1
|
Cerce DDP, Cândido GC, de Almeida MB, Silva JL, Dias FGG, Rodrigues MA. Exploring the relationship between histological grading, fibrillar collagen alterations and nuclear phenotypes in canine mammary carcinomas. J Comp Pathol 2025; 218:1-11. [PMID: 40022855 DOI: 10.1016/j.jcpa.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/05/2024] [Accepted: 02/02/2025] [Indexed: 03/04/2025]
Abstract
We evaluated collagen deposition and nuclear phenotypes in non-inflammatory, metastasis-free canine mammary carcinomas at the time of tumour resection. A retrospective cohort analysis was conducted on 68 female dogs diagnosed with mammary carcinomas between January 2013 and December 2021, excluding cases of mammary sarcoma, carcinosarcoma, inflammatory mammary cancer and metastases. Tumours were classified into histological subtypes using the Peña grading system and assigned grades accordingly. Software-assisted video image analysis was utilized to quantitatively assess collagen deposition, organization and nuclear phenotypes. Histological grading was performed by three independent examiners to ensure reproducibility and minimize observer bias. Significant differences in collagen deposition and nuclear phenotypes were observed across histological grades. Grade III carcinomas had significantly greater collagen deposition, both within the tumour core and at the tumour periphery, compared with grades I and II. Collagen organization was markedly increased in grade III carcinomas. Nuclear phenotype analysis revealed distinct features that allowed clear differentiation between grade II and grade III tumours. Software-assisted image analysis effectively identified distinct patterns of collagen deposition, organization and nuclear phenotypes associated with canine mammary carcinomas of various grades, providing important information about tumour biology.
Collapse
Affiliation(s)
- Danielle D P Cerce
- Franca University, UNIFRAN, Avenida Dr. Armando de Salles Oliveira, 201, Parque Universitário, Franca, São Paulo, 14404-600, Brazil
| | - Gabriela C Cândido
- Franca University, UNIFRAN, Avenida Dr. Armando de Salles Oliveira, 201, Parque Universitário, Franca, São Paulo, 14404-600, Brazil
| | - Maysa B de Almeida
- Franca University, UNIFRAN, Avenida Dr. Armando de Salles Oliveira, 201, Parque Universitário, Franca, São Paulo, 14404-600, Brazil
| | - Jhuan L Silva
- Franca University, UNIFRAN, Avenida Dr. Armando de Salles Oliveira, 201, Parque Universitário, Franca, São Paulo, 14404-600, Brazil
| | - Fernanda G G Dias
- Franca University, UNIFRAN, Avenida Dr. Armando de Salles Oliveira, 201, Parque Universitário, Franca, São Paulo, 14404-600, Brazil
| | - Marcela A Rodrigues
- Franca University, UNIFRAN, Avenida Dr. Armando de Salles Oliveira, 201, Parque Universitário, Franca, São Paulo, 14404-600, Brazil.
| |
Collapse
|
2
|
Li F, Wei Y, Li L, Chen F, Bao C, Bu H, Zhang Z. Collagen Density Is Associated With Pathological Complete Response to Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer Patients. J Surg Oncol 2024. [PMID: 39699940 DOI: 10.1002/jso.28046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/30/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND AND OBJECTIVES The tumor-associated stroma is an essential compartment in breast cancer, and collagen fiber organization in the stroma has been reported to be correlated with prognosis. In this study, we sought to evaluate collagen fiber characteristics in relation to pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) in breast cancer patients. METHODS A total of 388 breast cancer patients receiving NAC were enrolled. The stroma type was manually assessed on pretreatment hematoxylin and eosin (HE)-stained slides, and the collagen fiber features were quantified by a computer tool. The relationship between syndecan-1 expression and collagen fibers and its correlation with treatment efficacy were detected by immunohistochemistry. RESULTS The pCR rate of patients with collagen-dominant stroma was lower than that of patients with lymphocyte-dominant stroma (19.6% vs. 40.0%, p = 0.001). Patients who achieved pCR had straighter and less dense fibers in pretreatment biopsied tissue than non-pCR patients (p = 0.031, p = 0.044). Additionally, the pCR group had greater syndecans-1 expression on the tumor epithelium than the non-pCR group (p < 0.001), while there was no statistically significant difference in the stroma (p = 0.333). Collagen fiber density was the only factor associated with pCR after correction for other clinicopathological variables in triple-negative breast cancer (TNBC) patients (OR 0.466, 95% CI 0.227-0.956, p = 0.037); patients with lower fiber density had a greater pCR rate (37.5% vs. 12.5%, p = 0.021). CONCLUSIONS Collagen fiber density was associated with pCR in patients with breast cancer, and it could be a potential candidate for discriminating between responders and nonresponders for TNBC patients receiving NAC.
Collapse
Affiliation(s)
- Fengling Li
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Yani Wei
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, China
- Department of Pathology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Li
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Chen
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Chunjuan Bao
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Bu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhang Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Vargas Garcia AP, Reis LA, Ribeiro BRM, Nunes CB, de Paula AM, Cassali GD. Comparative evaluation of collagen modifications in breast cancer in human and canine carcinomas. Sci Rep 2024; 14:28846. [PMID: 39572729 PMCID: PMC11582713 DOI: 10.1038/s41598-024-79854-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
New diagnostic and therapeutic approaches have been increasingly demanded due to the high morbidity and mortality associated with breast cancer. Recently, changes in the collagen fibres in mammary neoplasms have been shown to provide information that can be helpful for more accurate diagnosis. We aimed to conduct a comparative analysis of the tumour stroma in human and canine mammary neoplasms to assess the relationship between collagen modifications and the behaviour of carcinomas in both species, by multiphoton microscopy. We present a retrospective study of 70 cases of human mammary tumour and 74 cases of canine mammary tumour. We analysed sections stained with haematoxylin and eosin from 1,200 representative areas of normal mammary tissue, fibroadenoma, grade I invasive carcinoma, grade III invasive carcinoma and invasive micropapillary carcinoma in human species and 1,304 representative areas of normal mammary tissue, benign mixed tumour, mixed carcinoma, carcinosarcoma, invasive micropapillary carcinoma and solid carcinoma in canine species. We obtained that both human and canine mammary carcinomas present lower density of collagen fibres, higher density of cells and the collagen fibres are more aligned than in normal tissue. For human mammary carcinomas, the collagen fibres are more linear as compared to normal tissue. In addition, we demonstrated that the carcinomas with unfavourable prognosis present shorter collagen fibres, and these collagen changes correlate with the clinical and pathological data in human and canine species. For dogs, there is a correlation between the mean fibre length with the specific survival times. Thus, we demonstrate that dogs provide an excellent comparative perspective for studying how changes in the tumour stroma affect patient survival.
Collapse
Affiliation(s)
- Ana Paula Vargas Garcia
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, 31270-901, MG, Brazil
| | - Luana Aparecida Reis
- Department of Physics, Institute of Exact Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, 31270-901, MG, Brazil
| | - Bárbara Regina Melo Ribeiro
- Department of Physics, Institute of Exact Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, 31270-901, MG, Brazil
| | - Cristiana Buzelin Nunes
- Department of Anatomic Pathology, Faculty of Medicine, Federal University of Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, Belo Horizonte, 30130-100, MG, Brazil
| | - Ana Maria de Paula
- Department of Physics, Institute of Exact Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, 31270-901, MG, Brazil.
- Institute of Physics "Gleb Wataghin", University of Campinas, Campinas, SP, Brazil.
| | - Geovanni Dantas Cassali
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, 31270-901, MG, Brazil
| |
Collapse
|
4
|
Chohan DP, Biswas S, Wankhede M, Menon P, K A, Basha S, Rodrigues J, Mukunda DC, Mahato KK. Assessing Breast Cancer through Tumor Microenvironment Mapping of Collagen and Other Biomolecule Spectral Fingerprints─A Review. ACS Sens 2024; 9:4364-4379. [PMID: 39175278 PMCID: PMC11443534 DOI: 10.1021/acssensors.4c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
Breast cancer is a major challenge in the field of oncology, with around 2.3 million cases and around 670,000 deaths globally based on the GLOBOCAN 2022 data. Despite having advanced technologies, breast cancer remains the major type of cancer among women. This review highlights various collagen signatures and the role of different collagen types in breast tumor development, progression, and metastasis, along with the use of photoacoustic spectroscopy to offer insights into future cancer diagnostic applications without the need for surgery or other invasive techniques. Through mapping of the tumor microenvironment and spotlighting key components and their absorption wavelengths, we emphasize the need for extensive preclinical and clinical investigations.
Collapse
Affiliation(s)
- Diya Pratish Chohan
- Manipal
School of Life Sciences, Manipal Academy
of Higher Education, Karnataka, Manipal 576104, India
| | - Shimul Biswas
- Department
of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | - Mrunmayee Wankhede
- Manipal
School of Life Sciences, Manipal Academy
of Higher Education, Karnataka, Manipal 576104, India
| | - Poornima Menon
- Manipal
School of Life Sciences, Manipal Academy
of Higher Education, Karnataka, Manipal 576104, India
| | - Ameera K
- Department
of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | - Shaik Basha
- Department
of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | - Jackson Rodrigues
- Department
of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | | | - Krishna Kishore Mahato
- Department
of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| |
Collapse
|
5
|
Jansson M, Lindberg J, Rask G, Svensson J, Billing O, Nazemroaya A, Berglund A, Wärnberg F, Sund M. Stromal Type I Collagen in Breast Cancer: Correlation to Prognostic Biomarkers and Prediction of Chemotherapy Response. Clin Breast Cancer 2024; 24:e360-e369.e4. [PMID: 38485557 DOI: 10.1016/j.clbc.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/17/2023] [Accepted: 02/19/2024] [Indexed: 06/23/2024]
Abstract
INTRODUCTION Fibrillar collagens accumulate in the breast cancer stroma and appear as poorly defined spiculated masses in mammography imaging. The prognostic value of tissue type I collagen remains elusive in treatment-naïve and chemotherapy-treated breast cancer patients. Here, type I collagen mRNA and protein expression were analysed in 2 large independent breast cancer cohorts. Levels were related to clinicopathological parameters, prognostic biomarkers, and outcome. METHOD COL1A1 mRNA expression was analysed in 2509 patients with breast cancer obtained from the cBioPortal database. Type I collagen protein expression was studied by immunohistochemistry in 1395 women diagnosed with early invasive breast cancer. RESULTS Low COL1A1 mRNA and protein levels correlated with poor prognosis features, such as hormone receptor negativity, high histological grade, triple-negative subtype, node positivity, and tumour size. In unadjusted analysis, high stromal type I collagen protein expression was associated with improved overall survival (OS) (HR = 0.78, 95% CI = 0.61-0.99, p = .043) and trended towards improved breast cancer-specific survival (BCSS) (HR = 0.65, 95% CI = 0.42-1.01, P = 0.053), although these findings were lost after adjustment for other clinical variables. In unadjusted analysis, high expression of type I collagen was associated with better OS (HR = 0.70, 95% CI = 0.55-0.90, P = .006) and BCSS (HR = 0.55, 95% CI = 0.34-0.88, P = .014) among patients not receiving chemotherapy. Strikingly, the opposite was observed among patients receiving chemotherapy. There, high expression of type I collagen was instead associated with worse OS (HR = 1.83, 95% CI = 0.65-5.14, P = .25) and BCSS (HR = 1.72, 95% CI = 0.54-5.50, P = .357). CONCLUSION Low stromal type I collagen mRNA and protein expression are associated with unfavourable tumour characteristics in breast cancer. Stromal type I collagen might predict chemotherapy response.
