1
|
O'Reilly CL, Bodine SC, Miller BF. Current limitations and future opportunities of tracer studies of muscle ageing. J Physiol 2025; 603:7-15. [PMID: 38051758 PMCID: PMC11150331 DOI: 10.1113/jp285616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023] Open
Affiliation(s)
- Colleen L O'Reilly
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Sue C Bodine
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City Veterans Association, Oklahoma City, OK, USA
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City Veterans Association, Oklahoma City, OK, USA
| |
Collapse
|
2
|
Zarzycka W, Kobak KA, King CJ, Peelor FF, Miller BF, Chiao YA. Hyperactive mTORC1/4EBP1 signaling dysregulates proteostasis and accelerates cardiac aging. GeroScience 2024:10.1007/s11357-024-01368-w. [PMID: 39379739 DOI: 10.1007/s11357-024-01368-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) has a major impact on aging by regulation of proteostasis. It is well established that mTORC1 signaling is hyperactivated with aging and age-related diseases. Previous studies have shown that partial inhibition of mTOR signaling by rapamycin reverses age-related deteriorations in cardiac function and structure in old mice. However, the downstream signaling pathways involved in this protection against cardiac aging have not been established. mTORC1 phosphorylates 4E-binding protein 1 (4EBP1) to promote the initiation of cap-dependent translation. The objective of this project is to examine the role of the mTORC1/4EBP1 axis in age-related cardiac dysfunction. We used a whole-body 4EBP1 KO mouse model, which mimics a hyperactive mTORC1/4EBP1/eIF4E axis, to investigate the effects of hyperactive mTORC1/4EBP1 axis in cardiac aging. Echocardiographic measurements of middle-aged 4EBP1 KO mice show impaired diastolic function and myocardial performance compared to age-matched WT mice and these parameters are at similar levels as old WT mice, suggesting that 4EBP1 KO mice experience accelerated cardiac aging. Old 4EBP1 KO mice show further decline in systolic and diastolic function compared to middle-aged counterparts and have worse systolic and diastolic function than age-matched WT mice. Gene expression levels of heart failure markers are not different between 4EBP1 KO and WT hearts. However, ribosomal biogenesis and protein ubiquitination are significantly increased in 4EBP1 KO hearts when compared to WT controls, suggesting dysregulated proteostasis in 4EBP1 KO hearts. Together, these results show that a hyperactive mTORC1/4EBP1 axis accelerates cardiac aging, potentially by dysregulating proteostasis.
Collapse
Affiliation(s)
- Weronika Zarzycka
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kamil A Kobak
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Catherine J King
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Frederick F Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City VA, Oklahoma City, OK, USA
| | - Ying Ann Chiao
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
3
|
Bubak MP, Davidyan A, O'Reilly CL, Mondal SA, Keast J, Doidge SM, Borowik AK, Taylor ME, Volovičeva E, Kinter MT, Britton SL, Koch LG, Stout MB, Lewis TL, Miller BF. Metformin treatment results in distinctive skeletal muscle mitochondrial remodeling in rats with different intrinsic aerobic capacities. Aging Cell 2024; 23:e14235. [PMID: 38923664 PMCID: PMC11488331 DOI: 10.1111/acel.14235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
The rationale for the use of metformin as a treatment to slow aging was largely based on data collected from metabolically unhealthy individuals. For healthspan extension metformin will also be used in periods of good health. To understand the potential context specificity of metformin treatment on skeletal muscle, we used a rat model (high-capacity runner/low-capacity runner [HCR/LCR]) with a divide in intrinsic aerobic capacity. Outcomes of metformin treatment differed based on baseline intrinsic mitochondrial function, oxidative capacity of the muscle (gastroc vs soleus), and the mitochondrial population (intermyofibrillar vs. subsarcolemmal). Metformin caused lower ADP-stimulated respiration in LCRs, with less of a change in HCRs. However, a washout of metformin resulted in an unexpected doubling of respiratory capacity in HCRs. These improvements in respiratory capacity were accompanied by mitochondrial remodeling that included increases in protein synthesis and changes in morphology. Our findings raise questions about whether the positive findings of metformin treatment are broadly applicable.
Collapse
Affiliation(s)
- Matthew P. Bubak
- Aging and Metabolism Research ProgramThe Oklahoma Medical Research FoundationOklahoma CityOklahomaUSA
| | - Arik Davidyan
- Aging and Metabolism Research ProgramThe Oklahoma Medical Research FoundationOklahoma CityOklahomaUSA
- Department of Biological SciencesCalifornia State University SacramentoSacramentoCaliforniaUSA
| | - Colleen L. O'Reilly
- Aging and Metabolism Research ProgramThe Oklahoma Medical Research FoundationOklahoma CityOklahomaUSA
| | - Samim A. Mondal
- Aging and Metabolism Research ProgramThe Oklahoma Medical Research FoundationOklahoma CityOklahomaUSA
| | - Jordan Keast
- Aging and Metabolism Research ProgramThe Oklahoma Medical Research FoundationOklahoma CityOklahomaUSA
| | - Stephen M. Doidge
- Aging and Metabolism Research ProgramThe Oklahoma Medical Research FoundationOklahoma CityOklahomaUSA
| | - Agnieszka K. Borowik
- Aging and Metabolism Research ProgramThe Oklahoma Medical Research FoundationOklahoma CityOklahomaUSA
| | - Michael E. Taylor
- Aging and Metabolism Research ProgramThe Oklahoma Medical Research FoundationOklahoma CityOklahomaUSA
| | - Evelina Volovičeva
- Aging and Metabolism Research ProgramThe Oklahoma Medical Research FoundationOklahoma CityOklahomaUSA
| | - Michael T. Kinter
- Aging and Metabolism Research ProgramThe Oklahoma Medical Research FoundationOklahoma CityOklahomaUSA
| | - Steven L. Britton
- Department of AnesthesiologyUniversity of MichiganAnn ArborMichiganUSA
- Department of Molecular & Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Lauren G. Koch
- Department of Physiology and Pharmacology, College of Medicine and Life SciencesThe University of ToledoToledoOhioUSA
| | - Michael B. Stout
- Aging and Metabolism Research ProgramThe Oklahoma Medical Research FoundationOklahoma CityOklahomaUSA
| | - Tommy L. Lewis
- Aging and Metabolism Research ProgramThe Oklahoma Medical Research FoundationOklahoma CityOklahomaUSA
| | - Benjamin F. Miller
- Aging and Metabolism Research ProgramThe Oklahoma Medical Research FoundationOklahoma CityOklahomaUSA
- The Oklahoma VA Medical CenterOklahoma CityOklahomaUSA
| |
Collapse
|
4
|
Michel JM, Hettinger Z, Ambrosio F, Egan B, Roberts MD, Ferrando AA, Graham ZA, Bamman MM. Mitigating skeletal muscle wasting in unloading and augmenting subsequent recovery. J Physiol 2024. [PMID: 39031694 DOI: 10.1113/jp284301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/20/2024] [Indexed: 07/22/2024] Open
Abstract
Skeletal muscle wasting is the hallmark pathophysiological adaptation to unloading or disuse that demonstrates the dependency on frequent mechanical stimulation (e.g. muscle activation and subsequent loading) for homeostasis of normally load-bearing muscles. In the absence of mitigation strategies, no mammalian organism is resistant to muscle atrophy driven by unloading. Given the profound impact of unloading-induced muscle wasting on physical capacity, metabolic health and immune function; mitigation strategies during unloading and/or augmentation approaches during recovery have broad healthcare implications in settings of bed-bound hospitalization, cast immobilization and spaceflight. This topical review aims to: (1) provide a succinct, state-of-the-field summary of seminal and recent findings regarding the mechanisms of unloading-induced skeletal muscle wasting; (2) discuss unsuccessful vs. promising mitigation and recovery augmentation strategies; and (3) identify knowledge gaps ripe for future research. We focus on the rapid muscle atrophy driven by relatively short-term mechanical unloading/disuse, which is in many ways mechanistically distinct from both hypermetabolic muscle wasting and denervation-induced muscle atrophy. By restricting this discussion to mechanical unloading during which all components of the nervous system remain intact (e.g. without denervation models), mechanical loading requiring motor and sensory neural circuits in muscle remain viable targets for both mitigation and recovery augmentation. We emphasize findings in humans with comparative discussions of studies in rodents which enable elaboration of key mechanisms. We also discuss what is currently known about the effects of age and sex as biological factors, and both are highlighted as knowledge gaps and novel future directions due to limited research.
