1
|
Kubi JA, Brah AS, Cheung KMC, Chen ACH, Lee YL, Lee KF, Qiao W, Feng Y, Yeung KWK. Low-molecular-weight estrogenic phytoprotein suppresses osteoporosis development through positive modulation of skeletal estrogen receptors. Bioact Mater 2024; 42:299-315. [PMID: 39290337 PMCID: PMC11405634 DOI: 10.1016/j.bioactmat.2024.08.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 09/19/2024] Open
Abstract
Age-related osteoporosis is a metabolic skeletal disorder caused by estrogen deficiency in postmenopausal women. Prolonged use of anti-osteoporotic drugs such as bisphosphonates and FDA-approved anti-resorptive selective estrogen receptor modulators (SERMs) has been associated with various clinical drawbacks. We recently discovered a low-molecular-weight biocompatible and osteoanabolic phytoprotein, called HKUOT-S2 protein (32 kDa), from Dioscorea opposita Thunb that can accelerate bone defect healing. Here, we demonstrated that the HKUOT-S2 protein treatment can enhance osteoblasts-induced ossification and suppress osteoporosis development by upregulating skeletal estrogen receptors (ERs) ERα, ERβ, and GPR30 expressions in vivo. Also, HKUOT-S2 protein estrogenic activities promoted hMSCs-osteoblasts differentiation and functions by increasing osteogenic markers, ALP, and RUNX2 expressions, ALP activity, and osteoblast biomineralization in vitro. Fulvestrant treatment impaired the HKUOT-S2 protein-induced ERs expressions, osteoblasts differentiation, and functions. Finally, we demonstrated that the HKUOT-S2 protein could bind to ERs to exert osteogenic and osteoanabolic properties. Our results showed that the biocompatible HKUOT-S2 protein can exert estrogenic and osteoanabolic properties by positively modulating skeletal estrogen receptor signaling to promote ossification and suppress osteoporosis. Currently, there is no or limited data if any, on osteoanabolic SERMs. The HKUOT-S2 protein can be applied as a new osteoanabolic SERM for osteoporosis treatment.
Collapse
Affiliation(s)
- John Akrofi Kubi
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong (HKU), PR China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, HKU-Shenzhen Hospital, Shenzhen, 518053, PR China
| | - Augustine Suurinobah Brah
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong (HKU), PR China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, HKU-Shenzhen Hospital, Shenzhen, 518053, PR China
| | - Kenneth Man Chee Cheung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong (HKU), PR China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, HKU-Shenzhen Hospital, Shenzhen, 518053, PR China
| | - Andy Chun Hang Chen
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, HKU, 21 Sassoon Road, PR China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, HKU- Shenzhen Hospital, Shenzhen, PR China
| | - Yin Lau Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, HKU, 21 Sassoon Road, PR China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, HKU- Shenzhen Hospital, Shenzhen, PR China
| | - Kai-Fai Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, HKU, 21 Sassoon Road, PR China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, HKU- Shenzhen Hospital, Shenzhen, PR China
| | - Wei Qiao
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, PR China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong (HKU), PR China
| | - Kelvin Wai Kwok Yeung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong (HKU), PR China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, HKU-Shenzhen Hospital, Shenzhen, 518053, PR China
| |
Collapse
|
2
|
Qi L, Duan R, Zhou J, Guo Y, Zhang C. Novel osteogenic peptide from bovine bone collagen hydrolysate: Targeted screening, molecular mechanism, and stability analysis. Food Chem 2024; 459:140359. [PMID: 38996641 DOI: 10.1016/j.foodchem.2024.140359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/07/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
This study aimed to screen for a novel osteogenic peptide based on the calcium-sensing receptor (CaSR) and explore its molecular mechanism and gastrointestinal stability. In this study, a novel osteogenic peptide (Phe-Ser-Gly-Leu, FSGL) derived from bovine bone collagen hydrolysate was successfully screened by molecular docking and synthesised by solid phase peptide synthesis for further analysis. Cell experiments showed that FSGL significantly enhanced the osteogenic activity of MC3T3-E1 cells by acting on CaSR, including proliferation (152.53%), differentiation, and mineralization. Molecular docking and molecular dynamics further demonstrated that FSGL was a potential allosteric activator of CaSR, that turned on the activation switch of CaSR by closing the Venus flytrap (VFT) domain and driving the two protein chains in the VFT domain to easily form dimers. In addition, 96.03% of the novel osteogenic peptide FSGL was stable during gastrointestinal digestion. Therefore, FSGL showed substantial potential for enhancing the osteogenic activity of osteoblasts. This study provided new insights for the application of CaSR in the targeted screening of osteogenic peptides to improve bone health.
Collapse
Affiliation(s)
- Liwei Qi
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruipei Duan
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaojiao Zhou
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yujie Guo
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
3
|
Gal M, Tuan HM, Park JH, Park KH, Kim O, Min BS, Lee JH. Irilin D suppresses RANKL-induced osteoclastogenesis and prevents inflammation-induced bone loss by disrupting the NF-κB and MAPK signaling pathways. Eur J Pharmacol 2024; 982:176956. [PMID: 39209096 DOI: 10.1016/j.ejphar.2024.176956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/27/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Excessive activity of osteoclasts(OCs) lead to bone resorption in chronic inflammatory conditions. The use of natural compounds to target OCs offers significant promise in the treatment or prevention of OC-associated diseases. Irilin D (IRD), a natural isoflavone derived from Belamcanda chinensis (L.) DC., has potential effects on OC differentiation both in vitro and in vivo that have yet to be thoroughly explored. In our study, we found that IRD inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced OC differentiation, actin ring formation, and bone resorption in vitro without compromising cell viability. However, IRD did not exhibit anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated macrophages. Furthermore, IRD reduced LPS-induced inflammatory bone loss by blocking osteoclastogenesis in a mouse model. Mechanistically, IRD disrupted RANKL-induced activation of mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB), leading to the inhibition of c-Fos and nuclear factor of activated T cells cytoplasmic 1 (NFATc1) activation. We also demonstrated that IRD inhibited RANKL-induced osteoclastic NFATc1 target genes, including DC-STAMP, ACP5, and CtsK. Our results indicate that IRD mitigates LPS-induced inflammatory bone resorption in mice by inhibiting RANKL-activated MAPKs and NF-κB signaling pathways, suggesting its potential as a natural isoflavone for preventing or treating OC-associated diseases.
Collapse
Affiliation(s)
- Minju Gal
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea
| | - Ha Manh Tuan
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk, 38430, Republic of Korea
| | - Ju-Hee Park
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea
| | - Kang-Hyeon Park
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea
| | - Okhwa Kim
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea
| | - Byung-Sun Min
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk, 38430, Republic of Korea.
| | - Jeong-Hyung Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea; Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea.
| |
Collapse
|
4
|
Al-Ajalein AA, Ibrahim N‘I, Fauzi MB, Mokhtar SA, Naina Mohamed I, Shuid AN, Mohamed N. Evaluating the Anti-Osteoporotic Potential of Mediterranean Medicinal Plants: A Review of Current Evidence. Pharmaceuticals (Basel) 2024; 17:1341. [PMID: 39458982 PMCID: PMC11510337 DOI: 10.3390/ph17101341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Bones are biological reservoirs for minerals and cells, offering protection to the other organs and contributing to the structural form of the body. Osteoporosis is a prevalent bone condition that significantly impacts people's quality of life. Treatments utilizing natural products and medicinal plants have gained important attention in the management of osteoporosis and its associated implications, such as osteoporotic fractures. Even though thousands of plants grow in the Mediterranean region, the use of medicinal plants as an alternative therapy for osteoporosis is still limited. Methods: This article provides a comprehensive overview of seven Mediterranean medicinal plants that are used in osteoporosis and osteoporotic fractures in in vitro, in vivo, and clinical trials. The mechanism of action of the medicinal plants and their bioactive compounds against diseases are also briefly discussed. Results: The findings clearly indicate the ability of the seven medicinal plants (Ammi majus, Brassica oleracea, Ceratonia siliqua L., Foeniculum vulgare, Glycyrrhiza glabra, Salvia officinalis, and Silybum marianum) as anti-osteoporosis agents. Xanthotoxin, polyphenols, liquiritin, formononetin, silymarin, and silibinin/silybin were the main bioactive compounds that contributed to the action against osteoporosis and osteoporotic fractures. Conclusions: In this review, the Mediterranean medicinal plants prove their ability as an alternative agent for osteoporosis and osteoporotic fractures instead of conventional synthetic therapies. Thus, this can encourage researchers to delve deeper into this field and develop medicinal-plant-based drugs.
Collapse
Affiliation(s)
- Alhareth Abdulraheem Al-Ajalein
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (A.A.A.-A.); (N.‘I.I.); (I.N.M.)
| | - Nurul ‘Izzah Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (A.A.A.-A.); (N.‘I.I.); (I.N.M.)
| | - Mh Busra Fauzi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
- Advance Bioactive Materials-Cells (Adv-BioMaC) UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Sabarul Afian Mokhtar
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (A.A.A.-A.); (N.‘I.I.); (I.N.M.)
| | - Ahmad Nazrun Shuid
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi Mara (UITM), Jalan Hospital, Sungai Buloh 47000, Malaysia;
| | - Norazlina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (A.A.A.-A.); (N.‘I.I.); (I.N.M.)
| |
Collapse
|
5
|
Callahan NF, Weyh AM, Ghunaim D, Miloro M. The Effect of Patient-associated Factors on Long-term Survival of Dental Implants. Oral Maxillofac Surg Clin North Am 2024:S1042-3699(24)00076-1. [PMID: 39368890 DOI: 10.1016/j.coms.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Dental implant therapy has developed over the past half century to have documented successful outcomes in most patients who receive treatment. The long-term survival of dental implants depends upon a variety of factors including patient, surgeon, restorative dentist, and materials-related factors. The impact of patient-associated factors may impact significantly on the success of dental implants including diabetes mellitus, medications, smoking, parafunctional habits, oral hygiene, head and neck radiation, and the use of bisphosphonates, antiangiogenic, and antiresorptive medications.
Collapse
Affiliation(s)
- Nicholas F Callahan
- Department of Oral and Maxillofacial Surgery, UIHealth Head and Neck Oncology Integrated Practice Unit, University of Illinois Chicago College of Dentistry, 801 S Paulina Street, Room 110, (MC 835), Chicago, IL 60612, USA
| | - Ashleigh M Weyh
- Department of Oral and Maxillofacial Surgery, University of Illinois Chicago College of Dentistry, 801 S Paulina Street, Room 110, (MC 835), Chicago, IL 60612, USA
| | - Dima Ghunaim
- Advanced Prosthodontics Program, Department of Restorative Dentistry, University of Illinois Chicago College of Dentistry, 801 S Paulina Street Room 367A, (MC 555), Chicago, IL 60612, USA
| | - Michael Miloro
- Department of Oral and Maxillofacial Surgery, University of Illinois College of Dentistry, 801 South Paulina Street, Room 110 (MC 835), Chicago, IL 60612, USA.
| |
Collapse
|
6
|
Singh SK, Parihar S, Jain S, Ho JAA, Vankayala R. Light-responsive functional nanomaterials as pioneering therapeutics: a paradigm shift to combat age-related disorders. J Mater Chem B 2024; 12:8212-8234. [PMID: 39058026 DOI: 10.1039/d4tb00578c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Aging, marked by dysregulated cellular systems, gives rise to a spectrum of age-related disorders, including neurodegeneration, atherosclerosis, immunosenescence, and musculoskeletal issues. These conditions contribute significantly to the global disease burden, posing challenges to health span and economic resources. Current therapeutic approaches, although diverse in mechanism, often fall short in targeting the underlying cellular pathologies. They fail to address the issues compounded by altered pharmacokinetics in the elderly. Nanotechnology emerges as a transformative solution, offering tissue-specific targeted therapies through nanoparticles. Functional nanomaterials (FNMs) respond to internal or external stimuli, with light-responsive nanomaterials gaining prominence. Harnessing the benefits of deep tissue penetration and ease of manipulation particularly in the near-infrared spectrum, light-responsive FNMs present innovative strategies for age-related comorbidities. This review comprehensively summarizes the potential of light-responsive FNM-based approaches for targeting cellular environments in age-related disorders, and also emphasizes the advantages over traditional treatment modalities. Specifically, it focuses on the development of various classes of light-responsive functional nanomaterials including plasmonic nanomaterials, nanomaterials as carriers, upconversion nanomaterials, 2D nanomaterials, transition metal oxide and dichalcogenide nanomaterials and carbon-based nanomaterials against age related diseases. We foresee that such advanced developments in the field of nanotechnology could provide a new hope for clinical diagnosis and treatment of age-related disorders.
Collapse
Affiliation(s)
- Shubham Kumar Singh
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India.
| | - Shivay Parihar
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India.
| | - Sanskar Jain
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India.
| | - Ja-An Annie Ho
- Bioanalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei 10617, Taiwan
- Center for Biotechnology, National Taiwan University, Taipei 10617, Taiwan
| | - Raviraj Vankayala
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India.