Collapse
Affiliation(s)
- Malin Jansson
- Department of Surgery and Perioperative Sciences/Surgery, Umeå University, Umeå, Sweden.
| | - Jessica Lindberg
- Department of Surgery and Perioperative Sciences/Surgery, Umeå University, Umeå, Sweden
| | - Gunilla Rask
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
| | - Johan Svensson
- Department of Surgery and Perioperative Sciences/Surgery, Umeå University, Umeå, Sweden; Department of Statistics, Umeå School of Business, Economics and Statistics, Umeå University, Umeå, Sweden
| | - Ola Billing
- Department of Surgery and Perioperative Sciences/Surgery, Umeå University, Umeå, Sweden
| | | | - Anette Berglund
- Department of Surgery and Perioperative Sciences/Surgery, Umeå University, Umeå, Sweden
| | - Fredrik Wärnberg
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Malin Sund
- Department of Surgery and Perioperative Sciences/Surgery, Umeå University, Umeå, Sweden; Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
6
|
Lukianova N, Mushii O, Zadvornyi T, Chekhun V. Development of an algorithm for biomedical image analysis of the spatial organization of collagen in breast cancer tissue of patients with different clinical status. FEBS Open Bio 2024; 14:675-686. [PMID: 38382946 PMCID: PMC10988699 DOI: 10.1002/2211-5463.13773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
Collagen, the main component of the tumor microenvironment, plays a key role in the development of breast cancer (BCa); however, the specific changes in its spatial organization during tumor progression have not been definitively elucidated. The existing and available methods for assessing the morphometric parameters of the stroma's fibrous component are insufficient for a detailed description of the state of collagen fibers and for assessing its changes to evaluate the aggressiveness of the BCa course. The aim of the work was to develop an algorithm for microphoto analysis to assess the spatial organization of collagen in BCa tissue of patients with different clinical statuses. The study was conducted on 60 tissue samples of stage I-II BCa. The processed images were analyzed using the software packages CurveAlign v4.0 and imagej. We established that the increase in BCa stage and the decrease in tumor differentiation grade are associated with decreased length, width, and straightness of collagen fibers, as well as their increased density. The formation of an aggressive basal molecular BCa subtype was accompanied by an increase in tumor-stroma ratio. The obtained results indicate the possibility of practical application of the developed algorithm for evaluating the spatial organization of collagen in BCa tissue to predict the aggressiveness of the disease course.
Collapse
Affiliation(s)
- Nataliia Lukianova
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and RadiobiologyNAS of UkraineKyivUkraine
| | - Oleksandr Mushii
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and RadiobiologyNAS of UkraineKyivUkraine
| | - Taras Zadvornyi
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and RadiobiologyNAS of UkraineKyivUkraine
| | - Vasyl Chekhun
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and RadiobiologyNAS of UkraineKyivUkraine
| |
Collapse
|
7
|
Garcia APV, Taborda DYO, Reis LA, de Paula AM, Cassali GD. Collagen modifications predictive of lymph node metastasis in dogs with carcinoma in mixed tumours. Front Vet Sci 2024; 11:1362693. [PMID: 38511192 PMCID: PMC10951072 DOI: 10.3389/fvets.2024.1362693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/14/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction Mixed tumours in the canine mammary gland are the most common histological type in routine diagnosis. In general, these neoplasms have a favourable prognosis that does not evolve into metastatic disease. However, some cases develop into lymph node metastases and are associated with worse patient survival rates. Methods Here is a retrospective study of 46 samples of primary mixed tumours of the canine mammary gland: 15 cases of benign mixed tumours (BMT), 16 cases of carcinoma in mixed tumours without lymph node metastasis (CMT), and 15 cases of carcinomas in mixed tumours with lymph node metastasis (CMTM). In addition, we selected 23 cases of normal mammary glands (NMT) for comparison. The samples were collected from biopsies performed during nodulectomy, simple mastectomy, regional mastectomy, or unilateral/bilateral radical mastectomy. We used multiphoton microscopy, second harmonic generation, and two-photon excited fluorescence, to evaluate the characteristics of collagen fibres and cellular components in biopsies stained with haematoxylin and eosin. We performed Ki67, ER, PR, and HER-2 immunostaining to define the immunophenotype and COX-2. We showed that carcinomas that evolved into metastatic disease (CMTM) present shorter and wavier collagen fibres as compared to CMT. Results and discussion When compared to NMT and BMT the carcinomas present a smaller area of fibre coverage, a larger area of cellular coverage, and a larger number of individual fibres. Furthermore, we observed a correlation between the strong expression of COX-2 and a high rate of cell proliferation in carcinomas with a smaller area covered by cell fibres and a larger number of individual fibres. These findings highlight the fundamental role of collagen during tumour progression, especially in invasion and metastatic dissemination.
Collapse
Affiliation(s)
- Ana Paula Vargas Garcia
- Laboratory of Comparative Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Daiana Yively Osorio Taborda
- Laboratory of Comparative Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luana Aparecida Reis
- Biophotonics Laboratory, Physics Department, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Maria de Paula
- Biophotonics Laboratory, Physics Department, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Geovanni Dantas Cassali
- Laboratory of Comparative Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
8
|
Banerjee M, Devi Rajeswari V. A novel cross-communication of HIF-1α and HIF-2α with Wnt signaling in TNBC and influence of hypoxic microenvironment in the formation of an organ-on-chip model of breast cancer. Med Oncol 2023; 40:245. [PMID: 37454033 DOI: 10.1007/s12032-023-02112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
The microenvironment role is very important in cancer development. The epithelial-mesenchymal transition of the cancer cells depends upon specific signaling and microenvironmental conditions, such as hypoxic conditions. The crosstalk between hypoxia and Wnt signaling through some molecular mechanism in TNBC is related. Cross-communication between hypoxia and Wnt signaling in cancer cells is known, but the detailed mechanism in TNBC is unknown. This review includes the role of the hypoxia microenvironment in TNBC and the novel crosstalk of the Wnt signaling and hypoxia. When targeted, the new pathway and crosstalk link may be a solution for metastatic TNBC and chemoresistance. The microenvironment influences cancer's metastasis, which changes from person to person. Therefore, organ-on-a-chip is a very novel model to test the drugs clinically before going for human trials, focusing on personalized medications can be done. The effect of the hypoxia microenvironment on breast cancer stem cells is still unknown. Apart from all the published papers, this paper mainly focuses only on the hypoxic microenvironment and its association with the growth of TNBC. The medicines or small proteins, drugs, mimics, and inhibitors targeting wnt and hypoxia genes are consolidated in this review paper.
Collapse
Affiliation(s)
- Manosi Banerjee
- Department of Biomedical Science, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - V Devi Rajeswari
- Department of Biomedical Science, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
9
|
Lu M, Ma L, Li J, Li J, Tong M, Dai F, Song F, Zhang X, Qiu T. Construction of carboxymethyl chitosan-based nanoparticles of hypoxia response for co-loading doxorubicin and tanshinone IIA. Int J Biol Macromol 2023; 244:125362. [PMID: 37330079 DOI: 10.1016/j.ijbiomac.2023.125362] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023]
Abstract
As a first-line drug for breast cancer chemotherapy, the effectiveness of doxorubicin (DOX) is challenged by high doses and high toxicity. Studies showed the combination of Tanshinone IIA (TSIIA) and DOX could enhance the efficacy of DOX for cancer and reduce the toxic effects to normal tissues. Unfortunately, free drugs are easily metabolized in the systemic circulation, which are less prone to aggregation at the tumor site to exert anticancer efficacy. In present study, we prepared a carboxymethyl chitosan-based hypoxia-responsive nanoparticles loaded with DOX and TSIIA for the treatment of breast cancer. The results demonstrated that these hypoxia-responsive nanoparticles not only improved the delivery efficiency of the drugs but also enhanced the therapeutic efficacy of DOX. The average size of nanoparticles was about 200-220 nm, the optimal drug loading and encapsulation efficiency of TSIIA in DOX/TSIIA NPs were 9.06 % and 73.59 %, respectively. Hypoxia-responsive behavior were recorded in vitro, while the synergistic efficacy is significantly exhibited in vivo and the tumor inhibitory rate was 85.87 %. Notably, TUNEL assay and immunofluorescence staining verified that the combined nanoparticles exerted a synergistic anti-tumor effect by inhibiting tumor fibrosis, decreasing the expression of HIF-1α and inducing tumor cell apoptosis. Collectively, this carboxymethyl chitosan-based hypoxia-responsive nanoparticles could have promising application prospect for effective breast cancer therapy.
Collapse
Affiliation(s)
- Mengli Lu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.
| | - Li Ma
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Juncan Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Jie Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Miao Tong
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Fuli Dai
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Feiyu Song
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Xueqiong Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Tong Qiu
- School of Materials Science and Engineering, Wuhan university of Technology, Wuhan 430070, China
| |
Collapse
|
10
|
Gomes EFA, Paulino Junior E, de Lima MFR, Reis LA, Paranhos G, Mamede M, Longford FGJ, Frey JG, de Paula AM. Prostate cancer tissue classification by multiphoton imaging, automated image analysis and machine learning. JOURNAL OF BIOPHOTONICS 2023; 16:e202200382. [PMID: 36806587 DOI: 10.1002/jbio.202200382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 06/07/2023]
Abstract
Prostate carcinoma, a slow-growing and often indolent tumour, is the second most commonly diagnosed cancer among men worldwide. The prognosis is mainly based on the Gleason system through prostate biopsy analysis. However, new treatment and monitoring strategies depend on a more precise diagnosis. Here, we present results by multiphoton imaging for prostate tumour samples from 120 patients that allow to obtain quantitative parameters leading to specific tumour aggressiveness signatures. An automated image analysis was developed to recognise and quantify stromal fibre and neoplastic cell regions in each image. The set of metrics was able to distinguish between non-neoplastic tissue and carcinoma areas by linear discriminant analysis and random forest with accuracy of 89% ± 3%, but between Gleason groups of only 46% ± 6%. The reactive stroma analysis improved the accuracy to 65% ± 5%, clearly demonstrating that stromal parameters should be considered as additional criteria for a more accurate diagnosis.
