1
|
Yerrakula G, Abraham S, John S, Zeharvi M, George SG, Senthil V, Maiz F, Rahman MH. Major implications of single nucleotide polymorphisms in human carboxylesterase 1 on substrate bioavailability. Biotechnol Genet Eng Rev 2024; 40:3174-3192. [PMID: 35946821 DOI: 10.1080/02648725.2022.2108997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/26/2022] [Indexed: 11/02/2022]
Abstract
The number of studies and reviews conducted for the Carboxylesterase gene is limited in comparison with other enzymes. Carboxylesterase (CES) gene or human carboxylesterases (hCES) is a multigene protein belonging to the α/β-hydrolase family. Over the last decade, two major carboxylesterases (CES1 and CES2), located at 16q13-q22.1 on human chromosome 16 have been extensively studied as important mediators in the metabolism of a wide range of substrates. hCES1 is the most widely expressed enzyme in humans, and it is found in the liver. In this review, details regarding CES1 substrates include both inducers (e.g. Rifampicin) and inhibitors (e.g. Enalapril, Diltiazem, Simvastatin) and different types of hCES1 polymorphisms (nsSNPs) such as rs2244613 and rs71647871. along with their effects on various CES1 substrates were documented. Few instances where the presence of nsSNPs exerted a positive influence on certain substrates which are hydrolyzed via hCES1, such as anti-platelets like Clopidogrel when co-administered with other medications such as angiotensin-converting enzyme (ACE) inhibitors were also recorded. Remdesivir, an ester prodrug is widely used for the treatment of COVID-19, being a CES substrate, it is a potent inhibitor of CES2 and is hydrolyzed via CES1. The details provided in this review could give a clear-cut idea or information that could be used for further studies regarding the safety and efficacy of CES1 substrate.
Collapse
Affiliation(s)
- Goutham Yerrakula
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamilnadu
| | - Shyno Abraham
- Department of Pharmacy Practice, Krupanidhi college of Pharmacy, Bangalore
| | - Shiji John
- Department of Pharmacy Practice, Krupanidhi college of Pharmacy, Bangalore
| | - Mehrukh Zeharvi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University Alkharj, Saudia Arabia
| | | | - V Senthil
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamilnadu
| | - Fathi Maiz
- Department of Physics, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Laboratory of Thermal Processes, Center for Energy Research and Technology, Borj-Cedria, BP:95 Tunisia
| | - Md Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Gangwon-do, Wonju, Korea
| |
Collapse
|
2
|
Liu Y, Li J, Zhu HJ. Regulation of carboxylesterases and its impact on pharmacokinetics and pharmacodynamics: an up-to-date review. Expert Opin Drug Metab Toxicol 2024; 20:377-397. [PMID: 38706437 PMCID: PMC11151177 DOI: 10.1080/17425255.2024.2348491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
INTRODUCTION Carboxylesterase 1 (CES1) and carboxylesterase 2 (CES2) are among the most abundant hydrolases in humans, catalyzing the metabolism of numerous clinically important medications, such as methylphenidate and clopidogrel. The large interindividual variability in the expression and activity of CES1 and CES2 affects the pharmacokinetics (PK) and pharmacodynamics (PD) of substrate drugs. AREAS COVERED This review provides an up-to-date overview of CES expression and activity regulations and examines their impact on the PK and PD of CES substrate drugs. The literature search was conducted on PubMed from inception to January 2024. EXPERT OPINION Current research revealed modest associations of CES genetic polymorphisms with drug exposure and response. Beyond genomic polymorphisms, transcriptional and posttranslational regulations can also significantly affect CES expression and activity and consequently alter PK and PD. Recent advances in plasma biomarkers of drug-metabolizing enzymes encourage the research of plasma protein and metabolite biomarkers for CES1 and CES2, which could lead to the establishment of precision pharmacotherapy regimens for drugs metabolized by CESs. Moreover, our understanding of tissue-specific expression and substrate selectivity of CES1 and CES2 has shed light on improving the design of CES1- and CES2-activated prodrugs.
