaptic dysfunction. However, targeting synaptic plasticity and cognitive deficits in patients remains a significant clinical challenge. A comprehensive understanding of synaptic plasticity and the molecular basis of learning and memory in a disease context can provide specific targets for the development of novel therapeutics targeting cognitive impairments in schizophrenia. Here, we describe the role of synaptic plasticity in cognition, summarize evidence for synaptic dysfunction in schizophrenia and demonstrate the use of patient derived induced-pluripotent stem cells for studying synaptic plasticity in vitro. Lastly, we discuss current advances and future technologies for bridging basic science research of synaptic dysfunction with clinical and translational research that can be used to predict treatment response and develop novel therapeutics.
Collapse
Affiliation(s)
- Stephanie Santarriaga
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chemical Biology and Therapeutic Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Kaia Gerlovin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chemical Biology and Therapeutic Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yasmine Layadi
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chimie ParisTech, Université Paris Sciences et Lettres, Paris, France
| | - Rakesh Karmacharya
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chemical Biology and Therapeutic Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
7
|
Zahid U, Onwordi EC, Hedges EP, Wall MB, Modinos G, Murray RM, Egerton A. Neurofunctional correlates of glutamate and GABA imbalance in psychosis: A systematic review. Neurosci Biobehav Rev 2023; 144:105010. [PMID: 36549375 DOI: 10.1016/j.neubiorev.2022.105010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Glutamatergic and GABAergic dysfunction are implicated in the pathophysiology of schizophrenia. Previous work has shown relationships between glutamate, GABA, and brain activity in healthy volunteers. We conducted a systematic review to evaluate whether these relationships are disrupted in psychosis. Primary outcomes were the relationship between metabolite levels and fMRI BOLD response in psychosis relative to healthy volunteers. 17 case-control studies met inclusion criteria (594 patients and 538 healthy volunteers). Replicated findings included that in psychosis, positive associations between ACC glutamate levels and brain activity are reduced during resting state conditions and increased during cognitive control tasks, and negative relationships between GABA and local activation in the ACC are reduced. There was evidence that antipsychotic medication may alter the relationship between glutamate levels and brain activity. Emerging literature is providing insights into disrupted relationships between neurometabolites and brain activity in psychosis. Future studies determining a link to clinical variables may develop this approach for biomarker applications, including development or targeting novel therapeutics.
Collapse
Affiliation(s)
- Uzma Zahid
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; Department of Psychiatry, University of Oxford, UK.
| | - Ellis C Onwordi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK; South London and Maudsley NHS Foundation Trust, Camberwell, London, UK
| | - Emily P Hedges
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Matthew B Wall
- Invicro London, Hammersmith Hospital, UK; Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, UK; Clinical Psychopharmacology Unit, University College London, UK
| | - Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| |
Collapse
|
8
|
Aberrant maturation and connectivity of prefrontal cortex in schizophrenia-contribution of NMDA receptor development and hypofunction. Mol Psychiatry 2022; 27:731-743. [PMID: 34163013 PMCID: PMC8695640 DOI: 10.1038/s41380-021-01196-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
The neurobiology of schizophrenia involves multiple facets of pathophysiology, ranging from its genetic basis over changes in neurochemistry and neurophysiology, to the systemic level of neural circuits. Although the precise mechanisms associated with the neuropathophysiology remain elusive, one essential aspect is the aberrant maturation and connectivity of the prefrontal cortex that leads to complex symptoms in various stages of the disease. Here, we focus on how early developmental dysfunction, especially N-methyl-D-aspartate receptor (NMDAR) development and hypofunction, may lead to the dysfunction of both local circuitry within the prefrontal cortex and its long-range connectivity. More specifically, we will focus on an "all roads lead to Rome" hypothesis, i.e., how NMDAR hypofunction during development acts as a convergence point and leads to local gamma-aminobutyric acid (GABA) deficits and input-output dysconnectivity in the prefrontal cortex, which eventually induce cognitive and social deficits. Many outstanding questions and hypothetical mechanisms are listed for future investigations of this intriguing hypothesis that may lead to a better understanding of the aberrant maturation and connectivity associated with the prefrontal cortex.