Collapse
Affiliation(s)
- Egleidson F A Gomes
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Eduardo Paulino Junior
- Departamento de Anatomia Patológica e Medicina Legal, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Luana A Reis
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Giovanna Paranhos
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcelo Mamede
- Departamento Anatomia e Imagem, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Ana Maria de Paula
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
11
|
Uribe Castaño L, Mirsanaye K, Kontenis L, Krouglov S, Žurauskas E, Navab R, Yasufuku K, Tsao MS, Akens MK, Wilson BC, Barzda V. Wide-field Stokes polarimetric microscopy for second harmonic generation imaging. JOURNAL OF BIOPHOTONICS 2023; 16:e202200284. [PMID: 36651498 DOI: 10.1002/jbio.202200284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/09/2022] [Accepted: 01/09/2023] [Indexed: 05/17/2023]
Abstract
We employ wide-field second harmonic generation (SHG) microscopy together with nonlinear Stokes polarimetry for quick ultrastructural investigation of large sample areas (700 μm × 700 μm) in thin histology sections. The Stokes vector components for SHG are obtained from the polarimetric measurements with incident and outgoing linear and circular polarization states. The Stokes components are used to construct the images of polarimetric parameters and deduce the maps of ultrastructural parameters of achiral and chiral nonlinear susceptibility tensor components ratios and cylindrical axis orientation in fibrillar materials. The large area imaging was employed for lung tumor margin investigations. The imaging shows reduced SHG intensity, increased achiral susceptibility ratio values, and preferential orientation of collagen strands along the boarder of tumor margin. The wide-field Stokes polarimetric SHG microscopy opens a possibility of quick large area imaging of ultrastructural parameters of tissue collagen, which can be used for nonlinear histopathology investigations.
Collapse
Affiliation(s)
- Leonardo Uribe Castaño
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Kamdin Mirsanaye
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Lukas Kontenis
- Laser Research Centre, Faculty of Physics, Vilnius University, Vilnius, Lithuania
- Light Conversion, Vilnius, Lithuania
| | - Serguei Krouglov
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Edvardas Žurauskas
- Department of Pathology, Forensic Medicine and Pharmacology, Vilnius University, Vilnius, Lithuania
| | - Roya Navab
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Kazuhiro Yasufuku
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Ming-Sound Tsao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Margarete K Akens
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Techna Institute, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Brian C Wilson
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Virginijus Barzda
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Laser Research Centre, Faculty of Physics, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
12
|
Collagen fiber features and COL1A1: are they associated with elastic parameters in breast lesions, and can COL1A1 predict axillary lymph node metastasis? BMC Cancer 2022; 22:1004. [PMID: 36131254 PMCID: PMC9490982 DOI: 10.1186/s12885-022-10092-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
Background This study aimed to explore whether collagen fiber features and collagen type I alpha 1 (COL1A1) are related to the stiffness of breast lesions and whether COL1A1 can predict axillary lymph node metastasis (LNM). Methods Ninety-four patients with breast lesions were consecutively enrolled in the study. Amongst the 94 lesions, 30 were benign, and 64 were malignant (25 were accompanied by axillary lymph node metastasis). Ultrasound (US) and shear wave elastography (SWE) were performed for each breast lesion before surgery. Sirius red and immunohistochemical staining were used to examine the shape and arrangement of collagen fibers and COL1A1 expression in the included tissue samples. We analyzed the correlation between the staining results and SWE parameters and investigated the effectiveness of COL1A1 expression levels in predicting axillary LNM. Results The optimal cut-off values for Emax, Emean, and Eratio for diagnosing the benign and malignant groups, were 58.70 kPa, 52.50 kPa, and 3.05, respectively. The optimal cutoff for predicting axillary LNM were 107.5 kPa, 85.15 kPa, and 3.90, respectively. Herein, the collagen fiber shape and arrangement features in breast lesions were classified into three categories. One-way analysis of variance (ANOVA) showed that Emax, Emean, and Eratio differed between categories 0, 1, and 2 (P < 0.05). Meanwhile, elasticity parameters were positively correlated with collagen categories and COL1A1 expression. The COL1A1 expression level > 0.145 was considered the cut-off value, and its efficacy in benign and malignant breast lesions was 0.808, with a sensitivity of 66% and a specificity of 90%. Furthermore, when the COL1A1 expression level > 0.150 was considered the cut-off, its efficacy in predicting axillary LNM was 0.796, with sensitivity and specificity of 96% and 59%, respectively. Conclusions The collagen fiber features and expression levels of COL1A1 positively correlated with the elastic parameters of breast lesions. The expression of COL1A1 may help diagnose benign and malignant breast lesions and predict axillary LNM.
Collapse
|
13
|
Zhao R, Jiang H, Cao J, Li B, Xu L, Dai S. Prediction of Axillary Lymph Node Metastasis in Invasive Breast Cancer by Sound Touch Elastography. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1879-1887. [PMID: 35691734 DOI: 10.1016/j.ultrasmedbio.2022.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
The aims of this study were to investigate the value of sound touch elastography (STE) in predicting axillary lymph node metastasis (ALNM) in patients with invasive breast cancer (IBC) and to explore whether lysyl oxidase (LOX) is correlated with increasing stiffness and promotion of metastasis in IBC. A total of 142 lesions in 142 patients were assessed by STE. The STE values of IBCs in the two groups were compared and the best cutoff values for diagnosing ALNM determined. Immunohistochemistry was used to detect LOX expression. Collagen fiber and elastic fiber content was determined by Masson and Weigert elastic fiber staining. Correlation analyses were performed to identify the associations of the data. The optimal cutoff values of Emax (maximum stiffness value of the tumor) and Smax (maximum stiffness value of the shell) for predicting ALNM of IBC were 94.58 and 148.78 kPa. Immunohistochemistry and Masson and Weigert elastic fiber staining were performed on 67 samples. LOX expression and collagen volume fraction were significantly higher in the ALNM+ group than in the ALNM- group (p = 0.04 and 0.03), except for elastic fiber content (p = 0.628). Moreover, Emax, Smax and LOX expression were positively correlated with collagen volume fraction (r = 0.624, 0.512, and 0.533, respectively). Emax and Smax were found to be predictors for ALNM of IBC. STE could serve as a non-invasive method for assessing lymph node status before surgery. Overexpression of LOX and increased collagen fiber contributed to the increased stiffness in the lesions and metastases of IBC.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Huan Jiang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jingyan Cao
- Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bo Li
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lili Xu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shaochun Dai
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
14
|
Sneider A, Kiemen A, Kim JH, Wu PH, Habibi M, White M, Phillip JM, Gu L, Wirtz D. Deep learning identification of stiffness markers in breast cancer. Biomaterials 2022; 285:121540. [PMID: 35537336 PMCID: PMC9873266 DOI: 10.1016/j.biomaterials.2022.121540] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023]
Abstract
While essential to our understanding of solid tumor progression, the study of cell and tissue mechanics has yet to find traction in the clinic. Determining tissue stiffness, a mechanical property known to promote a malignant phenotype in vitro and in vivo, is not part of the standard algorithm for the diagnosis and treatment of breast cancer. Instead, clinicians routinely use mammograms to identify malignant lesions and radiographically dense breast tissue is associated with an increased risk of developing cancer. Whether breast density is related to tumor tissue stiffness, and what cellular and non-cellular components of the tumor contribute the most to its stiffness are not well understood. Through training of a deep learning network and mechanical measurements of fresh patient tissue, we create a bridge in understanding between clinical and mechanical markers. The automatic identification of cellular and extracellular features from hematoxylin and eosin (H&E)-stained slides reveals that global and local breast tissue stiffness best correlate with the percentage of straight collagen. Importantly, the percentage of dense breast tissue does not directly correlate with tissue stiffness or straight collagen content.
Collapse
Affiliation(s)
- Alexandra Sneider
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Ashley Kiemen
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Joo Ho Kim
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Mehran Habibi
- Johns Hopkins Breast Center, Johns Hopkins Bayview Medical Center, 4940 Eastern Ave, Baltimore, MD, 21224, USA
| | - Marissa White
- Department of Pathology, Johns Hopkins School of Medicine, 401 N Broadway, Baltimore, MD, 21231, USA
| | - Jude M. Phillip
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA,Department of Biomedical Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Luo Gu
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA,Department of Pathology, Johns Hopkins School of Medicine, 401 N Broadway, Baltimore, MD, 21231, USA,Department of Oncology, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD, 21205, USA,Corresponding author. Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, and Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA., (D. Wirtz)
| |
Collapse
|
15
|
Fatherree JP, Guarin JR, McGinn RA, Naber SP, Oudin MJ. Chemotherapy-Induced Collagen IV Drives Cancer Cell Motility through Activation of Src and Focal Adhesion Kinase. Cancer Res 2022; 82:2031-2044. [PMID: 35260882 PMCID: PMC9381104 DOI: 10.1158/0008-5472.can-21-1823] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/15/2021] [Accepted: 03/04/2022] [Indexed: 01/07/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive and deadly subtype of breast cancer, accounting for 30,000 cases annually in the United States. While there are several clinical trials ongoing to identify new agents to treat TNBC, the majority of patients with TNBC are treated with anthracycline- or taxane-based chemotherapies in the neoadjuvant setting, followed by surgical resection and adjuvant chemotherapy. While many patients respond well to this approach, as many as 25% will suffer local or metastatic recurrence within 5 years. Understanding the mechanisms that drive recurrence after chemotherapy treatment is critical to improving survival for patients with TNBC. It is well established that the extracellular matrix (ECM), which provides structure and support to tissues, is a major driver of tumor growth, local invasion, and dissemination of cancer cells to distant metastatic sites. In the present study, we show that decellularized ECM (dECM) obtained from chemotherapy-treated mice increases motility of treatment-naïve breast cancer cells compared with vehicle-treated dECM. Tandem-mass-tag proteomics revealed that anthracycline- and taxane-based chemotherapies induce drug-specific changes in tumor ECM composition. The basement membrane protein collagen IV was significantly upregulated in the ECM of chemotherapy-treated mice and patients treated with neoadjuvant chemotherapy. Collagen IV drove invasion via activation of Src and focal adhesion kinase signaling downstream of integrin α1 and α2, and inhibition of collagen IV-driven signaling decreased motility in chemotherapy-treated dECM. These studies provide a novel mechanism by which chemotherapy may induce metastasis via its effects on ECM composition. SIGNIFICANCE Cytotoxic chemotherapy induces significant changes in the composition of tumor ECM, inducing a more invasive and aggressive phenotype in residual tumor cells following chemotherapy.