Collapse
Affiliation(s)
- Yaping Liu
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan
| | - Jiapeng Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California
| | - Hao-Jie Zhu
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
3
|
Childress A. Recent advances in pharmacological management of attention-deficit/hyperactivity disorder: moving beyond stimulants. Expert Opin Pharmacother 2024; 25:853-866. [PMID: 38771653 DOI: 10.1080/14656566.2024.2358987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/20/2024] [Indexed: 05/23/2024]
Abstract
INTRODUCTION Attention-deficit/hyperactivity disorder (ADHD) is a common neurobehavioral disorder characterized by impairing inattention and/or hyperactivity and impulsivity in children and adults. Although medications have been available to treat ADHD symptoms for decades, many are stimulant formulations. Stimulants, such as amphetamine and methylphenidate, are available in more than two dozen formulations, but all have similar adverse effects and carry a risk of misuse and dependence. AREAS COVERED In the United States (US), several nonstimulants are available to treat ADHD. Two, including atomoxetine and viloxazine extended-release (ER), are approved by the Food and Drug Administration for the treatment of ADHD in children and adults. Two others, clonidine ER and guanfacine ER, are only approved for children and adolescents in the US. Several other compounds are under investigation. Drugs in Phase 3 trials include centanafadine, solriamfetol, and L-threonic acid magnesium salt. Efficacy and safety data for nonstimulants is presented. EXPERT OPINION Although many effective formulations for the treatment of ADHD are available, more than 33% of children and 50% of adults discontinue treatment during the first year. The lack of individual drug response and tolerability are reasons many stop treatment. The development of new nonstimulants may offer hope for patients who need medication alternatives.
Collapse
Affiliation(s)
- Ann Childress
- Center for Psychiatry and Behavioral Medicine, Inc, Las Vegas, NV, USA
| |
Collapse
|
4
|
Ikonnikova A, Kazakov R, Rodina T, Dmitriev A, Melnikov E, Zasedatelev A, Nasedkina T. The Influence of Structural Variants of the CES1 Gene on the Pharmacokinetics of Enalapril, Presumably Due to Linkage Disequilibrium with the Intronic rs2244613. Genes (Basel) 2022; 13:genes13122225. [PMID: 36553492 PMCID: PMC9778508 DOI: 10.3390/genes13122225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Variants in the CES1 gene encoding carboxylesterase 1 may affect the metabolism of enalapril to the active metabolite enalaprilat. It was shown that the A allele of rs71647871 and the C allele of rs2244613 led to a decrease in plasma enalaprilat concentrations. This study aimed to estimate the effect of structural haplotypes of CES1 containing the pseudogene CES1P1, or a hybrid of the gene and the pseudogene CES1A2, on the pharmacokinetics of enalapril. We included 286 Caucasian patients with arterial hypertension treated with enalapril. Genotyping was performed using real-time PCR and long-range PCR. Peak and trough plasma enalaprilat concentrations were lower in carriers of CES1A2. The studied haplotypes were in linkage disequilibrium with rs2244613: generally, the A allele was in the haplotype containing the CES1P1, and the C allele was in the haplotype with the CES1A2. Thus, carriers of CES1A2 have reduced CES1 activity against enalapril. Linkage disequilibrium of the haplotype containing the CES1P1 or CES1A2 with rs2244613 should be taken into account when genotyping the CES1 gene.