Collapse
|
9
|
Yin J, Ma G, Luo S, Luo X, He B, Liang C, Zuo X, Xu X, Chen Q, Xiong S, Tan Z, Fu J, Lv D, Dai Z, Wen X, Zhu D, Ye X, Lin Z, Lin J, Li Y, Chen W, Luo Z, Li K, Wang Y. Glyoxalase 1 Confers Susceptibility to Schizophrenia: From Genetic Variants to Phenotypes of Neural Function. Front Mol Neurosci 2021; 14:739526. [PMID: 34790095 PMCID: PMC8592033 DOI: 10.3389/fnmol.2021.739526] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
This research aimed to investigate the role of glyoxalase 1 (Glo-1) polymorphisms in the susceptibility of schizophrenia. Using the real-time polymerase chain reaction (PCR) and spectrophotometric assays technology, significant differences in Glo-1 messenger ribonucleic acid (mRNA) expression (P = 3.98 × 10-5) and enzymatic activity (P = 1.40 × 10-6) were found in peripheral blood of first-onset antipsychotic-naïve patients with schizophrenia and controls. The following receiver operating characteristic (ROC) curves analysis showed that Glo-1 could predict the schizophrenia risk (P = 4.75 × 10-6 in mRNA, P = 1.43 × 10-7 in enzymatic activity, respectively). To identify the genetic source of Glo-1 risk in schizophrenia, Glo-1 polymorphisms (rs1781735, rs1130534, rs4746, and rs9470916) were genotyped with SNaPshot technology in 1,069 patients with schizophrenia and 1,023 healthy individuals. Then, the impact of risk polymorphism on the promoter activity, mRNA expression, and enzymatic activity was analyzed. The results revealed significant differences in the distributions of genotype (P = 0.020, false discovery rate (FDR) correction) and allele (P = 0.020, FDR correction) in rs1781735, in which G > T mutation significantly showed reduction in the promoter activity (P = 0.016), mRNA expression, and enzymatic activity (P = 0.001 and P = 0.015, respectively, GG vs. TT, in peripheral blood of patients with schizophrenia) of Glo-1. The expression quantitative trait locus (eQTL) findings were followed up with the resting-state functional magnetic resonance imaging (fMRI) analysis. The TT genotype of rs1781735, associated with lower RNA expression in the brain (P < 0.05), showed decreased neuronal activation in the left middle frontal gyrus in schizophrenia (P < 0.001). In aggregate, this study for the first time demonstrates how the genetic and biochemical basis of Glo-1 polymorphism culminates in the brain function changes associated with increased schizophrenia risk. Thus, establishing a combination of multiple levels of changes ranging from genetic variants, transcription, protein function, and brain function changes is a better predictor of schizophrenia risk.
Collapse
Affiliation(s)
- Jingwen Yin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macao SAR, China.,Department of Psychology, Faculty of Social Sciences, University of Macau, Macao SAR, China
| | - Guoda Ma
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China.,Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Shucun Luo
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xudong Luo
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bin He
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chunmei Liang
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Xiang Zuo
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Xusan Xu
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Qing Chen
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Susu Xiong
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhi Tan
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiawu Fu
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Dong Lv
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhun Dai
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xia Wen
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Dongjian Zhu
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaoqing Ye
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhixiong Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Juda Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - You Li
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Wubiao Chen
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zebin Luo
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Keshen Li
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China.,Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| | - Yajun Wang
- Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Foshan, China
| |
Collapse
|
10
|
Speers LJ, Bilkey DK. Disorganization of Oscillatory Activity in Animal Models of Schizophrenia. Front Neural Circuits 2021; 15:741767. [PMID: 34675780 PMCID: PMC8523827 DOI: 10.3389/fncir.2021.741767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/16/2021] [Indexed: 01/02/2023] Open
Abstract
Schizophrenia is a chronic, debilitating disorder with diverse symptomatology, including disorganized cognition and behavior. Despite considerable research effort, we have only a limited understanding of the underlying brain dysfunction. In this article, we review the potential role of oscillatory circuits in the disorder with a particular focus on the hippocampus, a region that encodes sequential information across time and space, as well as the frontal cortex. Several mechanistic explanations of schizophrenia propose that a loss of oscillatory synchrony between and within these brain regions may underlie some of the symptoms of the disorder. We describe how these oscillations are affected in several animal models of schizophrenia, including models of genetic risk, maternal immune activation (MIA) models, and models of NMDA receptor hypofunction. We then critically discuss the evidence for disorganized oscillatory activity in these models, with a focus on gamma, sharp wave ripple, and theta activity, including the role of cross-frequency coupling as a synchronizing mechanism. Finally, we focus on phase precession, which is an oscillatory phenomenon whereby individual hippocampal place cells systematically advance their firing phase against the background theta oscillation. Phase precession is important because it allows sequential experience to be compressed into a single 120 ms theta cycle (known as a 'theta sequence'). This time window is appropriate for the induction of synaptic plasticity. We describe how disruption of phase precession could disorganize sequential processing, and thereby disrupt the ordered storage of information. A similar dysfunction in schizophrenia may contribute to cognitive symptoms, including deficits in episodic memory, working memory, and future planning.