Collapse
Affiliation(s)
- Jackson P. Fatherree
- Department of Biomedical Engineering, Tufts School of Engineering, Tufts University, Medford, Massachusetts
| | - Justinne R. Guarin
- Department of Biomedical Engineering, Tufts School of Engineering, Tufts University, Medford, Massachusetts
| | - Rachel A. McGinn
- Department of Biomedical Engineering, Tufts School of Engineering, Tufts University, Medford, Massachusetts
| | - Stephen P. Naber
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, Massachusetts
| | - Madeleine J. Oudin
- Department of Biomedical Engineering, Tufts School of Engineering, Tufts University, Medford, Massachusetts.,Corresponding Author: Madeleine J. Oudin, Science & Engineering Complex, 200 College Avenue, Medford, MA 02155. Phone: 617-627-2580; E-mail:
| |
Collapse
|
16
|
Multiphoton Microscopy Reveals DAPK1-Dependent Extracellular Matrix Remodeling in a Chorioallantoic Membrane (CAM) Model. Cancers (Basel) 2022; 14:cancers14102364. [PMID: 35625969 PMCID: PMC9139596 DOI: 10.3390/cancers14102364] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The formation of metastasis is not only intricately orchestrated by cancer cells but is also affected by the surrounding extracellular matrix (ECM). The barrier function of the ECM represents an obstacle that cancer cells have to overcome to disseminate from the primary tumor to form metastasis in distant organs. Here, we demonstrate an approach to studying the remodeling of a collagen-rich ECM by colorectal tumor cells using multiphoton microscopy (MPM). This approach allows the analysis of the invasion front of tumors grown on the CAM in 3D. MPM is superior to conventional histology, which is limited to 2D analysis and needs extensive tissue preparation. Abstract Cancer cells facilitate tumor growth by creating favorable tumor micro-environments (TME), altering homeostasis and immune response in the extracellular matrix (ECM) of surrounding tissue. A potential factor that contributes to TME generation and ECM remodeling is the cytoskeleton-associated human death-associated protein kinase 1 (DAPK1). Increased tumor cell motility and de-adhesion (thus, promoting metastasis), as well as upregulated plasminogen-signaling, are shown when functionally analyzing the DAPK1 ko-related proteome. However, the systematic investigation of how tumor cells actively modulate the ECM at the tissue level is experimentally challenging since animal models do not allow direct experimental access while artificial in vitro scaffolds cannot simulate the entire complexity of tissue systems. Here, we used the chorioallantoic membrane (CAM) assay as a natural, collagen-rich tissue model in combination with all-optical experimental access by multiphoton microscopy (MPM) to study the ECM remodeling potential of colorectal tumor cells with and without DAPK1 in situ and even in vivo. This approach demonstrates the suitability of the CAM assay in combination with multiphoton microscopy for studying collagen remodeling during tumor growth. Our results indicate the high ECM remodeling potential of DAPK1 ko tumor cells at the tissue level and support our findings from proteomics.
Collapse
|
17
|
Abd El-Aziz YS, Gillson J, Jansson PJ, Sahni S. Autophagy: A promising target for triple negative breast cancers. Pharmacol Res 2021; 175:106006. [PMID: 34843961 DOI: 10.1016/j.phrs.2021.106006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 01/18/2023]
Abstract
Triple negative breast cancer (TNBC) is the most aggressive type of breast cancers which constitutes about 15% of all breast cancer cases and characterized by negative expression of hormonal receptors and human epidermal growth factor receptor 2 (HER2). Thus, endocrine and HER2 targeted therapies are not effective toward TNBCs, and they mainly rely on chemotherapy and surgery for treatment. Despite recent advances in chemotherapy, 40% of TNBC patients develop a metastatic relapse and recurrence. Therefore, understanding the molecular profile of TNBC is warranted to identify targets that can be selected for the development of a new and effective therapeutic approach. Autophagy is an internal defensive mechanism that allows the cells to survive under different stressors. It has been well known that autophagy exerts a crucial role in cancer progression. The critical role of autophagy in TNBC progression is emerging in recent years. This review will discuss autophagic pathway, how autophagy affects TNBC progression and recent therapeutic approaches that can target autophagy as a new treatment modality.
Collapse
Affiliation(s)
- Yomna S Abd El-Aziz
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Kolling Institute of Medical Research, St Leonards, NSW, Australia; Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Josef Gillson
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Kolling Institute of Medical Research, St Leonards, NSW, Australia
| | - Patric J Jansson
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Kolling Institute of Medical Research, St Leonards, NSW, Australia; Cancer Drug Resistance and Stem Cell Program, University of Sydney, Sydney, NSW 2006, Australia
| | - Sumit Sahni
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Kolling Institute of Medical Research, St Leonards, NSW, Australia.
| |
Collapse
|
18
|
Habanjar O, Diab-Assaf M, Caldefie-Chezet F, Delort L. 3D Cell Culture Systems: Tumor Application, Advantages, and Disadvantages. Int J Mol Sci 2021; 22:12200. [PMID: 34830082 PMCID: PMC8618305 DOI: 10.3390/ijms222212200] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 01/09/2023] Open
Abstract
The traditional two-dimensional (2D) in vitro cell culture system (on a flat support) has long been used in cancer research. However, this system cannot be fully translated into clinical trials to ideally represent physiological conditions. This culture cannot mimic the natural tumor microenvironment due to the lack of cellular communication (cell-cell) and interaction (cell-cell and cell-matrix). To overcome these limitations, three-dimensional (3D) culture systems are increasingly developed in research and have become essential for tumor research, tissue engineering, and basic biology research. 3D culture has received much attention in the field of biomedicine due to its ability to mimic tissue structure and function. The 3D matrix presents a highly dynamic framework where its components are deposited, degraded, or modified to delineate functions and provide a platform where cells attach to perform their specific functions, including adhesion, proliferation, communication, and apoptosis. So far, various types of models belong to this culture: either the culture based on natural or synthetic adherent matrices used to design 3D scaffolds as biomaterials to form a 3D matrix or based on non-adherent and/or matrix-free matrices to form the spheroids. In this review, we first summarize a comparison between 2D and 3D cultures. Then, we focus on the different components of the natural extracellular matrix that can be used as supports in 3D culture. Then we detail different types of natural supports such as matrigel, hydrogels, hard supports, and different synthetic strategies of 3D matrices such as lyophilization, electrospiding, stereolithography, microfluid by citing the advantages and disadvantages of each of them. Finally, we summarize the different methods of generating normal and tumor spheroids, citing their respective advantages and disadvantages in order to obtain an ideal 3D model (matrix) that retains the following characteristics: better biocompatibility, good mechanical properties corresponding to the tumor tissue, degradability, controllable microstructure and chemical components like the tumor tissue, favorable nutrient exchange and easy separation of the cells from the matrix.
Collapse
Affiliation(s)
- Ola Habanjar
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (O.H.); (F.C.-C.)
| | - Mona Diab-Assaf
- Equipe Tumorigénèse Pharmacologie Moléculaire et Anticancéreuse, Faculté des Sciences II, Université Libanaise Fanar, Beyrouth 1500, Liban;
| | - Florence Caldefie-Chezet
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (O.H.); (F.C.-C.)
| | - Laetitia Delort
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (O.H.); (F.C.-C.)
| |
Collapse
|
19
|
de Andrade Natal R, Adur J, Cesar CL, Vassallo J. Tumor extracellular matrix: lessons from the second-harmonic generation microscopy. SURGICAL AND EXPERIMENTAL PATHOLOGY 2021. [DOI: 10.1186/s42047-021-00089-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
AbstractExtracellular matrix (ECM) represents more than a mere intercellular cement. It is physiologically active in cell communication, adhesion and proliferation. Collagen is the most abundant protein, making up to 90% of ECM, and 30% of total protein weight in humans. Second-harmonic generation (SHG) microscopy represents an important tool to study collagen organization of ECM in freshly unfixed tissues and paraffin-embedded tissue samples. This manuscript aims to review some of the applications of SHG microscopy in Oncologic Pathology, mainly in the study of ECM of epithelial tumors. It is shown how collagen parameters measured by this technique can aid in the differential diagnosis and in prognostic stratification. There is a tendency to associate higher amount, lower organization and higher linearity of collagen fibers with tumor progression and metastasizing. These represent complex processes, in which matrix remodeling plays a central role, together with cancer cell genetic modifications. Integration of studies on cancer cell biology and ECM are highly advantageous to give us a more complete picture of these processes. As microscopic techniques provide topographic information allied with biologic characteristics of tissue components, they represent important tools for a more complete understanding of cancer progression. In this context, SHG has provided significant insights in human tumor specimens, readily available for Pathologists.
Collapse
|
20
|
Garcia APV, Reis LA, Nunes FC, Longford FGJ, Frey JG, de Paula AM, Cassali GD. Canine mammary cancer tumour behaviour and patient survival time are associated with collagen fibre characteristics. Sci Rep 2021; 11:5668. [PMID: 33707516 PMCID: PMC7952730 DOI: 10.1038/s41598-021-85104-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/19/2021] [Indexed: 01/31/2023] Open
Abstract
Precise diagnosis and prognosis are key in prevention and reduction of morbidity and mortality in all types of cancers. Here we show that changes in the collagen fibres in the main histological subtypes of canine mammary gland carcinomas are directly associated with the tumour behaviour and the animal survival time and could become a useful tool in helping with diagnosis. Imaging by second harmonic generation and multiphoton excited fluorescence microscopy were performed to evaluate the collagen and cellular segment parameters in cancer biopsies. We present a retrospective study of 45 cases of canine mammary cancer analysing 836 biopsies regions including normal mammary gland tissue, benign mixed tumours, carcinoma in mixed tumour, carcinosarcoma, micropapillary carcinoma and solid carcinoma. The image analyses and the comparison between the tumour types allowed to assess the collagen fibre changes during tumour progression. We demonstrate that the collagen parameters correlate with the clinical and pathological data, the results show that in neoplastic tissues, the collagen fibres are more aligned and shorter as compared to the normal tissues. There is a clear association of the mean fibre length with the dogs survival times, the carcinomas presenting shorter collagen fibres indicate a worse survival rate.