Collapse
Affiliation(s)
- Anna Ikonnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence:
| | - Ruslan Kazakov
- Federal State Budgetary Institution “Scientific Centre for Expert Evaluation of Medicinal Products” of the Ministry of Health of the Russian Federation, 127051 Moscow, Russia
| | - Tatiana Rodina
- Federal State Budgetary Institution “Scientific Centre for Expert Evaluation of Medicinal Products” of the Ministry of Health of the Russian Federation, 127051 Moscow, Russia
| | - Artem Dmitriev
- Federal State Budgetary Institution “Scientific Centre for Expert Evaluation of Medicinal Products” of the Ministry of Health of the Russian Federation, 127051 Moscow, Russia
| | - Evgeniy Melnikov
- Institute of Pharmacy of I. M. Sechenov First MSMU of the Ministry of Health of the Russian Federation (Sechenov University), 119435 Moscow, Russia
| | - Alexander Zasedatelev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Tatiana Nasedkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
5
|
The Influence of the CES1 Genotype on the Pharmacokinetics of Enalapril in Patients with Arterial Hypertension. J Pers Med 2022; 12:jpm12040580. [PMID: 35455696 PMCID: PMC9028383 DOI: 10.3390/jpm12040580] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/13/2022] [Accepted: 04/01/2022] [Indexed: 01/25/2023] Open
Abstract
The angiotensin-converting enzyme inhibitor enalapril is hydrolysed to an active metabolite, enalaprilat, in the liver via carboxylesterase 1 (CES1). Previous studies show that variant rs71647871 in the CES1 gene affects the pharmacokinetics of enalapril on liver samples as well as healthy volunteers. This study included 286 Caucasian patients with arterial hypertension who received enalapril. The concentrations of enalapril and enalaprilat were determined before subsequent intake of the drug and 4 h after it with high-performance liquid chromatography (HPLC) and mass spectrometric detection. The study included genetic markers as follows: rs2244613, rs71647871 (c.428G>A, p.G143E) and three SNPs indicating the presence of a subtype CES1A1c (rs12149368, rs111604615 and rs201577108). Mean peak and trough enalaprilat concentrations, adjusted by clinical variables, were significantly lower in CES1 rs2244613 heterozygotes (by 16.6% and 19.6%) and in CC homozygotes (by 32.7% and 41.4%) vs. the AA genotype. In CES1A1c homozygotes, adjusted mean enalaprilat concentrations were 75% lower vs. heterozygotes and wild-type (WT) homozygotes. Pharmacogenetic markers of the CES1 gene may be a promising predictor for individualisation when prescribing enalapril.
Collapse
|
6
|
Wang X, Her L, Xiao J, Shi J, Wu AH, Bleske BE, Zhu H. Impact of carboxylesterase 1 genetic polymorphism on trandolapril activation in human liver and the pharmacokinetics and pharmacodynamics in healthy volunteers. Clin Transl Sci 2021; 14:1380-1389. [PMID: 33660934 PMCID: PMC8301577 DOI: 10.1111/cts.12989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 01/20/2023] Open
Abstract
Trandolapril, an angiotensin-converting enzyme inhibitor prodrug, needs to be activated by carboxylesterase 1 (CES1) in the liver to exert its intended therapeutic effect. A previous in vitro study demonstrated that the CES1 genetic variant G143E (rs71647871) abolished CES1-mediated trandolapril activation in cells transfected with the variant. This study aimed to determine the effect of the G143E variant on trandolapril activation in human livers and the pharmacokinetics (PKs) and pharmacodynamics (PDs) in human subjects. We performed an in vitro incubation study to assess trandolapril activation in human livers (5 G143E heterozygotes and 97 noncarriers) and conducted a single-dose (1 mg) PK and PD study of trandolapril in healthy volunteers (8 G143E heterozygotes and 11 noncarriers). The incubation study revealed that the mean trandolapril activation rate in G143E heterozygous livers was 42% of those not carrying the variant (p = 0.0015). The clinical study showed that, relative to noncarriers, G143E carriers exhibited 20% and 15% decreases, respectively, in the peak concentration (Cmax ) and area under the curve from 0 to 72 h (AUC0-72 h ) of the active metabolite trandolaprilat, although the differences were not statistically significant. Additionally, the average maximum reductions of systolic blood pressure and diastolic blood pressure in carriers were ~ 22% and 23% less than in noncarriers, respectively, but the differences did not reach a statistically significant level. In summary, the CES1 G143E variant markedly impaired trandolapril activation in the human liver under the in vitro incubation conditions; however, this variant had only a modest impact on the PK and PD of trandolapril in healthy human subjects.