- Interdisciplinary Research Platform, Smart Healthcare, Indian Institute of Technology Jodhpur, Karwar 342030, India
| |
Collapse
|
7
|
Kaymak S, Kurtur OB, Gok B, Budama-Kilinc Y, Kecel-Gunduz S, Nath EÖ, Kartal M. Development of phytotherapeutic nanoformulation containing Gypsophila eriocalyx and its evaluation as a candidate formulation for osteoporosis treatment on human bone marrow stem cells. PHYTOCHEMICAL ANALYSIS : PCA 2024. [PMID: 39188072 DOI: 10.1002/pca.3440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/25/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
INTRODUCTION Osteoporosis, one of the common bone diseases, manifests itself as a decrease in bone mass. Recently, the use of medicinal plants in the search for effective and low-toxicity therapeutics for the prevention or treatment of osteoporosis has become a trending topic. OBJECTIVE In this study, we aim to prepare a controlled drug carrier system loaded with Gypsophila eriocalyx to determine its potential for anti-osteoporosis applications. METHODS Gypsophila eriocalyx extract (GEE) was prepared, and components were determined. The molecular interactions of the components with Cathepsin K (CatK), which is used as a target in drug development against osteoporosis, were revealed by in silico molecular docking and MD methods. ADMET profiles were also examined. GEE-loaded chitosan nanoparticles (CNPs) were synthesized. The nanoparticles' morphology, encapsulation efficiency, loading capacity, release profile, average size, polydispersity index, and zeta potentials were determined. The cytotoxic effects of GEE and GEE-loaded CNPs on the L929 and osteogenic proliferation profiles on human bone marrow stem cells (hBMC) were examined. RESULTS The MD analysis revealed no breaks or atomic changes in the dynamic system, and the docking analysis confirmed the continued interaction of identical residues. It was determined that the GEE-loaded CNP formulation was produced successfully, had no toxic effect on the L929, and had an osteogenic proliferation effect on hBMC. CONCLUSION In line with the in vitro and in silico results obtained, it was evaluated that GEE-loaded CNPs can be used as a controlled drug release system as a candidate formulation with phytotherapeutic properties for osteoporosis treatment.q1.
Collapse
Affiliation(s)
- Sibel Kaymak
- Graduate School of Natural and Applied Science, Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey
- Department of Traditional, Complementary and Integrative Medicine, Biotherapeutic Products Research and Development Program, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Ozan Baris Kurtur
- Graduate School of Natural and Applied Science, Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey
| | - Bahar Gok
- Graduate School of Natural and Applied Science, Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey
| | - Yasemin Budama-Kilinc
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey
| | - Serda Kecel-Gunduz
- Faculty of Science, Physics Department, Istanbul, Turkiye Istanbul University, Istanbul, Turkey
| | - Ebru Özdemir Nath
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Altınbaş University, Istanbul, Turkey
- Altınbaş University Natural Products Research and Development Center (DÜAGEM), Altınbaş University, Istanbul, Turkey
| | - Murat Kartal
- Faculty of Pharmacy, Pharmacognosy Department, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
8
|
Peppone LJ, Kleckner AS, Fung C, Puzas JE, Reschke JE, Culakova E, Inglis J, Kamen C, Friedberg JW, Janelsins M, Mustian K, Heckler CE, Mohile S. High-dose vitamin D to attenuate bone loss in patients with prostate cancer on androgen deprivation therapy: A phase 2 RCT. Cancer 2024; 130:2538-2551. [PMID: 38520382 PMCID: PMC11214601 DOI: 10.1002/cncr.35275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Androgen deprivation therapy (ADT) inhibits prostate cancer growth. However, ADT causes loss of bone mineral density (BMD) and an increase in fracture risk; effective interventions for ADT-induced bone loss are limited. METHODS A phase 2 randomized controlled trial investigated the feasibility, safety, and preliminary efficacy of high-dose weekly vitamin D (HDVD, 50,000 IU/week) versus placebo for 24 weeks in patients with prostate cancer receiving ADT, with all subjects receiving 600 IU/day vitamin D and 1000 mg/day calcium. Participants were ≥60 years (mean years, 67.7), had a serum 25-hydroxyvitamin D level <32 ng/mL, and initiated ADT within the previous 6 months. At baseline and after intervention, dual-energy x-ray absorptiometry was used to assess BMD, and levels of bone cell, bone formation, and resorption were measured. RESULTS The HDVD group (N = 29) lost 1.5% BMD at the total hip vs. 4.1% for the low-dose group (N = 30; p = .03) and 1.7% BMD at the femoral neck vs. 4.4% in the low-dose group (p = .06). Stratified analyses showed that, for those with baseline 25-hydroxyvitamin D level <27 ng/mL, the HDVD group lost 2.3% BMD at the total hip vs 7.1% for the low-dose group (p < .01). Those in the HDVD arm showed significant changes in parathyroid hormone (p < .01), osteoprotegerin (p < 0.01), N-terminal telopeptide of type 1 collagen (p < 0.01) and C-terminal telopeptide of type 1 collagen (p < 0.01). No difference in adverse events or toxicity was noted between the groups. CONCLUSIONS HDVD supplementation significantly reduced hip and femoral neck BMD loss, especially for patients with low baseline serum 25-hydroxyvitamin D levels, although demonstrating safety and feasibility in prostate cancer patients on ADT.
Collapse
Affiliation(s)
- Luke J. Peppone
- Department of Surgery, Division of Supportive Care in Cancer, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York, USA
| | | | - Chunkit Fung
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - J. Edward Puzas
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York, USA
| | - Jennifer E. Reschke
- Department of Surgery, Division of Supportive Care in Cancer, University of Rochester Medical Center, Rochester, New York, USA
| | - Eva Culakova
- Department of Surgery, Division of Supportive Care in Cancer, University of Rochester Medical Center, Rochester, New York, USA
| | - Julia Inglis
- School of Health Sciences, Liberty University, Charlottesville, Virginia, USA
| | - Charles Kamen
- Department of Surgery, Division of Supportive Care in Cancer, University of Rochester Medical Center, Rochester, New York, USA
| | - Jonathan W. Friedberg
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Michelle Janelsins
- Department of Surgery, Division of Supportive Care in Cancer, University of Rochester Medical Center, Rochester, New York, USA
| | - Karen Mustian
- Department of Surgery, Division of Supportive Care in Cancer, University of Rochester Medical Center, Rochester, New York, USA
| | - Charles E. Heckler
- Department of Surgery, Division of Supportive Care in Cancer, University of Rochester Medical Center, Rochester, New York, USA
| | - Supriya Mohile
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
9
|
Liu H, Wang Z, Li X, Zhao B, Li H, Han L, Yan J. CeO 2 Nanoparticle Bioactive Materials Promote MG-63 Osteogenic Differentiation and Antioxidant Activity Through NRF2 Signaling. Appl Biochem Biotechnol 2024; 196:4337-4351. [PMID: 37947945 DOI: 10.1007/s12010-023-04766-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
The incidence of bone-related diseases is higher in the elderly population, which greatly affects the patients' quality of life. Throughout this research, we synthesized a biocomposite nanomaterial of CeO2. The unique structural characteristics of CeO2 nanoparticles (CeO2 NPs) were studied by means of XRD, TEM, and SEM. Nanoparticles of an osteosarcoma cell line (MG-63) were assayed for ALP enzyme levels, key proteins in osteoblasts, and stained with Alizarin Red S to assess the physical properties, bioactivity, and calcium deposition of the osteosarcoma cell line. Moreover, we used H2O2 to construct an oxidative stress model to evaluate the antioxidant activity of CeO2 NPs. Experimental data showed that the CeO2 NPs increased the antioxidant capacity of MG-63 cells and significantly increased alkaline phosphatase activity, calcium deposition, and bone growth as manifested by increased expression of bone differentiation proteins BMP2, OCN, OPN, and type I collagen. Interestingly, RNA interference and functional recovery experiments confirmed that CeO2 NPs enhanced the antioxidant activity of MG-63 cells related to NRF2 signaling. In conclusion, the material is expected to be a potential treatment for bone-related diseases.
Collapse
Affiliation(s)
- Haijuan Liu
- Department of Endocrinology, Liaocheng People's Hospital, Clinical Hospital of Shandong First Medical University, Liaocheng, 252000, China
| | - Zidong Wang
- Department of Orthopaedic Surgery, Liaocheng People's Hospital, Clinical Hospital of Shandong First Medical University, Liaocheng, 252000, China
| | - Xian Li
- School of Clinical Medicine, Weifang Medical University, Weifang, 261053, China
| | - Bei Zhao
- Department of Orthopaedic Surgery, Liaocheng People's Hospital, Clinical Hospital of Shandong First Medical University, Liaocheng, 252000, China
| | - Hao Li
- Department of Orthopaedic Surgery, Liaocheng People's Hospital, Clinical Hospital of Shandong First Medical University, Liaocheng, 252000, China
| | - Liren Han
- Department of Orthopaedic Surgery, Liaocheng People's Hospital, Clinical Hospital of Shandong First Medical University, Liaocheng, 252000, China.
| | - Jun Yan
- Department of Orthopaedic Surgery, Liaocheng People's Hospital, Clinical Hospital of Shandong First Medical University, Liaocheng, 252000, China.
| |
Collapse
|
10
|
Pedersen LT, Miszkiewicz J, Cheah LC, Willis A, Domett KM. Age-dependent change and intraskeletal variability in secondary osteons of elderly Australians. J Anat 2024; 244:1078-1092. [PMID: 38238907 PMCID: PMC11095313 DOI: 10.1111/joa.14010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/30/2023] [Accepted: 01/08/2024] [Indexed: 05/16/2024] Open
Abstract
There is a need to fully understand intra-skeletal variability within different populations to develop and improve age-at-death estimation methods. This study evaluates age-related histomorphometric changes in three different bones intra-individually in a modern Australian sample. Four female and 13 male elderly Australian adult donors (67-93 years) were examined for osteon population density (OPD), osteon area (On.Ar), and Haversian canal area (H.Ar) of secondary osteons to compare between femora, ribs, and humeri and assess against age. In the pooled sex sample, no statistically significant correlations were observed between age and each histological variable. In the males, OPD of the femur increased significantly with age, as did porosity in the rib. In the male humeri, OPD increased moderately with age, while H.Ar was decreased moderately with age. Intra-bone comparisons showed that males had significantly higher osteon counts in their ribs compared to their femora, while their ribs showed statistically significantly less porosity than their humeri. When bone size was accounted for, by adjusting the femur and humerus histology data by robusticity indices, histology values were found to be similar between bones within the same individual. This is despite the upper and lower limbs receiving different ranges and types of biomechanical load. Our findings demonstrate that bone size influences histomorphometry, and this could confound age-at-death estimations that have not been adjusted for robusticity. Future studies would benefit from examining bone histomorphometry within a larger sample size and incorporating bone robusticity measures into histology analyses.
Collapse
Affiliation(s)
- Lucille T. Pedersen
- College of Medicine and DentistryJames Cook UniversityTownsvilleQueenslandAustralia
| | | | - Lit Chien Cheah
- Division of Tropical Environments and SocietiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Anna Willis
- College of Arts, Society and EducationJames Cook UniversityTownsvilleQueenslandAustralia
| | - Kate M. Domett
- College of Medicine and DentistryJames Cook UniversityTownsvilleQueenslandAustralia
| |
Collapse
|
11
|
Karaca MA, Kancagi DD, Ozbek U, Ovali E, Gok O. Betulin Stimulates Osteogenic Differentiation of Human Osteoblasts-Loaded Alginate-Gelatin Microbeads. Bioengineering (Basel) 2024; 11:553. [PMID: 38927789 PMCID: PMC11201098 DOI: 10.3390/bioengineering11060553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/06/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Osteoporosis, a terminal illness, has emerged as a global public health problem in recent years. The long-term use of bone anabolic drugs to treat osteoporosis causes multi-morbidity in elderly patients. Alternative therapies, such as allogenic and autogenic tissue grafts, face important issues, such as a limited source of allogenic grafts and tissue rejection in autogenic grafts. However, stem cell therapy has been shown to increase bone regeneration and decrease osteoporotic bone formation. Stem cell therapy combined with betulin (BET) supplementation might be adequate for bone remodeling and new bone tissue generation. In this study, the effect of BET on the viability and osteogenic differentiation of hFOB 1.19 cells was investigated. The cells were encapsulated in alginate-gelatin (AlGel) microbeads. In vitro tests were conducted during the 12 d of incubation. While BET showed cytotoxic activity (>1 µM) toward non-encapsulated hFOB 1.19 cells, encapsulated cells retained their functionality for up to 12 days, even at 5 µM BET. Moreover, the expression of osteogenic markers indicates an enhanced osteo-inductive effect of betulin on encapsulated hFOB 1.19, compared to the non-encapsulated cell culture. The 3D micro-environment of the AlGel microcapsules successfully protects the hFOB 1.19 cells against BET cytotoxicity, allowing BET to improve the mineralization and differentiation of osteoblast cells.