Collapse
Affiliation(s)
- J Max Michel
- School of Kinesiology, Auburn University, Auburn, Alabama, USA
| | - Zachary Hettinger
- Discovery Center for Musculoskeletal Recovery, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Fabrisia Ambrosio
- Discovery Center for Musculoskeletal Recovery, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Brendan Egan
- School of Health & Human Performance, Dublin City University, Dublin, Ireland
- Healthspan, Resilience and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | | | - Arny A Ferrando
- Healthspan, Resilience and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Zachary A Graham
- Healthspan, Resilience and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Marcas M Bamman
- Healthspan, Resilience and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, USA
| |
Collapse
|
5
|
Zarzycka W, Kobak KA, King CJ, Peelor FF, Miller BF, Chiao YA. Hyperactive mTORC1/4EBP1 Signaling Dysregulates Proteostasis and Accelerates Cardiac Aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.594044. [PMID: 38798509 PMCID: PMC11118374 DOI: 10.1101/2024.05.13.594044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) has a major impact on aging by regulation of proteostasis. It is well established that mTORC1 signaling is hyperactivated with aging and age-related diseases. Previous studies have shown that partial inhibition of mTOR signaling by rapamycin reverses the age-related decline in cardiac function and structure in old mice. However, the downstream signaling pathways involved in this protection against cardiac aging have not been established. TORC1 phosphorylates 4E-binding protein 1 (4EBP1) to promote the initiation of cap-dependent translation. The aim of this project is to examine the role of the mTORC1/4EBP1 axis in age-related cardiac dysfunction. We utilized a whole-body 4EBP1 KO mouse model, which mimics a hyperactive 4EBP1/eIF4E axis, to investigate the effects of hyperactive mTORC1/4EBP1 axis in cardiac aging. Echocardiographic measurements revealed that young 4EBP1 KO mice have no difference in cardiac function at baseline compared to WT mice. Interestingly, middle-aged (14-15-month-old) 4EBP1 KO mice show impaired diastolic function and myocardial performance compared to age-matched WT mice and their diastolic function and myocardial performance are at similar levels as 24-month-old WT mice, suggesting that 4EBP1 KO mice experience accelerated cardiac aging. Old 4EBP1 KO mice show further declines in systolic and diastolic function compared to middle-aged 4EBP1 KO mice and have worse systolic and diastolic function than age-matched old WT mice. Gene expression levels of heart failure markers are not different between 4EBP1 KO and WT mice at these advanced ages. However, ribosomal biogenesis and overall protein ubiquitination are significantly increased in 4EBP1 KO mice when compared to WT, which suggests dysregulated proteostasis. Together, these results show that a hyperactive 4EBP1/eIF4E axis accelerates cardiac aging, potentially by dysregulating proteostasis.
Collapse
|
6
|
Bubak MP, Davidyan A, O'Reilly CL, Mondal SA, Keast J, Doidge SM, Borowik AK, Taylor ME, Volovičeva E, Kinter MT, Britton SL, Koch LG, Stout MB, Lewis TL, Miller BF. Metformin treatment results in distinctive skeletal muscle mitochondrial remodeling in rats with different intrinsic aerobic capacities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582957. [PMID: 38496648 PMCID: PMC10942369 DOI: 10.1101/2024.03.01.582957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The rationale for the use of metformin as a treatment to slow aging was largely based on data collected from metabolically unhealthy individuals. For healthspan extension metformin will also be used in periods of good health. To understand potential context specificity of metformin treatment on skeletal muscle, we used a rat model (HCR/LCR) with a divide in intrinsic aerobic capacity. Outcomes of metformin treatment differed based on baseline intrinsic mitochondrial function, oxidative capacity of the muscle (gastroc vs soleus), and the mitochondrial population (IMF vs SS). Metformin caused lower ADP-stimulated respiration in LCRs, with less of a change in HCRs. However, a washout of metformin resulted in an unexpected doubling of respiratory capacity in HCRs. These improvements in respiratory capacity were accompanied by mitochondrial remodeling that included increases in protein synthesis and changes in morphology. Our findings raise questions about whether the positive findings of metformin treatment are broadly applicable.
Collapse
|
7
|
Bubak MP, Mann SN, Borowik AK, Pranay A, Batushansky A, Vieira de Sousa Neto I, Mondal SA, Doidge SM, Davidyan A, Szczygiel MM, Peelor FF, Rigsby S, Broomfield ME, Lacy CI, Rice HC, Stout MB, Miller BF. 17α-Estradiol alleviates high-fat diet-induced inflammatory and metabolic dysfunction in skeletal muscle of male and female mice. Am J Physiol Endocrinol Metab 2024; 326:E226-E244. [PMID: 38197793 PMCID: PMC11193529 DOI: 10.1152/ajpendo.00215.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024]
Abstract
17α-estradiol (17α-E2) is a naturally occurring nonfeminizing diastereomer of 17β-estradiol that has life span-extending effects in rodent models. To date, studies of the systemic and tissue-specific benefits of 17α-E2 have largely focused on the liver, brain, and white adipose tissue with far less focus on skeletal muscle. Skeletal muscle has an important role in metabolic and age-related disease. Therefore, this study aimed to determine whether 17α-E2 treatment has positive, tissue-specific effects on skeletal muscle during a high-fat feeding. We hypothesized that male, but not female, mice, would benefit from 17α-E2 treatment during a high-fat diet (HFD) with changes in the mitochondrial proteome to support lipid oxidation and subsequent reductions in diacylglycerol (DAG) and ceramide content. To test this hypothesis, we used a multiomics approach to determine changes in lipotoxic lipid intermediates, metabolites, and proteins related to metabolic homeostasis. Unexpectedly, we found that 17α-E2 had marked, but different, beneficial effects within each sex. In male mice, we show that 17α-E2 alleviates HFD-induced metabolic detriments of skeletal muscle by reducing the accumulation of diacylglycerol (DAG), and inflammatory cytokine levels, and altered the abundance of most of the proteins related to lipolysis and β-oxidation. Similar to male mice, 17α-E2 treatment reduced fat mass while protecting muscle mass in female mice but had little muscle inflammatory cytokine levels. Although female mice were resistant to HFD-induced changes in DAGs, 17α-E2 treatment induced the upregulation of six DAG species. In female mice, 17α-E2 treatment changed the relative abundance of proteins involved in lipolysis, β-oxidation, as well as structural and contractile proteins but to a smaller extent than male mice. These data demonstrate the metabolic benefits of 17α-E2 in skeletal muscle of male and female mice and contribute to the growing literature of the use of 17α-E2 for multi tissue health span benefits.NEW & NOTEWORTHY Using a multiomics approach, we show that 17α-E2 alleviates HFD-induced metabolic detriments in skeletal muscle by altering bioactive lipid intermediates, inflammatory cytokines, and the abundance of proteins related to lipolysis and muscle contraction. The positive effects of 17α-E2 in skeletal muscle occur in both sexes but differ in their outcome.
