1
|
de Paula YH, Resende M, Chaves RF, Barbosa JA, Garbossa CAP, Costa MDO, Rigo F, Barducci RS, Santos AAD, Pacheco LG, Putarov TC, Cantarelli VDS. A new approach: preventive protocols with yeast products and essential oils can reduce the in-feed use of antibiotics in growing-finishing pigs. Transl Anim Sci 2024; 8:txae104. [PMID: 39185353 PMCID: PMC11344245 DOI: 10.1093/tas/txae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/12/2024] [Indexed: 08/27/2024] Open
Abstract
The objective of this study was to evaluate the effects of yeast products (YP) and essential oils (EO) in total or partial replacement to in-feed antibiotic protocols (growth promoter and prophylactic), both in recommended doses and in overdose of prophylactic antibiotics (PA), on growth performance, and diarrhea incidence in the growing-finishing pigs; and fecal microbiota in market hogs. Four hundred pigs (20.36 ± 2.64 kg) were assigned to five treatments in a randomized block design: diets with prophylactic and growth promoter antibiotics (ANT); ANT with 30% more PA (ANT+30); diets with less PA and YP (ANT+Y); diets with less PA, YP and EO (ANT+Y+EO); and antibiotics-free diets with YP and EO (Y+EO). The content of the active components of the YP was 60% purified β-1,3/1,6-glucans extracted from Saccharomyces cerevisiae yeast (Macrogard), 20% functional water-soluble MOS (HyperGen), and 18% MOS, extracted from Saccharomyces cerevisiae yeast (ActiveMOS). From 0 to 14 d, pigs of the ANT+30, ANT+Y, and ANT+Y+EO treatments showed a greater body weight (BW) and average daily gain (ADG) compared to pigs from the Y+EO group. From 14 to 35 d, pigs of ANT+30 and ANT+Y+EO treatments were heavier than Y+EO group. At 105 d, ANT pigs had a higher BW than the Y+EO group. For the entire period, ADG of ANT pigs was greater, and feed conversion ratio better than Y+EO pigs. From 0 to 35 d, pigs of the Y+EO treatment showed a higher diarrhea incidence compared to pigs of the other groups. From 49 to 70 d, ANT+Y and ANT+Y+EO treatments showed a lower diarrhea incidence than Y+EO group, which remained the case during the overall period. At 105 d, the alpha diversity of fecal microbiota by Shannon Entropy was lower in ANT, ANT+30, and Y+EO groups than observed for ANT+Y+EO group. The abundance of Firmicutes phylum and Firmicutes/Bacteroidetes ratio was higher in ANT than in ANT+Y+EO pigs. Proteobacteria phylum abundance in ANT+Y+EO was higher than ANT, ANT+Y, and Y+EO. Peptostreptococcaceae family abundance was higher in ANT, ANT+30, and ANT+Y groups than in ANT+Y+EO and Y+EO groups. ANT+Y+EO and Y+EO groups show a lower abundance of SMB53 genus than ANT and ANT+30 groups. In conclusion, the use of YP and EO, in partial replacement to the in-feed antibiotic protocols, does not reduce the growth performance, can replace antibiotic growth promotors, and reduce the in-feed use of PA in growing-finishing pigs. The use of YP and EO, together with PA, increases the microbial diversity, despite having important genera for weight gain in less abundance. Overdose of PA does not improve growth performance and reduces microbial diversity, which does not characterize it as an efficient preventive protocol.
Collapse
Affiliation(s)
| | - Maíra Resende
- Animal Science Department, Federal University of Lavras, Lavras, Brazil
| | | | | | - Cesar Augusto Pospissil Garbossa
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Ochoteco-Asensio J, Zigovski G, Batista Costa L, Rio-López R, Clavell-Sansalvador A, Ramayo-Caldas Y, Dalmau A. Effect on Feeding Behaviour and Growing of Being a Dominant or Subordinate Growing Pig and Its Relationship with the Faecal Microbiota. Animals (Basel) 2024; 14:1906. [PMID: 38998018 PMCID: PMC11240813 DOI: 10.3390/ani14131906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Pigs are a social species, and they establish hierarchies for better use of resources and to reduce conflicts. However, in pig production, the opportunities for growth can differ between dominant and subordinate animals. In the present study, a system was tested to perform a dominant versus subordinate test in growing pigs to investigate how the hierarchy affects feeding behaviour, growth, and gut microbiota assessed in faeces. Sixty-four animals housed in eight different pens were used, with four castrated males and four females in each one, weighing 18 kg at arrival and maintained during the whole growing period, until 140 kg. Three stool samples were obtained from the animals directly from the anus to avoid contamination of the faeces 58, 100, and 133 days after the start of the study to investigate the microbiota composition. The dominant animals had higher gains during the growing period than the subordinates. In addition, they were performing more visits to the feeder throughout the day. Differential abundance patterns were observed in five bacterial genera, with Oliverpabstia, Peptococcus, and Faecalbacterium being more abundant in dominant animals and Holdemanella and Acetitomaculum being overrepresented in subordinate ones. This microbial biomarker accurately classified dominant versus subordinate groups of samples with an AUC of 0.92.
Collapse
Affiliation(s)
- Juan Ochoteco-Asensio
- Animal Welfare Program and Animal Breeding and Genetics Program, Institute of Agrifood and Technology (IRTA), Veïnat de Sies s/n, 17121 Monells, Spain; (J.O.-A.); (R.R.-L.); (A.C.-S.); (Y.R.-C.)
| | - Gustavo Zigovski
- Graduate Program of Animal Science, Pontificia Universidade Católica do Paraná-PUCPR, Curitibia 80215-901, Paraná, Brazil; (G.Z.); (L.B.C.)
| | - Leandro Batista Costa
- Graduate Program of Animal Science, Pontificia Universidade Católica do Paraná-PUCPR, Curitibia 80215-901, Paraná, Brazil; (G.Z.); (L.B.C.)
| | - Raquel Rio-López
- Animal Welfare Program and Animal Breeding and Genetics Program, Institute of Agrifood and Technology (IRTA), Veïnat de Sies s/n, 17121 Monells, Spain; (J.O.-A.); (R.R.-L.); (A.C.-S.); (Y.R.-C.)
| | - Adrià Clavell-Sansalvador
- Animal Welfare Program and Animal Breeding and Genetics Program, Institute of Agrifood and Technology (IRTA), Veïnat de Sies s/n, 17121 Monells, Spain; (J.O.-A.); (R.R.-L.); (A.C.-S.); (Y.R.-C.)
| | - Yuliaxis Ramayo-Caldas
- Animal Welfare Program and Animal Breeding and Genetics Program, Institute of Agrifood and Technology (IRTA), Veïnat de Sies s/n, 17121 Monells, Spain; (J.O.-A.); (R.R.-L.); (A.C.-S.); (Y.R.-C.)
| | - Antoni Dalmau
- Animal Welfare Program and Animal Breeding and Genetics Program, Institute of Agrifood and Technology (IRTA), Veïnat de Sies s/n, 17121 Monells, Spain; (J.O.-A.); (R.R.-L.); (A.C.-S.); (Y.R.-C.)
| |
Collapse
|
3
|
Hernández-García PA, Orzuna-Orzuna JF, Godina-Rodríguez JE, Chay-Canul AJ, Silva GV. A meta-analysis of essential oils as a dietary additive for weaned piglets: Growth performance, antioxidant status, immune response, and intestinal morphology. Res Vet Sci 2024; 170:105181. [PMID: 38359649 DOI: 10.1016/j.rvsc.2024.105181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/17/2024]
Abstract
This study aimed to evaluate the effects of dietary supplementation with EOS on growth performance, blood serum antioxidant status, immune response, and intestinal morphology of weaned piglets using a meta-analytical approach. The database included 31 studies from which the response variables of interest were obtained. All data were analyzed using a random effects model, and results were expressed as weighted mean differences between treatments supplemented with and without EOS. EOS supplementation increased (P < 0.001) average daily feed intake, average daily gain, and final body weight and decreased (P < 0.001) feed conversion ratio and diarrhea incidence. Lower (P = 0.001) serum malondialdehyde content and higher (P < 0.05) serum concentrations of superoxide dismutase, catalase, glutathione peroxidase, and total antioxidant capacity were observed in response to the dietary inclusion of EOS. EOS supplementation increased (P < 0.001) the serum concentration of immunoglobulins A, G, and M and decreased (P < 0.05) the serum concentration of tumor necrosis factor-α, interleukin-1β, and interleukin-6. Greater (P ≤ 0.001) villus height (VH) was observed in the jejunum and ileum in response to the dietary inclusion of EOS. However, EOS supplementation did not affect (P > 0.05) crypt depth (CD) and decreased (P < 0.001) the VH/CD ratio in the duodenum, jejunum, and ileum. In conclusion, essential oils can be used as a dietary additive to improve growth performance and reduce the incidence of diarrhea in weaned piglets and, at the same time, improve the antioxidant status in blood serum, immune response, and intestinal morphology.