Collapse
Affiliation(s)
- Mehmet Ali Karaca
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey;
| | - Derya Dilek Kancagi
- Acibadem Labcell Cellular Therapy Laboratory, 34752 Istanbul, Turkey; (D.D.K.); (E.O.)
| | - Ugur Ozbek
- Medical Genetics Department, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey;
| | - Ercument Ovali
- Acibadem Labcell Cellular Therapy Laboratory, 34752 Istanbul, Turkey; (D.D.K.); (E.O.)
| | - Ozgul Gok
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
| |
Collapse
|
12
|
Zhang DJ, Chen R, Zhang YX, Li CC, Ning RN, Jiang M, Qiu WW. Synthesis of Heterocyclic Ring-Fused Bisnoralcohol Derivatives as Novel Small-Molecule Antiosteoporosis Agents. J Med Chem 2024; 67:8271-8295. [PMID: 38717088 DOI: 10.1021/acs.jmedchem.4c00349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
A series of heterocyclic ring-fused derivatives of bisnoralcohol (BA) were synthesized and evaluated for their inhibitory effects on RANKL-induced osteoclastogenesis. Most of these derivatives possessed potent antiosteoporosis activities in a dose-dependent manner. Among these compounds, 31 (SH442, IC50 = 0.052 μM) exhibited the highest potency, displaying 100% inhibition at 1.0 μM and 82.8% inhibition at an even lower concentration of 0.1 μM, which was much more potent than the lead compound BA (IC50 = 2.325 μM). Cytotoxicity tests suggested that the inhibitory effect of these compounds on RANKL-induced osteoclast differentiation did not result from their cytotoxicity. Mechanistic studies revealed that SH442 inhibited the expression of osteoclastogenesis-related marker genes and proteins, including TRAP, TRAF6, c-Fos, CTSK, and MMP9. Especially, SH442 could significantly attenuate bone loss of ovariectomy mouse in vivo. Therefore, these BA derivatives could be used as promising leads for the development of a new type of antiosteoporosis agent.
Collapse
Affiliation(s)
- De-Jie Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Rong Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yu-Xin Zhang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine,197 Ruijin second Road, Shanghai 200025, China
| | - Chen-Chen Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Ruo-Nan Ning
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine,197 Ruijin second Road, Shanghai 200025, China
| | - Min Jiang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine,197 Ruijin second Road, Shanghai 200025, China
| | - Wen-Wei Qiu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
13
|
Zhou Y, Zhang Y, Qian Y, Tang L, Zhou T, Xie Y, Hu L, Ma C, Dong Q, Sun P. Ziyuglycoside II attenuated OVX mice bone loss via inflammatory responses and regulation of gut microbiota and SCFAs. Int Immunopharmacol 2024; 132:112027. [PMID: 38603860 DOI: 10.1016/j.intimp.2024.112027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND AND PURPOSE Osteoporosis (OP) is a frequent clinical problem for the elderly. Traditional Chinese Medicine (TCM) has achieved beneficial results in the treatment of OP. Ziyuglycoside II (ZGS II) is a major active compound of Sanguisorba officinalis L. that has shown anti-inflammation and antioxidation properties, but little information concerning its anti-OP potential is available. Our research aims to investigate the mechanism of ZGS II in ameliorating bone loss by inflammatory responses and regulation of gut microbiota and short chain fatty acids (SCFAs) in ovariectomized (OVX) mice. METHODS We predicted the mode of ZGS II action on OP through network pharmacology and molecular docking, and an OVX mouse model was employed to validate its anti-OP efficacy. Then we analyzed its impact on bone microstructure, the levels of inflammatory cytokines and pain mediators in serum, inflammation in colon, intestinal barrier, gut microbiota composition and SCFAs in feces. RESULTS Network pharmacology identified 55 intersecting targets of ZGS II related to OP. Of these, we predicted IGF1 may be the core target, which was successfully docked with ZGS II and showed excellent binding ability. Our in vivo results showed that ZGS II alleviated bone loss in OVX mice, attenuated systemic inflammation, enhanced intestinal barrier, reduced the pain threshold, modulated the abundance of gut microbiota involving norank_f__Muribaculaceae and Dubosiella, and increased the content of acetic acid and propanoic acid in SCFAs. CONCLUSIONS Our data indicated that ZGS II attenuated bone loss in OVX mice by relieving inflammation and regulating gut microbiota and SCFAs.
Collapse
Affiliation(s)
- Yilin Zhou
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, China
| | - Yingtong Zhang
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, China
| | - Yafei Qian
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, China
| | - Lin Tang
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, China
| | - Tianyu Zhou
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, China
| | - Youhong Xie
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, China
| | - Li Hu
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, China
| | - Chenghong Ma
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, China
| | - Qunwei Dong
- Department of Orthopedics, Yunfu Hospital of Traditional Chinese Medicine, Yunfu, Guangdong 527300, China.
| | - Ping Sun
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, China.
| |
Collapse
|
14
|
Yang M, Gao Z, Cheng S, Wang Z, Ei-Seedi H, Du M. Novel Peptide Derived from Gadus morhua Stimulates Osteoblastic Differentiation and Mineralization through Wnt/β-Catenin and BMP Signaling Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9691-9702. [PMID: 38639219 DOI: 10.1021/acs.jafc.3c06700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Marine biodiversity offers a wide array of active ingredient resources. Gadus morhua peptides (GMPs) showed excellent osteoprotective effects in ovariectomized mice. However, the potential osteogenesis mechanisms of key osteogenic peptides in GMP were seldom reported. In this study, a novel osteogenic peptide (GETNPADSKPGSIR, P-GM-2) was screened from GMP. P-GM-2 has a high stability coefficient and a strong interaction with epidermal growth factor receptor. Cell culture experiments showed that P-GM-2 stimulated the expression of osteogenic differentiation markers to promote osteoblast proliferation, differentiation, and mineralization. Additionally, P-GM-2 phosphorylates GSK-3β, leading to the stabilization of β-catenin and its translocation to the nucleus, thus initiating the activation of the Wnt/β-catenin signaling pathway. Meanwhile, P-GM-2 could also regulate the osteogenic differentiation of preosteoblasts by triggering the BMP/Smad and mitogen-activated protein kinase signaling pathways. Further validation with specific inhibitors (ICG001 and Noggin) demonstrated that the osteogenic activity of P-GM-2 was revealed by the activation of the BMP and Wnt/β-catenin pathways. In summary, these results provide theoretical and practical insights into P-GM-2 as an effective antiosteoporosis active ingredient.
Collapse
Affiliation(s)
- Meilian Yang
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China
| | - Zengli Gao
- Inner Mongolia Enterprise Key Laboratory of Dairy Nutrition, Health & Safety, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Huhhot 011500, P. R. China
| | - Shuzhen Cheng
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China
| | - Zhenyu Wang
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China
| | - Hesham Ei-Seedi
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala Biomedical Center, Uppsala University, Uppsala 75 123, Sweden
| | - Ming Du
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
15
|
Parwez S, Chaurasia A, Mahapatra PP, Ahmed S, Siddiqi MI. Integrated machine learning-based virtual screening and biological evaluation for identification of potential inhibitors against cathepsin K. Mol Divers 2024:10.1007/s11030-024-10845-5. [PMID: 38662177 DOI: 10.1007/s11030-024-10845-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/11/2024] [Indexed: 04/26/2024]
Abstract
Cathepsin K is a type of cysteine proteinase that is primarily expressed in osteoclasts and has a key role in the breakdown of bone matrix protein during bone resorption. Many studies suggest that the deficiency of cathepsin K is concomitant with a suppression of osteoclast functioning, therefore rendering the resorptive properties of cathepsin K the most prominent target for osteoporosis. This innovative work has identified a novel anti-osteoporotic agent against Cathepsin K by using a comparison of machine learning and deep learning-based virtual screening followed by their biological evaluation. Out of ten shortlisted compounds, five of the compounds (JFD02945, JFD02944, RJC01981, KM08968 and SB01934) exhibit more than 50% inhibition of the Cathepsin K activity at 0.1 μM concentration and are considered to have a promising inhibitory effect against Cathepsin K. The comprehensive docking, MD simulation, and MM/PBSA investigations affirm the stable and effective interaction of these compounds with Cathepsin K to inhibit its function. Furthermore, the compounds RJC01981, KM08968 and SB01934 are represented to have promising anti-osteoporotic properties for the management of osteoporosis owing to their significantly well predicted ADMET properties.
Collapse
Affiliation(s)
- Shahid Parwez
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Animesh Chaurasia
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pinaki Parsad Mahapatra
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shakil Ahmed
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohammad Imran Siddiqi
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
16
|
Hong S, Lazerka N, Jeon BJ, Kim JD, Erdenebileg S, Nho CW, Yoo G. Osteogenic Effects of the Diospyros lotus L. Leaf Extract on MC3T3-E1 Pre-Osteoblasts and Ovariectomized Mice via BMP2/4 and TGF β Pathways. Nutrients 2024; 16:1247. [PMID: 38674937 PMCID: PMC11053699 DOI: 10.3390/nu16081247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Osteoporosis, a disease defined by the primary bone strength due to a low bone mineral density, is a bone disorder associated with increased mortality in the older adult population. Osteoporosis is mainly treated via hormone replacement therapy, bisphosphates, and anti-bone resorption agents. However, these agents exert severe side effects, necessitating the development of novel therapeutic agents. Many studies are focusing on osteogenic agents as they increase the bone density, which is essential for osteoporosis treatment. Here, we aimed to investigate the effects of Diospyros lotus L. leaf extract (DLE) and its components on osteoporosis in MC3T3-E1 pre-osteoblasts and ovariectomized mice and to elucidate the underlying related pathways. DLE enhanced the differentiation of MC3T3-E1 pre-osteoblasts, with a 1.5-fold elevation in ALP activity, and increased the levels of osteogenic molecules, RUNX family transcription factor 2, and osterix. This alteration resulted from the activation of bone morphogenic protein 2/4 (BMP2/4) and transformation of growth factor β (TGF β) pathways. In ovariectomized mice, DLE suppressed the decrease in bone mineral density by 50% and improved the expression of other bone markers, which was confirmed by the 3~40-fold increase in osteogenic proteins and mRNA expression levels in bone marrow cells. The three major compounds identified in DLE exhibited osteogenic and estrogenic activities with their aglycones, as previously reported. Among the major compounds, myricitrin alone was not as strong as whole DLE with all its constituents. The osteogenic activity of DLE was partially suppressed by the inhibitor of estrogen signaling, indicating that the estrogenic activity of DLE participated in its osteogenic activity. Overall, DLE suppresses osteoporosis by inducing osteoblast differentiation.
Collapse
Affiliation(s)
- Soyeon Hong
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (S.H.); (N.L.); (B.J.J.); (J.D.K.); (S.E.); (C.W.N.)
| | - Nadzeya Lazerka
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (S.H.); (N.L.); (B.J.J.); (J.D.K.); (S.E.); (C.W.N.)
- Division of Natural Product Applied Science, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Byeong Jun Jeon
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (S.H.); (N.L.); (B.J.J.); (J.D.K.); (S.E.); (C.W.N.)
| | - Jeong Do Kim
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (S.H.); (N.L.); (B.J.J.); (J.D.K.); (S.E.); (C.W.N.)
| | - Saruul Erdenebileg
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (S.H.); (N.L.); (B.J.J.); (J.D.K.); (S.E.); (C.W.N.)
- Division of Natural Product Applied Science, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Chu Won Nho
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (S.H.); (N.L.); (B.J.J.); (J.D.K.); (S.E.); (C.W.N.)
- Division of Natural Product Applied Science, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Gyhye Yoo
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (S.H.); (N.L.); (B.J.J.); (J.D.K.); (S.E.); (C.W.N.)
- Division of Natural Product Applied Science, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| |
Collapse
|
17
|
Chen G, Wang S, Wei R, Liu Y, Xu T, Liu Z, Tan Z, Xie Y, Yang D, Liang Z, Zhuang Y, Peng S. Circular RNA circ-3626 promotes bone formation by modulating the miR-338-3p/Runx2 axis. Joint Bone Spine 2024; 91:105669. [PMID: 38042362 DOI: 10.1016/j.jbspin.2023.105669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/11/2023] [Accepted: 11/09/2023] [Indexed: 12/04/2023]
Abstract
OBJECTIVE Disorders of bone homeostasis are the key factors leading to metabolic bone disease, such as senile osteoporosis, which is characterized by age-related bone loss. Bone marrow stromal cells (BMSCs) possess high osteogenic capacity which has been regarded as a practical approach to preventing bone loss. Previous studies have shown that the osteogenic differentiation ability of BMSCs is significantly decreased in senile osteoporosis. Recently, circular RNAs (circRNAs) have been regarded as critical regulators in controlling the osteogenic differentiation of BMSCs by sponging microRNAs (miRNAs). Our study aimed to discover new and critical osteogenesis-related circRNAs that can promote bone formation in senile osteoporosis. METHODS We detected the dysregulated circRNAs of BMSCs upon osteogenic differentiation induction and identified the critical osteogenic circRNA (circ-3626). The relationship between circ-3626 and osteoporosis was further verified in clinical bone samples and aged mice by qPCR. Moreover, circ-3626 AAV was constructed to examine the osteogenic effect of circ-3626 on bone formation via using Micro-CT, double calcein labeling, and the three-point bending tests. Bioinformatics analysis, Luciferase report gene assays, FISH, RNA pull-down, qPCR, Western Blots, and alizarin red staining assay explore the effects and mechanisms of circ-3626 on osteogenic differentiation of BMSCs. RESULTS Circ-3626 was identified as a pivotal osteogenesis-related circRNA via RNA sequencing. The results of alizarin red staining, Western blots, and qPCR assays suggest that overexpressing circ-3626 dramatically accelerates the osteogenic capability of BMSCs. Furthermore, the bone repair capability of aging mice could be significantly improved by circ-3626 AAV treatment. Micro RNA miR-338-3p was identified as the downstream target of circ-3626. Overexpression of circ-3626 increases the expression of Runx2 by sponging miR-338-3p, thereby promoting the osteogenic differentiation of BMSCs by upregulating the expression of osteogenic genes. In addition, Western blots, and qPCR assays suggest circ-3626 AAV treatment promote the expression of Runx2 and osteogenic marker genes. CONCLUSION Thus, we demonstrate that circ-3626 plays a pivotal role in promoting bone formation through the miR-338-3p/Runx2 axis and may provide new strategies for preventing and treating the bone loss of senile osteoporosis.