Collapse
Affiliation(s)
| | - David K. Bilkey
- Department of Psychology, Otago University, Dunedin, New Zealand
| |
Collapse
|
11
|
Edemann-Callesen H, Winter C, Hadar R. Using cortical non-invasive neuromodulation as a potential preventive treatment in schizophrenia - A review. Brain Stimul 2021; 14:643-651. [PMID: 33819680 DOI: 10.1016/j.brs.2021.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 02/11/2021] [Accepted: 03/23/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Evidence suggests that schizophrenia constitutes a neurodevelopmental disorder, characterized by a gradual emergence of behavioral and neurobiological abnormalities over time. Therefore, applying early interventions to prevent later manifestation of symptoms is appealing. OBJECTIVE This review focuses on the use of cortical neuromodulation in schizophrenia and its potential as a preventive treatment approach. We present clinical and preclinical findings investigating the use of neuromodulation in schizophrenia, including the current research focusing on cortical non-invasive stimulation and its possibility as a future preventive treatment. METHODS We performed a search in Medline (PubMed) in September 2020 using a combination of relevant medical subject headings (MeSH) and text words. The search included human and preclinical trials as well as existing systematic reviews and meta-analysis. There were no restrictions on language or the date of publication. RESULTS Neurodevelopmental animal models may be used to investigate how the disease progresses and thus which brain areas ideally should be targeted at a given time point. Here, abnormalities of the prefrontal cortex have been often identified as an early and persistent impairment in schizophrenia. Currently there is insufficient evidence to either support or refute the use of neuromodulation to the cortex in adult patients with already manifested symptoms. However, preclinical results show that early non-invasive neuromodulation to the prefrontal cortex of adolescent animals, sufficiently prevents later psychosis-relevant abnormalities in adulthood. This points to the promising potential of cortical non-invasive neuromodulation as a preventive treatment when applied early in the course of the disease. CONCLUSION Preclinical translational-oriented findings indicate, that neuromodulation to cortical areas offers the possibility of targeting early neuropathology and through this diminish the progression of a later schizophrenic profile. Further studies are needed to investigate whether such early cortical stimulation may serve as a future preventive treatment in schizophrenia.
Collapse
Affiliation(s)
- Henriette Edemann-Callesen
- Department of Psychiatry and Psychotherapy, Charité Campus Mitte, Charité -Universitätsmedizin, Berlin, Germany
| | - Christine Winter
- Department of Psychiatry and Psychotherapy, Charité Campus Mitte, Charité -Universitätsmedizin, Berlin, Germany
| | - Ravit Hadar
- Department of Psychiatry and Psychotherapy, Charité Campus Mitte, Charité -Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
12
|
Vojtechova I, Maleninska K, Kutna V, Klovrza O, Tuckova K, Petrasek T, Stuchlik A. Behavioral Alterations and Decreased Number of Parvalbumin-Positive Interneurons in Wistar Rats after Maternal Immune Activation by Lipopolysaccharide: Sex Matters. Int J Mol Sci 2021; 22:ijms22063274. [PMID: 33806936 PMCID: PMC8004756 DOI: 10.3390/ijms22063274] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 12/27/2022] Open
Abstract
Maternal immune activation (MIA) during pregnancy represents an important environmental factor in the etiology of schizophrenia and autism spectrum disorders (ASD). Our goal was to investigate the impacts of MIA on the brain and behavior of adolescent and adult offspring, as a rat model of these neurodevelopmental disorders. We injected bacterial lipopolysaccharide (LPS, 1 mg/kg) to pregnant Wistar dams from gestational day 7, every other day, up to delivery. Behavior of the offspring was examined in a comprehensive battery of tasks at postnatal days P45 and P90. Several brain parameters were analyzed at P28. The results showed that prenatal immune activation caused social and communication impairments in the adult offspring of both sexes; males were affected already in adolescence. MIA also caused prepulse inhibition deficit in females and increased the startle reaction in males. Anxiety and hypolocomotion were apparent in LPS-affected males and females. In the 28-day-old LPS offspring, we found enlargement of the brain and decreased numbers of parvalbumin-positive interneurons in the frontal cortex in both sexes. To conclude, our data indicate that sex of the offspring plays a crucial role in the development of the MIA-induced behavioral alterations, whereas changes in the brain apparent in young animals are sex-independent.