Collapse
Affiliation(s)
- Xinwen Wang
- Department of Clinical PharmacyUniversity of MichiganAnn ArborMichiganUSA
- Present address:
Department of Pharmaceutical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Lucy Her
- Department of Clinical PharmacyUniversity of MichiganAnn ArborMichiganUSA
| | - Jingcheng Xiao
- Department of Clinical PharmacyUniversity of MichiganAnn ArborMichiganUSA
| | - Jian Shi
- Department of Clinical PharmacyUniversity of MichiganAnn ArborMichiganUSA
| | - Audrey H. Wu
- Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Barry E. Bleske
- Department of Pharmacy Practice and Administrative SciencesThe University of New MexicoAlbuquerqueNew MexicoUSA
| | - Hao‐Jie Zhu
- Department of Clinical PharmacyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
7
|
Her LH, Wang X, Shi J, Choi HJ, Jung SM, Smith LS, Wu AH, Bleske BE, Zhu HJ. Effect of CES1 genetic variation on enalapril steady-state pharmacokinetics and pharmacodynamics in healthy subjects. Br J Clin Pharmacol 2021; 87:4691-4700. [PMID: 33963573 DOI: 10.1111/bcp.14888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/22/2022] Open
Abstract
AIMS Enalapril is a prodrug and needs to be activated by carboxylesterase 1 (CES1). A previous in vitro study demonstrated the CES1 genetic variant, G143E (rs71647871), significantly impaired enalapril activation. Two previous clinical studies examined the impact of G143E on single-dose enalapril PK (10 mg); however, the results were inconclusive. A prospective, multi-dose, pharmacokinetics and pharmacodynamics (PK/PD) study was conducted to determine the impact of the CES1 G143E variant on enalapril steady-state PK and PD in healthy volunteers. METHODS Study participants were stratified to G143E non-carriers (n = 15) and G143E carriers (n = 6). All the carriers were G143E heterozygotes. Study subjects received enalapril 10 mg daily for seven consecutive days prior to a 72 hour PK/PD study. Plasma concentrations of enalapril and its active metabolite enalaprilat were quantified by an established liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. RESULTS The CES1 G143E carriers had 30.9% lower enalaprilat Cmax (P = 0.03) compared to the non-carriers (38.01 vs. 55.01 ng/mL). The carrier group had 27.5% lower AUC0-∞ (P = 0.02) of plasma enalaprilat compared to the non-carriers (374.29 vs. 515.91 ng*h/mL). The carriers also had a 32.3% lower enalaprilat-to-enalapril AUC0-∞ ratio (P = 0.003) relative to the non-carriers. The average maximum reduction of systolic blood pressure in the non-carrier group was approximately 12.4% at the end of the study compared to the baseline (P = 0.001). No statistically significant blood pressure reduction was observed in the G143E carriers. CONCLUSIONS The CES1 loss-of-function G143E variant significantly impaired enalapril activation and its systolic blood pressure-lowering effect in healthy volunteers.