Collapse
Affiliation(s)
- Gaoyang Chen
- Division of Hand, Foot and Microvascular Surgery, Department of Orthopedic Surgery, Shenzhen People's Hospital (the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology), 518020 Shenzhen, China; Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration (ZDSYS20200811143752005), Shenzhen Institute for Orthopedic Research, 518020 Shenzhen, China.
| | - Song Wang
- Division of Spine Surgery, Department of Orthopedic Surgery, Shenzhen People's Hospital (the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology), 518020 Shenzhen, China; Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration (ZDSYS20200811143752005), Shenzhen Institute for Orthopedic Research, 518020 Shenzhen, China
| | - Ruihong Wei
- Division of Hand, Foot and Microvascular Surgery, Department of Orthopedic Surgery, Shenzhen People's Hospital (the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology), 518020 Shenzhen, China; Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration (ZDSYS20200811143752005), Shenzhen Institute for Orthopedic Research, 518020 Shenzhen, China
| | - Yingnan Liu
- Division of Hand, Foot and Microvascular Surgery, Department of Orthopedic Surgery, Shenzhen People's Hospital (the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology), 518020 Shenzhen, China; Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration (ZDSYS20200811143752005), Shenzhen Institute for Orthopedic Research, 518020 Shenzhen, China
| | - Tao Xu
- Division of Hand, Foot and Microvascular Surgery, Department of Orthopedic Surgery, Shenzhen People's Hospital (the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology), 518020 Shenzhen, China; Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration (ZDSYS20200811143752005), Shenzhen Institute for Orthopedic Research, 518020 Shenzhen, China
| | - Zhaokang Liu
- Division of Hand, Foot and Microvascular Surgery, Department of Orthopedic Surgery, Shenzhen People's Hospital (the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology), 518020 Shenzhen, China; Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration (ZDSYS20200811143752005), Shenzhen Institute for Orthopedic Research, 518020 Shenzhen, China
| | - Zhouyong Tan
- Division of Hand, Foot and Microvascular Surgery, Department of Orthopedic Surgery, Shenzhen People's Hospital (the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology), 518020 Shenzhen, China; Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration (ZDSYS20200811143752005), Shenzhen Institute for Orthopedic Research, 518020 Shenzhen, China
| | - Yongheng Xie
- Division of Spine Surgery, Department of Orthopedic Surgery, Shenzhen People's Hospital (the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology), 518020 Shenzhen, China; Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration (ZDSYS20200811143752005), Shenzhen Institute for Orthopedic Research, 518020 Shenzhen, China
| | - Dazhi Yang
- Division of Spine Surgery, Department of Orthopedic Surgery, Shenzhen People's Hospital (the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology), 518020 Shenzhen, China; Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration (ZDSYS20200811143752005), Shenzhen Institute for Orthopedic Research, 518020 Shenzhen, China
| | - Zhen Liang
- Department of Geriatrics, Shenzhen People's Hospital (the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology), 518020 Shenzhen, China
| | - Yongqing Zhuang
- Division of Hand, Foot and Microvascular Surgery, Department of Orthopedic Surgery, Shenzhen People's Hospital (the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology), 518020 Shenzhen, China; Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration (ZDSYS20200811143752005), Shenzhen Institute for Orthopedic Research, 518020 Shenzhen, China.
| | - Songlin Peng
- Division of Spine Surgery, Department of Orthopedic Surgery, Shenzhen People's Hospital (the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology), 518020 Shenzhen, China; Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration (ZDSYS20200811143752005), Shenzhen Institute for Orthopedic Research, 518020 Shenzhen, China.
| |
Collapse
|
18
|
Contino KF, Cook KL, Shiozawa Y. Bones and guts - Why the microbiome matters. J Bone Oncol 2024; 44:100523. [PMID: 38274305 PMCID: PMC10808965 DOI: 10.1016/j.jbo.2024.100523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/27/2024] Open
Abstract
The importance of the gut microbiota in human health has become increasingly apparent in recent years, especially when the relationship between microbiota and host is no longer symbiotic. It has long been appreciated that gut dysbiosis can be detrimental to human health and is associated with numerous disease states. Only within the last decade, however, was the gut microbiota implicated in bone biology. Dubbed osteomicrobiology, this emerging field aims to understand the relationship between the gut microbiome and the bone microenvironment in both health and disease. Importantly, the key to one of the major clinical challenges facing both bone and cancer biologists: bone metastasis, may lie in the field of osteomicrobiology; however the link between gut bacteria and bone metastasis is only beginning to be explored. This review will discuss (i) osteomicrobiology as an emerging field, and (ii) the current understanding of osteomicrobiology in the context of cancer in bone.
Collapse
Affiliation(s)
- Kelly F. Contino
- Department of Cancer Biology, Wake Forest University School of Medicine, and Atrium Health Wake Forest Baptist Comprehensive Cancer, Winston-Salem, NC, USA
| | - Katherine L. Cook
- Department of Cancer Biology, Wake Forest University School of Medicine, and Atrium Health Wake Forest Baptist Comprehensive Cancer, Winston-Salem, NC, USA
| | - Yusuke Shiozawa
- Department of Cancer Biology, Wake Forest University School of Medicine, and Atrium Health Wake Forest Baptist Comprehensive Cancer, Winston-Salem, NC, USA
| |
Collapse
|
19
|
Lu W, Qi G, Yang X, Li D, Chen W, Zeng Q, Jiang Z. Farrerol suppresses osteoclast differentiation and postmenopausal osteoporosis by inhibiting the nuclear factor kappa B signaling pathway. J Pharmacol Sci 2024; 154:113-126. [PMID: 38246725 DOI: 10.1016/j.jphs.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/06/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Excessive bone resorption caused by upregulated osteoclast activity is a key factor in osteoporosis pathogenesis. Farrerol is a typical natural flavanone and exhibits various pharmacological actions. However, the role and mechanism of action of farrerol in osteoclast differentiation regulation remain unclear. This study aimed to evaluate the effects and mechanism of farrerol on the inhibition of osteoclastogenesis. Tartrate-resistant acid phosphatase staining, F-actin staining, and the pit formation assay were performed to examine the differentiation and functions of osteoclasts in vitro. The expression of proteins associated with the nuclear factor kappa B and mitogen-activated protein kinase signaling pathways was analyzed by western blotting. Dual X-ray absorptiometry, microcomputed tomography, and histopathological and immunohistochemical analyses were performed to determine the therapeutic effect of farrerol in vivo bone loss prevention. The effects of farrerol on osteoblastic bone formation were assessed using alkaline phosphatase, alizarin red S staining, and calcein-alizarin red S double labeling. Farrerol inhibited osteoclastogenesis and bone resorption in osteoclasts by suppressing nuclear factor kappa B signaling rather than mitogen-activated protein kinase signaling in vitro. Farrerol protected mice against ovariectomy-induced bone loss by inhibiting osteoclast-mediated bone resorption, instead of promoting osteoblast-mediated bone formation in vivo. The findings of the current study revealed that farrerol is a potential therapeutic agent for osteoporosis.
Collapse
Affiliation(s)
- Wei Lu
- Department of Orthopedic Surgery, SHANGHAI TCM-INTEGRATED Hospital Shanghai University of TCM, Shanghai, PR China
| | - Guobin Qi
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai, PR China
| | - Xiuying Yang
- Department of Radiology, Fudan University Jinshan Hospital, Shanghai, PR China
| | - Defang Li
- Department of Orthopedic Surgery, Fudan University Jinshan Hospital, Shanghai, PR China
| | - Weibin Chen
- Department of Orthopedic Surgery, Fudan University Jinshan Hospital, Shanghai, PR China
| | - Qingmin Zeng
- Department of Orthopedic Surgery, Fudan University Jinshan Hospital, Shanghai, PR China.
| | - Zengxin Jiang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai, PR China.
| |
Collapse
|
20
|
Tan Y, Luo B, Sheng Z. Knowledge of osteoporosis prevention among people with endocrine disorders: A cross-sectional study. Nurs Health Sci 2023. [PMID: 38151333 DOI: 10.1111/nhs.13074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 12/29/2023]
Abstract
People with endocrine disorders are at an increased risk of osteoporosis, yet their knowledge of osteoporosis prevention is rarely studied. This study aimed to assess the knowledge related to osteoporosis prevention and its associated factors among people with endocrine disorders in China. A cross-sectional study was conducted in a Chinese hospital's Department of Metabolism and Endocrinology. A total of 562 people with endocrine disorders completed the Chinese version of the Osteoporosis Prevention and Awareness Tool to assess their knowledge of osteoporosis prevention. Results showed that participants had a mean knowledge of 59.36 ± 23.90 out of 100, with only 52.1% scoring above 60 points. Being female, having higher education, with comorbidities, with a recent osteoporosis diagnosis, and having received health education related to osteoporosis prevention were associated with higher knowledge of osteoporosis prevention. Our study indicates that more efforts are needed to improve the knowledge related to osteoporosis prevention among people with endocrine disorders. This may be realized by strengthening and expanding diverse education, focusing on males and those with lower education and without comorbidities.
Collapse
Affiliation(s)
- Yaqiong Tan
- Clinical Nursing Teaching and Research Section, the Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Bihua Luo
- Clinical Nursing Teaching and Research Section, the Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhifeng Sheng
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, the Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
21
|
Carletti A, Gavaia PJ, Cancela ML, Laizé V. Metabolic bone disorders and the promise of marine osteoactive compounds. Cell Mol Life Sci 2023; 81:11. [PMID: 38117357 PMCID: PMC10733242 DOI: 10.1007/s00018-023-05033-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/12/2023] [Accepted: 11/05/2023] [Indexed: 12/21/2023]
Abstract
Metabolic bone disorders and associated fragility fractures are major causes of disability and mortality worldwide and place an important financial burden on the global health systems. These disorders result from an unbalance between bone anabolic and resorptive processes and are characterized by different pathophysiological mechanisms. Drugs are available to treat bone metabolic pathologies, but they are either poorly effective or associated with undesired side effects that limit their use. The molecular mechanism underlying the most common metabolic bone disorders, and the availability, efficacy, and limitations of therapeutic options currently available are discussed here. A source for the unmet need of novel drugs to treat metabolic bone disorders is marine organisms, which produce natural osteoactive compounds of high pharmaceutical potential. In this review, we have inventoried the marine osteoactive compounds (MOCs) currently identified and spotted the groups of marine organisms with potential for MOC production. Finally, we briefly examine the availability of in vivo screening and validation tools for the study of MOCs.
Collapse
Affiliation(s)
- Alessio Carletti
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Paulo Jorge Gavaia
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- Associação Oceano Verde (GreenCoLab), Faro, Portugal
| | - Maria Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal.
- Collaborative Laboratory for Sustainable and Smart Aquaculture (S2AQUAcoLAB), Olhão, Portugal.
| |
Collapse
|
22
|
Prabhakaran V, Melchels FP, Murray LM, Paxton JZ. Engineering three-dimensional bone macro-tissues by guided fusion of cell spheroids. Front Endocrinol (Lausanne) 2023; 14:1308604. [PMID: 38169965 PMCID: PMC10758461 DOI: 10.3389/fendo.2023.1308604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction Bioassembly techniques for the application of scaffold-free tissue engineering approaches have evolved in recent years toward producing larger tissue equivalents that structurally and functionally mimic native tissues. This study aims to upscale a 3-dimensional bone in-vitro model through bioassembly of differentiated rat osteoblast (dROb) spheroids with the potential to develop and mature into a bone macrotissue. Methods dROb spheroids in control and mineralization media at different seeding densities (1 × 104, 5 × 104, and 1 × 105 cells) were assessed for cell proliferation and viability by trypan blue staining, for necrotic core by hematoxylin and eosin staining, and for extracellular calcium by Alizarin red and Von Kossa staining. Then, a novel approach was developed to bioassemble dROb spheroids in pillar array supports using a customized bioassembly system. Pillar array supports were custom-designed and printed using Formlabs Clear Resin® by Formlabs Form2 printer. These supports were used as temporary frameworks for spheroid bioassembly until fusion occurred. Supports were then removed to allow scaffold-free growth and maturation of fused spheroids. Morphological and molecular analyses were performed to understand their structural and functional aspects. Results Spheroids of all seeding densities proliferated till day 14, and mineralization began with the cessation of proliferation. Necrotic core size increased over time with increased spheroid size. After the bioassembly of spheroids, the morphological assessment revealed the fusion of spheroids over time into a single macrotissue of more than 2.5 mm in size with mineral formation. Molecular assessment at different time points revealed osteogenic maturation based on the presence of osteocalcin, downregulation of Runx2 (p < 0.001), and upregulated alkaline phosphatase (p < 0.01). Discussion With the novel bioassembly approach used here, 3D bone macrotissues were successfully fabricated which mimicked physiological osteogenesis both morphologically and molecularly. This biofabrication approach has potential applications in bone tissue engineering, contributing to research related to osteoporosis and other recurrent bone ailments.