Collapse
Affiliation(s)
- Iveta Vojtechova
- National Institute of Mental Health, Topolova 748, 25067 Klecany, Czech Republic; (K.M.); (V.K.); (O.K.); (K.T.); (T.P.)
- Laboratory of the Neurophysiology of the Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
- First Faculty of Medicine, Charles University, Katerinska 32, 12108 Prague 2, Czech Republic
- Correspondence: (I.V.); (A.S.)
| | - Kristyna Maleninska
- National Institute of Mental Health, Topolova 748, 25067 Klecany, Czech Republic; (K.M.); (V.K.); (O.K.); (K.T.); (T.P.)
- Laboratory of the Neurophysiology of the Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
- Faculty of Science, Charles University, Albertov 6, 12800 Prague 2, Czech Republic
| | - Viera Kutna
- National Institute of Mental Health, Topolova 748, 25067 Klecany, Czech Republic; (K.M.); (V.K.); (O.K.); (K.T.); (T.P.)
| | - Ondrej Klovrza
- National Institute of Mental Health, Topolova 748, 25067 Klecany, Czech Republic; (K.M.); (V.K.); (O.K.); (K.T.); (T.P.)
| | - Klara Tuckova
- National Institute of Mental Health, Topolova 748, 25067 Klecany, Czech Republic; (K.M.); (V.K.); (O.K.); (K.T.); (T.P.)
- Faculty of Science, Charles University, Albertov 6, 12800 Prague 2, Czech Republic
| | - Tomas Petrasek
- National Institute of Mental Health, Topolova 748, 25067 Klecany, Czech Republic; (K.M.); (V.K.); (O.K.); (K.T.); (T.P.)
- Laboratory of the Neurophysiology of the Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Ales Stuchlik
- Laboratory of the Neurophysiology of the Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
- Correspondence: (I.V.); (A.S.)
| |
Collapse
|
13
|
Affiliation(s)
- Kameliya Spasova
- Institut für Vegetative Physiologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Michael Fähling
- Institut für Vegetative Physiologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
14
|
Fajnerova I, Gregus D, Francova A, Noskova E, Koprivova J, Stopkova P, Hlinka J, Horacek J. Functional Connectivity Changes in Obsessive-Compulsive Disorder Correspond to Interference Control and Obsessions Severity. Front Neurol 2020; 11:568. [PMID: 32973642 PMCID: PMC7468468 DOI: 10.3389/fneur.2020.00568] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 05/19/2020] [Indexed: 12/20/2022] Open
Abstract
Introduction: Deficits in neurocognitive mechanisms such as inhibition control and cognitive flexibility have been suggested to mediate the symptoms in obsessive-compulsive disorder (OCD). These mechanisms are proposedly controlled by the "affective" and "executive" orbitofronto-striato-thalamo-cortical (CSTC) circuits with well-documented morphological and functional alterations in OCD that are associated with OCD symptoms. The precuneus region has been suggested in OCD as another key structure associated with the mechanism of "thought-action fusion." Our study aimed to elucidate the association of the altered functional coupling of the CSTC nodes (and precuneus), the OCD symptoms, and interference control/cognitive flexibility. Methods: In a group of 36 (17 medicated and 19 drug-free) OCD patients and matched healthy volunteers, we tested functional connectivity (FC) within the constituents of the dorsolateral prefrontal cortex "executive" CSTC, the orbitofrontal cortex/anterior cingulate "affective" CSTC, and precuneus. The functional connections showing the strongest effects were subsequently entered as explanatory variables to multiple regression analyses to identify possible associations between observed alterations of functional coupling and cognitive (Stroop test) and clinical measures (obsessions, compulsions, and