Collapse
Affiliation(s)
| | | | - Juan Eduardo Godina-Rodríguez
- Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Campo Experimental Uruapan, Av. Latinoamérica 1001, Uruapan, Michoacán C.P. 60150, Mexico
| | | | - Gabriela Vázquez Silva
- Departamento El Hombre y su Ambiente, Universidad Autónoma Metropolitana-Xochimilco, Coyoacán, Ciudad de México, Mexico
| |
Collapse
|
4
|
Wang X, Mi J, Yang K, Wang L. Environmental Cadmium Exposure Perturbs Gut Microbial Dysbiosis in Ducks. Vet Sci 2023; 10:649. [PMID: 37999472 PMCID: PMC10674682 DOI: 10.3390/vetsci10110649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 11/25/2023] Open
Abstract
Ore extraction, chemical production, and agricultural fertilizers may release significant amounts of heavy metals, which may eventually accumulate widely in the environment and organisms over time, causing global ecological and health problems. As a recognized environmental contaminant, cadmium has been demonstrated to cause osteoporosis and renal injury, but research regarding the effects of cadmium on gut microbiota in ducks remains scarce. Herein, we aimed to characterize the adverse effects of cadmium on gut microbiota in ducks. Results indicated that cadmium exposure dramatically decreased gut microbial alpha diversity and caused significant changes in the main component of gut microbiota. Moreover, we also observed significant changes in the gut microbial composition in ducks exposed to cadmium. A microbial taxonomic investigation showed that Firmicutes, Bacteroidota, and Proteobacteria were the most preponderant phyla in ducks regardless of treatment, but the compositions and abundances of dominant genera were different. Meanwhile, a Metastats analysis indicated that cadmium exposure also caused a distinct increase in the levels of 1 phylum and 22 genera, as well as a significant reduction in the levels of 1 phylum and 36 genera. In summary, this investigation demonstrated that cadmium exposure could disturb gut microbial homeostasis by decreasing microbial diversity and altering microbial composition. Additionally, under the background of the rising environmental pollution caused by heavy metals, this investigation provides a crucial message for the assessment of environmental risks associated with cadmium exposure.
Collapse
Affiliation(s)
| | | | | | - Lian Wang
- Department of Medical Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China; (X.W.); (J.M.); (K.Y.)
| |
Collapse
|
5
|
Zeng B, Chen L, Kong F, Zhang C, Chen L, Qi X, Chai J, Jin L, Li M. Dynamic changes of fecal microbiota in a weight-change model of Bama minipigs. Front Microbiol 2023; 14:1239847. [PMID: 37928663 PMCID: PMC10623433 DOI: 10.3389/fmicb.2023.1239847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction Obesity is closely related to gut microbiota, however, the dynamic change of microbial diversity and composition during the occurrence and development process of obesity is not clear. Methods A weight-change model of adult Bama pig (2 years, 58 individuals) was established, and weight gain (27 weeks) and weight loss (9 weeks) treatments were implemented. The diversity and community structures of fecal microbiota (418 samples) was investigated by using 16S rRNA (V3-V4) high-throughput sequencing. Results During the weight gain period (1~27 week), the alpha diversity of fecal microbiota exhibited a "down-up-down" fluctuations, initially decreasing, recovering in the mid-term, and decreasing again in the later stage. Beta diversity also significantly changed over time, indicating a gradual deviation of the microbiota composition from the initial time point. Bacteroides, Clostridium sensu stricto 1, and Escherichia-Shigella showed positive correlations with weight gain, while Streptococcus, Oscillospira, and Prevotellaceae UCG-001 exhibited negative correlations. In the weight loss period (30~38 week), the alpha diversity further decreased, and the composition structure underwent significant changes compared to the weight gain period. Christensenellaceae R-7 group demonstrated a significant increase during weight loss and showed a negative correlation with body weight. Porphyromonas and Campylobacter were positively correlated with weight loss. Discussion Both long-term fattening and weight loss induced by starvation led to substantial alterations in porcine gut microbiota, and the microbiota changes observed during weight gain could not be recovered during weight loss. This work provides valuable resources for both obesity-related research of human and microbiota of pigs.
Collapse
Affiliation(s)
- Bo Zeng
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Li Chen
- Chongqing Academy of Animal Science, Chongqing, China
| | - Fanli Kong
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Chengcheng Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Long Chen
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xu Qi
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jin Chai
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Long Jin
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingzhou Li
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Kiernan DP, O’Doherty JV, Sweeney T. The Effect of Prebiotic Supplements on the Gastrointestinal Microbiota and Associated Health Parameters in Pigs. Animals (Basel) 2023; 13:3012. [PMID: 37835619 PMCID: PMC10572080 DOI: 10.3390/ani13193012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Establishing a balanced and diverse microbiota in the GIT of pigs is crucial for optimizing health and performance throughout the production cycle. The post-weaning period is a critical phase, as it is often associated with dysbiosis, intestinal dysfunction and poor performance. Traditionally, intestinal dysfunctions associated with weaning have been alleviated using antibiotics and/or antimicrobials. However, increasing concerns regarding the prevalence of antimicrobial-resistant bacteria has prompted an industry-wide drive towards identifying natural sustainable dietary alternatives. Modulating the microbiota through dietary intervention can improve animal health by increasing the production of health-promoting metabolites associated with the improved microbiota, while limiting the establishment and proliferation of pathogenic bacteria. Prebiotics are a class of bioactive compounds that resist digestion by gastrointestinal enzymes, but which can still be utilized by beneficial microbes within the GIT. Prebiotics are a substrate for these beneficial microbes and therefore enhance their proliferation and abundance, leading to the increased production of health-promoting metabolites and suppression of pathogenic proliferation in the GIT. There are a vast range of prebiotics, including carbohydrates such as non-digestible oligosaccharides, beta-glucans, resistant starch, and inulin. Furthermore, the definition of a prebiotic has recently expanded to include novel prebiotics such as peptides and amino acids. A novel class of -biotics, referred to as "stimbiotics", was recently suggested. This bioactive group has microbiota-modulating capabilities and promotes increases in short-chain fatty acid (SCFA) production in a disproportionally greater manner than if they were merely substrates for bacterial fermentation. The aim of this review is to characterize the different prebiotics, detail the current understating of stimbiotics, and outline how supplementation to pigs at different stages of development and production can potentially modulate the GIT microbiota and subsequently improve the health and performance of animals.