Collapse
Affiliation(s)
- Matthew P Bubak
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Shivani N Mann
- Department of Neuroscience, University of Arizona, Tucson, Arizona, United States
| | - Agnieszka K Borowik
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Atul Pranay
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Albert Batushansky
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheba, Israel
| | - Ivo Vieira de Sousa Neto
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Samim A Mondal
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Stephen M Doidge
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Arik Davidyan
- Department of Biological Sciences, California State University, Sacramento, California, United States
| | - Marcelina M Szczygiel
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Frederick F Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Sandra Rigsby
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Matle E Broomfield
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Charles I Lacy
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Geroscience and Healthy Brain Aging, Oklahoma City, Oklahoma, United States
| | - Heather C Rice
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Geroscience and Healthy Brain Aging, Oklahoma City, Oklahoma, United States
| | - Michael B Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma, United States
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
8
|
Larson KR, Jayakrishnan D, Soto Sauza KA, Goodson ML, Chaffin AT, Davidyan A, Pathak S, Fang Y, Gonzalez Magaña D, Miller BF, Ryan KK. FGF21 Induces Skeletal Muscle Atrophy and Increases Amino Acids in Female Mice: A Potential Role for Glucocorticoids. Endocrinology 2024; 165:bqae004. [PMID: 38244215 PMCID: PMC10849119 DOI: 10.1210/endocr/bqae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/27/2023] [Accepted: 01/18/2024] [Indexed: 01/22/2024]
Abstract
Fibroblast growth factor-21 (FGF21) is an intercellular signaling molecule secreted by metabolic organs, including skeletal muscle, in response to intracellular stress. FGF21 crosses the blood-brain barrier and acts via the nervous system to coordinate aspects of the adaptive starvation response, including increased lipolysis, gluconeogenesis, fatty acid oxidation, and activation of the hypothalamic-pituitary-adrenocortical (HPA) axis. Given its beneficial effects for hepatic lipid metabolism, pharmaceutical FGF21 analogues are used in clinical trials treatment of fatty liver disease. We predicted pharmacologic treatment with FGF21 increases HPA axis activity and skeletal muscle glucocorticoid signaling and induces skeletal muscle atrophy in mice. Here we found a short course of systemic FGF21 treatment decreased muscle protein synthesis and reduced tibialis anterior weight; this was driven primarily by its effect in female mice. Similarly, intracerebroventricular FGF21 reduced tibialis anterior muscle fiber cross-sectional area; this was more apparent among female mice than male littermates. In agreement with the reduced muscle mass, the topmost enriched metabolic pathways in plasma collected from FGF21-treated females were related to amino acid metabolism, and the relative abundance of plasma proteinogenic amino acids was increased up to 3-fold. FGF21 treatment increased hypothalamic Crh mRNA, plasma corticosterone, and adrenal weight, and increased expression of glucocorticoid receptor target genes known to reduce muscle protein synthesis and/or promote degradation. Given the proposed use of FGF21 analogues for the treatment of metabolic disease, the study is both physiologically relevant and may have important clinical implications.
Collapse
Affiliation(s)
- Karlton R Larson
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Devi Jayakrishnan
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Karla A Soto Sauza
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Michael L Goodson
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Aki T Chaffin
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Arik Davidyan
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
- Department of Biological Sciences, California State University Sacramento, Sacramento, CA 95819, USA
| | - Suraj Pathak
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Yanbin Fang
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Diego Gonzalez Magaña
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Benjamin F Miller
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Karen K Ryan
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
9
|
Li K, Zhu Y, Zhang Q, Shi Y, Yan T, Lu X, Sun H, Li T, Li Z, Shi X, Han D. Interstitial Injection of Hydrogels with High-Mechanical Conductivity Relieves Muscle Atrophy Induced by Nerve Injury. Adv Healthc Mater 2023; 12:e2202707. [PMID: 37409443 DOI: 10.1002/adhm.202202707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 06/13/2023] [Accepted: 06/24/2023] [Indexed: 07/07/2023]
Abstract
Injectable hydrogels have been extensively used in tissue engineering where high mechanical properties are key for their functionality at sites of high physiological stress. In this study, an injectable, conductive hydrogel is developed exhibiting remarkable mechanical strength that can withstand a pressure of 500 kPa (85% deformation rate) and display good fatigue resistance, electrical conductivity, and tissue adhesion. A stable covalent cross-linked network with a slip-ring structure by threading amino β-cyclodextrin is formed onto the chain of a four-armed (polyethylene glycol) amino group, and then reacted with the four-armed (polyethylene glycol) maleimide under physiological conditions. The addition of silver nanowires enhances the hydrogel's electrical conductivity, enabling it to act as a good conductor in vivo. The hydrogel is injected into the fascial space, and the results show that the weight and muscle tone of the atrophied gastrocnemius muscle improve, subsequently alleviating muscle atrophy. Overall, this study provides a simple method for the preparation of a conductive hydrogel with high mechanical properties. In addition, the interstitial injection provides a strategy for the use of hydrogels in vivo.