Collapse
Affiliation(s)
- Ana P. V. Garcia
- grid.8430.f0000 0001 2181 4888Laboratório de Patologia Comparada, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901 Brazil
| | - Luana A. Reis
- grid.8430.f0000 0001 2181 4888Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901 Brazil
| | - Fernanda C. Nunes
- grid.8430.f0000 0001 2181 4888Laboratório de Patologia Comparada, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901 Brazil
| | | | - Jeremy G. Frey
- grid.5491.90000 0004 1936 9297University of Southampton, Southampton, SO17 1BJ UK
| | - Ana M. de Paula
- grid.8430.f0000 0001 2181 4888Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901 Brazil
| | - Geovanni D. Cassali
- grid.8430.f0000 0001 2181 4888Laboratório de Patologia Comparada, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901 Brazil
| |
Collapse
|
21
|
Redmond J, McCarthy H, Buchanan P, Levingstone TJ, Dunne NJ. Advances in biofabrication techniques for collagen-based 3D in vitro culture models for breast cancer research. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111944. [PMID: 33641930 DOI: 10.1016/j.msec.2021.111944] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/19/2022]
Abstract
Collagen is the most abundant component of the extracellular matrix (ECM), therefore it represents an ideal biomaterial for the culture of a variety of cell types. Recently, collagen-based scaffolds have shown promise as 3D culture platforms for breast cancer-based research. Two-dimensional (2D) in vitro culture models, while useful for gaining preliminary insights, are ultimately flawed as they do not adequately replicate the tumour microenvironment. As a result, they do not facilitate proper 3D cell-cell/cell-matrix interactions and often an exaggerated response to therapeutic agents occurs. The ECM plays a crucial role in the development and spread of cancer. Alterations within the ECM have a significant impact on the pathogenesis of cancer, the initiation of metastasis and ultimate progression of the disease. 3D in vitro culture models that aim to replicate the tumour microenvironment have the potential to offer a new frontier for cancer research with cell growth, morphology and genetic properties that more closely match in vivo cancers. While initial 3D in vitro culture models used in breast cancer research consisted of simple hydrogel platforms, recent advances in biofabrication techniques, including freeze-drying, electrospinning and 3D bioprinting, have enabled the fabrication of biomimetic collagen-based platforms that more closely replicate the breast cancer ECM. This review highlights the current application of collagen-based scaffolds as 3D in vitro culture models for breast cancer research, specifically for adherence-based scaffolds (i.e. matrix-assisted). Finally, the future perspectives of 3D in vitro breast cancer models and their potential to lead to an improved understanding of breast cancer diagnosis and treatment are discussed.
Collapse
Affiliation(s)
- John Redmond
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland
| | - Helen McCarthy
- School of Pharmacy, Queen's University, Belfast BT9 7BL, United Kingdom; School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Paul Buchanan
- School of Nursing and Human Science, Dublin City University, Dublin 9, Ireland; National Institute of Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Tanya J Levingstone
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland; Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Nicholas J Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
22
|
Martins Cavaco AC, Dâmaso S, Casimiro S, Costa L. Collagen biology making inroads into prognosis and treatment of cancer progression and metastasis. Cancer Metastasis Rev 2021; 39:603-623. [PMID: 32447477 DOI: 10.1007/s10555-020-09888-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Progression through dissemination to tumor-surrounding tissues and metastasis development is a hallmark of cancer that requires continuous cell-to-cell interactions and tissue remodeling. In fact, metastization can be regarded as a tissue disease orchestrated by cancer cells, leading to neoplastic colonization of new organs. Collagen is a major component of the extracellular matrix (ECM), and increasing evidence suggests that it has an important role in cancer progression and metastasis. Desmoplasia and collagen biomarkers have been associated with relapse and death in cancer patients. Despite the increasing interest in ECM and in the desmoplastic process in tumor microenvironment as prognostic factors and therapeutic targets in cancer, further research is required for a better understanding of these aspects of cancer biology. In this review, published evidence correlating collagen with cancer prognosis is retrieved and analyzed, and the role of collagen and its fragments in cancer pathophysiology is discussed.
Collapse
Affiliation(s)
- Ana C Martins Cavaco
- Luis Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Sara Dâmaso
- Serviço de Oncologia, Hospital de Santa Maria-CHULN, 1649-028, Lisboa, Portugal
| | - Sandra Casimiro
- Luis Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Luís Costa
- Luis Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028, Lisboa, Portugal.
- Serviço de Oncologia, Hospital de Santa Maria-CHULN, 1649-028, Lisboa, Portugal.
| |
Collapse
|
23
|
Dominijanni A, Devarasetty M, Soker S. Manipulating the Tumor Microenvironment in Tumor Organoids Induces Phenotypic Changes and Chemoresistance. iScience 2020; 23:101851. [PMID: 33319176 PMCID: PMC7724203 DOI: 10.1016/j.isci.2020.101851] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/05/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Tumors comprised a tightly surrounded tumor microenvironment, made up of non-cellular extracellular matrix (ECM) and stromal cells. Although treatment response is often attributed to tumor heterogeneity, progression and malignancy are profoundly influenced by tumor cell interactions with the surrounding ECM. Here, we used a tumor organoid model, consisting of hepatic stellate cells (HSCs) embedded in collagen type 1 (Col1) and colorectal cancer cell (HCT-116) spheroids, to determine the relationship between the ECM architecture, cancer cell malignancy, and chemoresistance. Exogenous transforming growth factor beta (TGF-β) used to activate the HSCs increased the remodeling and bundling of Col1 in the ECM around the cancer spheroid. A dense ECM architecture inhibited tumor cell growth, reversed their mesenchymal phenotype, preserved stem cell population, and reduced chemotherapy response. Overall, our results demonstrate that controlled biofabrication and manipulation of the ECM in tumor organoids results enables studying tumor cell-ECM interactions and better understand tumor cell response to chemotherapies.
Collapse
Affiliation(s)
- Anthony Dominijanni
- Wake Forest University School of Medicine, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA
| | - Mahesh Devarasetty
- Wake Forest University School of Medicine, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA
| | - Shay Soker
- Wake Forest University School of Medicine, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA
| |
Collapse
|
24
|
Liang Y, Xia W, Zhang T, Chen B, Wang H, Song X, Zhang Z, Xu L, Dong G, Jiang F. Upregulated Collagen COL10A1 Remodels the Extracellular Matrix and Promotes Malignant Progression in Lung Adenocarcinoma. Front Oncol 2020; 10:573534. [PMID: 33324550 PMCID: PMC7726267 DOI: 10.3389/fonc.2020.573534] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/26/2020] [Indexed: 01/27/2023] Open
Abstract
Collagens are major components of the ECM in various organs, including the lungs. Ectopic expression of collagens can regulate the tumor progression and disease outcome through remodeling of the extracellular matrix (ECM). However, it remains largely unexplored whether collagens are involved in the tumor progression of lung adenocarcinoma (LUAD). Analysis of three LUAD transcriptional expression profiles showed that COL10A1 mRNA expression was up-regulated and associated with poor prognosis. Gain- and loss-of-function studies were performed to observe that up-regulated COL10A1 promotes LUAD cell proliferation and invasion in vitro and in vivo. In molecular mechanism study, we found that COL10A1 interacts with DDR2 and affects the downstream FAK signaling pathway to regulate LUAD cell progression. The expression of COL10A1 on tissue microarray (TMA) was also measured to explore the association between COL10A1 expression and patient outcome. The results addressed that COL10A1 is up-regulated and positively correlated with lymph node metastasis in lung adenocarcinoma, and the COL10A1 expression is also an independent prognostic factor. In summary, the up-regulated COL10A1 remodels the ECM and the COL10A1/DDR2/FAK axis regulates the proliferation and metastasis of LUAD cells, implying that COL10A1 is a promising therapeutic target and prognostic marker for LUAD patients.
Collapse
Affiliation(s)
- Yingkuan Liang
- The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenjie Xia
- The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Te Zhang
- The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Bing Chen
- The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Hui Wang
- The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Xuming Song
- The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Zeyu Zhang
- The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Lin Xu
- The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Gaochao Dong
- The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Feng Jiang
- The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| |
Collapse
|
25
|
Gordon-Weeks A, Yuzhalin AE. Cancer Extracellular Matrix Proteins Regulate Tumour Immunity. Cancers (Basel) 2020; 12:E3331. [PMID: 33187209 PMCID: PMC7696558 DOI: 10.3390/cancers12113331] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
The extracellular matrix (ECM) plays an increasingly recognised role in the development and progression of cancer. Whilst significant progress has been made in targeting aspects of the tumour microenvironment such as tumour immunity and angiogenesis, there are no therapies that address the cancer ECM. Importantly, immune function relies heavily on the structure, physics and composition of the ECM, indicating that cancer ECM and immunity are mechanistically inseparable. In this review we highlight mechanisms by which the ECM shapes tumour immunity, identifying potential therapeutic targets within the ECM. These data indicate that to fully realise the potential of cancer immunotherapy, the cancer ECM requires simultaneous consideration.
Collapse
Affiliation(s)
- Alex Gordon-Weeks
- Nuffield Department of Surgical Sciences, University of Oxford, Room 6607, Level 6 John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Arseniy E. Yuzhalin
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
26
|
Reis LA, Garcia APV, Gomes EFA, Longford FGJ, Frey JG, Cassali GD, de Paula AM. Canine mammary cancer diagnosis from quantitative properties of nonlinear optical images. BIOMEDICAL OPTICS EXPRESS 2020; 11:6413-6427. [PMID: 33282498 PMCID: PMC7687940 DOI: 10.1364/boe.400871] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/20/2020] [Accepted: 10/04/2020] [Indexed: 06/07/2023]
Abstract
We present nonlinear microscopy imaging results and analysis from canine mammary cancer biopsies. Second harmonic generation imaging allows information of the collagen structure in the extracellular matrix that together with the fluorescence of the cell regions of the biopsies form a base for comprehensive image analysis. We demonstrate an automated image analysis method to classify the histological type of canine mammary cancer using a range of parameters extracted from the images. The software developed for image processing and analysis allows for the extraction of the collagen fibre network and the cell regions of the images. Thus, the tissue properties are obtained after the segmentation of the image and the metrics are measured specifically for the collagen and the cell regions. A linear discriminant analysis including all the extracted metrics allowed to clearly separate between the healthy and cancerous tissue with a 91%-accuracy. Also, a 61%-accuracy was achieved for a comparison of healthy and three histological cancer subtypes studied.