Collapse
Affiliation(s)
- Lucy H Her
- College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| | - Xinwen Wang
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Jian Shi
- Alliance Pharma, Inc, Malvern, PA, United States
| | - Hee Jae Choi
- College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| | - Sun Min Jung
- College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| | - Logan S Smith
- College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| | - Audrey H Wu
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Barry E Bleske
- Department of Pharmacy Practice and Administrative Sciences, The University of New Mexico, Albuquerque, NM, United States
| | - Hao-Jie Zhu
- College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
8
|
Inhibitory Effect of AB-PINACA, Indazole Carboxamide Synthetic Cannabinoid, on Human Major Drug-Metabolizing Enzymes and Transporters. Pharmaceutics 2020; 12:pharmaceutics12111036. [PMID: 33138123 PMCID: PMC7692329 DOI: 10.3390/pharmaceutics12111036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/19/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Indazole carboxamide synthetic cannabinoid, AB-PINACA, has been placed into Schedule I of the Controlled Substances Act by the US Drug Enforcement Administration since 2015. Despite the possibility of AB-PINACA exposure in drug abusers, the interactions between AB-PINACA and drug-metabolizing enzymes and transporters that play crucial roles in the pharmacokinetics and efficacy of various substrate drugs have not been investigated. This study was performed to investigate the inhibitory effects of AB-PINACA on eight clinically important human major cytochrome P450s (CYPs) and six uridine 5′-diphospho-glucuronosyltransferases (UGT) in human liver microsomes and the activities of six solute carrier transporters and two efflux transporters in transporter-overexpressing cells. AB-PINACA reversibly inhibited the metabolic activities of CYP2C8 (Ki, 16.9 µM), CYP2C9 (Ki, 6.7 µM), and CYP2C19 (Ki, 16.1 µM) and the transport activity of OAT3 (Ki, 8.3 µM). It exhibited time-dependent inhibition on CYP3A4 (Ki, 17.6 µM; kinact, 0.04047 min−1). Other metabolizing enzymes and transporters such as CYP1A2, CYP2A6, CYP2B6, CYP2D6, UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, UGT2B7, OAT1, OATP1B1, OATP1B3, OCT1, OCT2, P-glycoprotein, and BCRP, exhibited only weak interactions with AB-PINACA. These data suggest that AB-PINACA can cause drug-drug interactions with CYP3A4 substrates but that the significance of drug interactions between AB-PINACA and CYP2C8, CYP2C9, CYP2C19, or OAT3 substrates should be interpreted carefully.
Collapse
|
9
|
Smeets NJL, Schreuder MF, Dalinghaus M, Male C, Lagler FB, Walsh J, Laer S, de Wildt SN. Pharmacology of enalapril in children: a review. Drug Discov Today 2020; 25:S1359-6446(20)30336-6. [PMID: 32835726 DOI: 10.1016/j.drudis.2020.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/06/2020] [Accepted: 08/13/2020] [Indexed: 12/28/2022]
Abstract
Enalapril is an angiotensin-converting enzyme (ACE) inhibitor that is used for the treatment of (paediatric) hypertension, heart failure and chronic kidney diseases. Because its disposition, efficacy and safety differs across the paediatric continuum, data from adults cannot be automatically extrapolated to children. This review highlights paediatric enalapril pharmacokinetic data and demonstrates that these are inadequate to support with certainty an age-related effect on enalapril/enalaprilat pharmacokinetics. In addition, our review shows that evidence to support effective and safe prescribing of enalapril in children is limited, especially in young children and heart failure patients; studies in these groups are either absent or show conflicting results. We provide explanations for observed differences between age groups and indications, and describe areas for future research.
Collapse
Affiliation(s)
- Nori J L Smeets
- Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Radboud Institute of Molecular Sciences, Radboudumc Amalia Children's Hospital, Nijmegen, the Netherlands
| | - Michiel Dalinghaus
- Department of Pediatric Cardiology, Erasmus MC - Sophia, Rotterdam, the Netherlands
| | - Christoph Male
- Department of Paediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | | | | | - Stephanie Laer
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Saskia N de Wildt
- Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboudumc, Nijmegen, the Netherlands; Department of Intensive Care and Pediatric Surgery, Erasmus MC - Sophia Children's Hospital, Rotterdam, the Netherlands.