Collapse
Affiliation(s)
- Kai Li
- College of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yuting Zhu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Qiang Zhang
- Hebei Key Laboratory of Nanobiotechnology, Yanshan University, Qinhuangdao, 066004, China
| | - Yahong Shi
- College of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Tun Yan
- College of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xi Lu
- College of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Huizhen Sun
- College of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Tingting Li
- College of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhongxian Li
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xiaoli Shi
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong Han
- College of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
10
|
Bubak MP, Mann SN, Borowik AK, Pranay A, Batushansky A, Mondal SA, Diodge SM, Davidyan A, Szczygiel MM, Peelor FR, Rigsby S, Broomfield M, Lacy CI, Rice HC, Stout MB, Miller BF. 17α-estradiol Alleviates High-Fat Diet-Induced Inflammatory and Metabolic Dysfunction in Skeletal Muscle of Male and Female Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542870. [PMID: 37398463 PMCID: PMC10312580 DOI: 10.1101/2023.05.30.542870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Skeletal muscle has a central role in maintaining metabolic homeostasis. 17α-estradiol (17α-E2), a naturally-occurring non-feminizing diastereomer of 17β-estradiol that demonstrates efficacy for improving metabolic outcomes in male, but not female, mice. Despite several lines of evidence showing that 17α-E2 treatment improves metabolic parameters in middle-aged obese and old male mice through effects in brain, liver, and white adipose tissue little is known about how 17α-E2 alters skeletal muscle metabolism, and what role this may play in mitigating metabolic declines. Therefore, this study aimed to determine if 17α-E2 treatment improves metabolic outcomes in skeletal muscle from obese male and female mice following chronic high fat diet (HFD) administration. We hypothesized that male, but not female, mice, would benefit from 17α-E2 treatment during HFD. To test this hypothesis, we used a multi-omics approach to determine changes in lipotoxic lipid intermediates, metabolites, and proteins related to metabolic homeostasis. In male mice, we show that 17α-E2 alleviates HFD-induced metabolic detriments of skeletal muscle by reducing the accumulation of diacylglycerol (DAGs) and ceramides, inflammatory cytokine levels, and reduced the abundance of most of the proteins related to lipolysis and beta-oxidation. In contrast to males, 17α-E2 treatment in female mice had little effect on the DAGs and ceramides content, muscle inflammatory cytokine levels, or changes to the relative abundance of proteins involved in beta-oxidation. These data support to the growing evidence that 17α-E2 treatment could be beneficial for overall metabolic health in male mammals.
Collapse
|
11
|
Brown JL, Peelor FF, Georgescu C, Wren JD, Kinter M, Tyrrell VJ, O'Donnell VB, Miller BF, Van Remmen H. Lipid hydroperoxides and oxylipins are mediators of denervation induced muscle atrophy. Redox Biol 2022; 57:102518. [PMID: 36283174 PMCID: PMC9593840 DOI: 10.1016/j.redox.2022.102518] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 01/14/2023] Open
Abstract
Loss of innervation is a key driver of age associated muscle atrophy and weakness (sarcopenia). Our laboratory has previously shown that denervation induced atrophy is associated with the generation of mitochondrial hydroperoxides and lipid mediators produced downstream of cPLA2 and 12/15 lipoxygenase (12/15-LOX). To define the pathological impact of lipid hydroperoxides generated in denervation-induced atrophy in vivo, we treated mice with liproxstatin-1, a lipid hydroperoxide scavenger. We treated adult male mice with 5 mg/kg liproxstain-1 or vehicle one day prior to sciatic nerve transection and daily for 7 days post-denervation before tissue analysis. Liproxstatin-1 treatment protected gastrocnemius mass and fiber cross sectional area (∼40% less atrophy post-denervation in treated versus untreated mice). Mitochondrial hydroperoxide generation was reduced 80% in vitro and by over 65% in vivo by liproxstatin-1 treatment in denervated permeabilized muscle fibers and decreased the content of 4-HNE by ∼25% post-denervation. Lipidomic analysis revealed detectable levels of 25 oxylipins in denervated gastrocnemius muscle and significantly increased levels for eight oxylipins that are generated by metabolism of fatty acids through 12/15-LOX. Liproxstatin-1 treatment reduced the level of three of the eight denervation-induced oxylipins, specifically 15-HEPE, 13-HOTrE and 17-HDOHE. Denervation elevated protein degradation rates in muscle and treatment with liproxstatin-1 reduced rates of protein breakdown in denervated muscle. In contrast, protein synthesis rates were unchanged by denervation. Targeted proteomics revealed a number of proteins with altered expression after denervation but no effect of liproxstain-1. Transcriptomic analysis revealed 203 differentially expressed genes in denervated muscle from vehicle or liproxstatin-1 treated mice, including ER stress, nitric oxide signaling, Gαi signaling, glucocorticoid receptor signaling, and other pathways. Overall, these data suggest lipid hydroperoxides and oxylipins are key drivers of increased protein breakdown and muscle loss associated with denervation induced atrophy and a potential target for sarcopenia intervention.
Collapse
Affiliation(s)
- Jacob L Brown
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States; Oklahoma City VA Medical Center, Oklahoma City, OK, 73104, United States
| | - Fredrick F Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States
| | - Constantin Georgescu
- Division of Genomics and Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States
| | - Jonathan D Wren
- Division of Genomics and Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States
| | - Victoria J Tyrrell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, CF14 4XN, United Kingdom
| | - Valerie B O'Donnell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, CF14 4XN, United Kingdom
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States; Oklahoma City VA Medical Center, Oklahoma City, OK, 73104, United States
| | - Holly Van Remmen
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States; Oklahoma City VA Medical Center, Oklahoma City, OK, 73104, United States.
| |
Collapse
|
12
|
Effect of Massage Therapy in Regulating Wnt/β-Catenin Pathway on Retarding Denervated Muscle Atrophy in Rabbits. J Manipulative Physiol Ther 2022. [DOI: 10.1016/j.jmpt.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Kotani T, Tamura Y, Kouzaki K, Kato H, Isemura M, Nakazato K. Percutaneous electrical stimulation-induced muscle contraction prevents the decrease in ribosome RNA and ribosome protein during pelvic hindlimb suspension. J Appl Physiol (1985) 2022; 133:822-833. [PMID: 36007895 DOI: 10.1152/japplphysiol.00204.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle unloading leads to muscle atrophy. Ribosome synthesis has been implicated as an important skeletal muscle mass regulator owing to its translational capacity. Muscle unloading induces a reduction in ribosome synthesis and content, with muscle atrophy. Percutaneous electrical muscle stimulation (pEMS)-induced muscle contraction is widely used in clinics to improve muscle mass. However, its efficacy in rescuing the reduction in ribosomal synthesis has not been addressed thus far. We examined the effects of daily pEMS treatment on ribosome synthesis and content during mouse hindlimb unloading. Male C57BL/6J mice were randomly assigned to sedentary (SED) and hindlimb unloading by pelvic suspension (HU) groups. Muscle contraction was triggered by pEMS treatment of the right gastrocnemius muscle of a subset of the HU group (HU+pEMS). Hindlimb unloading for 6 days significantly lowered 28S rRNA, rpL10, and rpS3 expression, which was rescued by daily pEMS treatment. The protein expression of phospho-p70S6K and UBF was significantly higher in the HU+pEMS than in the HU group. The mRNA expression of ribophagy receptor Nufip1 increased in both the HU and HU+pEMS groups. Protein light chain 3 (LC3)-II expression and the LC3-II/LC3-I ratio were increased by HU, but pEMS attenuated this increase. Our findings indicate that during HU, daily pEMS treatment prevents the reduction in the levels of some proteins associated with ribosome synthesis. Additionally, the HU-induced activation of ribosome degradation may be attenuated. These data provide insights into ribosome content regulation and the mechanism of attenuation of muscle atrophy by pEMS treatment during muscle disuse.