Collapse
Affiliation(s)
- Luana A. Reis
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte-MG, Brazil
| | - Ana P. V. Garcia
- Laboratório de Patologia Comparada, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte-MG, Brazil
| | - Egleidson F. A. Gomes
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte-MG, Brazil
| | | | - Jeremy G. Frey
- University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Geovanni D. Cassali
- Laboratório de Patologia Comparada, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte-MG, Brazil
| | - Ana M. de Paula
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte-MG, Brazil
| |
Collapse
|
27
|
Rosen S, Brisson BK, Durham AC, Munroe CM, McNeill CJ, Stefanovski D, Sørenmo KU, Volk SW. Intratumoral collagen signatures predict clinical outcomes in feline mammary carcinoma. PLoS One 2020; 15:e0236516. [PMID: 32776970 PMCID: PMC7416937 DOI: 10.1371/journal.pone.0236516] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/07/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the most common cause of cancer-related deaths in women worldwide. Identification of reliable prognostic indicators and therapeutic targets is critical for improving patient outcome. Cancer in companion animals often strongly resembles human cancers and a comparative approach to identify prognostic markers can improve clinical care across species. Feline mammary tumors (FMT) serve as models for extremely aggressive triple negative breast cancer (TNBC) in humans, with high rates of local and distant recurrence after resection. Despite the aggressive clinical behavior of most FMT, current prognostic indicators are insufficient for accurately predicting outcome, similar to human patients. Given significant heterogeneity of mammary tumors, there has been a recent focus on identification of universal tumor-permissive stromal features that can predict biologic behavior and provide therapeutic targets to improve outcome. As in human and canine patients, collagen signatures appear to play a key role in directing mammary tumor behavior in feline patients. We find that patients bearing FMTs with denser collagen, as well as longer, thicker and straighter fibers and less identifiable tumor-stromal boundaries had poorer outcomes, independent of the clinical variables grade and surgical margins. Most importantly, including the collagen parameters increased the predictive power of the clinical model. Thus, our data suggest that similarities with respect to the stromal microenvironment between species may allow this model to predict outcome and develop novel therapeutic targets within the tumor stroma that would benefit both veterinary and human patients with aggressive mammary tumors.
Collapse
Affiliation(s)
- Suzanne Rosen
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Becky K. Brisson
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Amy C. Durham
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Clare M. Munroe
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Conor J. McNeill
- Hope Advanced Veterinary Center, Vienna, VA, United States of America
| | - Darko Stefanovski
- Department of Clinical Studies-New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, United States of America
| | - Karin U. Sørenmo
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Susan W. Volk
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
28
|
Ruud KF, Hiscox WC, Yu I, Chen RK, Li W. Distinct phenotypes of cancer cells on tissue matrix gel. Breast Cancer Res 2020; 22:82. [PMID: 32736579 PMCID: PMC7395363 DOI: 10.1186/s13058-020-01321-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/23/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Breast cancer cells invading the connective tissues outside the mammary lobule or duct immerse in a reservoir of extracellular matrix (ECM) that is structurally and biochemically distinct from that of their site of origin. The ECM is a spatial network of matrix proteins, which not only provide physical support but also serve as bioactive ligands to the cells. It becomes evident that the dimensional, mechanical, structural, and biochemical properties of ECM are all essential mediators of many cellular functions. To better understand breast cancer development and cancer cell biology in native tissue environment, various tissue-mimicking culture models such as hydrogel have been developed. Collagen I (Col I) and Matrigel are the most common hydrogels used in cancer research and have opened opportunities for addressing biological questions beyond the two-dimensional (2D) cell cultures. Yet, it remains unclear whether these broadly used hydrogels can recapitulate the environmental properties of tissue ECM, and whether breast cancer cells grown on CoI I or Matrigel display similar phenotypes as they would on their native ECM. METHODS We investigated mammary epithelial cell phenotypes and metabolic profiles on animal breast ECM-derived tissue matrix gel (TMG), Col I, and Matrigel. Atomic force microscopy (AFM), fluorescence microscopy, acini formation assay, differentiation experiments, spatial migration/invasion assays, proliferation assay, and nuclear magnetic resonance (NMR) spectroscopy were used to examine biological phenotypes and metabolic changes. Student's t test was applied for statistical analyses. RESULTS Our data showed that under a similar physiological stiffness, the three types of hydrogels exhibited distinct microstructures. Breast cancer cells grown on TMG displayed quite different morphologies, surface receptor expression, differentiation status, migration and invasion, and metabolic profiles compared to those cultured on Col I and Matrigel. Depleting lactate produced by glycolytic metabolism of cancer cells abolished the cell proliferation promoted by the non-tissue-specific hydrogel. CONCLUSION The full ECM protein-based hydrogel system may serve as a biologically relevant model system to study tissue- and disease-specific pathological questions. This work provides insights into tissue matrix regulation of cancer cell biomarker expression and identification of novel therapeutic targets for the treatment of human cancers based on tissue-specific disease modeling.
Collapse
Affiliation(s)
- Kelsey F Ruud
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, 99202, USA
| | - William C Hiscox
- Center for NMR Spectroscopy, Washington State University, Pullman, WA, 99164, USA
| | - Ilhan Yu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Roland K Chen
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Weimin Li
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, 99202, USA.
| |
Collapse
|
29
|
Tuning mPEG-PLA/vitamin E-TPGS-based mixed micelles for combined celecoxib/honokiol therapy for breast cancer. Eur J Pharm Sci 2020; 146:105277. [DOI: 10.1016/j.ejps.2020.105277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 01/13/2020] [Accepted: 02/21/2020] [Indexed: 12/24/2022]
|
30
|
Golaraei A, Mostaço-Guidolin LB, Raja V, Navab R, Wang T, Sakashita S, Yasufuku K, Tsao MS, Wilson BC, Barzda V. Polarimetric second-harmonic generation microscopy of the hierarchical structure of collagen in stage I-III non-small cell lung carcinoma. BIOMEDICAL OPTICS EXPRESS 2020; 11:1851-1863. [PMID: 32341852 PMCID: PMC7173881 DOI: 10.1364/boe.387744] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 05/02/2023]
Abstract
Polarimetric second-harmonic generation (P-SHG) microscopy is used to quantify the structural alteration of collagen in stage-I,-II and -III non-small cell lung carcinoma (NSCLC) ex vivo tissue. The achiral and chiral molecular second-order susceptibility tensor components ratios (R and C, respectively), the degree of linear polarization (DLP) and the in-plane collagen fiber orientation (δ) were extracted. Further, texture analysis was performed on the SHG intensity, R, C, DLP and δ. The distributions of R, C, DLP and δ as well as the textural features of entropy, correlation and contrast show significant differences between normal and tumor tissues.
Collapse
Affiliation(s)
- Ahmad Golaraei
- Department of Physics, University of Toronto, 60 St. George St, Toronto, M5S 1A7, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd North, Mississauga, L5L 1C6, Canada
- Princess Margaret Cancer Centre, University Health Network, 101 College St, Toronto, M5G 1L7, Canada
| | - Leila B. Mostaço-Guidolin
- Department of Systems and Computer Engineering, Faculty of Engineering and Design, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Canada
| | - Vaishnavi Raja
- Department of Chemistry, University of Western Ontario, 1151 Richmond St, London, N6A 3K7, Canada
| | - Roya Navab
- Princess Margaret Cancer Centre, University Health Network, 101 College St, Toronto, M5G 1L7, Canada
| | - Tao Wang
- Department of Pathology and Molecular Medicine, Queen’s University, 88 Stuart St, Kingston, K7L 3N6, Canada
| | - Shingo Sakashita
- Princess Margaret Cancer Centre, University Health Network, 101 College St, Toronto, M5G 1L7, Canada
| | - Kazuhiro Yasufuku
- Princess Margaret Cancer Centre, University Health Network, 101 College St, Toronto, M5G 1L7, Canada
- Toronto General Hospital, University Health Network, 200 Elizabeth St, Toronto, M5G 2C4, Canada
| | - Ming-Sound Tsao
- Princess Margaret Cancer Centre, University Health Network, 101 College St, Toronto, M5G 1L7, Canada
| | - Brian C. Wilson
- Princess Margaret Cancer Centre, University Health Network, 101 College St, Toronto, M5G 1L7, Canada
- Department of Medical Biophysics, 101 College St, Toronto, M5G 1L7, Canada
| | - Virginijus Barzda
- Department of Physics, University of Toronto, 60 St. George St, Toronto, M5S 1A7, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd North, Mississauga, L5L 1C6, Canada
- Laser Research Centre, Faculty of Physics, Vilnius University, Vilnius, 10223, Lithuania
| |
Collapse
|
31
|
Jiao Y, Xue N, Zou C, Shui X, Wang H, Hu C. Assessment of early damage of endometrium after artificial abortion by shear wave elastography. Insights Imaging 2020; 11:28. [PMID: 32128718 PMCID: PMC7054526 DOI: 10.1186/s13244-020-0841-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/30/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES This study aimed to investigate the application of shear wave elastography (SWE) in the early damage detection through assessing the endometrial elasticity after artificial abortion. METHODS A total of nulliparous women (20-30 years) who received ultrasonography in our hospital were recruited between January 2017 and December 2017. These women were divided into normal control group (NC; n = 65), after once artificial abortion group (AOAA; n = 68), after twice artificial abortion group (ATAA; n = 61), and after three times or more (range, 3-6) artificial abortion group (ATTMAA; n = 60). SWE was performed to evaluate the endometrium; Young's modulus of the endometrium was determined and then the endometrial thickness was measured. RESULTS Young's modulus of the endometrium increased in the order of NC group, AOAA group, ATAA group, and ATTMAA group, and Young's modulus increased with the increase in the number of artificial abortions (p < 0.05). The endometrial thickness in the ATTMAA group was significantly lower than in the NC group, AOAA group, and ATAA group (p < 0.05), but there was no marked difference among the NC group, AOAA group, and ATAA group (p > 0.05). CONCLUSIONS SWE increases with increasing number of abortions, which may indicate the damage that is done to the endometrium earlier than measurement of the endometrial thickness do.