| |
Collapse
|
10
|
Ni Y, Duan Z, Zhou D, Liu S, Wan H, Gui C, Zhang H. Identification of Structural Features for the Inhibition of OAT3-Mediated Uptake of Enalaprilat by Selected Drugs and Flavonoids. Front Pharmacol 2020; 11:802. [PMID: 32547398 PMCID: PMC7271668 DOI: 10.3389/fphar.2020.00802] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
Enalaprilat is the active metabolite of enalapril, a widely used antihypertension drug. The human organic anion transporter 3 (OAT3), which is highly expressed in the kidney, plays a critical role in the renal clearance of many drugs. While urinary excretion is the primary elimination route of enalaprilat, direct involvement of OAT3 has not been reported so far. In the present study, OAT3-mediated uptake of enalaprilat was first characterized, and the inhibition of OAT3 transport activity was then examined for a number of flavonoid and drug molecules with diverse structures. A varying degree of inhibition potency was demonstrated for flavonoids, with IC50 values ranging from 0.03 to 22.6 µM against OAT3 transport activity. In addition, commonly used drugs such as urate transporter 1 (URAT1) inhibitors also displayed potent inhibition on OAT3-mediated enalaprilat uptake. Pharmacophore and three-dimensional quantitative structure-activity relationship (3D-QSAR) analyses revealed the presence of a polar center and a hydrophobic region involved in OAT3-inhibitor binding. For the polar center, hydroxyl groups present in flavonoids could act as either hydrogen bond donors or acceptors and the number and position of hydroxyl groups were critical drivers for inhibition potency, while carboxyl groups present in some drugs could form ionic bridges with OAT3. The predicted inhibition potencies by comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were correlated well with experimental IC50 values. Taken together, the present study identified OAT3-mediated uptake of enalaprilat as an important mechanism for its renal clearance, which may be liable for drug-drug and herb-drug interactions. The established computational models revealed unique structural features for OAT3 inhibitors and could be used for structure-activity relationship (SAR) analysis of OAT3 inhibition. The clinical relevance of the inhibition of OAT3-mediated enalaprilat uptake warrants further investigation, particularly in populations where herbal remedies and drugs are used concomitantly.
Collapse
Affiliation(s)
- Yao Ni
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Zelin Duan
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Dandan Zhou
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Shuai Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Huida Wan
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Chunshan Gui
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Hongjian Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
11
|
Her L, Zhu HJ. Carboxylesterase 1 and Precision Pharmacotherapy: Pharmacogenetics and Nongenetic Regulators. Drug Metab Dispos 2019; 48:230-244. [PMID: 31871135 DOI: 10.1124/dmd.119.089680] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/16/2019] [Indexed: 12/20/2022] Open
Abstract
Carboxylesterase (CES) 1 is the most abundant drug-metabolizing enzyme in human livers, comprising approximately 1% of the entire liver proteome. CES1 is responsible for 80%-95% of total hydrolytic activity in the liver and plays a crucial role in the metabolism of a wide range of drugs (especially ester-prodrugs), pesticides, environmental pollutants, and endogenous compounds. Expression and activity of CES1 vary markedly among individuals, which is a major contributing factor to interindividual variability in the pharmacokinetics (PK) and pharmacodynamics (PD) of drugs metabolized by CES1. Both genetic and nongenetic factors contribute to CES1 variability. Here, we discuss genetic polymorphisms, including single-nucleotide polymorphisms (SNPs), and copy number variants and nongenetic contributors, such as developmental status, genders, and drug-drug interactions, that could influence CES1 functionality and the PK and PD of CES1 substrates. Currently, the loss-of-function SNP G143E (rs71647871) is the only clinically significant CES1 variant identified to date, and alcohol is the only potent CES1 inhibitor that could alter the therapeutic outcomes of CES1 substrate medications. However, G143E and alcohol can only explain a small portion of the interindividual variability in the CES1 function. A better understanding of the regulation of CES1 expression and activity and identification of biomarkers for CES1 function in vivo could lead to the development of a precision pharmacotherapy strategy to improve the efficacy and safety of many CES1 substrate drugs. SIGNIFICANCE STATEMENT: The clinical relevance of CES1 has been well demonstrated in various clinical trials. Genetic and nongenetic regulators can affect CES1 expression and activity, resulting in the alteration of the metabolism and clinical outcome of CES1 substrate drugs, such as methylphenidate and clopidogrel. Predicting the hepatic CES1 function can provide clinical guidance to optimize pharmacotherapy of numerous medications metabolized by CES1.