Collapse
Affiliation(s)
- Dillon P. Kiernan
- School of Veterinary Medicine, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland;
| | - John V. O’Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland;
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland;
| |
Collapse
|
7
|
Kiernan DP, O’Doherty JV, Sweeney T. The Effect of Maternal Probiotic or Synbiotic Supplementation on Sow and Offspring Gastrointestinal Microbiota, Health, and Performance. Animals (Basel) 2023; 13:2996. [PMID: 37835602 PMCID: PMC10571980 DOI: 10.3390/ani13192996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The increasing prevalence of antimicrobial-resistant pathogens has prompted the reduction in antibiotic and antimicrobial use in commercial pig production. This has led to increased research efforts to identify alternative dietary interventions to support the health and development of the pig. The crucial role of the GIT microbiota in animal health and performance is becoming increasingly evident. Hence, promoting an improved GIT microbiota, particularly the pioneer microbiota in the young pig, is a fundamental focus. Recent research has indicated that the sow's GIT microbiota is a significant contributor to the development of the offspring's microbiota. Thus, dietary manipulation of the sow's microbiota with probiotics or synbiotics, before farrowing and during lactation, is a compelling area of exploration. This review aims to identify the potential health benefits of maternal probiotic or synbiotic supplementation to both the sow and her offspring and to explore their possible modes of action. Finally, the results of maternal sow probiotic and synbiotic supplementation studies are collated and summarized. Maternal probiotic or synbiotic supplementation offers an effective strategy to modulate the sow's microbiota and thereby enhance the formation of a health-promoting pioneer microbiota in the offspring. In addition, this strategy can potentially reduce oxidative stress and inflammation in the sow and her offspring, enhance the immune potential of the milk, the immune system development in the offspring, and the sow's feed intake during lactation. Although many studies have used probiotics in the maternal sow diet, the most effective probiotic or probiotic blends remain unclear. To this extent, further direct comparative investigations using different probiotics are warranted to advance the current understanding in this area. Moreover, the number of investigations supplementing synbiotics in the maternal sow diet is limited and is an area where further exploration is warranted.
Collapse
Affiliation(s)
- Dillon P. Kiernan
- School of Veterinary Medicine, University College Dublin, D04 C1P1 Dublin, Ireland;
| | - John V. O’Doherty
- School of Agriculture and Food Science, University College Dublin, D04 C1P1 Dublin, Ireland;
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, D04 C1P1 Dublin, Ireland;
| |
Collapse
|
8
|
Uddin MK, Mahmud MR, Hasan S, Peltoniemi O, Oliviero C. Dietary micro-fibrillated cellulose improves growth, reduces diarrhea, modulates gut microbiota, and increases butyrate production in post-weaning piglets. Sci Rep 2023; 13:6194. [PMID: 37062780 PMCID: PMC10106463 DOI: 10.1038/s41598-023-33291-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 04/11/2023] [Indexed: 04/18/2023] Open
Abstract
Dietary fiber (DF) supplementation is one of the strategies to prevent on-farm infections; it has the capability to improve gut health and piglet performance. Among the beneficial DFs, micro-fibrillated cellulose (MFC) is a new-generation plant-derived innovative feed ingredient; MFC, originating from sugar-beet pulp, has a hyper-branched structure with the ability to form shear-thinning hydrogel and has a high water-binding capacity. We aimed to determine the effects of MFC supplementation on piglets' performance before and after weaning. We included 45 sows and their piglets in this trial and monitored the results until the piglets were 7 weeks old. Piglets supplemented with MFC had higher body weight and average daily growth (ADG) than did control piglets, both pre- and post-weaning. In addition, MFC supplementation in post-weaning piglets improved butyrate content, and reduced diarrhea incidence. These phenomena, perhaps due to the MFC supplementation at different stages until age 7 weeks. In addition, after weaning, MFC supplementation stimulated the growth of butyrate-producing bacteria such as Ruminococcus.2, Ruminococcaceae.UCG.014, Intestinibacter, Roseburia, and Oribacterium genera, as well as reduced the pathogenic bacteria, such as Campylobacter, and Escherichia. Evidently, supplementation of MFC in feed to young piglets can improve growth performance and butyric acid content and reduce post-weaning diarrhea.
Collapse
Affiliation(s)
- Md Karim Uddin
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| | - Md Rayhan Mahmud
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Shah Hasan
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Peltoniemi
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Claudio Oliviero
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Longitudinal Study of the Effects of Flammulina velutipes Stipe Wastes on the Cecal Microbiota of Laying Hens. mSystems 2023; 8:e0083522. [PMID: 36511708 PMCID: PMC9948703 DOI: 10.1128/msystems.00835-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Because antibiotics have been phased out of use in poultry feed, measures to improve intestinal health have been sought. Dietary fiber may be beneficial to intestinal health by modulating gut microbial composition, but the exact changes it induces remain unclear. In this study, we evaluated the effect of Flammulina velutipes stipe wastes (FVW) on the cecal microbiotas of laying chickens at ages spanning birth to 490 days. Using clonal sequencing and 16S rRNA high-throughput sequencing, we showed that FVW improved the microbial diversity when they under fluctuated. The evolvement of the microbiota enhanced the physiological development of laying hens. Supplementation of FVW enriched the relative abundance of Sutterella, Ruminiclostridium, Synergistes, Anaerostipes, and Rikenellaceae, strengthened the positive connection between Firmicutes and Bacteroidetes, and increased the concentration of short-chain fatty acids (SCFAs) in early life. FVW maintains gut microbiota homeostasis by regulating Th1, Th2, and Th17 balance and secretory IgA (S-IgA) level. In conclusion, we showed that FVW induces microbial changes that are potentially beneficial for intestinal immunity. IMPORTANCE Dietary fiber is popularly used in poultry farming to improve host health and metabolism. Microbial composition is known to be influenced by dietary fiber use, although the exact FVW-induced changes remain unclear. This study provided a first comparison of the effects of FVW and the most commonly used antibiotic growth promoter (flavomycin) on the cecal microbiotas of laying hens from birth to 490 days of age. We found that supplementation with FVW altered cecal microbial composition, thereby affecting the correlation network between members of the microbiota, and subsequently affecting the intestinal immune homeostasis.
Collapse
|
10
|
Pan J, Chui L, Liu T, Zheng Q, Liu X, Liu L, Zhao Y, Zhang L, Song M, Han J, Huang J, Tang C, Tao C, Zhao J, Wang Y. Fecal Microbiota Was Reshaped in UCP1 Knock-In Pigs via the Adipose-Liver-Gut Axis and Contributed to Less Fat Deposition. Microbiol Spectr 2023; 11:e0354022. [PMID: 36688695 PMCID: PMC9927592 DOI: 10.1128/spectrum.03540-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/21/2022] [Indexed: 01/24/2023] Open
Abstract
The relationship between the host gut microbiota and obesity has been well documented in humans and mice; however, few studies reported the association between the gut microbiota and fat deposition in pigs. In a previous study, we generated uncoupling protein 1 (UCP1) knock-in pigs (UCP1 pigs), which exhibited a lower fat deposition phenotype. Whether the gut microbiota was reshaped in these pigs and whether the reshaped gut microbiota contributes to the lower fat content remain unknown. Here, we revealed that the fecal microbiota composition and metabolites were significantly altered under both chow diet (CD) and high-fat/high-cholesterol (HFHC) diet conditions in UCP1 pigs compared to those in wild-type (WT) pigs. The abundance of Oscillospira and Coprococcus and the level of metabolite hyodeoxycholic acid (HDCA) from feces were observed to be significantly increased in UCP1 pigs. An association analysis revealed that Oscillospira and Coprococcus were significantly negatively related to backfat thickness. In addition, after fecal microbiota transplantation (FMT), the mice that were orally gavaged with feces from UCP1 pigs exhibited less fat deposition under both CD and high-fat diet (HFD) conditions, suggesting that the fecal microbes of UCP1 pigs participate in regulating host lipid metabolism. Consistently, HDCA-treated mice also exhibited reduced fat content. Mechanistically, we found that UCP1 expression in white adipose tissue alters the gut microbiota via the adipose-liver-gut axis in pigs. Our study provides new data concerning the cross talk between host genetic variations and the gut microbiota and paves the way for the potential application of microbes or their metabolites in the regulation of fat deposition in pigs. IMPORTANCE This article investigated the effect of the ectopic expression of UCP1 on the regulation of fecal microbiota composition and metabolites and which alters the fat deposition phenotype. Bacteria, including Oscillospira and Coprococcus, and the metabolite HDCA were found to be significantly increased in feces of UCP1 pigs and had a negative relationship with backfat thickness. Mice with fecal microbiota transplantation phenocopied the UCP1 pigs under both CD and HFD conditions, suggesting that the fecal microbes of UCP1 pigs participate in regulating host lipid metabolism. Our study provides new data regarding the cross talk between host genetic variations and the gut microbiota and paves the way for the potential application of microbes or their metabolic production in the regulation of fat deposition in pigs.