Collapse
Affiliation(s)
- Takaya Kotani
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Yuki Tamura
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan.,Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan.,Faculty of Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Karina Kouzaki
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan.,Graduate School of Medical and Health Science, Nippon Sport Science University, Tokyo, Japan
| | - Hikaru Kato
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Mako Isemura
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Koichi Nakazato
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan.,Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan.,Graduate School of Medical and Health Science, Nippon Sport Science University, Tokyo, Japan.,Faculty of Medical Science, Nippon Sport Science University, Tokyo, Japan
| |
Collapse
|
14
|
Hettinger ZR, Wen Y, Peck BD, Hamagata K, Confides AL, Van Pelt DW, Harrison DA, Miller BF, Butterfield TA, Dupont-Versteegden EE. Mechanotherapy Reprograms Aged Muscle Stromal Cells to Remodel the Extracellular Matrix during Recovery from Disuse. FUNCTION 2022; 3:zqac015. [PMID: 35434632 PMCID: PMC9009398 DOI: 10.1093/function/zqac015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 01/07/2023] Open
Abstract
Aging is accompanied by reduced remodeling of skeletal muscle extracellular matrix (ECM), which is exacerbated during recovery following periods of disuse atrophy. Mechanotherapy has been shown to promote ECM remodeling through immunomodulation in adult muscle recovery, but not during the aged recovery from disuse. In order to determine if mechanotherapy promotes ECM remodeling in aged muscle, we performed single cell RNA sequencing (scRNA-seq) of all mononucleated cells in adult and aged rat gastrocnemius muscle recovering from disuse, with (REM) and without mechanotherapy (RE). We show that fibroadipogenic progenitor cells (FAPs) in aged RE muscle are highly enriched in chemotaxis genes (Csf1), but absent in ECM remodeling genes compared to adult RE muscle (Col1a1). Receptor-ligand (RL) network analysis of all mononucleated cell populations in aged RE muscle identified chemotaxis-enriched gene expression in numerous stromal cell populations (FAPs, endothelial cells, pericytes), despite reduced enrichment of genes related to phagocytic activity in myeloid cell populations (macrophages, monocytes, antigen presenting cells). Following mechanotherapy, aged REM mononuclear cell gene expression resembled adult RE muscle as evidenced by RL network analyses and KEGG pathway activity scoring. To validate our transcriptional findings, ECM turnover was measured in an independent cohort of animals using in vivo isotope tracing of intramuscular collagen and histological scoring of the ECM, which confirmed mechanotherapy-mediated ECM remodeling in aged RE muscle. Our results highlight age-related cellular mechanisms underpinning the impairment to complete recovery from disuse, and also promote mechanotherapy as an intervention to enhance ECM turnover in aged muscle recovering from disuse.
Collapse
Affiliation(s)
- Zachary R Hettinger
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Yuan Wen
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Bailey D Peck
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Kyoko Hamagata
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Amy L Confides
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Douglas W Van Pelt
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Douglas A Harrison
- Department of Biology, College of Arts and Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Timothy A Butterfield
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky; Lexington, KY 40536, USA
| | - Esther E Dupont-Versteegden
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
15
|
Groeneveld K. Skeletal muscles do more than the loco-motion. Acta Physiol (Oxf) 2022; 234:e13791. [PMID: 35094479 DOI: 10.1111/apha.13791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Kathrin Groeneveld
- ThIMEDOP, Thüringer Innovationszentrum für Medizintechnik Lösungen Universitätsklinikum Jena Jena Germany
| |
Collapse
|
16
|
Kobak KA, Batushansky A, Borowik AK, Lopes EPB, Peelor III FF, Donovan EL, Kinter MT, Miller BF, Griffin TM. An In Vivo Stable Isotope Labeling Method to Investigate Individual Matrix Protein Synthesis, Ribosomal Biogenesis, and Cellular Proliferation in Murine Articular Cartilage. FUNCTION 2022; 3:zqac008. [PMID: 35399495 PMCID: PMC8991031 DOI: 10.1093/function/zqac008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/28/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Targeting chondrocyte dynamics is a strategy for slowing osteoarthritis progression during aging. We describe a stable-isotope method using in vivo deuterium oxide labeling and mass spectrometry to measure protein concentration, protein half-life, cell proliferation, and ribosomal biogenesis in a single sample of murine articular cartilage. We hypothesized that a 60-d labeling period would capture age-related declines in cartilage matrix protein content, protein synthesis rates, and cellular proliferation. Knee cartilage was harvested to the subchondral bone from 25- to 90-wk-old female C57BL/6J mice treated with deuterium oxide for 15, 30, 45, and 60 d. We measured protein concentration and half-lives using targeted high resolution accurate mass spectrometry and d2ome data processing software. Deuterium enrichment was quantified in isolated DNA and RNA to measure cell proliferation and ribosomal biogenesis, respectively. Most collagen isoforms were less abundant in aged animals, with negligible collagen synthesis at either age. In contrast, age altered the concentration and half-lives of many proteoglycans and other matrix proteins, including several with greater concentration and half-lives in older mice such as proteoglycan 4, clusterin, and fibronectin-1. Cellular proteins were less abundant in older animals, consistent with reduced cellularity. Nevertheless, deuterium was maximally incorporated into 60% of DNA and RNA by 15 d of labeling in both age groups, suggesting the presence of two large pools of either rapidly (<15 d) or slowly (>60 d) proliferating cells. Our findings indicate that age-associated changes in cartilage matrix protein content and synthesis occur without detectable changes in the relative number of proliferating cells.
Collapse
Affiliation(s)
- Kamil A Kobak
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw 50-367, Poland
| | - Albert Batushansky
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Agnieszka K Borowik
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Erika Prado Barboza Lopes
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Frederick F Peelor III
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Elise L Donovan
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Michael T Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Timothy M Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Research & Development, Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA
| |
Collapse
|
17
|
Bothe TL, Dippel LJ, Pilz N. The Art of Planning-How many samples are enough? Acta Physiol (Oxf) 2022; 234:e13746. [PMID: 34907659 DOI: 10.1111/apha.13746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Tomas L. Bothe
- Institute of Vegetative Physiology Charité –Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
| | - Laura Josefa Dippel
- Institute of Vegetative Physiology Charité –Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
| | - Niklas Pilz
- Institute of Vegetative Physiology Charité –Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
| |
Collapse
|
18
|
Effect of short-term hindlimb immobilization on skeletal muscle atrophy and the transcriptome in a low compared with high responder to endurance training model. PLoS One 2022; 17:e0261723. [PMID: 35025912 PMCID: PMC8757917 DOI: 10.1371/journal.pone.0261723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle atrophy is a physiological response to disuse, aging, and disease. We compared changes in muscle mass and the transcriptome profile after short-term immobilization in a divergent model of high and low responders to endurance training to identify biological processes associated with the early atrophy response. Female rats selectively bred for high response to endurance training (HRT) and low response to endurance training (LRT; n = 6/group; generation 19) underwent 3 day hindlimb cast immobilization to compare atrophy of plantaris and soleus muscles with line-matched controls (n = 6/group). RNA sequencing was utilized to identify Gene Ontology Biological Processes with differential gene set enrichment. Aerobic training performed prior to the intervention showed HRT improved running distance (+60.6 ± 29.6%), while LRT were unchanged (-0.3 ± 13.3%). Soleus atrophy was greater in LRT vs. HRT (-9.0 ±8.8 vs. 6.2 ±8.2%; P<0.05) and there was a similar trend in plantaris (-16.4 ±5.6% vs. -8.5 ±7.4%; P = 0.064). A total of 140 and 118 biological processes were differentially enriched in plantaris and soleus muscles, respectively. Soleus muscle exhibited divergent LRT and HRT responses in processes including autophagy and immune response. In plantaris, processes associated with protein ubiquitination, as well as the atrogenes (Trim63 and Fbxo32), were more positively enriched in LRT. Overall, LRT demonstrate exacerbated atrophy compared to HRT, associated with differential gene enrichments of biological processes. This indicates that genetic factors that result in divergent adaptations to endurance exercise, may also regulate biological processes associated with short-term muscle unloading.