Collapse
Affiliation(s)
- Lucy Her
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan
| | - Hao-Jie Zhu
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
12
|
Laizure SC, Parker RB. Is genetic variability in carboxylesterase-1 and carboxylesterase-2 drug metabolism an important component of personalized medicine? Xenobiotica 2019; 50:92-100. [DOI: 10.1080/00498254.2019.1678078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- S. Casey Laizure
- Department of Clinical Pharmacy & Translational Science, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Robert B Parker
- Department of Clinical Pharmacy & Translational Science, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
13
|
Höcht C, Bertera FM, Santander Plantamura Y, Parola L, Del Mauro JS, Polizio AH. Factors influencing hepatic metabolism of antihypertensive drugs: impact on clinical response. Expert Opin Drug Metab Toxicol 2018; 15:1-13. [DOI: 10.1080/17425255.2019.1558204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Christian Höcht
- Departamento de Farmacología, Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Buenos Aires, Argentina
| | - Facundo M. Bertera
- Departamento de Farmacología, Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Buenos Aires, Argentina
| | - Yanina Santander Plantamura
- Departamento de Farmacología, Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Luciano Parola
- Departamento de Farmacología, Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Julieta S. Del Mauro
- Departamento de Farmacología, Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Ariel H. Polizio
- Departamento de Farmacología, Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
- CONICET
| |
Collapse
|
14
|
Xiao Q, Zhou Q, Yang L, Tian Z, Wang X, Xiao Y, Shi D. Breed Differences in Pig Liver Esterase (PLE) between Tongcheng (Chinese Local Breed) and Large White Pigs. Sci Rep 2018; 8:16364. [PMID: 30397234 PMCID: PMC6218520 DOI: 10.1038/s41598-018-34695-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 10/04/2018] [Indexed: 01/24/2023] Open
Abstract
Human carboxylesterases has been proven to be age and race-related and a sound basis of clinical medication. PLE involve in signal transduction and highly catalyze hydrolysis. Therefore, the expression level of PLE most probably exist age and breed difference and lead to significant differences of pharmacology and physiology. Four age groups of Tongcheng (TC) and Large White (LW) pigs were selected to explore PLE breed and age differences, and it was found that PLE mRNA was most abundant in liver in both breeds. In liver, PLE levels and hydrolytic activities increased with age, and PLE levels (except for 3 month) and the hydrolytic activities were higher in LW than in TC across all age groups. Abundance of PLE isoenzymes was obvious different between breeds and among age groups. The most abundant PLE isoenzyme in LW and TC pigs was PLE-A1 (all age groups) and PLE-B9 (three early age groups) or PLE-G3 (adult groups), respectively. 103 new PLE isoenzymes were found, and 55 high-frequency PLE isoenzymes were accordingly classified into seven categories (A-G). The results of this research provide a necessary basis not only for clinical medication of pigs but also for pig breeding purposes.
Collapse
Affiliation(s)
- Qiling Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agricultural, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Qiongqiong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agricultural, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Lu Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agricultural, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Zhongyuan Tian
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agricultural, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Xiliang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agricultural, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Yuncai Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agricultural, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Deshi Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agricultural, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.
| |
Collapse
|
15
|
Chen F, Zhang B, Parker RB, Laizure SC. Clinical implications of genetic variation in carboxylesterase drug metabolism. Expert Opin Drug Metab Toxicol 2018; 14:131-142. [DOI: 10.1080/17425255.2018.1420164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Feng Chen
- Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Bo Zhang
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Robert B. Parker
- Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - S. Casey Laizure
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|