Collapse
Affiliation(s)
- Vinothini Prabhakaran
- Anatomy@Edinburgh, Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Ferry P.W. Melchels
- School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
- Future Industries Institute, University of South Australia, Adelaide, SA, Australia
| | - Lyndsay M. Murray
- Anatomy@Edinburgh, Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
- Euan McDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Jennifer Z. Paxton
- Anatomy@Edinburgh, Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
23
|
Fukaura S, Iwasaki Y. Effect of phosphodiester composition in polyphosphoesters on the inhibition of osteoclastic differentiation of murine bone marrow mononuclear cells. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2319-2331. [PMID: 37530459 DOI: 10.1080/09205063.2023.2244737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/03/2023]
Abstract
Osteoporosis is a common bone disorder characterized by reduced bone density and increased risk of fractures. The modulation of bone cell functions, particularly the inhibition of osteoclastic differentiation, plays a crucial role in osteoporosis treatment. Polyphosphoesters (PPEs) have shown the potential in reducing the function of osteoclast cells, but the effect of their chemical structure on osteoclastic differentiation remains largely unexplored. In this study, we evaluated the effect of PPE's chemical structure on the inhibition of osteoclastic differentiation of murine bone marrow mononuclear cells (BMNCs). PPEs containing phosphotriester and phosphodiester units at varying compositions were synthesized. Cytotoxicity testing confirmed the biocompatibility of the copolymers at concentrations below 0.5 mg/mL. Isolated from long bones, BMNCs were cultured in a differentiation medium supplemented with different PPE concentrations. Osteoclast formation was assessed through tartrate-resistant acid phosphatase and phalloidin staining. A significant decrease in the size of osteoclast cells formed upon BMNC contact with PPEs was observed, with a more pronounced effect observed at higher PPE concentrations. In addition, an increased composition of phosphodiester units in the PPEs yielded a decreased density of differentiated osteoclasts. Furthermore, real-time PCR analysis of major osteoclastic markers provided gene expression data that correlated with microscopic observations, confirming the effect of phosphodiester units in suppressing osteoclast differentiation of BMNCs from the early stages. These findings highlight the potential of PPEs as polymers are capable of modulating bone cell functions through their chemical structures.
Collapse
Affiliation(s)
- Sota Fukaura
- Graduate School of Science and Technology, Kansai University, Osaka, Japan
| | - Yasuhiko Iwasaki
- Department of Chemistry and Materials Engineering, Kansai University, Osaka, Japan
- ORDIST, Kansai University, Osaka, Japan
| |
Collapse
|
24
|
Gan Z, Huang J, Xu M, Yuan X, Shang X, Chen X, Chen K. Micheliolide prevents estrogen deficiency-induced bone loss via inhibiting osteoclast bone resorption. Aging (Albany NY) 2023; 15:10732-10745. [PMID: 37827691 PMCID: PMC10599737 DOI: 10.18632/aging.205111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023]
Abstract
Osteoporosis is one of the major health problems characterized by decreased bone density and increased risk of fractures. Nowadays, the treating strategies against osteoporosis are efficient, but still have some drawbacks. Micheliolide, a guaianolide sesquiterpene lactone isolated from Michelia compressa and Michelia champac, has been reported to have anti-inflammatory effects. Here, our data suggest that Micheliolide could protect mice from ovariectomy induced bone loss. According to the Micro-CT scan and histomorphometry quantification data, Micheliolide treatment inhibits excessive osteoclast bone resorption without affecting bone formation in estrogen deficiency mice. Consistently, our data suggest that Micheliolide could inhibit osteoclastogenesis in vitro. Additionally, we confirmed that Micheliolide inhibits osteoclasts formation via inhibiting P38 MAPK signaling pathway, and P79350 (a P38 agonist) could rescue this effect. In summary, our data suggest that Micheliolide could ameliorate estrogen deficiency-induced bone loss via attenuating osteoclastogenesis. Hence, Micheliolide could be used as a novel anti-resorptive agent against osteoporosis.
Collapse
Affiliation(s)
- Ziyang Gan
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Junming Huang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi, China
| | - Mingyou Xu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Xingshi Yuan
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Xifu Shang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Xi Chen
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Kun Chen
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| |
Collapse
|
25
|
Kang M, Lee DM, Hyun I, Rubab N, Kim SH, Kim SW. Advances in Bioresorbable Triboelectric Nanogenerators. Chem Rev 2023; 123:11559-11618. [PMID: 37756249 PMCID: PMC10571046 DOI: 10.1021/acs.chemrev.3c00301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Indexed: 09/29/2023]
Abstract
With the growing demand for next-generation health care, the integration of electronic components into implantable medical devices (IMDs) has become a vital factor in achieving sophisticated healthcare functionalities such as electrophysiological monitoring and electroceuticals worldwide. However, these devices confront technological challenges concerning a noninvasive power supply and biosafe device removal. Addressing these challenges is crucial to ensure continuous operation and patient comfort and minimize the physical and economic burden on the patient and the healthcare system. This Review highlights the promising capabilities of bioresorbable triboelectric nanogenerators (B-TENGs) as temporary self-clearing power sources and self-powered IMDs. First, we present an overview of and progress in bioresorbable triboelectric energy harvesting devices, focusing on their working principles, materials development, and biodegradation mechanisms. Next, we examine the current state of on-demand transient implants and their biomedical applications. Finally, we address the current challenges and future perspectives of B-TENGs, aimed at expanding their technological scope and developing innovative solutions. This Review discusses advancements in materials science, chemistry, and microfabrication that can advance the scope of energy solutions available for IMDs. These innovations can potentially change the current health paradigm, contribute to enhanced longevity, and reshape the healthcare landscape soon.
Collapse
Affiliation(s)
- Minki Kang
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - Dong-Min Lee
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - Inah Hyun
- Department
of Materials Science and Engineering, Center for Human-oriented Triboelectric
Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| | - Najaf Rubab
- Department
of Materials Science and Engineering, Gachon
University, Seongnam 13120, Republic
of Korea
| | - So-Hee Kim
- Department
of Materials Science and Engineering, Center for Human-oriented Triboelectric
Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| | - Sang-Woo Kim
- Department
of Materials Science and Engineering, Center for Human-oriented Triboelectric
Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
26
|
Son TH, Kim SH, Shin HL, Kim D, Huh JS, Ryoo R, Choi Y, Choi SW. Inhibition of Osteoclast Differentiation and Promotion of Osteogenic Formation by Wolfiporia extensa Mycelium. J Microbiol Biotechnol 2023; 33:1197-1205. [PMID: 37317624 PMCID: PMC10580891 DOI: 10.4014/jmb.2304.04048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
Osteoporosis, Greek for "porous bone," is a bone disease characterized by a decrease in bone strength, microarchitectural changes in the bone tissues, and an increased risk of fracture. An imbalance of bone resorption and bone formation may lead to chronic metabolic diseases such as osteoporosis. Wolfiporia extensa, known as "Bokryung" in Korea, is a fungus belonging to the family Polyporaceae and has been used as a therapeutic food against various diseases. Medicinal mushrooms, mycelium and fungi, possess approximately 130 medicinal functions, including antitumor, immunomodulating, antibacterial, hepatoprotective, and antidiabetic effects, and are therefore used to improve human health. In this study, we used osteoclast and osteoblast cell cultures treated with Wolfiporia extensa mycelium water extract (WEMWE) and investigated the effect of the fungus on bone homeostasis. Subsequently, we assessed its capacity to modulate both osteoblast and osteoclast differentiation by performing osteogenic and anti-osteoclastogenic activity assays. We observed that WEMWE increased BMP-2-stimulated osteogenesis by inducing Smad-Runx2 signal pathway axis. In addition, we found that WEMWE decreased RANKL-induced osteoclastogenesis by blocking c-Fos/NFATc1 via the inhibition of ERK and JNK phosphorylation. Our results show that WEMWE can prevent and treat bone metabolic diseases, including osteoporosis, by a biphasic activity that sustains bone homeostasis. Therefore, we suggest that WEMWE can be used as a preventive and therapeutic drug.
Collapse
Affiliation(s)
- Tae Hyun Son
- School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Jinju 52817, Republic of Korea
| | - Shin-Hye Kim
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Jinju 52817, Republic of Korea
| | - Hye-Lim Shin
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Jinju 52817, Republic of Korea
| | - Dongsoo Kim
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Jinju 52817, Republic of Korea
| | - Jin-Sung Huh
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Jinju 52817, Republic of Korea
| | - Rhim Ryoo
- Forest Microbiology Division, Department of Forest Bio-Resources, NIFoS, Suwon 16631, Republic of Korea
| | - Yongseok Choi
- School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sik-Won Choi
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Jinju 52817, Republic of Korea
| |
Collapse
|
27
|
Lee DW, Kim KM, Park S, An SH, Lim YJ, Jang WG. Eucalyptol induces osteoblast differentiation through ERK phosphorylation in vitro and in vivo. J Mol Med (Berl) 2023; 101:1083-1095. [PMID: 37470800 DOI: 10.1007/s00109-023-02348-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/21/2023]
Abstract
Eucalyptol (EU) is monoterpene oxide that is the main component of the essential oil extracted from aromatic plants such as Eucalyptus globules. EU has therapeutic effects such as antibacterial, anti-inflammatory and antioxidant in chronic diseases including inflammation disorder, respiratory disease, and diabetic disease. However, the effects of EU on osteoblast differentiation and bone diseases such as osteoporosis have not been studied. The present study investigated the effects of EU on osteoblast differentiation and bone formation. EU induces mRNA and protein expression of osteogenic genes in osteoblast cell line MC3T3-E1 and primary calvarial osteoblasts. EU also promoted alkaline phosphatase (ALP) activity and mineralization. Here, the osteoblast differentiation effect of EU is completely reversed by ERK inhibitor. These results demonstrate that osteoblast differentiation effect of EU is mediated by ERK phosphorylation. The efficacy of EU on bone formation was investigated using surgical bone loss-induced animal models. EU dose-dependently promoted bone regeneration in zebrafish caudal fin rays. In the case of ovariectomized mice, EU increased ERK phosphorylation and ameliorated bone loss of femurs. These results indicate that EU ameliorates bone loss by promoting osteoblast differentiation through ERK phosphorylation. We suggest that EU, plant-derived monoterpenoid, may be useful for preventing bone loss. KEY MESSAGES: Eucalyptol (EU) increases osteoblast differentiation in pre-osteoblasts. EU up-regulates the osteogenic genes expression via ERK phosphorylation. EU promotes bone regeneration in partially amputated zebrafish fin rays. Oral administration of EU improves ovariectomy-induced bone loss and increases ERK phosphorylation.
Collapse
Affiliation(s)
- Do-Won Lee
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk, 38453, Republic of Korea
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, 41061, Republic of Korea
- Research Institute of Anti-Aging, Daegu University, Gyeongbuk, 38453, Republic of Korea
| | - Kyeong-Min Kim
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk, 38453, Republic of Korea
- Research Institute of Anti-Aging, Daegu University, Gyeongbuk, 38453, Republic of Korea
| | - Seulki Park
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, 41061, Republic of Korea
| | - Sang-Hyun An
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, 41061, Republic of Korea
| | - Young-Ju Lim
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk, 38453, Republic of Korea
- Research Institute of Anti-Aging, Daegu University, Gyeongbuk, 38453, Republic of Korea
| | - Won-Gu Jang
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk, 38453, Republic of Korea.
- Research Institute of Anti-Aging, Daegu University, Gyeongbuk, 38453, Republic of Korea.
| |
Collapse
|
28
|
Choi RY, Kim IW, Ji M, Paik MJ, Ban EJ, Lee JH, Hwang JS, Kweon H, Seo M. Protaetia brevitarsis seulensis larvae ethanol extract inhibits RANKL-stimulated osteoclastogenesis and ameliorates bone loss in ovariectomized mice. Biomed Pharmacother 2023; 165:115112. [PMID: 37413903 DOI: 10.1016/j.biopha.2023.115112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023] Open
Abstract
Modulation of osteoclast formation could be a therapeutic target for inhibiting pathological bone destruction. The receptor activator of nuclear factor (NF)-κB ligand (RANKL) is known to be an essential factor in osteoclast differentiation and activation inducers. However, whether Protaetia brevitarsis seulensis (P. brevitarsis) larvae-a traditional animal-derived medicine used in many Asian countries-can inhibit RANKL-induced osteoclast formation and prevent ovariectomy (OVX)-induced bone loss has not been evaluated. Here, we aimed to investigate the anti-osteoporotic effects of P. brevitarsis larvae ethanol extract (PBE) in RANKL-stimulated RAW264.7 cells and OVX mice. In vitro, PBE (0.1, 0.5, 1, and 2 mg/mL) decreased RANKL‑induced tartrate-resistant acid phosphatase (TRAP) activity and expression of osteoclastogenesis-associated genes and proteins. Furthermore, PBE (0.1, 0.5, 1, and 2 mg/mL) significantly inhibited the phosphorylation of p38 and NF-κB. Female C3H/HeN mice were divided into five groups (n = 5 per group), namely, sham-operated, OVX, OVX+PBEL (100 mg/kg, oral gavage), OVX+PBEH (200 mg/kg, oral gavage), and OVX+estradiol (0.03 μg/day, subcutaneous injection). High doses of PBE significantly increased femoral bone mineral density (BMD) and bone volume/tissue volume (BV/TV), whereas femoral bone surface/bone volume (BS/BV) and osteoclastogenesis-associated protein expression decreased compared to those in the OVX group. Moreover, PBE (200 mg/kg) significantly increased estradiol and procollagen type I N-terminal propeptide and decreased N-terminal telopeptide of type I collagen and C-terminal telopeptide of type I collagen compared to those in the OVX group. Our results suggest that PBE can be an effective therapeutic candidate for preventing or treating postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Ra-Yeong Choi
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, the Republic of Korea
| | - In-Woo Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, the Republic of Korea
| | - Moongi Ji
- College of Pharmacy, Sunchon National University, Suncheon 57922, the Republic of Korea
| | - Man-Jeong Paik
- College of Pharmacy, Sunchon National University, Suncheon 57922, the Republic of Korea
| | - Eu-Jin Ban
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, the Republic of Korea
| | - Joon Ha Lee
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, the Republic of Korea
| | - Jae Sam Hwang
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, the Republic of Korea
| | - HaeYong Kweon
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, the Republic of Korea
| | - Minchul Seo
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, the Republic of Korea.