Collapse
|
19
|
Sharlo K, Tyganov SA, Tomilovskaya E, Popov DV, Saveko AA, Shenkman BS. Effects of Various Muscle Disuse States and Countermeasures on Muscle Molecular Signaling. Int J Mol Sci 2021; 23:ijms23010468. [PMID: 35008893 PMCID: PMC8745071 DOI: 10.3390/ijms23010468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle is capable of changing its structural parameters, metabolic rate and functional characteristics within a wide range when adapting to various loading regimens and states of the organism. Prolonged muscle inactivation leads to serious negative consequences that affect the quality of life and work capacity of people. This review examines various conditions that lead to decreased levels of muscle loading and activity and describes the key molecular mechanisms of muscle responses to these conditions. It also details the theoretical foundations of various methods preventing adverse muscle changes caused by decreased motor activity and describes these methods. A number of recent studies presented in this review make it possible to determine the molecular basis of the countermeasure methods used in rehabilitation and space medicine for many years, as well as to identify promising new approaches to rehabilitation and to form a holistic understanding of the mechanisms of gravity force control over the muscular system.
Collapse
|
20
|
Hettinger ZR, Hamagata K, Confides AL, Lawrence MM, Miller BF, Butterfield TA, Dupont-Versteegden EE. Age-Related Susceptibility to Muscle Damage Following Mechanotherapy in Rats Recovering From Disuse Atrophy. J Gerontol A Biol Sci Med Sci 2021; 76:2132-2140. [PMID: 34181006 PMCID: PMC8599051 DOI: 10.1093/gerona/glab186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
The inability to fully recover lost muscle mass following periods of disuse atrophy predisposes older adults to lost independence and poor quality of life. We have previously shown that mechanotherapy at a moderate load (4.5 N) enhances muscle mass recovery following atrophy in adult, but not older adult rats. We propose that elevated transverse stiffness in aged muscle inhibits the growth response to mechanotherapy and hypothesize that a higher load (7.6 N) will overcome this resistance to mechanical stimuli. F344/BN adult and older adult male rats underwent 14 days of hindlimb suspension, followed by 7 days of recovery with (RE + M) or without (RE) mechanotherapy at 7.6 N on gastrocnemius muscle. The 7.6 N load was determined by measuring transverse passive stiffness and linearly scaling up from 4.5 N. No differences in protein turnover or mean fiber cross-sectional area were observed between RE and RE + M for older adult rats or adult rats at 7.6 N. However, there was a higher number of small muscle fibers present in older adult, but not adult rats, which was explained by a 16-fold increase in the frequency of small fibers expressing embryonic myosin heavy chain. Elevated central nucleation, satellite cell abundance, and dystrophin-/laminin+ fibers were present in older adult rats only following 7.6 N, while 4.5 N did not induce damage at either age. We conclude that age is an important variable when considering load used during mechanotherapy and age-related transverse stiffness may predispose older adults to damage during the recovery period following disuse atrophy.
Collapse
Affiliation(s)
- Zachary R Hettinger
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, USA
- Center for Muscle Biology, University of Kentucky, Lexington, USA
| | - Kyoko Hamagata
- Center for Muscle Biology, University of Kentucky, Lexington, USA
| | - Amy L Confides
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, USA
- Center for Muscle Biology, University of Kentucky, Lexington, USA
| | - Marcus M Lawrence
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, USA
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, USA
| | - Timothy A Butterfield
- Center for Muscle Biology, University of Kentucky, Lexington, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, USA
| | - Esther E Dupont-Versteegden
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, USA
- Center for Muscle Biology, University of Kentucky, Lexington, USA
| |
Collapse
|
21
|
Affiliation(s)
- Tomas L Bothe
- Charité – Universitätsmedizin Berlincorporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinInstitute of Vegetative Physiology Berlin Germany
| | - Andreas Patzak
- Charité – Universitätsmedizin Berlincorporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinInstitute of Vegetative Physiology Berlin Germany
| |
Collapse
|
22
|
Abbott CB, Lawrence MM, Kobak KA, Lopes EBP, Peelor FF, Donald EJ, Van Remmen H, Griffin TM, Miller BF. A Novel Stable Isotope Approach Demonstrates Surprising Degree of Age-Related Decline in Skeletal Muscle Collagen Proteostasis. FUNCTION 2021; 2:zqab028. [PMID: 34124684 PMCID: PMC8187230 DOI: 10.1093/function/zqab028] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/08/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
Age-related deterioration in turnover of collagen proteins accelerates extracellular matrix fibrosis and hinders adaptation to external stimuli. This project sought to understand factors that increase skeletal muscle fibrosis with age by studying what we term the dynamic protein pool. We hypothesized that the dynamic protein pool size of muscle collagen decreases with age, thus indicating a decrease in proteostatic maintenance (ie, ability to maintain proteostasis), and that failure to account for these changes impacts the interpretation of tracer-measured synthesis rates. We used deuterium oxide (D2O) labeling for up to 60 days in adult (6 months) and old (23 months) mice. The dynamic protein pool in adult skeletal muscle was 65% in tibialis anterior (TA), but only 28% in gastrocnemius (Gastroc). In aged muscle, the dynamic protein pool was further decreased to only 35% and 14% for TA and Gastroc, respectively. We showed that this loss in dynamic pool size was associated with increases in markers of fibrosis and decreased proteostatic maintenance. We demonstrate that aged muscle has higher rates of collagen protein synthesis and lower rates of collagen protein breakdown, which causes collagen accumulation. We further demonstrated that the normal assumption of complete protein renewal and the standard practice of taking a single sample with isotope labeling have profound impacts on interpretation of the genesis of fibrosis. Strategies to maintain muscle function with aging should focus on the dynamic protein pool with attention to methodological strategies to assess those changes.
Collapse
Affiliation(s)
- Claire B Abbott
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Marcus M Lawrence
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Kamil A Kobak
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Erika Barboza Prado Lopes
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Frederick F Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Elizabeth J Donald
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Holly Van Remmen
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Timothy M Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| |
Collapse
|
23
|
Van Pelt DW, Lawrence MM, Miller BF, Butterfield TA, Dupont-Versteegden EE. Massage as a Mechanotherapy for Skeletal Muscle. Exerc Sport Sci Rev 2021; 49:107-114. [PMID: 33720912 PMCID: PMC8320327 DOI: 10.1249/jes.0000000000000244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Massage is anecdotally associated with many health benefits, but physiological and clinically relevant mechanisms recently have begun to be investigated in a controlled manner. Herein, we describe research supporting our hypothesis that massage can be used as a mechanotherapy imparting biologically relevant adaptations in skeletal muscle and improving muscle properties.