Collapse
Affiliation(s)
- Jianfei Pan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Linya Chui
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, People’s Republic of China
| | - Tianxia Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Qiantao Zheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xuexue Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Lulu Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Ying Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Lilan Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Min Song
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Jianlin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Jiaojiao Huang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, People’s Republic of China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Cong Tao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Jianguo Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yanfang Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| |
Collapse
|
11
|
Lan Q, Lian Y, Peng P, Yang L, Zhao H, Huang P, Ma H, Wei H, Yin Y, Liu M. Association of gut microbiota and SCFAs with finishing weight of Diannan small ear pigs. Front Microbiol 2023; 14:1117965. [PMID: 36778880 PMCID: PMC9911695 DOI: 10.3389/fmicb.2023.1117965] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/06/2023] [Indexed: 01/28/2023] Open
Abstract
Finishing weight is a key economic trait in the domestic pig industry. Evidence has linked the gut microbiota and SCFAs to health and production performance in pigs. Nevertheless, for Diannan small ear (DSE) pigs, a specific pig breed in China, the potential effect of gut microbiota and SCFAs on their finishing weight remains unclear. Herein, based on the data of the 16S ribosomal RNA gene and metagenomic sequencing analysis, we found that 13 OTUs could be potential biomarkers and 19 microbial species were associated with finishing weight. Among these, carbohydrate-decomposing bacteria of the families Streptococcaceae, Lactobacillaceae, and Prevotellaceae were positively related to finishing weight, whereas the microbial taxa associated with intestinal inflammation and damage exhibited opposite effects. In addition, interactions of these microbial species were found to be linked with finishing weight for the first time. Gut microbial functional annotation analysis indicated that CAZymes, such as glucosidase and glucanase could significantly affect finishing weight, given their roles in increasing nutrient absorption efficiency. Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthologies (KOs) and KEGG pathways analysis indicated that glycolysis/gluconeogenesis, phosphotransferase system (PTS), secondary bile acid biosynthesis, ABC transporters, sulfur metabolism, and one carbon pool by folate could act as key factors in regulating finishing weight. Additionally, SCFA levels, especially acetate and butyrate, had pivotal impacts on finishing weight. Finishing weight-associated species Prevotella sp. RS2, Ruminococcus sp. AF31-14BH and Lactobacillus pontis showed positive associations with butyrate concentration, and Paraprevotella xylaniphila and Bacteroides sp. OF04-15BH were positively related to acetate level. Taken together, our study provides essential knowledge for manipulating gut microbiomes to improve finishing weight. The underlying mechanisms of how gut microbiome and SCFAs modulate pigs' finishing weight required further elucidation.
Collapse
Affiliation(s)
- Qun Lan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yuju Lian
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Peiya Peng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Long Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Heng Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Peng Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Haiming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Hongjiang Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China,*Correspondence: Yulong Yin, ✉
| | - Mei Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China,Kunpeng Institute of Modern Agriculture at Foshan, Foshan, China,Mei Liu, ✉
| |
Collapse
|
12
|
Yao W, Yu X, Zhou Y, Han Y, Li S, Yin X, Huang X, Huang F. Effects of different processing techniques of broken rice on processing quality of pellet feed, nutrient digestibility, and gut microbiota of weaned piglets. J Anim Sci 2023; 101:skad158. [PMID: 37184888 PMCID: PMC10237224 DOI: 10.1093/jas/skad158] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/15/2023] [Indexed: 05/16/2023] Open
Abstract
The present study was conducted to assess the effect of different processing techniques of broken rice on processing quality of pellet feed, growth performance, nutrient digestibility, blood biochemical parameters, and fecal microbiota of weaned piglets. A total of 400 crossbred piglets (Duroc × Landrace × Yorkshire) with a mean initial body weight (BW) of 7.24 ± 0.52 kg were used in a 28-d experiment. Piglets were randomly distributed to one of 4 treatment and 10 replicate pens per treatment, with 10 piglets per pen. The dietary treatments were as follows: CON, corn as the main cereal type in the dietary; BR, 70% of the corn replaced by broken rice; ETBR, 70% of the corn replaced by extruded broken rice; EPBR, 70% of the corn replaced by expanded broken rice. Extruded broken rice and expanded broken rice supplementation significantly (P < 0.05) increased hardness, pellet durability index, crispness, and starch gelatinization degree. Extruded broken rice and expanded broken rice generated a higher (P < 0.05) average daily feed intake, increased (P < 0.05) average daily gain, decreased (P < 0.05) feed conversion ratio, and lowered (P < 0.05) the diarrhea rate. Piglets fed extruded broken rice displayed high apparent total tract digestibility levels of dry matter (P < 0.05), gross energy (P < 0.05), crude protein (P < 0.05), and organic matter (P < 0.05). In addition, extruded broken rice and expanded broken rice supplementation had increased Lactobacillus and Bifidobacterium levels in gut, whereas a lower abundance of the potential pathogens Clostridium_sensu_strictio_1 and Streptococcus was observed. Dietary supplementation of extruded broken rice and expanded broken rice failed to show significant effects on blood biochemical parameters. Combined, 70% corn substituted with broken rice failed to show significant effects. Collectively, extruded broken rice and expanded broken rice supplementation had positively enhanced the pellet quality, growth performance, nutrient digestibility, and gut microbiota of weaned piglets.
Collapse
Affiliation(s)
- Weilei Yao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Xinhong Yu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Yan Zhou
- Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - Yanxu Han
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Shimin Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Xinyi Yin
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Xinlei Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Feiruo Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| |
Collapse
|
13
|
Saladrigas-García M, Durán M, D’Angelo M, Coma J, Pérez JF, Martín-Orúe SM. An insight into the commercial piglet's microbial gut colonization: from birth towards weaning. Anim Microbiome 2022; 4:68. [PMID: 36572944 PMCID: PMC9791761 DOI: 10.1186/s42523-022-00221-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The establishment of the gut microbiota can be influenced by several perinatal factors, including, most importantly, the maternal microbiota. Moreover, early-life environmental variation affects gut microbial colonization and the intestinal health of offspring throughout life. The present study aimed to explore the development of piglet gut microbiota from birth to weaning in the commercial practice and also to assess how different farm environments could condition this process. Although it is possible to find in the literature other studies with similar objectives this work probably represents one of the few studies that make a systematic evaluation of such differential factors under a real scenario. To achieve this objective, we performed two trials. In a first Trial, we selected 2 farms in which we performed an intensive sampling (5 samples /animal) to characterize the gut colonization pattern during the first days of life and to identify the time window with the greatest impact. Both farms differed in their health status and the use of antimicrobials in the piglets. In a second Trial, we selected 4 additional farms with variable rearing conditions and a distinctive use of antimicrobials in the sows with a simplified sampling pattern (2 samples/animal). Faecal samples were obtained with swabs and DNA was extracted by using the PSP® Spin Stool DNA Kit and sequencing of the 16S rRNA gene (V3-V4 region) performed by Illumina MiSeq Platform. RESULTS The present study contributes to a better understanding of microbiome development during the transition from birth to weaning in commercial conditions. Alpha diversity was strongly affected by age, with an increased richness of species through time. Beta diversity decreased after weaning, suggesting a convergent evolvement among individuals. We pinpointed the early intestinal colonizers belonging to Bacteroides, Escherichia-Shigella, Clostridium sensu stricto 1, and Fusobacterium genera. During lactation(d7-d21 of life), the higher relative abundances of Bacteroides and Lactobacillus genera were correlated with a milk-oriented microbiome. As the piglets aged and after weaning (d36 of life), increasing abundances of genera such as Prevotella, Butyricimonas, Christensenellaceae R-7 group, Dorea, Phascolarctobacterium, Rikenellaceae RC9 gut group, Subdoligranulum, and Ruminococcaceae UCG-002 were observed. These changes indicate the adaptation of the piglets to a cereal-based diet rich in oligosaccharides and starch. Our results also show that the farm can have a significant impact in such a process, evidencing the influence of different environments and rearing systems on the gut microbiota development of the young piglet. Differences between farms were more noticeable after weaning than during lactation with changes in alpha and beta biodiversity and specific taxa. The analysis of such differences suggests that piglets receiving intramuscular amoxicillin (days 2-5 of life) and being offered an acidifying rehydrating solution (Alpha farm in Trial 1) have a greater alpha diversity and more abundant Lactobacillus population. Moreover, the only farm that did not offer any rehydrating solution (Foxtrot farm in Trial 2) showed a lower alpha diversity (day 2 of life) and increased abundance of Enterobacteriaceae (both at 2 and 21 days). The use of in-feed antibiotics in the sows was also associated with structural changes in the piglets' gut ecosystem although without changes in richness or diversity. Significant shifts could be registered in different microbial groups, particularly lower abundances of Fusobacterium in those piglets from medicated sows. CONCLUSIONS In conclusion, during the first weeks of life, the pig microbiota showed a relevant succession of microbial groups towards a more homogeneous and stable ecosystem better adapted to the solid dry feed. In this relevant early-age process, the rearing conditions, the farm environment, and particularly the antimicrobial use in piglets and mothers determine changes that could have a relevant impact on gut microbiota maturation. More research is needed to elucidate the relative impact of these farm-induced early life-long changes in the growing pig.