| |
Collapse
|
29
|
Cui W, Li D, Jiang Y, Gao Y. Effects of exercise based on ACSM recommendations on bone mineral density in individuals with osteoporosis: a systematic review and meta-analyses of randomized controlled trials. Front Physiol 2023; 14:1181327. [PMID: 37528896 PMCID: PMC10389279 DOI: 10.3389/fphys.2023.1181327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023] Open
Abstract
Purpose: To analyze the effects of different exercise dose on lumbar spine and femoral neck bone mineral density (BMD) in individuals with osteoporosis (OP). Design: A systematic search was conducted in four electronic databases, namely, PubMed, Embase, Web of Science, and Cochrane, with the topic of the impact of exercise on BMD in individuals with OP. Randomized controlled trials comparing exercise intervention with no intervention were identified, and changes in lumbar spine and femoral neck BMD were reported and evaluated using standardized mean difference (SMD) and 95% confidence interval (95% CI). The intervention measures in the studies were evaluated and categorized as high adherence with the exercise testing and prescription recommendations for individuals with OP developed by the American College of Sports Medicine (ACSM) or low/uncertainty adherence with ACSM recommendations. A random effects model was used to conduct meta-analyses and compare the results between subgroups. Results: A total of 32 studies involving 2005 participants were included in the analyses, with 14 studies categorized as high adherence with ACSM recommendations and 18 studies categorized as low or uncertain adherence. In the analyses of lumbar spine BMD, 27 studies with 1,539 participants were included. The combined SMD for the high adherence group was 0.31, while the combined SMD for the low or uncertain adherence group was 0.04. In the analyses of femoral neck BMD, 23 studies with 1,606 participants were included. The combined SMD for the high adherence group was 0.45, while the combined SMD for the low or uncertain adherence group was 0.28. Within resistance exercise, the subgroup with high ACSM adherence had a greater impact on lumbar spine BMD compared to the subgroup with low or uncertain ACSM adherence (SMD: 0.08 > -0.04). Similarly, for femoral neck BMD, resistance exercise with high ACSM adherence had a higher SMD compared to exercise with low or uncertain ACSM adherence (SMD: 0.49 > 0.13). Conclusion: The results suggest that exercise interventions with high adherence to ACSM recommendations are more effective in improving lumbar spine and femoral neck BMD in individuals with OP compared to interventions with low or uncertain adherence to ACSM recommendations. Systematic Review Registration: PROSPERO, identifier CRD42023427009.
Collapse
Affiliation(s)
- Wenlai Cui
- School of Dance and Martial Arts, Capital University of Physical Education and Sports, Beijing, China
| | - Dong Li
- Department of International Cultural Exchange, Chodang University, Muan County, Republic of Korea
| | - Yueshuai Jiang
- School of Dance and Martial Arts, Capital University of Physical Education and Sports, Beijing, China
| | - Yang Gao
- School of Dance and Martial Arts, Capital University of Physical Education and Sports, Beijing, China
| |
Collapse
|
30
|
Zhong YT, Liao HB, Ye ZQ, Jiang HS, Li JX, Ke LM, Hua JY, Wei B, Wu X, Cui L. Eurycomanone stimulates bone mineralization in zebrafish larvae and promotes osteogenic differentiation of mesenchymal stem cells by upregulating AKT/GSK-3β/β-catenin signaling. J Orthop Translat 2023; 40:132-146. [PMID: 37457309 PMCID: PMC10338906 DOI: 10.1016/j.jot.2023.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/28/2023] [Accepted: 05/16/2023] [Indexed: 07/18/2023] Open
Abstract
Background Eurycomanone (EN) is a diterpenoid compound isolated from the roots of Eurycoma longifolia (E. longifolia). Previous studies have confirmed that E. longifolia can enhance bone regeneration and bone strength. We previously isolated and identified ten quassinoids from E. longifolia, and the result displayed that five aqueous extracts have the effects on promotion of bone formation, among whom EN showed the strongest activity. However, the molecular mechanism of EN on bone formation was unknown, and we further investigated in this study. Methods After the verification of purity of extracted EN, following experiments were conducted. Firstly, the pharmacologic action of EN on normal bone mineralization and the therapeutic effect of EN on Dex-induced bone loss using zebrafish larvae. The mineralization area and integral optical density (IOD) were evaluated using alizarin red staining. Then the vital signaling pathways of EN relevant to OP was identified through network pharmacology analysis. Eventually in vitro, the effect of EN on cell viability, osteogenesis activities were investigated in human bone marrow mesenchymal stem cells (hMSCs) and C3H10 cells, and the molecular mechanisms by which applying AKT inhibitor A-443654 in hMSCs. Results In zebrafish larvae, the administration in medium of EN (0.2, 1, and 5 μM) dramatically enhanced the skull mineralization area and integral optical density (IOD), and increased mRNA expressions of osteoblast formation genes (ALP, RUNX2a, SP7, OCN). Meanwhile, exposure of EN remarkably alleviated the inhibition of bone formation induced by dexamethasone (Dex), prominently improved the mineralization, up-regulated osteoblast-specific genes and down-regulated osteoclast-related genes (CTSK, RANKL, NFATc1, TRAF6) in Dex-treated bone loss zebrafish larvae. Network pharmacology outcomes showed the MAPK and PI3K-AKT signaling pathways are closely associated with 10 hub genes (especially AKT1), and AKT/GSK-3β/β-catenin was selected as the candidate analysis pathway. In hMSCs and C3H10 cells, results showed that EN at appropriate concentrations of 0.008-5 μM effectively increased the cell proliferation. In addition, EN (0.04, 0.2, and 1 μM) significantly stimulated osteogenic differentiation and mineralization as well as significantly increased the protein phosphorylation of AKT and GSK-3β, and expression of β-catenin, evidencing by the results of ALP and ARS staining, qPCR and western blotting. Whereas opposite results were presented in hMSCs when treated with AKT inhibitor A-443654, which effectively inhibited the pro-osteogenesis effect induced by EN, suggesting EN represent powerful potential in promoting osteogenesis of hMSCs, which may be closely related to the AKT/GSK-3β/β-catenin signaling pathway. Conclusions Altogether, our findings indicate that EN possesses remarkable effect on bone formation via activating AKT/GSK-3β/β-catenin signaling pathway in most tested concentrations. The translational potential of this article This study demonstrates EN is a new effective monomer in promoting bone formation, which may be a promising anabolic agent for osteoporosis (OP) treatment.
Collapse
Affiliation(s)
- Yan-ting Zhong
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, And School of Pharmacy, Guangdong Medical University, Zhanjiang, China
- The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hong-bo Liao
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, And School of Pharmacy, Guangdong Medical University, Zhanjiang, China
- The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhi-qiang Ye
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, And School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Hua-sheng Jiang
- The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jia-xiao Li
- Department of Nephrology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Lin-mao Ke
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, And School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Jun-ying Hua
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, And School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Bo Wei
- The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xin Wu
- The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Liao Cui
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, And School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
31
|
Selective Effects of Cold Atmospheric Plasma on Bone Sarcoma Cells and Human Osteoblasts. Biomedicines 2023; 11:biomedicines11020601. [PMID: 36831137 PMCID: PMC9952933 DOI: 10.3390/biomedicines11020601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND The use of cold atmospheric plasma (CAP) in oncology has been intensively investigated over the past 15 years as it inhibits the growth of many tumor cells. It is known that reactive oxidative species (ROS) produced in CAP are responsible for this effect. However, to translate the use of CAP into medical practice, it is essential to know how CAP treatment affects non-malignant cells. Thus, the current in vitro study deals with the effect of CAP on human bone cancer cells and human osteoblasts. Here, identical CAP treatment regimens were applied to the malignant and non-malignant bone cells and their impact was compared. METHODS Two different human bone cancer cell types, U2-OS (osteosarcoma) and A673 (Ewing's sarcoma), and non-malignant primary osteoblasts (HOB) were used. The CAP treatment was performed with the clinically approved kINPen MED. After CAP treatment, growth kinetics and a viability assay were performed. For detecting apoptosis, a caspase-3/7 assay and a TUNEL assay were used. Accumulated ROS was measured in cell culture medium and intracellular. To investigate the influence of CAP on cell motility, a scratch assay was carried out. RESULTS The CAP treatment showed strong inhibition of cell growth and viability in bone cancer cells. Apoptotic processes were enhanced in the malignant cells. Osteoblasts showed a higher potential for ROS resistance in comparison to malignant cells. There was no difference in cell motility between benign and malignant cells following CAP treatment. CONCLUSIONS Osteoblasts show better tolerance to CAP treatment, indicated by less affected viability compared to CAP-treated bone cancer cells. This points toward the selective effect of CAP on sarcoma cells and represents a further step toward the clinical application of CAP.
Collapse
|
32
|
Lee GH, Hoang TH, Lee HY, Lim YJ, Kim JH, Jung SJ, Chae SW, Rashid MMU, Chae HJ, Yoon SJ. Ramie leaf Extract Alleviates Bone Loss in Ovariectomized Rats-The Involvement of ROS and Its Associated Signalings. Nutrients 2023; 15:nu15030745. [PMID: 36771450 PMCID: PMC9918923 DOI: 10.3390/nu15030745] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Ramie leaf (Boehmeria nivea L.) has been traditionally used to treat gynecological and bone-related disorders. This study aims to evaluate the effect of Ramie leaf extracts (RLE) against osteoporosis in ovariectomized (OVX) rats. Female SD rats aged seven weeks were randomly assigned into five OVX and a sham-operated (sham) group. OVX subgroups include OVX, vehicle-treated OVX group; E2, OVX with 100 μg/kg 17β-estradiol; and RLE 0.25, 0.5, and 1, OVX rats treated with 0.25, 0.5, and 1 g/kg/day RLE, respectively. Two weeks into the bilateral ovariectomy, all the rats were orally administered with or without RLE daily for 12 weeks. OVX rats administered with RLE showed higher bone density, relatively low tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts, and lower reactive oxygen species (ROS) within bone tissues compared to vehicle-treated OVX rats. Furthermore, supplementation of RLE improved bone mineral density (BMD) and bone microstructure in the total femur. RLE prevented RANKL-induced osteoclast differentiation and expression of osteoclastogenesis-related genes such as Cal-R, MMP-9, cathepsin K, and TRAP in RANKL-induced RAW264.7 cells. Moreover, RLE administration lowered the intracellular ROS levels by reducing NADPH oxidase 1 (NOX-1) and 4-hydroxynonenal (4HNE). These results suggest that RLE alleviates bone mass loss in the OVX rats by inhibiting osteoclastogenesis, where reduced ROS and its associated signalings were involved.
Collapse
Affiliation(s)
- Geum-Hwa Lee
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - The-Hiep Hoang
- Department of Obstetrics and Gynecology, Hue University of Medicine and Pharmacy, Hue University, Hue 52000, Vietnam
| | - Hwa-Young Lee
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Young-Je Lim
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Ji-Hyun Kim
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Su-Jin Jung
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Clinical Trial Center for Functional Foods (CTCF2), Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Soo-Wan Chae
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Clinical Trial Center for Functional Foods (CTCF2), Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Mohammad Mamun Ur Rashid
- Department of Pharmacology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - Han-Jung Chae
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- School of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Correspondence: (H.-J.C.); (S.-J.Y.)
| | - Sun-Jung Yoon
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Department of Orthopedic Surgery, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea
- Correspondence: (H.-J.C.); (S.-J.Y.)
| |
Collapse
|
33
|
Zhuang Q, Chen S, Zhang W, Gu M, Xiao L, Li Y, Yang Y, Feng C, Li H, Geng D, Wang Z. Avicularin Alleviates Osteoporosis in Ovariectomized Mice by Inhibiting Osteoclastogenesis through NF-κB Pathway Inhibition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:411-420. [PMID: 36540936 PMCID: PMC9838558 DOI: 10.1021/acs.jafc.2c05954] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Osteoporosis (OP) is mainly manifested by bone loss and bone degeneration. OP is considered a risk factor for pathological fractures, as well as impacts the health of middle-aged and elderly individuals. Drug therapy remains the main treatment scheme for OP; however, its efficacy is limited and has been associated with serious side effects. Therefore, it is important to develop new, effective, and safe treatment methods for OP. Avicularin (AL) is a flavonoid and quercetin derivative from various plants. Our study showed that AL disrupts osteoclast activation and resorptive function via inhibition of the RANKL-induced osteoclast differentiation together with the resorption capacity of bone marrow-derived macrophages (BMMs). Hence, AL prevents the activation and resorptive activity of osteoclasts. The results of qPCR showed that genes related to osteoclasts exhibited downregulated expression after AL treatment. Furthermore, AL inhibited RANKL-induced phosphorylation as well as degradation of the inhibitor IκBα of the NF-κB pathway, together with P65 phosphorylation in BMMs. We used an OP mouse model that was established by ovariectomy (OVX). Relative to untreated OP mice, mice that received AL treatment showed a significant increase in bone mineral density; however, the expression of TRAP, NFATC1, mmp9, and CTX-1 was significantly reduced. These results indicate that AL disrupts osteoclastogenesis via inhibition of the NF-κB pathway, which in turn improves OVX-induced OP.