anxiety level). Results: We observed increased FC (FWE p < 0.05 corr.) between CSTC seeds and regions of the parieto-occipital cortex, and between the precuneus and the angular gyrus and dorsolateral prefrontal cortex. Decreased FC was observed within the CSTC loop (caudate nucleus and thalamus) and between the anterior cingulate cortex and the limbic lobe. Linear regression identified a relationship between the altered functional coupling of thalamus with the right somatomotor parietal cortex and the Stroop color-word score. Similar association of thalamus FC has been identified also for obsessions severity. No association was observed for compulsions and anxiety. Conclusions: Our findings demonstrate altered FC in OCD patients with a prevailing increase in FC originating in CSTC regions toward other cortical areas, and a decrease in FC within the constituents of CSTC loops. Moreover, our results support the role of precuneus in OCD. The association of the cognitive and clinical symptoms with the FC between the thalamus and somatomotor cortex indicates that cognitive flexibility and inhibitory control are strongly linked and both mechanisms might contribute to the symptomatology of OCD.
Collapse
Affiliation(s)
- Iveta Fajnerova
- National Institute of Mental Health (NIMH), Klecany, Czechia
| | - David Gregus
- National Institute of Mental Health (NIMH), Klecany, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Anna Francova
- National Institute of Mental Health (NIMH), Klecany, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Eliska Noskova
- National Institute of Mental Health (NIMH), Klecany, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Jana Koprivova
- National Institute of Mental Health (NIMH), Klecany, Czechia
| | - Pavla Stopkova
- National Institute of Mental Health (NIMH), Klecany, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Jaroslav Hlinka
- National Institute of Mental Health (NIMH), Klecany, Czechia.,Institute of Computer Science, Czech Academy of Sciences, Prague, Czechia
| | - Jiri Horacek
- National Institute of Mental Health (NIMH), Klecany, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
15
|
Egerton A, Grace AA, Stone J, Bossong MG, Sand M, McGuire P. Glutamate in schizophrenia: Neurodevelopmental perspectives and drug development. Schizophr Res 2020; 223:59-70. [PMID: 33071070 DOI: 10.1016/j.schres.2020.09.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 08/12/2020] [Accepted: 09/20/2020] [Indexed: 12/14/2022]
Abstract
Research into the neurobiological processes that may lead to the onset of schizophrenia places growing emphasis on the glutamatergic system and brain development. Preclinical studies have shown that neurodevelopmental, genetic, and environmental factors contribute to glutamatergic dysfunction and schizophrenia-related phenotypes. Clinical research has suggested that altered brain glutamate levels may be present before the onset of psychosis and relate to outcome in those at clinical high risk. After psychosis onset, glutamate dysfunction may also relate to the degree of antipsychotic response and clinical outcome. These findings support ongoing efforts to develop pharmacological interventions that target the glutamate system and could suggest that glutamatergic compounds may be more effective in specific patient subgroups or illness stages. In this review, we consider the updated glutamate hypothesis of schizophrenia, from a neurodevelopmental perspective, by reviewing recent preclinical and clinical evidence, and discuss the potential implications for novel therapeutics.