Collapse
Affiliation(s)
- Mireia Saladrigas-García
- grid.7080.f0000 0001 2296 0625Servicio de Nutrición Y Bienestar Animal. Departamento de Ciencia Animal Y de los Alimentos, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | - Matilde D’Angelo
- grid.7080.f0000 0001 2296 0625Servicio de Nutrición Y Bienestar Animal. Departamento de Ciencia Animal Y de los Alimentos, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Jaume Coma
- Grupo Vall Companys, 25191 Lleida, Spain
| | - José Francisco Pérez
- grid.7080.f0000 0001 2296 0625Servicio de Nutrición Y Bienestar Animal. Departamento de Ciencia Animal Y de los Alimentos, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Susana María Martín-Orúe
- grid.7080.f0000 0001 2296 0625Servicio de Nutrición Y Bienestar Animal. Departamento de Ciencia Animal Y de los Alimentos, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
14
|
Fecal Microbiota and Hair Glucocorticoid Concentration Show Associations with Growth during Early Life in a Pig Model. Nutrients 2022; 14:nu14214639. [PMID: 36364901 PMCID: PMC9655727 DOI: 10.3390/nu14214639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Identifying characteristics associated with fast or slow growth during early life in a pig model will help in the design of nutritional strategies or recommendations during infancy. The aim of this study was to identify if a differential growth during lactation and/or the nursery period may be associated with fecal microbiota composition and fermentation capacity, as well as to leave a print of glucocorticoid biomarkers in the hair. Seventy-five commercial male and female pigs showing extreme growth in the lactation and nursery periods were selected, creating four groups (First, lactation growth, d0−d21; second, nursery growth, d21−d62): Slow_Slow, Slow_Fast, Fast_Slow, and Fast_Fast. At d63 of life, hair and fecal samples were collected. Fast-growing pigs during nursery had higher cortisone concentrations in the hair (p < 0.05) and a tendency to have a lower cortisol-to-cortisone ratio (p = 0.061). Both lactation and nursery growth conditioned the fecal microbiota structure (p < 0.05). Additionally, fast-growing pigs during nursery had higher evenness (p < 0.05). Lactation growth influenced the relative abundance of eight bacterial genera, while nursery growth affected only two bacterial genera (p < 0.05). The fecal butyrate concentration was higher with fast growth in lactation and/or nursery (p < 0.05), suggesting it has an important role in growth, while total SCFA and acetate were related to lactation growth (p < 0.05). In conclusion, piglets’ growth during nursery and, especially, the lactation period was associated with changes in their microbiota composition and fermentation capacity, evidencing the critical role of early colonization on the establishment of the adult microbiota. Additionally, cortisol conversion to cortisone was increased in animals with fast growth, but further research is necessary to determine its implications.
Collapse
|
15
|
Badaras S, Ruzauskas M, Gruzauskas R, Zokaityte E, Starkute V, Klupsaite D, Mockus E, Klementaviciute J, Vadopalas L, Zokaityte G, Dauksiene A, Bartkevics V, Bartkiene E. Different creep compound feed formulations for new born piglets: influence on growth performance and health parameters. Front Vet Sci 2022; 9:971783. [PMID: 36105002 PMCID: PMC9465008 DOI: 10.3389/fvets.2022.971783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to compare the influence of different compositions of creep compound feed (CCF) (C-I – control group; TG-II – a CCF containing wheat bran extruded and fermented with L. paracasei; TG-III – a creep compound feed containing sugar beet pulp) on the piglets' growth performance, blood parameters, fecal microbial profile and physicochemical characteristics. Moreover, the fecal volatile compound (VC) profile was analyzed as a possible chemical marker related to changes in the fecal microbial profile and physicochemical characteristics. A 21-day experiment was conducted using 1-day-old 300 Large White/Norwegian Landrace piglets. The highest body weight (at the 21st day) was found in piglets of the TG-III group, and both treated groups showed lower feed conversion ratios. At the end of the experiment, significantly higher lactobacillus counts in the feces of both treated groups were found, and a correlation between fecal textural hardness and the lactobacillus count was established (r = 0.475). Significant correlations of piglets' individual fecal VC with microbiological parameters and fecal pH were established [lactobacilli with 3-n-nonadecanol-1; enterobacteria with butyric acid <2-methyl->; pentanoic acid, 4-methyl-; eicosene(E)-, etc.]. It can be concluded that local material could be successfully incorporated into CCF preparation without impairing animal metabolism.
Collapse
Affiliation(s)
- Sarunas Badaras
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Modestas Ruzauskas
- Institute of Microbiology and Virology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Anatomy and Physiology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Romas Gruzauskas
- Department of Food Science and Technology, Kaunas University of Technology, Kaunas, Lithuania
| | - Egle Zokaityte
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vytaute Starkute
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dovile Klupsaite
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ernestas Mockus
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Jolita Klementaviciute
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Laurynas Vadopalas
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Gintare Zokaityte
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Agila Dauksiene
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Anatomy and Physiology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment BIOR, Riga, Latvia
| | - Elena Bartkiene
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
- *Correspondence: Elena Bartkiene
| |
Collapse
|
16
|
Zhu C, Yang J, Nie X, Wu Q, Wang L, Jiang Z. Influences of Dietary Vitamin E, Selenium-Enriched Yeast, and Soy Isoflavone Supplementation on Growth Performance, Antioxidant Capacity, Carcass Traits, Meat Quality and Gut Microbiota in Finishing Pigs. Antioxidants (Basel) 2022; 11:antiox11081510. [PMID: 36009229 PMCID: PMC9405041 DOI: 10.3390/antiox11081510] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/29/2022] Open
Abstract
This study investigated the effects of dietary compound antioxidants on growth performance, antioxidant capacity, carcass traits, meat quality, and gut microbiota in finishing pigs. A total of 36 barrows were randomly assigned to 2 treatments with 6 replicates. The pigs were fed with a basal diet (control) or the basal diet supplemented with 200 mg/kg vitamin E, 0.3 mg/kg selenium-enriched yeast, and 20 mg/kg soy isoflavone. Dietary compound antioxidants decreased the average daily feed intake (ADFI) and feed to gain ratio (F/G) at d 14−28 in finishing pigs (p < 0.05). The plasma total protein, urea nitrogen, triglyceride, and malondialdehyde (MDA) concentrations were decreased while the plasma glutathione (GSH) to glutathione oxidized (GSSG) ratio (GSH/GSSG) was increased by compound antioxidants (p < 0.05). Dietary compound antioxidants increased loin area and b* value at 45 min, decreased backfat thickness at last rib, and drip loss at 48 h (p < 0.05). The relative abundance of colonic Peptococcus at the genus level was increased and ileal Turicibacter_sp_H121 abundance at the species level was decreased by dietary compound antioxidants. Spearman analysis showed a significant negative correlation between the relative abundance of colonic Peptococcus and plasma MDA concentration and meat drip loss at 48 h. Collectively, dietary supplementation with compound antioxidants of vitamin E, selenium-enrich yeast, and soy isoflavone could improve feed efficiency and antioxidant capacity, and modify the backfat thickness and meat quality through modulation of the gut microbiota community.