Collapse
Affiliation(s)
- Yan Jiao
- Department of Radiology, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, 215006, China
- Obstetrics and Gynecology Ultrasonic Department, Wenzhou Peoples' Hospital, Wenzhou, 325000, China
| | - Nianyu Xue
- Department of Diagnostic Ultrasonography, Ningbo First Hospital, Ningbo, 315010, China
| | - Chunpeng Zou
- Department of Diagnostic Ultrasonography, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xujuan Shui
- Obstetrics and Gynecology Ultrasonic Department, Wenzhou Peoples' Hospital, Wenzhou, 325000, China
| | - Hongqing Wang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Chunhong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, 215006, China.
| |
Collapse
|
32
|
Egnell L, Vidić I, Jerome NP, Bofin AM, Bathen TF, Goa PE. Stromal Collagen Content in Breast Tumors Correlates With In Vivo Diffusion-Weighted Imaging: A Comparison of Multi b-Value DWI With Histologic Specimen From Benign and Malignant Breast Lesions. J Magn Reson Imaging 2019; 51:1868-1878. [PMID: 31837076 DOI: 10.1002/jmri.27018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Increased deposition and reorientation of stromal collagen fibers are associated with breast cancer progression and invasiveness. Diffusion-weighted imaging (DWI) may be sensitive to the collagen fiber organization in the stroma and could provide important biomarkers for breast cancer characterization. PURPOSE To understand how collagen fibers influence water diffusion in vivo and evaluate the relationship between collagen content and the apparent diffusion coefficient (ADC) and the signal fractions of the biexponential model using a high b-value scheme. STUDY TYPE Prospective. SUBJECTS/SPECIMENS Forty-five patients with benign (n = 8), malignant (n = 36), and ductal carcinoma in situ (n = 1) breast tumors. Lesions and normal fibroglandular tissue (n = 9) were analyzed using sections of formalin-fixed, paraffin-embedded tissue stained with hematoxylin, erythrosine, and saffron. FIELD STRENGTH/SEQUENCE MRI (3T) protocols: Protocol I: Twice-refocused spin-echo echo-planar imaging with: echo time (TE) 85 msec; repetition time (TR) 9300/11600 msec; matrix 90 × 90 × 60; voxel size 2 × 2 × 2.5 mm3 ; b-values: 0 and 700 s/mm2 . Protocol II: Stejskal-Tanner spin-echo echo-planar imaging with: TE: 88 msec; TR: 10600/11800 msec, matrix 90 × 90 × 60; voxel size 2 × 2 × 2.5 mm3 ; b-values [0, 200, 600, 1200, 1800, 2400, 3000] s/mm2 . ASSESSMENT Area fractions of cellular and collagen content in histologic sections were quantified using whole-slide image analysis and compared with the corresponding DWI parameters. STATISTICAL TESTS Correlations were assessed using Pearson's r. Univariate analysis of group median values was done using the Mann-Whitney U-test. RESULTS Collagen content correlated with the fast signal fraction (r = 0.67, P < 0.001) and ADC (r = 0.58, P < 0.001) and was lower (P < 0.05) in malignant lesions than benign and normal tissues. Cellular content correlated inversely with the fast signal fraction (r = -0.67, P < 0.001) and ADC (r = -0.61, P < 0.001) and was different (P < 0.05) between malignant, benign, and normal tissues. DATA CONCLUSION Our findings suggest stromal collagen content increases diffusivity observed by MRI and is associated with higher ADC and fast signal fraction of the biexponential model. LEVEL OF EVIDENCE 3 Technical Efficacy Stage: 3 J. Magn. Reson. Imaging 2020;51:1868-1878.
Collapse
Affiliation(s)
- Liv Egnell
- Department of Physics, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Radiology and Nuclear Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Igor Vidić
- Department of Physics, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Neil P Jerome
- Clinic of Radiology and Nuclear Medicine, St. Olav's University Hospital, Trondheim, Norway.,Department of Circulation and Medical Imaging, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Anna M Bofin
- Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Tone F Bathen
- Clinic of Radiology and Nuclear Medicine, St. Olav's University Hospital, Trondheim, Norway.,Department of Circulation and Medical Imaging, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Pål Erik Goa
- Department of Physics, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Radiology and Nuclear Medicine, St. Olav's University Hospital, Trondheim, Norway
| |
Collapse
|
33
|
Azimzade Y, Saberi AA, Sahimi M. Regulation of migration of chemotactic tumor cells by the spatial distribution of collagen fiber orientation. Phys Rev E 2019; 99:062414. [PMID: 31330715 DOI: 10.1103/physreve.99.062414] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Indexed: 02/03/2023]
Abstract
Collagen fibers, an important component of the extracellular matrix (ECM), can both inhibit and promote cellular migration. In vitro studies have revealed that the fibers' orientations are crucial to cellular invasion, while in vivo investigations have led to the development of tumor-associated collagen signatures (TACS) as an important prognostic factor. Studying biophysical regulation of cell invasion and the effect of the fibers' orientation not only deepens our understanding of the phenomenon, but also helps classify the TACSs precisely, which is currently lacking. We present a stochastic model for random or chemotactic migration of cells in fibrous ECM, and study the role of the various factors in it. The model provides a framework for quantitative classification of the TACSs, and reproduces quantitatively recent experimental data for cell motility. It also indicates that the spatial distribution of the fibers' orientations and extended correlations between them, hitherto ignored, as well as dynamics of cellular motion all contribute to regulation of the cells' invasion length, which represents a measure of metastatic risk. Although the fibers' orientations trivially affect randomly moving cells, their effect on chemotactic cells is completely nontrivial and unexplored, which we study in this paper.
Collapse
Affiliation(s)
- Youness Azimzade
- Department of Physics, The University of Tehran, Tehran 14395-547, Iran
| | - Abbas Ali Saberi
- Department of Physics, The University of Tehran, Tehran 14395-547, Iran
| | - Muhammad Sahimi
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-1211, USA
| |
Collapse
|
34
|
Devarasetty M, Skardal A, Cowdrick K, Marini F, Soker S. Bioengineered Submucosal Organoids for In Vitro Modeling of Colorectal Cancer. Tissue Eng Part A 2018; 23:1026-1041. [PMID: 28922975 DOI: 10.1089/ten.tea.2017.0397] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The physical nature of the tumor microenvironment significantly impacts tumor growth, invasion, and response to drugs. Most in vitro tumor models are designed to study the effects of extracellular matrix (ECM) stiffness on tumor cells, while not addressing the effects of ECM's specific topography. In this study, we bioengineered submucosal organoids, using primary smooth muscle cells embedded in collagen I hydrogel, which produce aligned and parallel fiber topography similar to those found in vivo. The fiber organization in the submucosal organoids induced an epithelial phenotype in spheroids of colorectal carcinoma cells (HCT-116), which were embedded within the organoids. Conversely, unorganized fibers drove a mesenchymal phenotype in the tumor cells. HCT-116 cells in organoids with aligned fibers showed no WNT signaling activation, and conversely, WNT signaling activation was observed in organoids with disrupted fibers. Consequently, HCT-116 cells in the aligned condition exhibited decreased cellular proliferation and reduced sensitivity to 5-fluorouracil chemotherapeutic treatment compared to cells in the unorganized construct. Collectively, the results establish a unique colorectal tumor organoid model to study the effects of stromal topography on cancer cell phenotype, proliferation, and ultimately, chemotherapeutic susceptibility. In the future, such organoids can utilize patient-derived cells for precision medicine applications.
Collapse
Affiliation(s)
- Mahesh Devarasetty
- 1 Wake Forest Institute for Regenerative Medicine , Wake Forest School of Medicine, Winston-Salem, North Carolina.,2 Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | - Aleksander Skardal
- 1 Wake Forest Institute for Regenerative Medicine , Wake Forest School of Medicine, Winston-Salem, North Carolina.,2 Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine , Winston-Salem, North Carolina.,3 Comprehensive Cancer Center at Wake Forest Baptist Medical , Winston-Salem, North Carolina.,4 Department of Cancer Biology, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | - Kyle Cowdrick
- 1 Wake Forest Institute for Regenerative Medicine , Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Frank Marini
- 1 Wake Forest Institute for Regenerative Medicine , Wake Forest School of Medicine, Winston-Salem, North Carolina.,3 Comprehensive Cancer Center at Wake Forest Baptist Medical , Winston-Salem, North Carolina.,4 Department of Cancer Biology, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | - Shay Soker
- 1 Wake Forest Institute for Regenerative Medicine , Wake Forest School of Medicine, Winston-Salem, North Carolina.,2 Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine , Winston-Salem, North Carolina.,3 Comprehensive Cancer Center at Wake Forest Baptist Medical , Winston-Salem, North Carolina.,4 Department of Cancer Biology, Wake Forest School of Medicine , Winston-Salem, North Carolina
| |
Collapse
|
35
|
Correlation between elastic parameters and collagen fibre features in breast lesions. Clin Radiol 2018; 73:595.e1-595.e7. [DOI: 10.1016/j.crad.2018.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/31/2018] [Indexed: 11/22/2022]
|
36
|
Hou J, Williams J, Botvinick EL, Potma EO, Tromberg BJ. Visualization of Breast Cancer Metabolism Using Multimodal Nonlinear Optical Microscopy of Cellular Lipids and Redox State. Cancer Res 2018; 78:2503-2512. [PMID: 29535219 PMCID: PMC5955854 DOI: 10.1158/0008-5472.can-17-2618] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/12/2018] [Accepted: 03/09/2018] [Indexed: 12/22/2022]
Abstract
Label-free nonlinear optical microscopy (NLOM) based on two-photon excited fluorescence (TPEF) from cofactors nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD+) is widely used for high-resolution cellular redox imaging. In this work, we combined three label-free NLOM imaging methods to quantitatively characterize breast cancer cells and their relative invasive potential: (i) TPEF optical redox ratio (ORR = FAD+/NADH + FAD+), (ii) coherent Raman scattering of cellular lipids, and (iii) second harmonic generation of extracellular matrix (ECM) collagen. 3D spheroid models of primary mammary epithelial (PME) cells and breast cancer cell lines (T47D and MDA-MB-231) were characterized based on their unique ORR and lipid volume fraction signatures. Treatment with 17β-estradiol (E2) increased glycolysis in both PME and T47D ER+ breast cancer acini. However, PME cells displayed increased lipid content with no effect on ECM, while T47D cells had decreased lipid storage (P < 0.001) and significant reorganization of collagen. By measuring deuterated lipids synthesized from exogenously administered deuterium-labeled glucose, treatment of T47D cells with E2 increased both lipid synthesis and consumption rates. These results confirm that glucose is a significant source for the cellular synthesis of lipid in glycolytic breast cancer cells, and that the combination of cellular redox and lipid fraction imaging endpoints is a powerful approach with new and complementary information content.Significance: These findings provide unique insight into metabolic processes, revealing correlations between cancer metastasis and cellular redox state, lipid metabolism, and extracellular matrix. Cancer Res; 78(10); 2503-12. ©2018 AACR.