Collapse
Affiliation(s)
- Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - James Stone
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Matthijs G Bossong
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Michael Sand
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
16
|
Langova V, Vales K, Horka P, Horacek J. The Role of Zebrafish and Laboratory Rodents in Schizophrenia Research. Front Psychiatry 2020; 11:703. [PMID: 33101067 PMCID: PMC7500259 DOI: 10.3389/fpsyt.2020.00703] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia is a severe disorder characterized by positive, negative and cognitive symptoms, which are still not fully understood. The development of efficient antipsychotics requires animal models of a strong validity, therefore the aims of the article were to summarize the construct, face and predictive validity of schizophrenia models based on rodents and zebrafish, to compare the advantages and disadvantages of these models, and to propose future directions in schizophrenia modeling and indicate when it is reasonable to combine these models. The advantages of rodent models stem primarily from the high homology between rodent and human physiology, neurochemistry, brain morphology and circuitry. The advantages of zebrafish models stem in the high fecundity, fast development and transparency of the embryo. Disadvantages of both models originate in behavioral repertoires not allowing specific symptoms to be modeled, even when the models are combined. Especially modeling the verbal component of certain positive, negative and cognitive symptoms is currently impossible.
Collapse
Affiliation(s)
- Veronika Langova
- Translational Neuroscience, National Institute of Mental Health, Prague, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Karel Vales
- Translational Neuroscience, National Institute of Mental Health, Prague, Czechia
| | - Petra Horka
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Czechia
| | - Jiri Horacek
- Third Faculty of Medicine, Charles University, Prague, Czechia
- Brain Electrophysiology, National Institute of Mental Health, Prague, Czechia
| |
Collapse
|
17
|
Mäki-Marttunen V, Andreassen OA, Espeseth T. The role of norepinephrine in the pathophysiology of schizophrenia. Neurosci Biobehav Rev 2020; 118:298-314. [PMID: 32768486 DOI: 10.1016/j.neubiorev.2020.07.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 07/01/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
Several lines of evidence have suggested for decades a role for norepinephrine (NE) in the pathophysiology and treatment of schizophrenia. Recent experimental findings reveal anatomical and physiological properties of the locus coeruleus-norepinephrine (LC-NE) system and its involvement in brain function and cognition. Here, we integrate these two lines of evidence. First, we review the functional and structural properties of the LC-NE system and its impact on functional brain networks, cognition, and stress, with special emphasis on recent experimental and theoretical advances. Subsequently, we present an update about the role of LC-associated functions for the pathophysiology of schizophrenia, focusing on the cognitive and motivational deficits. We propose that schizophrenia phenomenology, in particular cognitive symptoms, may be explained by an abnormal interaction between genetic susceptibility and stress-initiated LC-NE dysfunction. This in turn, leads to imbalance between LC activity modes, dysfunctional regulation of brain network integration and neural gain, and deficits in cognitive functions. Finally, we suggest how recent development of experimental approaches can be used to characterize LC function in schizophrenia.
Collapse
Affiliation(s)
| | - Ole A Andreassen
- CoE NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Building 49, P.O. Box 4956 Nydalen, N-0424 Oslo, Norway
| | - Thomas Espeseth
- Department of Psychology, University of Oslo, Postboks 1094, Blindern, 0317 Oslo, Norway; Bjørknes College, Lovisenberggata 13, 0456 Oslo, Norway
| |
Collapse
|
18
|
Zhuo C, Lin X, Tian H, Liu S, Bian H, Chen C. Adjunct ketamine treatment of depression in treatment-resistant schizophrenia patients is unsatisfactory in pilot and secondary follow-up studies. Brain Behav 2020; 10:e01600. [PMID: 32174025 PMCID: PMC7218248 DOI: 10.1002/brb3.1600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/07/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To investigate the effects of adjunct ketamine treatment on chronic treatment-resistant schizophrenia patients with treatment-resistant depressive symptoms (CTRS-TRD patients), including alterations in brain function. METHODS Intravenous ketamine (0.5 mg/kg body weight) was administered to CTRS-TRD patients over a 1-hr period on days 1, 4, 7, 10, 13, 16, 19, 22, and 25 of our initial pilot study. This treatment method was subsequently repeated 58 days after the start of the pilot study for a secondary follow-up study. Calgary Depression Scale for