Collapse
Affiliation(s)
- Cui Zhu
- School of Life Science and Engineering, Foshan University, Foshan 528225, China; (C.Z.); (J.Y.); (X.N.)
| | - Jingsen Yang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China; (C.Z.); (J.Y.); (X.N.)
| | - Xiaoyan Nie
- School of Life Science and Engineering, Foshan University, Foshan 528225, China; (C.Z.); (J.Y.); (X.N.)
| | - Qiwen Wu
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Li Wang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
- Correspondence: (L.W.); (Z.J.)
| | - Zongyong Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
- Correspondence: (L.W.); (Z.J.)
| |
Collapse
|
17
|
Supplementation of xylo-oligosaccharides to suckling piglets promotes the growth of fiber-degrading gut bacterial populations during the lactation and nursery periods. Sci Rep 2022; 12:11594. [PMID: 35804098 PMCID: PMC9270449 DOI: 10.1038/s41598-022-15963-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/01/2022] [Indexed: 12/29/2022] Open
Abstract
Modulating early-life microbial colonization through xylo-oligosacharides (XOS) supplementation represents an opportunity to accelerate the establishment of fiber-degrading microbial populations and improve intestinal health. Ninety piglets from 15 litters were orally administered once a day from d7 to d27 of lactation with either 5 mL of water (CON) or 5 mL of a solution containing 30 to 60 mg of XOS (XOS). Supplementation ceased at weaning (d28) when all piglets were fed the same commercial pre-starter diet. Growth performance did not differ between treatments during the experimental period (d7 to d40). Piglet’s fecal microbiota (n = 30) shifted significantly from the end of lactation (d27) to nursery period (d40) exhibiting an increase in microbial alpha diversity. Animals supplemented with XOS showed higher richness and abundance of fiber-degrading bacteria and short-chain fatty acid (SCFA) production at d27 and d40. Additionally, the predicted abundance of the pyruvate to butanoate fermentation pathway was increased in the XOS group at d40. These results show that supplementation of XOS to lactating piglets promotes fiber-degrading bacterial populations in their hindgut. Moreover, differences observed in the nursery period suggest that XOS can influence the microbiota in the long-term.
Collapse
|
18
|
Vasquez R, Oh JK, Song JH, Kang DK. Gut microbiome-produced metabolites in pigs: a review on their biological functions and the influence of probiotics. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:671-695. [PMID: 35969697 PMCID: PMC9353353 DOI: 10.5187/jast.2022.e58] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022]
Abstract
The gastrointestinal tract is a complex ecosystem that contains a large number of microorganisms with different metabolic capacities. Modulation of the gut microbiome can improve the growth and promote health in pigs. Crosstalk between the host, diet, and the gut microbiome can influence the health of the host, potentially through the production of several metabolites with various functions. Short-chain and branched-chain fatty acids, secondary bile acids, polyamines, indoles, and phenolic compounds are metabolites produced by the gut microbiome. The gut microbiome can also produce neurotransmitters (such as γ-aminobutyric acid, catecholamines, and serotonin), their precursors, and vitamins. Several studies in pigs have demonstrated the importance of the gut microbiome and its metabolites in improving growth performance and feed efficiency, alleviating stress, and providing protection from pathogens. The use of probiotics is one of the strategies employed to target the gut microbiome of pigs. Promising results have been published on the use of probiotics in optimizing pig production. This review focuses on the role of gut microbiome-derived metabolites in the performance of pigs and the effects of probiotics on altering the levels of these metabolites.
Collapse
Affiliation(s)
- Robie Vasquez
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| | - Ju Kyoung Oh
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| | - Ji Hoon Song
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| |
Collapse
|
19
|
Li A, Wang Y, Hao J, Wang L, Quan L, Duan K, Fakhar-E-Alam Kulyar M, Ullah K, Zhang J, Wu Y, Li K. Long-term hexavalent chromium exposure disturbs the gut microbial homeostasis of chickens. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113532. [PMID: 35472558 DOI: 10.1016/j.ecoenv.2022.113532] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Industrial production, ore smelting and sewage disposal plant can discharge large amounts of heavy metals every year, which may contaminate soil, water and air, posing a great threat to ecological environment and animal production. Hexavalent chromium [Cr (VI)], a recognized metallic contaminant, has been shown to impair kidney, liver and gastrointestinal tract of many species, but little is known about the gut microbial characteristics of chickens exposed to Cr (VI). Herein, this study characterized the gut microbial alternations of chickens exposed to Cr (VI). Results indicated that the gut microbial alpha-diversity in chickens exposed to Cr (VI) decreased significantly, accompanied by a distinct shifts in taxonomic composition. Microbial taxonomic analysis demonstrated that the preponderant phyla (Firmicutes, Bacteroidetes, Proteobacteria and Epsilonbacteraeota) were the same in both groups, but different in types and relative abundances of dominant genera. Moreover, some bacterial taxa including 2 phyla and 47 genera significantly decreased, whereas 3 phyla and 17 genera significantly increased during Cr (VI) exposure. Among decreased taxa, 9 genera (Coprobacter, Ruminococcus_1, Faecalicoccus, Eubacterium_nodatum_group, Parasutterella, Slackia, Barnesiella, Family_XIII_UCG-001 and Collinsella) even cannot be detected. In conclusion, this study revealed that Cr (VI) exposure dramatically decrased the gut microbial diversity and altered microbial composition of chickens. Additionally, this study also provided a theoretical basis for relieving Cr (VI) poisoning from the perspective of gut microbiota.