Collapse
Affiliation(s)
- Douglas W Van Pelt
- Department of Physical Therapy and Center for Muscle Biology, University of Kentucky, Lexington, KY
| | - Marcus M Lawrence
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Timothy A Butterfield
- Department of Athletic Training and Clinical Nutrition and Center for Muscle Biology, University of Kentucky, Lexington, KY
| | | |
Collapse
|
24
|
Lawrence MM, Van Pelt DW, Confides AL, Hettinger ZR, Hunt ER, Reid JJ, Laurin JL, Peelor FF, Butterfield TA, Miller BF, Dupont-Versteegden EE. Muscle from aged rats is resistant to mechanotherapy during atrophy and reloading. GeroScience 2021; 43:65-83. [PMID: 32588343 PMCID: PMC8050124 DOI: 10.1007/s11357-020-00215-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/09/2020] [Indexed: 12/22/2022] Open
Abstract
Massage is a viable mechanotherapy to improve protein turnover during disuse atrophy and improve muscle regrowth during recovery from disuse atrophy in adult muscle. Therefore, we investigated whether massage can cause beneficial adaptations in skeletal muscle from aged rats during normal weight-bearing (WB) conditions, hindlimb suspension (HS), or reloading (RE) following HS. Aged (30 months) male Fischer 344/Brown Norway rats were divided into two experiments: (1) WB for 7 days (WB, n = 8), WB with massage (WBM, n = 8), HS for 7 days (HS7, n = 8), or HS with massage (HSM, n = 8), and (2) WB for 14 days (WB14, n = 8), HS for 14 days (HS14, n = 8), reloading (RE, n = 10), or reloading with massage (REM, n = 10) for 7 days following HS. Deuterium oxide (D2O) labeling was used to assess dynamic protein and ribosome turnover in each group and anabolic signaling pathways were assessed. Massage did have an anabolic benefit during RE or WB. In contrast, massage during HS enhanced myofibrillar protein turnover in both the massaged limb and contralateral non-massaged limb compared with HS, but this did not prevent muscle loss. Overall, the data demonstrate that massage is not an effective mechanotherapy for prevention of atrophy during muscle disuse or recovery of muscle mass during reloading in aged rats.
Collapse
Affiliation(s)
- Marcus M Lawrence
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Douglas W Van Pelt
- Department of Physical Therapy, University of Kentucky, Lexington, KY, 40536, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Amy L Confides
- Department of Physical Therapy, University of Kentucky, Lexington, KY, 40536, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Zachary R Hettinger
- Department of Physical Therapy, University of Kentucky, Lexington, KY, 40536, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Emily R Hunt
- Department of Physical Therapy, University of Kentucky, Lexington, KY, 40536, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Justin J Reid
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Jaime L Laurin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Frederick F Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Timothy A Butterfield
- Center for Muscle Biology, University of Kentucky, Lexington, KY, 40536, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, 40536, USA
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Esther E Dupont-Versteegden
- Department of Physical Therapy, University of Kentucky, Lexington, KY, 40536, USA.
- Center for Muscle Biology, University of Kentucky, Lexington, KY, 40536, USA.
- College of Health Sciences, University of Kentucky, 900 S. Limestone CTW210E, Lexington, KY, 40536-0200, USA.
| |
Collapse
|
25
|
Figueiredo VC, D'Souza RF, Van Pelt DW, Lawrence MM, Zeng N, Markworth JF, Poppitt SD, Miller BF, Mitchell CJ, McCarthy JJ, Dupont‐Versteegden EE, Cameron‐Smith D. Ribosome biogenesis and degradation regulate translational capacity during muscle disuse and reloading. J Cachexia Sarcopenia Muscle 2021; 12:130-143. [PMID: 33231914 PMCID: PMC7890271 DOI: 10.1002/jcsm.12636] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/02/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Translational capacity (i.e. ribosomal mass) is a key determinant of protein synthesis and has been associated with skeletal muscle hypertrophy. The role of translational capacity in muscle atrophy and regrowth from disuse is largely unknown. Therefore, we investigated the effect of muscle disuse and reloading on translational capacity in middle-aged men (Study 1) and in rats (Study 2). METHODS In Study 1, 28 male participants (age 50.03 ± 3.54 years) underwent 2 weeks of knee immobilization followed by 2 weeks of ambulatory recovery and a further 2 weeks of resistance training. Muscle biopsies were obtained for measurement of total RNA and pre-ribosomal (r)RNA expression, and vastus lateralis cross-sectional area (CSA) was determined via peripheral quantitative computed tomography. In Study 2, male rats underwent hindlimb suspension (HS) for either 24 h (HS 24 h, n = 4) or 7 days (HS 7d, n = 5), HS for 7 days followed by 7 days of reloading (Rel, n = 5) or remained as ambulatory weight bearing (WB, n = 5) controls. Rats received deuterium oxide throughout the study to determine RNA synthesis and degradation, and mTORC1 signalling pathway was assessed. RESULTS Two weeks of immobilization reduced total RNA concentration (20%) and CSA (4%) in men (both P ≤ 0.05). Ambulatory recovery restored total RNA concentration to baseline levels and partially restored muscle CSA. Total RNA concentration and 47S pre-rRNA expression increased above basal levels after resistance training (P ≤ 0.05). In rats, RNA synthesis was 30% lower while degradation was ~400% higher in HS 7d in soleus and plantaris muscles compared with WB (P ≤ 0.05). mTORC1 signalling was lower in HS compared with WB as was 47S pre-rRNA (P ≤ 0.05). With reloading, the aforementioned parameters were restored to WB levels while RNA degradation was suppressed (P ≤ 0.05). CONCLUSIONS Changes in RNA concentration following muscle disuse and reloading were associated with changes in ribosome biogenesis and degradation, indicating that both processes are important determinants of translational capacity. The pre-clinical data help explain the reduced translational capacity after muscle immobilization in humans and demonstrate that ribosome biogenesis and degradation might be valuable therapeutic targets to maintain muscle mass during disuse.