Schizophrenia (CDSS), Positive and Negative Syndrome Scale (PANSS), and regional homogeneity (ReHo) results were used to assess treatment effects and alterations in brain function throughout the entire duration of our studies. RESULTS Between day 7 and day 14 of the first treatment, CDSS scores were reduced by 63.8% and PANSS scores were reduced by 30.04%. In addition, ReHo values increased in the frontal, temporal, and parietal lobes. However, by day 21, depressive symptoms relapsed. During the second treatment period, CDSS and PANSS scores exhibited no significant differences compared to baseline between day 58 and day 86. On day 65, ReHo values were higher in the temporal, frontal, and parietal lobes. However, on day 79, the increase in ReHo values completely disappeared. CONCLUSIONS Depressive symptoms in CTRS-TRD patients were alleviated with adjunct ketamine treatment for only 1 week during the first treatment period. Moreover, after 1 month, the antidepressant effects of ketamine on CTRS-TRD patients completely disappeared. Correspondingly, ReHo alterations induced by ketamine in the CTRS-TRD patients were not maintained for more than 3 weeks. These pilot findings indicate that adjunct ketamine treatment is not satisfactory for CTRS-TRD patients.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Department of Psychiatry, School of Mental Health, Jining Medical University, Jining, China.,Department of Psychiatric-Neuroimaging-Genetics Laboratory (PNG_Lab), Wenzhou Seventh People's Hospital, Wenzhou, China.,PNGC-Lab, Tianjin Mental Health Centre, Tianjin Anding Hospital, Tianjin, China
| | - Xiaodong Lin
- Department of Psychiatric-Neuroimaging-Genetics Laboratory (PNG_Lab), Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Hongjun Tian
- PNGC-Lab, Tianjin Mental Health Centre, Tianjin Anding Hospital, Tianjin, China
| | - Sha Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Tainyuan, China
| | - Haiman Bian
- Department of Radiology, The Fourth Centre Hospital of Tianjin, Tianjin Medical University Affiliated Fourth Centre Hospital, Tianijn, China
| | - Ce Chen
- Department of Psychiatric-Neuroimaging-Genetics Laboratory (PNG_Lab), Wenzhou Seventh People's Hospital, Wenzhou, China
| |
Collapse
|
19
|
Xie R, Xie J, Ye Y, Wang X, Chen F, Yang L, Yan Y, Liao L. mTOR Expression in Hippocampus and Prefrontal Cortex Is Downregulated in a Rat Model of Schizophrenia Induced by Chronic Administration of Ketamine. J Mol Neurosci 2020; 70:269-275. [PMID: 31897968 DOI: 10.1007/s12031-019-01476-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/26/2019] [Indexed: 01/12/2023]
Abstract
Schizophrenia is a severe chronic neuropsychiatric disorder, and it negatively affects individuals' quality of life, but the pathogenesis of schizophrenia remains unclear. This study aimed to explore whether the administration of ketamine in rats causes changes in mTOR (mechanistic/mammalian target of rapamycin) expression in the hippocampus and prefrontal cortex. Ketamine was used to establish an animal model of schizophrenia. Rats were randomly divided into four groups: control group (normal saline), low-dose group (15 mg/kg ketamine), middle-dose group (30 mg/kg ketamine), and high-dose group (60 mg/kg ketamine). The rats were intraperitoneally injected with ketamine or normal saline twice a day (9 AM and 9 PM) for 7 consecutive days. Immunohistochemistry was used to detect mTOR protein expression in the hippocampus and prefrontal cortex from rats at 13 h after the last treatment. Using immunohistochemistry, the expression of the mTOR protein was localized exclusively in the CA3 region of the hippocampus and in the Cg1 region of the prefrontal cortexes. Ketamine at 60 mg/kg decreased the expression of mTOR protein in the brain of rats. Ketamine successfully established a rat model of schizophrenia. This study helps elucidate the mechanisms of ketamine-induced schizophrenia and provides novel insights for drug discovery and development.
Collapse
Affiliation(s)
- Runfang Xie
- Department of Analytical Toxicology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Department of Forensic Analytical Toxicology, School of Forensic Medicine, Kunming Medical University, Kunming, 650500, Yunnan, People's Republic of China
| | - Jiming Xie
- Cardiothoracic Surgery Department, The Third People's Hospital, Kunming, 650011, Yunnan, People's Republic of China
| | - Yi Ye
- Department of Analytical Toxicology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xueyan Wang
- Department of Analytical Toxicology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Fan Chen
- Department of Analytical Toxicology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Lin Yang
- Department of Analytical Toxicology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Youyi Yan
- Department of Analytical Toxicology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Linchuan Liao
- Department of Analytical Toxicology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|