Collapse
Affiliation(s)
- Aoyun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingli Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiayuan Hao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lei Wang
- Animal husbandry station of Bijie City, Bijie 551700, China
| | - Lingtong Quan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kun Duan
- China Tobacco Henan Industrial Co. Ltd, Zhengzhou 450000, PR China
| | | | - Kalim Ullah
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Jiabin Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi Wu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
20
|
Neoagarooligosaccharides modulate gut microbiota and alleviate body weight gain and metabolic syndrome in high-fat diet-induced obese rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
21
|
Ma X, Xu T, Qian M, Zhang Y, Yang Z, Han X. Faecal microbiota transplantation alleviates early-life antibiotic-induced gut microbiota dysbiosis and mucosa injuries in a neonatal piglet model. Microbiol Res 2021; 255:126942. [PMID: 34915267 DOI: 10.1016/j.micres.2021.126942] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 12/16/2022]
Abstract
Faecal microbiota transplantation (FMT) is a promising approach to modulate the gut microbiota. Gut microbiota dysbiosis caused by antibiotic administration is a universal problem. This study aimed to evaluate the effect of FMT on the dysbiosis of gut microbiota and metabolic profiles and injury of the intestinal barrier induced by antibiotics and used a neonatal piglet model. Neonatal piglets were administered ampicillin for 3 days, and antibiotic-induced dysbiosis was evaluated by the occurrence of diarrhoea and alteration of gut microbiota. Then, FMT was conducted for 3 days to rebuild the gut microbiota. High-throughput sequencing and a mass spectrometry platform were used for integrated microbiome-metabolome analysis. The results showed that antibiotics led to a decline in the diversity of gut microbiota. Furthermore, there was an increase in the relative abundance of potential pathogenic bacteria, such as Oscillibacter, Pseudomonas and Eubacterium, and an increase in the relative abundance of tetracycline resistance genes (tet genes). FMT restored the diversity and promoted the relative abundance of beneficial bacteria, such as Parabacteroides, Dorea and Parasutterella, while decreasing the relative abundance of tet genes. Untargeted metabolomics analysis found that alpha linolenic acid and linoleic acid metabolism were the key metabolic pathways utilized in the FMT group, and targeted metabolomics analysis further verified the variation in the associated metabolites arachidonic acid and conjugated linoleic acid. FMT also significantly enhanced the relative expression of tight junction (ZO-1, claudin-1 and occludin) and adherens junction (β-catenin, E-cadherin) proteins and anti-inflammatory cytokines (IL-10, TGF-β1) and reduced the production of proinflammatory cytokines (IL-6, IL-1β, TNF-α and IFN-γ) in the colon. FMT not only modulated the gut microbiota composition and microbial metabolism but also reduced the relative abundance of tet genes, improving the intestinal barrier function and inflammatory responses in antibiotic-treated piglets.
Collapse
Affiliation(s)
- Xin Ma
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tingting Xu
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mengqi Qian
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuchen Zhang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhiren Yang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| | - Xinyan Han
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China.
| |
Collapse
|
22
|
Crespo-Piazuelo D, Lawlor PG, Ranjitkar S, Cormican P, Villodre C, Bouwhuis MA, Marsh A, Crispie F, Rattigan R, Gardiner GE. Intestinal microbiota modulation and improved growth in pigs with post-weaning antibiotic and ZnO supplementation but only subtle microbiota effects with Bacillus altitudinis. Sci Rep 2021; 11:23304. [PMID: 34857778 PMCID: PMC8639915 DOI: 10.1038/s41598-021-01826-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 09/30/2021] [Indexed: 11/25/2022] Open
Abstract
The objective was to evaluate the effect of dietary Bacillus altitudinis spore supplementation during day (D)0–28 post-weaning (PW) and/or D29–56 PW compared with antibiotic and zinc oxide (AB + ZnO) supplementation on pig growth and gut microbiota. Eighty piglets were selected at weaning and randomly assigned to one of five dietary treatments: (1) negative control (Con/Con); (2) probiotic spores from D29–56 PW (Con/Pro); (3) probiotic spores from D0–28 PW (Pro/Con); (4) probiotic spores from D0–56 PW (Pro/Pro) and (5) AB + ZnO from D0–28 PW. Overall, compared with the AB + ZnO group, the Pro/Con group had lower body weight, average daily gain and feed intake and the Pro/Pro group tended to have lower daily gain and feed intake. However, none of these parameters differed between any of the probiotic-treated groups and the Con/Con group. Overall, AB + ZnO-supplemented pigs had higher Bacteroidaceae and Prevotellaceae and lower Lactobacillaceae and Spirochaetaceae abundance compared to the Con/Con group, which may help to explain improvements in growth between D15–28 PW. The butyrate-producing genera Agathobacter, Faecalibacterium and Roseburia were more abundant in the Pro/Con group compared with the Con/Con group on D35 PW. Thus, whilst supplementation with B. altitudinis did not enhance pig growth performance, it did have a subtle, albeit potentially beneficial, impact on the intestinal microbiota.
Collapse
Affiliation(s)
- Daniel Crespo-Piazuelo
- Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Peadar G Lawlor
- Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Samir Ranjitkar
- Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Paul Cormican
- Teagasc, Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.,APC Microbiome Institute, Cork, Ireland
| | - Carmen Villodre
- Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Meike A Bouwhuis
- Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Alan Marsh
- Eco-Innovation Research Centre, Department of Science, Waterford Institute of Technology, Waterford, Ireland
| | - Fiona Crispie
- Teagasc, Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.,APC Microbiome Institute, Cork, Ireland
| | - Ruth Rattigan
- Eco-Innovation Research Centre, Department of Science, Waterford Institute of Technology, Waterford, Ireland
| | - Gillian E Gardiner
- Eco-Innovation Research Centre, Department of Science, Waterford Institute of Technology, Waterford, Ireland.
| |
Collapse
|
23
|
Su Y, Ge Y, Xu Z, Zhang D, Li D. The digestive and reproductive tract microbiotas and their association with body weight in laying hens. Poult Sci 2021; 100:101422. [PMID: 34534851 PMCID: PMC8449050 DOI: 10.1016/j.psj.2021.101422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023] Open
Abstract
Body weight at the onset of egg production is a major factor influencing hen productivity, as suitable body weight is crucial to laying performance in laying hens. To better understand the association between body weight and microbial community membership and structure in different sites of the digestive and reproductive tracts in chickens, we performed 16S rRNA sequencing surveys and focused on how the microbiota may interact to influence body weight. Our results demonstrated that the microbial community and structure of the digestive and reproductive tracts differed between low and high body weight groups. In particular, we found that the species Pseudomonas viridiflava was negatively associated with body weight in the 3 digestive tract sites, while Bacteroides salanitronis was negatively associated with body weight in the 3 reproductive tract sites; and further in-depth studies are needed to explore their function. These findings will help extend our understanding of the influence of the bird digestive and reproductive tract microbiotas on body weight trait and provide future directions regarding the control of body weight in the production of laying hens.
Collapse
Affiliation(s)
- Yuan Su
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yile Ge
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongxian Xu
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Dejing Zhang
- Novogene Bioinformatics Institute, Beijing 100000, China
| | - Diyan Li
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
24
|
Maltecca C, Dunn R, He Y, McNulty NP, Schillebeeckx C, Schwab C, Shull C, Fix J, Tiezzi F. Microbial composition differs between production systems and is associated with growth performance and carcass quality in pigs. Anim Microbiome 2021; 3:57. [PMID: 34454609 PMCID: PMC8403435 DOI: 10.1186/s42523-021-00118-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The role of the microbiome in livestock production has been highlighted in recent research. Currently, little is known about the microbiome's impact across different systems of production in swine, particularly between selection nucleus and commercial populations. In this paper, we investigated fecal microbial composition in nucleus versus commercial systems at different time points. RESULTS We identified microbial OTUs associated with growth and carcass composition in each of the two populations, as well as the subset common to both. The two systems were represented by individuals with sizeable microbial diversity at weaning. At later times microbial composition varied between commercial and nucleus, with species of the genus Lactobacillus more prominent in the nucleus population. In the commercial populations, OTUs of the genera Lactobacillus and Peptococcus were associated with an increase in both growth rate and fatness. In the nucleus population, members of the genus Succinivibrio were negatively correlated with all growth and carcass traits, while OTUs of the genus Roseburia had a positive association with growth parameters. Lactobacillus and Peptococcus OTUs showed consistent effects for fat deposition and daily gain in both nucleus and commercial populations. Similarly, OTUs of the Blautia genus were positively associated with daily gain and fat deposition. In contrast, an increase in the abundance of the Bacteroides genus was negatively associated with growth performance parameters. CONCLUSIONS The current study provides a first characterization of microbial communities' value throughout the pork production systems. It also provides information for incorporating microbial composition into the selection process in the quest for affordable and sustainable protein production in swine.