Collapse
Affiliation(s)
- Qi Zhuang
- Translational
Medical Innovation Center, Zhangjiagang
TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Shuangshuang Chen
- Translational
Medical Innovation Center, Zhangjiagang
TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Wei Zhang
- Department
of Orthopedics, The First Affiliated Hospital
of Soochow University, Suzhou 215006, China
| | - Minhui Gu
- Translational
Medical Innovation Center, Zhangjiagang
TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Long Xiao
- Translational
Medical Innovation Center, Zhangjiagang
TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
- Department
of Orthopedics, The First Affiliated Hospital
of Soochow University, Suzhou 215006, China
- Department
of Orthopedics, Zhangjiagang TCM Hospital
Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Yajun Li
- Translational
Medical Innovation Center, Zhangjiagang
TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
- Department
of Orthopedics, Zhangjiagang TCM Hospital
Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Yunshang Yang
- Translational
Medical Innovation Center, Zhangjiagang
TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
- Department
of Orthopedics, Zhangjiagang TCM Hospital
Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Chengcheng Feng
- Translational
Medical Innovation Center, Zhangjiagang
TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Hong Li
- Translational
Medical Innovation Center, Zhangjiagang
TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Dechun Geng
- Department
of Orthopedics, The First Affiliated Hospital
of Soochow University, Suzhou 215006, China
| | - Zhirong Wang
- Translational
Medical Innovation Center, Zhangjiagang
TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
- Department
of Orthopedics, Zhangjiagang TCM Hospital
Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| |
Collapse
|
34
|
Functionalized magnetic nanoparticles for treating bone diseases. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
35
|
Anwar F, Omar Asar T, Al-Abassi FA, Kumar V, Alhayyani S. Natural sea salt in diet ameliorates better protection compared to table salt in the doxorubicin-induced cardiac remodeling. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2154491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Turky Omar Asar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biology, College of Science and Arts at Alkamil, University of Jeddah, Jeddah, Saudi Arabia
| | - Fahad A. Al-Abassi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom Institute of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, India
| | - Sultan Alhayyani
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| |
Collapse
|
36
|
Guo S, Zhang Z, Cao L, Wu T, Li B, Cui Y. Nanocomposites containing ZnO-TiO2-Chitosan and Berbamine promote osteoblast differentiation, proliferation, and calcium mineralization in MG63 osteoblasts. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Huang X, Chen W, Gu C, Liu H, Hou M, Qin W, Zhu X, Chen X, Liu T, Yang H, He F. Melatonin suppresses bone marrow adiposity in ovariectomized rats by rescuing the imbalance between osteogenesis and adipogenesis through SIRT1 activation. J Orthop Translat 2022; 38:84-97. [PMID: 36381247 PMCID: PMC9619141 DOI: 10.1016/j.jot.2022.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/17/2022] [Accepted: 10/06/2022] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Accelerated imbalance between bone formation and bone resorption is associated with bone loss in postmenopausal osteoporosis. Studies have shown that this loss is accompanied by an increase in bone marrow adiposity. Melatonin was shown to improve impaired bone formation capacity of bone marrow-derived mesenchymal stem cells from ovariectomized rats (OVX-BMMSCs). OBJECTIVES To investigate whether the anti-osteoporosis effect of melatonin involves regulation of the equilibrium between osteogenic and adipogenic differentiation of osteoporotic BMMSCs. METHODS To induce osteoporosis, female Sprague-Dawley rats received ovariectomy (OVX). Primary BMMSCs were isolated from tibiae and femurs of OVX and sham-op rats and were induced towards osteogenic or adipogenic differentiation. Matrix mineralization was determined by Alizarin Red S (ARS) and lipid formation was evaluated by Oil Red O. OVX rats were injected with melatonin through the tail vein. Bone microarchitecture was determined using micro computed tomography and marrow adiposity were examined by histology staining. RESULTS OVX-BMMSCs exhibited a compromised osteogenic potential and an enhanced lineage differentiation towards adipocytes. In vitro melatonin improved osteogenic differentiation of OVX-BMMSCs and promoted matrix mineralization by enhancing the expression of transcription factor RUNX2 in a dose-dependent manner. Moreover, melatonin significantly inhibited lipid formation and suppressed OVX-BMMSCs adipogenesis by down-regulating peroxisome proliferator-activated receptor γ (PPARγ). Intravenous injection of melatonin prevented bone mass reduction and bone architecture destruction in ovariectomized rats. Importantly, there was a significant inhibition of adipose tissue formation in the bone marrow. Mechanistic investigations revealed that SIRT1 was involved in melatonin-mediated determination of stem cell fate. Inhibition of SIRT1 abolished the protective effects of melatonin on bone formation by inducing BMMSCs towards adipocyte differentiation. CONCLUSIONS Melatonin reversed the differentiation switch of OVX-BMMSCs from osteogenesis to adipogenesis by activating the SIRT1 signaling pathway. Restoration of stem cell lineage commitment by melatonin prevented marrow adipose tissue over-accumulation and protected from bone loss in postmenopausal osteoporosis. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE Determination of stem cell fate towards osteoblasts or adipocytes plays a pivotal role in regulating bone metabolism. This study demonstrates the protective effect of melatonin on bone mass in estrogen-deficient rats by suppressing adipose tissue accumulation in the bone marrow. Melatonin may serve as a promising candidate for the treatment of osteoporosis in clinics.
Collapse
Affiliation(s)
- Xiaoxiong Huang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China,Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), No. 41 Northwest Street, Ningbo, 315010, Zhejiang, China,Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China
| | - Weikai Chen
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China,Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China
| | - Chao Gu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China,Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China
| | - Hao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Mingzhuang Hou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China,Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China
| | - Wanjin Qin
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Xuesong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Xi Chen
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China,Corresponding author. Department of Pathology, The Third Affiliated Hospital of Soochow University, No.185 Juqian Road, Changzhou, 213003, Jiangsu, China.
| | - Tao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China,Corresponding author. Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China.
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China,Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China,Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China,Corresponding author. Orthopaedic Institute, Soochow University, Suzhou 215000, China
| |
Collapse
|
38
|
Calixarenes as Host Molecules for Drug Carriers in the Cosmetic and Medical Field. Macromol Res 2022. [DOI: 10.1007/s13233-022-0094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Wu MH, Hsu WB, Chen MH, Shi CS. Inhibition of Neddylation Suppresses Osteoclast Differentiation and Function In Vitro and Alleviates Osteoporosis In Vivo. Biomedicines 2022; 10:2355. [PMID: 36289618 PMCID: PMC9598818 DOI: 10.3390/biomedicines10102355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 09/20/2023] Open
Abstract
Neddylation, or the covalent addition of NEDD8 to specific lysine residue of proteins, is a reversible posttranslational modification, which regulates numerous biological functions; however, its involvement and therapeutic significance in osteoporosis remains unknown. Our results revealed that during the soluble receptor activator of nuclear factor-κB ligand (sRANKL)-stimulated osteoclast differentiation, the neddylation and expression of UBA3, the NEDD8-activating enzyme (NAE) catalytic subunit, were dose- and time-dependently upregulated in RAW 264.7 macrophages. UBA3 knockdown for diminishing NAE activity or administering low doses of the NAE inhibitor MLN4924 significantly suppressed sRANKL-stimulated osteoclast differentiation and bone-resorbing activity in the macrophages by inhibiting sRANKL-stimulated neddylation and tumor necrosis factor receptor-associated factor 6 (TRAF6)-activated transforming growth factor-β-activated kinase 1 (TAK1) downstream signaling for diminishing nuclear factor-activated T cells c1 (NFATc1) expression. sRANKL enhanced the interaction of TRAF6 with the neddylated proteins and the polyubiquitination of TRAF6's lysine 63, which activated TAK1 downstream signaling; however, this process was inhibited by MLN4924. MLN4924 significantly reduced osteoporosis in an ovariectomy- and sRANKL-induced osteoporosis mouse model in vivo. Our novel finding was that NAE-mediated neddylation participates in RANKL-activated TRAF6-TAK1-NFATc1 signaling during osteoclast differentiation and osteoporosis, suggesting that neddylation may be a new target for treating osteoporosis.
Collapse
Affiliation(s)
- Meng-Huang Wu
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Orthopedics, Taipei Medical University Hospital, Taipei 11031, Taiwan
- TMU Biodesign Center, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Bin Hsu
- Sports Medicine Center, Chang Gung Memorial Hospital, Puzi 61301, Taiwan
| | - Mei-Hsin Chen
- Sports Medicine Center, Chang Gung Memorial Hospital, Puzi 61301, Taiwan
| | - Chung-Sheng Shi
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33332, Taiwan
- Colon and Rectal Surgery, Department of Surgery, Chiayi Chang Gung Memorial Hospital, Puzi 61301, Taiwan
| |
Collapse
|
40
|
Current Status of the Diagnosis and Management of Osteoporosis. Int J Mol Sci 2022; 23:ijms23169465. [PMID: 36012730 PMCID: PMC9408932 DOI: 10.3390/ijms23169465] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022] Open
Abstract
Osteoporosis has been defined as the silent disease of the 21st century, becoming a public health risk due to its severity, chronicity and progression and affecting mainly postmenopausal women and older adults. Osteoporosis is characterized by an imbalance between bone resorption and bone production. It is diagnosed through different methods such as bone densitometry and dual X-rays. The treatment of this pathology focuses on different aspects. On the one hand, pharmacological treatments are characterized by the use of anti-resorptive drugs, as well as emerging regenerative medicine treatments such as cell therapies and the use of bioactive hydrogels. On the other hand, non-pharmacological treatments are associated with lifestyle habits that should be incorporated, such as physical activity, diet and the cessation of harmful habits such as a high consumption of alcohol or smoking. This review seeks to provide an overview of the theoretical basis in relation to bone biology, the existing methods for diagnosis and the treatments of osteoporosis, including the development of new strategies.
Collapse
|
41
|
Estrogen Receptor 1 (ESR1) and the Wnt/β-Catenin Pathway Mediate the Effect of the Coumarin Derivative Umbelliferon on Bone Mineralization. Nutrients 2022; 14:nu14153209. [PMID: 35956385 PMCID: PMC9370350 DOI: 10.3390/nu14153209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Bone physiology is regulated by osteoblast and osteoclast activities, both involved in the bone remodeling process, through deposition and resorption mechanisms, respectively. The imbalance between these two phenomena contributes to the onset of bone diseases. Among these, osteoporosis is the most common metabolic bone disorder. The therapies currently used for its treatment include antiresorptive and anabolic agents associated with side effects. Therefore, alternative therapeutic approaches, including natural molecules such as coumarin and their derivatives, have recently shown positive results. Thus, our proposal was to investigate the effect of the coumarin derivative umbelliferon (UF) using an interesting model of human osteoblasts (hOBs) isolated from osteoporotic patients. UF significantly improved the activity of osteoporotic-patient-derived hOBs via estrogen receptor 1 (ESR1) and the downstream activation of β-catenin pathway. Additionally, hOBs were co-cultured in microgravity with human osteoclasts (hOCs) using a 3D system bioreactor, able to reproduce the bone remodeling unit in bone loss conditions in vitro. Notably, UF exerted its anabolic role by reducing the multinucleated cells. Overall, our study confirms the potential efficacy of UF in bone health, and identified, for the first time, a prospective alternative natural compound useful to prevent/treat bone loss diseases such as osteoporosis.
Collapse
|
42
|
Huong LT, Gal M, Kim O, Tran PT, Nhiem NX, Kiem PV, Minh CV, Dang NH, Lee JH. 23-Hydroxyursolic acid from Viburnum lutescens inhibits osteoclast differentiation in vitro and lipopolysaccharide-induced bone loss in vivo by suppressing c-Fos and NF-κB signalling. Int Immunopharmacol 2022; 111:109038. [PMID: 35932612 DOI: 10.1016/j.intimp.2022.109038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
Bone homeostasis is maintained by a combination of osteoclast-mediated bone resorption and osteoblast-mediated bone formation. Excessive osteoclast activity is linked to several bone-related disorders, including osteoporosis and rheumatoid arthritis. Pharmacological therapy might have a number of adverse effects. Therefore, the development of natural anti-osteoclastogenic drugs with greater efficacy and fewer adverse effects is desirable. In this study, the anti-osteoclastogenic effects of 23-hydroxyursolic acid (HUA), a triterpene isolated from Viburnum lutescens, were investigated in vitro and in vivo. HUA significantly inhibited receptor activator of nuclear factor kappa-B ligand (RANKL)-induced mature osteoclast differentiation by reducing the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts and F-actin ring formation. It also inhibited the expression of osteoclast-specific marker genes such OSCAR, MMP-9, TRAP, DC-STAMP, and CtsK, as well as transcription factors, c-Fos and nuclear factor of activated T cells cytoplasmic 1 (NFATc1) in response to RANKL. Mice orally administered with HUA (25 and 50 mg/kg) exhibited significant protection against bone loss and osteoclast formation induced by lipopolysaccharide (LPS). HUA suppressed RANKL-induced nuclear factor kappa B (NF-κB) activation and phosphorylation of JNK and ERK mitogen-activated protein kinases (MAPKs). These results suggest that HUA attenuates osteoclast formation in vitro and in vivo by suppressing the RANKL-mediated AP1, NF-κB, and NFATc1 pathways. Therefore, HUA may be a lead compound for the prevention or treatment of osteolytic bone disorders.