Collapse
Affiliation(s)
- Jue Hou
- Laser Microbeam and Medical Program (LAMMP), Beckman Laser Institute and Medical Clinic, University of California Irvine, Irvine, California
| | - Joshua Williams
- Laser Microbeam and Medical Program (LAMMP), Beckman Laser Institute and Medical Clinic, University of California Irvine, Irvine, California
| | - Elliot L Botvinick
- Laser Microbeam and Medical Program (LAMMP), Beckman Laser Institute and Medical Clinic, University of California Irvine, Irvine, California
- Bio-Engineering of Advanced Mechanical Systems (BEAMS) Laboratory, University of California Irvine, Irvine, California
| | - Eric O Potma
- Laser Microbeam and Medical Program (LAMMP), Beckman Laser Institute and Medical Clinic, University of California Irvine, Irvine, California
- Department of Chemistry, University of California Irvine, Irvine, California
| | - Bruce J Tromberg
- Laser Microbeam and Medical Program (LAMMP), Beckman Laser Institute and Medical Clinic, University of California Irvine, Irvine, California.
| |
Collapse
|
37
|
Maziveyi M, Alahari SK. Cell matrix adhesions in cancer: The proteins that form the glue. Oncotarget 2018; 8:48471-48487. [PMID: 28476046 PMCID: PMC5564663 DOI: 10.18632/oncotarget.17265] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/27/2017] [Indexed: 12/28/2022] Open
Abstract
The main purposes of Integrin-mediated cell contacts are to interpret bi-directional signals between the extracellular environment and intracellular proteins, as well as, anchor the cell to a matrix. Many cell adhesion molecules have been discovered with a wide spectrum of responsibilities, including recruiting, activating, elongating, and maintaining. This review will perlustrate some of the key incidences that precede focal adhesion formation. Tyrosine phosphorylation is a key signaling initiation event that leads to the recruitment of multiple proteins to focal adhesion sites. Recruitment and concentration of proteins such as Paxillin and Vinculin to Integrin clutches is necessary for focal adhesion development. The assembled networks are responsible for transmitting signals back and forth from the extracellular matrix (ECM) to Actin and its binding proteins. Cancer cells exhibit highly altered focal adhesion dynamics. This review will highlight some key discoveries in cancer cell adhesion, as well as, identify current gaps in knowledge.
Collapse
Affiliation(s)
- Mazvita Maziveyi
- Department of Biochemistry and Molecular Biology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
38
|
Natal RA, Vassallo J, Paiva GR, Pelegati VB, Barbosa GO, Mendonça GR, Bondarik C, Derchain SF, Carvalho HF, Lima CS, Cesar CL, Sarian LO. Collagen analysis by second-harmonic generation microscopy predicts outcome of luminal breast cancer. Tumour Biol 2018; 40:1010428318770953. [DOI: 10.1177/1010428318770953] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Second-harmonic generation microscopy represents an important tool to evaluate extracellular matrix collagen structure, which undergoes changes during cancer progression. Thus, it is potentially relevant to assess breast cancer development. We propose the use of second-harmonic generation images of tumor stroma selected on hematoxylin and eosin–stained slides to evaluate the prognostic value of collagen fibers analyses in peri and intratumoral areas in patients diagnosed with invasive ductal breast carcinoma. Quantitative analyses of collagen parameters were performed using ImageJ software. These parameters presented significantly higher values in peri than in intratumoral areas. Higher intratumoral collagen uniformity was associated with high pathological stages and with the presence of axillary lymph node metastasis. In patients with immunohistochemistry-based luminal subtype, higher intratumoral collagen uniformity and quantity were independently associated with poorer relapse-free and overall survival, respectively. A multivariate response recursive partitioning model determined 12.857 and 11.894 as the best cut-offs for intratumoral collagen quantity and uniformity, respectively. These values have shown high sensitivity and specificity to differentiate distinct outcomes. Values of intratumoral collagen quantity and uniformity exceeding the cut-offs were strongly associated with poorer relapse-free and overall survival. Our findings support a promising prognostic value of quantitative evaluation of intratumoral collagen by second-harmonic generation imaging mainly in the luminal subtype breast cancer.
Collapse
Affiliation(s)
- Rodrigo A Natal
- Laboratory of Investigative and Molecular Pathology, Center for Investigation in Pediatrics (CIPED), Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - José Vassallo
- Laboratory of Investigative and Molecular Pathology, Center for Investigation in Pediatrics (CIPED), Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
- Department of Anatomic Pathology, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Geisilene R Paiva
- Laboratory of Experimental Pathology (LAPE), CAISM—Women’s Hospital, State University of Campinas, Campinas, Brazil
| | - Vitor B Pelegati
- Department of Quantum Eletronics, “Gleb Wataghin” Institute of Physics, State University of Campinas, Campinas, Brazil
- INFABIC—National Institute of Science and Technology on Photonics Applied to Cell Biology, Campinas, Brazil
| | - Guilherme O Barbosa
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Guilherme R Mendonça
- Laboratory of Investigative and Molecular Pathology, Center for Investigation in Pediatrics (CIPED), Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Caroline Bondarik
- Laboratory of Investigative and Molecular Pathology, Center for Investigation in Pediatrics (CIPED), Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Sophie F Derchain
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences and CAISM—Women’s Hospital, State University of Campinas, Campinas, São Paulo, Brazil
| | - Hernandes F Carvalho
- INFABIC—National Institute of Science and Technology on Photonics Applied to Cell Biology, Campinas, Brazil
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Carmen S Lima
- Oncology Section, Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas, Campinas, São Paulo, Brazil
| | - Carlos L Cesar
- Department of Quantum Eletronics, “Gleb Wataghin” Institute of Physics, State University of Campinas, Campinas, Brazil
- INFABIC—National Institute of Science and Technology on Photonics Applied to Cell Biology, Campinas, Brazil
| | - Luís Otávio Sarian
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences and CAISM—Women’s Hospital, State University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
39
|
Yu T, Di G. Role of tumor microenvironment in triple-negative breast cancer and its prognostic significance. Chin J Cancer Res 2017; 29:237-252. [PMID: 28729775 PMCID: PMC5497211 DOI: 10.21147/j.issn.1000-9604.2017.03.10] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Breast cancer has been shown to live in the tumor microenvironment, which consists of not only breast cancer cells themselves but also a significant amount of pathophysiologically altered surrounding stroma and cells. Diverse components of the breast cancer microenvironment, such as suppressive immune cells, re-programmed fibroblast cells, altered extracellular matrix (ECM) and certain soluble factors, synergistically impede an effective anti-tumor response and promote breast cancer progression and metastasis. Among these components, stromal cells in the breast cancer microenvironment are characterized by molecular alterations and aberrant signaling pathways, whereas the ECM features biochemical and biomechanical changes. However, triple-negative breast cancer (TNBC), the most aggressive subtype of this disease that lacks effective therapies available for other subtypes, is considered to feature a unique microenvironment distinct from that of other subtypes, especially compared to Luminal A subtype. Because these changes are now considered to significantly impact breast cancer development and progression, these unique alterations may serve as promising prognostic factors of clinical outcome or potential therapeutic targets for the treatment of TNBC. In this review, we focus on the composition of the TNBC microenvironment, concomitant distinct biological alteration, specific interplay between various cell types and TNBC cells, and the prognostic implications of these findings.
Collapse
Affiliation(s)
- Tianjian Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Genhong Di
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
40
|
Golaraei A, Kontenis L, Cisek R, Tokarz D, Done SJ, Wilson BC, Barzda V. Changes of collagen ultrastructure in breast cancer tissue determined by second-harmonic generation double Stokes-Mueller polarimetric microscopy. BIOMEDICAL OPTICS EXPRESS 2016; 7:4054-4068. [PMID: 27867715 PMCID: PMC5102540 DOI: 10.1364/boe.7.004054] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/31/2016] [Accepted: 09/05/2016] [Indexed: 05/06/2023]
Abstract
Second-harmonic generation (SHG) double Stokes-Mueller polarimetric microscopy is applied to study the alteration of collagen ultrastructure in a tissue microarray containing three pathological human breast cancer types with differently overexpressed estrogen receptor (ER), progesterone receptor (PgR), and human epidermal growth factor receptor 2 (HER2). Kleinman symmetry is experimentally validated in breast tissue for 1028 nm laser wavelength and it has been shown that measurements with only linearly polarized incoming and outgoing states can determine molecular nonlinear susceptibility tensor component ratio, average in-plane orientation of collagen fibers and degree of linear polarization of SHG. Increase in the susceptibility ratio for ER, PgR, HER2 positive cases, reveals ultrastructural changes in the collagen fibers while the susceptibility ratio increase and decrease in degree of linear polarization for ER and PgR positive cases indicate alteration of the ultrastructure and increased disorder of the collagen fibers within each focal volume. The study demonstrates a potential use of polarimetric SHG microscopy for collagen characterization and cancer diagnostics.
Collapse
Affiliation(s)
- Ahmad Golaraei
- Department of Physics and Institute for Optical Sciences, University of Toronto, 60 St. George Street, Toronto, ON M5S 1A7,
Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6,
Canada
| | - Lukas Kontenis
- Department of Physics and Institute for Optical Sciences, University of Toronto, 60 St. George Street, Toronto, ON M5S 1A7,
Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6,
Canada
| | - Richard Cisek
- Department of Physics and Institute for Optical Sciences, University of Toronto, 60 St. George Street, Toronto, ON M5S 1A7,
Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6,
Canada
| | - Danielle Tokarz
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON M5G 2M9,
Canada
| | - Susan J. Done
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON M5G 2M9,
Canada
| | - Brian C. Wilson
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON M5G 2M9,
Canada
| | - Virginijus Barzda
- Department of Physics and Institute for Optical Sciences, University of Toronto, 60 St. George Street, Toronto, ON M5S 1A7,
Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6,
Canada
| |
Collapse
|
41
|
Sun M, Bloom AB, Zaman MH. Rapid Quantification of 3D Collagen Fiber Alignment and Fiber Intersection Correlations with High Sensitivity. PLoS One 2015; 10:e0131814. [PMID: 26158674 PMCID: PMC4497681 DOI: 10.1371/journal.pone.0131814] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 06/07/2015] [Indexed: 01/19/2023] Open
Abstract
Metastatic cancers aggressively reorganize collagen in their microenvironment. For example, radially orientated collagen fibers have been observed surrounding tumor cell clusters in vivo. The degree of fiber alignment, as a consequence of this remodeling, has often been difficult to quantify. In this paper, we present an easy to implement algorithm for accurate detection of collagen fiber orientation in a rapid pixel-wise manner. This algorithm quantifies the alignment of both computer generated and actual collagen fiber networks of varying degrees of alignment within 5°°. We also present an alternative easy method to calculate the alignment index directly from the standard deviation of fiber orientation. Using this quantitative method for determining collagen alignment, we demonstrate that the number of collagen fiber intersections has a negative correlation with the degree of fiber alignment. This decrease in intersections of aligned fibers could explain why cells move more rapidly along aligned fibers than unaligned fibers, as previously reported. Overall, our paper provides an easier, more quantitative and quicker way to quantify fiber orientation and alignment, and presents a platform in studying effects of matrix and cellular properties on fiber alignment in complex 3D environments.
Collapse
Affiliation(s)
- Meng Sun
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Alexander B. Bloom
- Department of Molecular Biology, Cellular Biology and Biochemistry, Boston University, Boston, Massachusetts, United States of America
| | - Muhammad H. Zaman
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|