Collapse
Affiliation(s)
- Vandré C. Figueiredo
- Liggins InstituteThe University of AucklandAucklandNew Zealand
- Department of Physical Therapy, College of Health SciencesUniversity of KentuckyKYUSA
- Center of Muscle BiologyUniversity of KentuckyKYUSA
| | | | - Douglas W. Van Pelt
- Department of Physical Therapy, College of Health SciencesUniversity of KentuckyKYUSA
- Center of Muscle BiologyUniversity of KentuckyKYUSA
| | - Marcus M. Lawrence
- Aging and Metabolism Research ProgramOklahoma Medical Research Foundation (OMRF)Oklahoma CityOKUSA
| | - Nina Zeng
- Liggins InstituteThe University of AucklandAucklandNew Zealand
| | | | - Sally D. Poppitt
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
| | - Benjamin F. Miller
- Aging and Metabolism Research ProgramOklahoma Medical Research Foundation (OMRF)Oklahoma CityOKUSA
| | - Cameron J. Mitchell
- Liggins InstituteThe University of AucklandAucklandNew Zealand
- School of KinesiologyUniversity of British ColumbiaVancouverCanada
| | - John J. McCarthy
- Center of Muscle BiologyUniversity of KentuckyKYUSA
- College of MedicineUniversity of KentuckyKYUSA
| | - Esther E. Dupont‐Versteegden
- Department of Physical Therapy, College of Health SciencesUniversity of KentuckyKYUSA
- Center of Muscle BiologyUniversity of KentuckyKYUSA
| | - David Cameron‐Smith
- Liggins InstituteThe University of AucklandAucklandNew Zealand
- Human Potential Translational Research Programme, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Singapore Institute for Clinical SciencesAgency for Science, Technology and ResearchSingapore
| |
Collapse
|
26
|
Brown JL, Lawrence MM, Ahn B, Kneis P, Piekarz KM, Qaisar R, Ranjit R, Bian J, Pharaoh G, Brown C, Peelor FF, Kinter MT, Miller BF, Richardson A, Van Remmen H. Cancer cachexia in a mouse model of oxidative stress. J Cachexia Sarcopenia Muscle 2020; 11:1688-1704. [PMID: 32918528 PMCID: PMC7749559 DOI: 10.1002/jcsm.12615] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/03/2020] [Accepted: 07/07/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Cancer is associated with muscle atrophy (cancer cachexia) that is linked to up to 40% of cancer-related deaths. Oxidative stress is a critical player in the induction and progression of age-related loss of muscle mass and weakness (sarcopenia); however, the role of oxidative stress in cancer cachexia has not been defined. The purpose of this study was to examine if elevated oxidative stress exacerbates cancer cachexia. METHODS Cu/Zn superoxide dismutase knockout (Sod1KO) mice were used as an established mouse model of elevated oxidative stress. Cancer cachexia was induced by injection of one million Lewis lung carcinoma (LLC) cells or phosphate-buffered saline (saline) into the hind flank of female wild-type mice or Sod1KO mice at approximately 4 months of age. The tumour developed for 3 weeks. Muscle mass, contractile function, neuromuscular junction (NMJ) fragmentation, metabolic proteins, mitochondrial function, and motor neuron function were measured in wild-type and Sod1KO saline and tumour-bearing mice. Data were analysed by two-way ANOVA with Tukey-Kramer post hoc test when significant F ratios were determined and α was set at 0.05. Unless otherwise noted, results in abstract are mean ±SEM. RESULTS Muscle mass and cross-sectional area were significantly reduced, in tumour-bearing mice. Metabolic enzymes were dysregulated in Sod1KO mice and cancer exacerbated this phenotype. NMJ fragmentation was exacerbated in tumour-bearing Sod1KO mice. Myofibrillar protein degradation increased in tumour-bearing wild-type mice (wild-type saline, 0.00847 ± 0.00205; wildtype LLC, 0.0211 ± 0.00184) and tumour-bearing Sod1KO mice (Sod1KO saline, 0.0180 ± 0.00118; Sod1KO LLC, 0.0490 ± 0.00132). Muscle mitochondrial oxygen consumption was reduced in tumour-bearing mice compared with saline-injected wild-type mice. Mitochondrial protein degradation increased in tumour-bearing wild-type mice (wild-type saline, 0.0204 ± 0.00159; wild-type LLC, 0.167 ± 0.00157) and tumour-bearing Sod1KO mice (Sod1KO saline, 0.0231 ± 0.00108; Sod1 KO LLC, 0.0645 ± 0.000631). Sciatic nerve conduction velocity was decreased in tumour-bearing wild-type mice (wild-type saline, 38.2 ± 0.861; wild-type LLC, 28.8 ± 0.772). Three out of eleven of the tumour-bearing Sod1KO mice did not survive the 3-week period following tumour implantation. CONCLUSIONS Oxidative stress does not exacerbate cancer-induced muscle loss; however, cancer cachexia may accelerate NMJ disruption.
Collapse
Affiliation(s)
- Jacob L Brown
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Marcus M Lawrence
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Bumsoo Ahn
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Parker Kneis
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Katarzyna M Piekarz
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rizwan Qaisar
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Rojina Ranjit
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jan Bian
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Gavin Pharaoh
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Chase Brown
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Fredrick F Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Michael T Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Arlan Richardson
- Oklahoma City VA Medical Center, Oklahoma City, OK, USA.,Reynolds Center for Aging Research, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Holly Van Remmen
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Oklahoma City VA Medical Center, Oklahoma City, OK, USA.,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
27
|
Van Pelt DW, Vechetti IJ, Lawrence MM, Van Pelt KL, Patel P, Miller BF, Butterfield TA, Dupont-Versteegden EE. Serum extracellular vesicle miR-203a-3p content is associated with skeletal muscle mass and protein turnover during disuse atrophy and regrowth. Am J Physiol Cell Physiol 2020; 319:C419-C431. [PMID: 32639875 PMCID: PMC7500218 DOI: 10.1152/ajpcell.00223.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022]
Abstract
Small noncoding microRNAs (miRNAs) are important regulators of skeletal muscle size, and circulating miRNAs within extracellular vesicles (EVs) may contribute to atrophy and its associated systemic effects. The purpose of this study was to understand how muscle atrophy and regrowth alter in vivo serum EV miRNA content. We also associated changes in serum EV miRNA with protein synthesis, protein degradation, and miRNA within muscle, kidney, and liver. We subjected adult (10 mo) F344/BN rats to three conditions: weight bearing (WB), hindlimb suspension (HS) for 7 days to induce muscle atrophy, and HS for 7 days followed by 7 days of reloading (HSR). Microarray analysis of EV miRNA content showed that the overall changes in serum EV miRNA were predicted to target major anabolic, catabolic, and mechanosensitive pathways. MiR-203a-3p was the only miRNA demonstrating substantial differences in HS EVs compared with WB. There was a limited association of EV miRNA content to the corresponding miRNA content within the muscle, kidney, or liver. Stepwise linear regression demonstrated that EV miR-203a-3p was correlated with muscle mass and muscle protein synthesis and degradation across all conditions. Finally, EV miR-203a-3p expression was significantly decreased in human subjects who underwent unilateral lower limb suspension (ULLS) to induce muscle atrophy. Altogether, we show that serum EV miR-203a-3p expression is related to skeletal muscle protein turnover and atrophy. We suggest that serum EV miR-203a-3p content may be a useful biomarker and future work should investigate whether serum EV miR-203a-3p content is mechanistically linked to protein synthesis and degradation.
Collapse
Affiliation(s)
- Douglas W Van Pelt
- Department of Physical Therapy and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Ivan J Vechetti
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Marcus M Lawrence
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Kathryn L Van Pelt
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
| | - Parth Patel
- Department of Physical Therapy and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Timothy A Butterfield
- Department of Athletic Training and Clinical Nutrition and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | | |
Collapse
|