1
|
Yang J, Guo J, Tang P, Yan S, Wang X, Li H, Xie J, Deng J, Hou X, Du Z, Hao E. Insights from Traditional Chinese Medicine for Restoring Skin Barrier Functions. Pharmaceuticals (Basel) 2024; 17:1176. [PMID: 39338338 PMCID: PMC11435147 DOI: 10.3390/ph17091176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
The skin barrier is essential for maintaining the body's internal homeostasis, protecting against harmful external substances, and regulating water and electrolyte balance. Traditional Chinese Medicine (TCM) offers notable advantages in restoring skin barrier function due to its diverse components, targets, and pathways. Recent studies have demonstrated that active ingredients in TCM can safely and effectively repair damaged skin barriers, reinstating their proper functions. This review article provides a comprehensive overview of the mechanisms underlying skin barrier damage and explores how the bioactive constituents of TCM contribute to skin barrier repair, thereby offering a theoretical framework to inform clinical practices.
Collapse
Affiliation(s)
- Jieyi Yang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Jiageng Guo
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Peiling Tang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Shidu Yan
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Xiaodong Wang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Huaying Li
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Jinling Xie
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Jiagang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Xiaotao Hou
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Zhengcai Du
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| |
Collapse
|
2
|
Chen W, Liang J, He S, Liang Q, Tian W, Lu A, Li D, Huang Z, Wu G. She-Chuang-Si-Wu-Tang Alleviates Inflammation and Itching Symptoms in a Psoriasis Mouse Model by Regulating the Th17/IL-17 Axis via the STAT3/MAPK Pathways. J Inflamm Res 2024; 17:5957-5975. [PMID: 39247836 PMCID: PMC11380483 DOI: 10.2147/jir.s472417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024] Open
Abstract
Purpose Psoriasis is an immune-related disorder characterized by silver scales, epidermis thickness, and itching. She-Chuang-Si-Wu-Tang (SSWT), a traditional Chinese medicine decoction, has been used clinically for 400 years. Although it benefits psoriasis treatment, the mechanism of action is still unclear. This study explores SSWT's molecular mechanism in treating psoriasis through network pharmacology analysis and experiments. Methods We identified relevant SSWT and psoriasis targets using network pharmacology and conducted SSWT quality control with high-performance liquid chromatography (HPLC). A mouse model of psoriasis was established using imiquimod (IMQ), with the drug administered continuously for seven days, spanning an eight-day period. During the experiment, we observed spontaneous scratching behaviors and assessed the Psoriasis Area and Severity Index (PASI) scores. At the conclusion of the experiment, we examined skin tissue pathology under an optical microscope and measured epidermal thickness. Additionally, we used enzyme-linked immunosorbent assay (ELISA) and quantitative reverse transcription polymerase chain reaction (qRT-PCR) to measure interleukin (IL)-23, IL-17A, IL-17F, and interferon (IFN)-γ levels in the mice's serum and their mRNA expression in the skin. Western blot analysis was conducted to assess protein levels related to signaling pathways. Results Results indicate that SSWT may target IL-17 signaling pathways and T helper (Th) 17 cell differentiation, as predicted by network pharmacology. SSWT significantly improved the PASI and Baker scores, reduced epidermal thickness, and decreased spontaneous scratching in IMQ-induced mice. Additionally, SSWT treatment significantly lowered the concentrations of inflammatory factors in the serum and skin lesions, as well as mRNA expression levels, compared to the IMQ group. Furthermore, SSWT significantly inhibited the phosphorylation of both the signal transducer and activator of transcription 3 (STAT3) and mitogen-activated protein kinase (MAPK) pathways. Conclusion In summary, this study unveiled the potential anti-psoriatic mechanism of SSWT, offering new evidence for its clinical application.