Collapse
Affiliation(s)
- Christian Maltecca
- Department of Animal Science, North Carolina State University, 120 W Broughton Dr, Raleigh, NC 27607 USA
| | - Rob Dunn
- Department of Applied Ecology, North Carolina State University, 100 Brooks Ave, Raleigh, NC 27607 USA
| | - Yuqing He
- Department of Animal Science, North Carolina State University, 120 W Broughton Dr, Raleigh, NC 27607 USA
| | | | | | - Clint Schwab
- Acuity Ag Solutions, 7475 State Route 127, Carlyle, IL 62231 USA
| | - Caleb Shull
- The Maschhoffs LLC, 7475 IL-127, Carlyle, IL 62231 USA
| | - Justin Fix
- Department of Animal Science, North Carolina State University, 120 W Broughton Dr, Raleigh, NC 27607 USA
| | - Francesco Tiezzi
- Acuity Ag Solutions, 7475 State Route 127, Carlyle, IL 62231 USA
| |
Collapse
|
25
|
Miragoli F, Patrone V, Prandini A, Sigolo S, Dell’Anno M, Rossi L, Barbato M, Senizza A, Morelli L, Callegari ML. A mixture of quebracho and chestnut tannins drives butyrate-producing bacteria populations shift in the gut microbiota of weaned piglets. PLoS One 2021; 16:e0250874. [PMID: 33914832 PMCID: PMC8084250 DOI: 10.1371/journal.pone.0250874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/15/2021] [Indexed: 11/18/2022] Open
Abstract
Weaning is a critical period for piglets, in which unbalanced gut microbiota and/or pathogen colonisation can contribute to diseases that interfere with animal performance. Tannins are natural compounds that could be used as functional ingredients to improve gut health in pig farming thanks to their antibacterial, antioxidant, and antidiarrhoeal properties. In this study, a mixture of quebracho and chestnut tannins (1.25%) was evaluated for its efficacy in reducing the negative weaning effects on piglet growth. Microbiota composition was assessed by Illumina MiSeq 16S rRNA gene sequencing of DNA extracted from stools at the end of the trial. Sequence analysis revealed an increase in the genera Shuttleworthia, Pseudobutyrivibrio, Peptococcus, Anaerostipes, and Solobacterium in the tannin-supplemented group. Conversely, this dietary intervention reduced the abundance of the genera Syntrophococcus, Atopobium, Mitsuokella, Sharpea, and Prevotella. The populations of butyrate-producing bacteria were modulated by tannin, and higher butyrate concentrations in stools were detected in the tannin-fed pigs. Co-occurrence analysis revealed that the operational taxonomic units (OTUs) belonging to the families Veillonellaceae, Lachnospiraceae, and Coriobacteriaceae occupied the central part of the network in both the control and the tannin-fed animals. Instead, in the tannin group, the OTUs belonging to the families Acidaminococcaceae, Alcaligenaceae, and Spirochaetaceae characterised its network, whereas Family XIII Incertae Sedis occupied a more central position than in the control group. Conversely, the presence of Desulfovibrionaceae characterised the network of the control group, and this family was not present in the network of the tannin group. Moreover, the prediction of metabolic pathways revealed that the gut microbiome of the tannin group possessed an enhanced potential for carbohydrate transport and metabolism, as well as a lower abundance of pathways related to cell wall/membrane/envelope biogenesis and inorganic ion transport. In conclusion, the tested tannins seem to modulate the gut microbiota, favouring groups of butyrate-producing bacteria.
Collapse
Affiliation(s)
- Francesco Miragoli
- Biotechnological Research Centre, Università Cattolica del Sacro Cuore, Cremona, Italy
| | - Vania Patrone
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Aldo Prandini
- Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Samantha Sigolo
- Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Matteo Dell’Anno
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milano, Italy
| | - Luciana Rossi
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milano, Italy
| | - Mario Barbato
- Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Alice Senizza
- Biotechnological Research Centre, Università Cattolica del Sacro Cuore, Cremona, Italy
| | - Lorenzo Morelli
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Maria Luisa Callegari
- Biotechnological Research Centre, Università Cattolica del Sacro Cuore, Cremona, Italy
| |
Collapse
|
26
|
Gut microbiome associations with outcome following co-infection with porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) in pigs immunized with a PRRS modified live virus vaccine. Vet Microbiol 2021; 254:109018. [PMID: 33639341 DOI: 10.1016/j.vetmic.2021.109018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/14/2021] [Indexed: 12/18/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) are two of the most significant pathogens affecting swine. Co-infections are common and result in respiratory disease and reduced weight gain in growing pigs. Although PRRS modified live virus (MLV) vaccines are widely used to decrease PRRS-associated losses, they are generally considered inadequate for disease control. The gut microbiome provides an alternative strategy to enhance vaccine efficacy and improve PRRS control. The objective of this study was to identify gut microbiome characteristics associated with improved outcome in pigs immunized with a PRRS MLV and co-challenged with PRRSV and PCV2b. Twenty-eight days after vaccination and prior to co-challenge, fecal samples were collected from an experimental population of 50 nursery pigs. At 42 days post-challenge, 20 pigs were retrospectively identified as having high or low growth outcomes during the post-challenge period. Gut microbiomes of the two outcome groups were compared using the Lawrence Livermore Microbial Detection Array (LLMDA) and 16S rDNA sequencing. High growth outcomes were associated with several gut microbiome characteristics, such as increased bacterial diversity, increased Bacteroides pectinophilus, decreased Mycoplasmataceae species diversity, higher Firmicutes:Bacteroidetes ratios, increased relative abundance of the phylum Spirochaetes, reduced relative abundance of the family Lachnospiraceae, and increased Lachnospiraceae species C6A11 and P6B14. Overall, this study identifies gut microbiomes associated with improved outcomes in PRRS vaccinated pigs following a polymicrobial respiratory challenge and provides evidence towards the gut microbiome playing a role in PRRS vaccine efficacy.
Collapse
|
27
|
Uryu H, Tsukahara T, Ishikawa H, Oi M, Otake S, Yamane I, Inoue R. Comparison of Productivity and Fecal Microbiotas of Sows in Commercial Farms. Microorganisms 2020; 8:E1469. [PMID: 32987859 PMCID: PMC7599717 DOI: 10.3390/microorganisms8101469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
Sow productivity, that is, the number of weaned piglets per sow per year, depends on their health status. The gut microbiota is considered a crucial factor in the health of pigs and may affect sow productivity. In the present study, we aimed to investigate the relationship between productivity and the fecal microbiotas of sows in different farms. Feces of sows were collected from 18 farms (10 samples/farm). A total of 90 fecal samples of high-reproductive performance farms were labeled as group H, and 90 fecal samples from low-reproductive performance farms were labeled as group L. Fecal microbiotas were analyzed by 16S rRNA metagenomics, and the organic acids and putrefactive metabolites of the microbiotas were measured. β-diversity was significantly different between groups H and L (P < 0.01), and the relative abundances of 43 bacterial genera, including short-chain fatty acid-producing and fiber-degrading bacteria such as Ruminococcus, Fibrobacter and Butyricicoccus, significantly differed between groups (P < 0.05). In addition, the concentrations of acetate, propionate and n-butyrate were significantly higher in group H than in group L (P < 0.05). In conclusion, sow productivity in farms was likely associated with the compositions of the fecal microbiotas.
Collapse
Affiliation(s)
- Haruka Uryu
- Laboratory of Animal Science, Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan;
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | | | - Hiromichi Ishikawa
- The Japanese Association of Swine Veterinarians (JASV), Ibaraki 300-1260, Japan; (H.I.); (M.O.); (S.O.)
| | - Munetaka Oi
- The Japanese Association of Swine Veterinarians (JASV), Ibaraki 300-1260, Japan; (H.I.); (M.O.); (S.O.)
| | - Satoshi Otake
- The Japanese Association of Swine Veterinarians (JASV), Ibaraki 300-1260, Japan; (H.I.); (M.O.); (S.O.)
| | - Itsuro Yamane
- National Agriculture and Food Research Organization (NARO) (National Institute of Animal Health), Ibaraki 305-0856, Japan;
| | - Ryo Inoue
- Laboratory of Animal Science, Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan;
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Hirakata, Osaka 573-0101, Japan
| |
Collapse
|