Collapse
Affiliation(s)
- Le Thanh Huong
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Minju Gal
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 24341, Republic of Korea
| | - Okwha Kim
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon-Do 24341, Republic of Korea
| | - Phuong Thao Tran
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 24341, Republic of Korea
| | - Nguyen Xuan Nhiem
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Phan Van Kiem
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Chau Van Minh
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Nguyen Hai Dang
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam.
| | - Jeong-Hyung Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 24341, Republic of Korea; Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon-Do 24341, Republic of Korea.
| |
Collapse
|
43
|
Mitsuboshi S, Kotake K. Risks of serious adverse events and kidney injury in patients treated with ibandronate: A systematic review and meta‐analysis. Pharmacotherapy 2022; 42:677-686. [DOI: 10.1002/phar.2713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 11/08/2022]
Affiliation(s)
| | - Kazumasa Kotake
- Department of Pharmacy Okayama Saiseikai General Hospital Okayama Japan
| |
Collapse
|
44
|
Kraljević Pavelić S, Krpan D, Žuvić M, Eisenwagen S, Pavelić K. Clinical Parameters in Osteoporosis Patients Supplemented With PMA-Zeolite at the End of 5-Year Double-Blinded Clinical Trial. Front Med (Lausanne) 2022; 9:870962. [PMID: 35833103 PMCID: PMC9272402 DOI: 10.3389/fmed.2022.870962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/20/2022] [Indexed: 12/25/2022] Open
Abstract
Osteoporosis is among the most common pathologies. Associated complications in osteoporotic patients, in particular hip fractures and vertebral fractures, cause disabilities and significant quality of life deterioration. Standard treatment of osteoporosis, based on pharmacotherapy does still not yield adequate results, and the problem of osteoporosis remains incompletely solved. Additionally, adverse drug events and fractures after long-termed pharmacotherapy pose additional challenges within designing a proper therapy regimen. Improved clinical approach and new synergistic treatment modalities are consequently still needed. The rationale of the presented study was accordingly, to expand our preclinical animal study on human patients with osteoporosis, based on positive effects on bones observed in animals with osteopenia treated with PMA-zeolite. We specifically monitored effects of PMA-zeolite on the bone quality parameters, fracture risk and quality of life in a cohort of initially recruited 100 osteoporosis patients during a follow-up period of 5 years within a randomized, placebo-controlled and double blinded clinical study (TOP study). Obtained results provide evidence on the PMA-zeolite positive effects on the bone strength of osteoporotic patients as the risk of fractures was significantly decreased in PMA-zeolite-treated patients with respect to time before entering the study (p = 0.002). Statistical evidence point also to positive bone changes in the 5-years TOP study course as evidenced through osteocalcin and beta-cross laps values showing a prevalence of the bone-formation process (p < 0.05). BMD values were not significantly affected after the 5-years follow-up in PMA-zeolite-treated patients in comparison with the Placebo group. Results support the initial expectations based on our previously published preclinical studies on clinoptilolite product PMA-zeolite in animals that could be a new therapeutic option in osteoporosis patients.
Collapse
Affiliation(s)
- Sandra Kraljević Pavelić
- Faculty of Health Studies, University of Rijeka, Rijeka, Croatia
- *Correspondence: Sandra Kraljević Pavelić
| | - Dalibor Krpan
- Polyclinic “K – centre”, for Internal Medicine, Gynaecology, Radiology, Physical Medicine and Rehabilitation, Zagreb, Croatia
| | - Marta Žuvić
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | | | - Krešimir Pavelić
- Faculty of Medicine, Juraj Dobrila University of Pula, Pula, Croatia
| |
Collapse
|
45
|
Chen Y, Wei YJ, Jiang N, Ge HM, Jiao RH, Cheng X, Tan RX. Spirocitromycetin, a Fungal Polyketide with an Antiosteoporotic Pharmacophore. JOURNAL OF NATURAL PRODUCTS 2022; 85:1442-1447. [PMID: 35510520 DOI: 10.1021/acs.jnatprod.1c01060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Spirocitromycetin, an antiosteoporotic polyketide bearing a unique spirocycle, was characterized from a human mucus sputum-derived Penicillium velutinum. Its structure and absolute configuration were elucidated spectrally, with its biosynthetic pathway likely mediated via polivione, a reported heptaketide. Spirocitromycetin was shown to be antiosteoporotic at 0.1 μM in the prednisolone-induced osteoporotic zebrafish model. A combination of spirocitromycetin variant synthesis and bioassay has identified 5'-methyl-3'H-spiro[chromane-3,2'-furan]-3',4-dione as an unreported antiosteroporotic pharmacophore. Collectively, this work offers new starting (sub)structures that may be of significance for antiosteoporotic drug discovery.
Collapse
Affiliation(s)
- Yong Chen
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing 210023, People's Republic of China
| | - Ying Jie Wei
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Nan Jiang
- School of Pharmacy, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing 210023, People's Republic of China
| | - Rui Hua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xu Cheng
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
- Institute of Chemistry and Biomedical Sciences, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing 210023, People's Republic of China
| | - Ren Xiang Tan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
46
|
Meghdadi Esfahani F, Balali E, Sedigheh Hashemi S, Khadivi R, Mohammad Raei Nayini M, Voung B. Investigating an Iron-Doped Fullerene Cage for Adsorption of Niacin (Vitamin B3): DFT Analyses of Bimolecular Complex Formations. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Natesan V, Kim SJ. Metabolic Bone Diseases and New Drug Developments. Biomol Ther (Seoul) 2022; 30:309-319. [PMID: 35342038 PMCID: PMC9252877 DOI: 10.4062/biomolther.2022.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 11/05/2022] Open
Abstract
Metabolic bone diseases are serious health issues worldwide, since several million individuals over the age of 50 are at risk of bone damage and should be worried about their bone health. One in every two women and one in every four men will break a bone during their lifetime due to a metabolic bone disease. Early detection, raising bone health awareness, and maintaining a balanced healthy diet may reduce the risk of skeletal fractures caused by metabolic bone diseases. This review compiles information on the most common metabolic bone diseases (osteoporosis, primary hyperparathyroidism, osteomalacia, and fluorosis disease) seen in the global population, including their symptoms, mechanisms, and causes, as well as discussing their prevention and the development of new drugs for treatment. A large amount of research literature suggests that balanced nutrition and balanced periodic supplementation of calcium, phosphate, and vitamin D can improve re-absorption and the regrowth of bones, and inhibit the formation of skeletal fractures, except in the case of hereditary bone diseases. Meanwhile, new and improved drug formulations, such as raloxifene, teriparatide, sclerostin, denosumab, and abaloparatide, have been successfully developed and administered as treatments for metabolic bone diseases, while others (romososumab and odanacatib) are in various stages of clinical trials.
Collapse
Affiliation(s)
- Vijayakumar Natesan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608002, Tamil Nadu, India
| | - Sung-Jin Kim
- Department of Pharmacology and Toxicology, Metabolic Diseases Research Laboratory, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
48
|
Zhu Y, Liu S, Mei F, Zhao M, Xia G, Shen X. Tilapia nilotica Head Lipids Improved Bone Loss by Regulating Inflammation and Serum Metabolism Through Gut Microbiota in Ovariectomized Rats. Front Nutr 2022; 8:792793. [PMID: 35096937 PMCID: PMC8789877 DOI: 10.3389/fnut.2021.792793] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis is a global health problem, and it is of great significance to replace the drugs with natural functional factors. In this study, we investigated the antiosteoporotic activity of lipids prepared from Tilapia nilotica fish head lipids (THLs) in the ovariectomized osteoporosis rats. THLs are composed of neutral lipids (NL, 77.84%), phospholipids (PL, 11.86%), and glycolipids (GL, 6.47%). There were apparent differences in the fatty acid composition of disparate components, and PL contains the most abundant Ω-3 polyunsaturated fatty acids. The results proved that THLs could improve bone microstructure, increase bone mineral density, and decrease bone resorption. To illustrate the antiosteoporotic mechanism, we analyzed the changes in gut microbial communities, proinflammation factors, serum metabolites, and metabolic pathways. Further study on gut microbiota showed that THLs significantly decreased the content of Alistipes in the gut and dramatically increased the beneficial bacteria such as Oscillospira, Roseburia, and Dubosiella. Meanwhile, proinflammation factors of serum in OVX rats decreased significantly, and metabolites were changed. Therefore, we speculated that THLs improved bone loss through reducing inflammation and changing the metabolites and metabolic pathways such as arachidonic acid metabolism and primary bile acid metabolism, etc., by altering gut microbiota. The results indicated that THLs could be a functional factor with antiosteoporotic activity.
Collapse
Affiliation(s)
- Yujie Zhu
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, College of Food Science and Technology, Hainan University, Hainan, China.,Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, China.,Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Shucheng Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, China
| | - Fengfeng Mei
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, College of Food Science and Technology, Hainan University, Hainan, China.,Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Meihui Zhao
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, College of Food Science and Technology, Hainan University, Hainan, China.,Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Guanghua Xia
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, College of Food Science and Technology, Hainan University, Hainan, China.,Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, China.,Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Xuanri Shen
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, College of Food Science and Technology, Hainan University, Hainan, China.,Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
49
|
Tröltzsch M, Tröltzsch M, Pautke C, Otto S. [Management of medication-related osteonecrosis of the jaw-a review of recent study results in comparison to established strategies]. HNO 2022; 70:499-507. [PMID: 35050392 PMCID: PMC9242957 DOI: 10.1007/s00106-021-01130-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2021] [Indexed: 11/15/2022]
Abstract
Hintergrund Antiresorptiva gehören weltweit zu den am häufigsten applizierten Arzneimitteln. Ihr Haupteinsatzbereich liegt in der Osteologie und Onkologie. Trotz allgemein guter Verträglichkeit treten bei Patienten unter Therapie unerwünschte Arzneimittelwirkungen (UAW) auf. Eine spezifische UAW im Bereich der Kiefer ist die sog. medikamentenassoziierte Osteonekrose („medication-related osteonecrosis of the jaw“, MRONJ) der Kiefer. Ziel der Arbeit Diese Arbeit stellt neuesten Entwicklungen in Ätiologie, Diagnostik und Therapie der MRONJ im Vergleich zu bereits bestehenden Erkenntnissen zusammen. Methodik Es wurde eine systematische Literaturübersicht der Jahre 2016–2021 zu diesem Thema durchgeführt. Prospektive Therapiestudien, Diagnostikstudien mit Vergleichsgruppe und innovative Studien zur Pathogenese der MRONJ wurden eingeschlossen und nach den MINORS-Kriterien („methodological index for non-randomized studies“) bewertet. Ergebnisse und Diskussion Die MRONJ tritt bei ca. 2–12 % der Patienten, die aus onkologischer Indikation mit Antiresorptiva behandelt werden, auf (osteologische Indikation ca. 0,1–1 %). Die Therapie der MRONJ sollte frühzeitig und operativ erfolgen. Die Heilungsrate ist bei einem operativen Therapieansatz mit über 85 % sehr gut.
Collapse
Affiliation(s)
- Matthias Tröltzsch
- Zentrum für Zahn- Mund- und Kieferheilkunde Ansbach, Ansbach, Deutschland. .,Klinik und Poliklinik für Mund‑, Kiefer- und Gesichtschirurgie, Ludwig-Maximilians-Universität München, Lindwurmstr. 2A, 80337, München, Deutschland.
| | - Markus Tröltzsch
- Zentrum für Zahn- Mund- und Kieferheilkunde Ansbach, Ansbach, Deutschland
| | | | - Sven Otto
- Klinik und Poliklinik für Mund‑, Kiefer- und Gesichtschirurgie, Martin-Luther-Universität Halle-Wittenberg, Halle, Deutschland
| |
Collapse
|
50
|
Li T, Hou X, Huang Y, Wang C, Chen H, Yan C. In vitro and in silico anti-osteoporosis activities and underlying mechanisms of a fructan, ABW90-1, from Achyranthes bidentate. Carbohydr Polym 2022; 276:118730. [PMID: 34823766 DOI: 10.1016/j.carbpol.2021.118730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 11/18/2022]
Abstract
Achyranthes bidentata is a traditional Chinese medicine used to treat osteoporosis. AB90, a crude saccharide from A. bidentata, showed excellent osteoprotective effects in ovariectomized rats, and ABW90-1, an oligosaccharide purified from AB90, stimulated significant differentiation of osteoblasts. However, the osteogenic effects and underlying mechanisms of ABW90-1 have remained unknown. In the present study, we found that ABW90-1 significantly promoted ALP activity, mineralization, and the expression of osteogenic markers in MC3T3-E1 cells. ABW90-1 showed strong binding with the WNT signaling complex and BMP2 based on number of interactions, hydrogen bond length, and binding energy in silico. ABW90-1 significantly increased the expression of active-β-catenin, p-GSK-3β, LEF-1, BMP2, and p-SMAD1. Importantly, the osteogenic effects of ABW90-1 were partially suppressed by DKK-1 and Noggin, which are specific inhibitors of the WNT and BMP signaling pathways, respectively. Collectively, these findings suggest that ABW90-1 has osteogenic effects through crosstalk between WNT/β-catenin and BMP2/SMAD1 signaling pathways.
Collapse
Affiliation(s)
- Tianyu Li
- Clinical Pharmacy of the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510060, China; School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xin Hou
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yihua Huang
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Changsheng Wang
- Clinical Pharmacy of the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510060, China
| | - Haiyun Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chunyan Yan
- Clinical Pharmacy of the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510060, China; School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|