Collapse
Affiliation(s)
- Weixiong Chen
- College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530299, People’s Republic of China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People’s Republic of China
| | - Jianqiang Liang
- Department of Dermatology, the First People’s Hospital of Yulin, Yulin, Guangxi, 537000, People’s Republic of China
| | - Shuang He
- College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530299, People’s Republic of China
- Key Laboratory for Complementary and Alternative Medicine Experimental Animal Models of Guangxi, Nanning, Guangxi, 530299, People’s Republic of China
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Nanning, Guangxi, 530299, People’s Republic of China
| | - Qingsong Liang
- College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530299, People’s Republic of China
- Key Laboratory for Complementary and Alternative Medicine Experimental Animal Models of Guangxi, Nanning, Guangxi, 530299, People’s Republic of China
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Nanning, Guangxi, 530299, People’s Republic of China
| | - Wenting Tian
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530299, People’s Republic of China
| | - Aobo Lu
- College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530299, People’s Republic of China
| | - Demin Li
- College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530299, People’s Republic of China
| | - Zhicheng Huang
- College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530299, People’s Republic of China
| | - Guanyi Wu
- College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530299, People’s Republic of China
- Key Laboratory for Complementary and Alternative Medicine Experimental Animal Models of Guangxi, Nanning, Guangxi, 530299, People’s Republic of China
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Nanning, Guangxi, 530299, People’s Republic of China
| |
Collapse
|
3
|
Wu X, Hu S, Jia N, Zhang C, Liu C, Song J, Kuai L, Jiang W, Li B, Chen Q. Accurate network pharmacology and novel ingredients formula of herbal targeting estrogen signaling for psoriasis intervention. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118099. [PMID: 38554853 DOI: 10.1016/j.jep.2024.118099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a common chronic inflammatory skin disease, psoriasis is incompletely understood and brings a lot of distress to patients. The estrogen signaling pathway has been implicated in its pathogenesis, making it a potential therapeutic target. Si Cao Formula (SCF) has demonstrated promise in treating psoriasis clinically. However, its molecular mechanisms concerning psoriasis remain largely unexplored. AIM OF THE STUDY To elucidate the underlying mechanisms of the action of SCF on psoriasis. MATERIALS AND METHODS Active ingredients were identified by LC-MS/MS. After the treatment with SCF, the exploration of differentially expressed proteins (DEPs) were conducted using tandem mass tag (TMT)-based quantitative proteomics analysis. By GO/KEGG, WikiPathways and network pharmacology, core signaling pathway and protein targets were explored. Consequently, major signaling pathway and protein targets were validated by RT-qPCR, immunoblotting and immunofluorescence. Based on Lipinski's Rule of Five rules and molecular docking, 8 active compounds were identified that acted on the core targets. RESULTS 41 compounds of SCF and 848 specific targets of these compounds were identified. There were 570 DEPs between IMQ (Imiquimod) and IMQ + SCF group, including 279 up-regulated and 304 down-regulated proteins. GO/KEGG, WikiPathways and network pharmacology revealed estrogen signaling pathway as the paramount pathways, through which SCF functioned on psoriasis. We further show novel ingredients formula of SCF contributes to estrogen signaling intervention, including liquiritin, parvisoflavone B, glycycoumarin, 8-prenylluteone, licochalcone A, licochalcone B, oxymatrine, and 13-Hydroxylupanine, where targeting MAP2K1, ILK, HDAC1 and PRKACA, respectively. Molecular docking proves that they have good binding properties. CONCLUSION Our results provide an in-depth view of psoriasis pathogenesis and herbal intervention, which expands our understanding of the systemic pharmacology to reveal the multiple ingredients and multiple targets of SCF and focus on one pathway (estrogen signaling pathway) may be a novel therapeutic strategy for psoriasis treatment of herbal medicine.
Collapse
Affiliation(s)
- Xinxin Wu
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Sheng Hu
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Ning Jia
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Caiyun Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Changya Liu
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jiankun Song
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Le Kuai
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Wencheng Jiang
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Bin Li
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Qilong Chen
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| |
Collapse
|
4
|
Wang G, Xue T, Zheng Q, Song X, Zhang Y, Shen F, Wang X, Jiang W, Kuai L, Xie S, Ma X, Chen X, Li B. Qinzhuliangxue mixture ameliorates psoriasis by restraining apoptosis in psoriasis via downregulating the MDA-5 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118059. [PMID: 38508430 DOI: 10.1016/j.jep.2024.118059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Psoriasis is characterized by hyperkeratosis that produces the classic silvery scales, and the pathogenesis of psoriasis involves abnormal proliferation of keratinocytes. Emerging evidence supports that apoptosis regulates keratinocyte proliferation and formation of stratum corneum, which maintains the homeostasis of the skin. Qinzhuliangxue mixture (QZLX) is a representative formula for the treatment of psoriasis, which was earliest recorded in the classic Chinese medicine book Xia's Surgery. In our previous clinical studies, QZLX demonstrated 83.33% efficacy with few side effects in the treatment of psoriasis. Furthermore, our published basic research has also proved that the QZLX mixture effectively inhibits the hyperproliferation of keratinocytes, thus exerting therapeutic effects on psoriasis. However, whether QZLX mixture can regulate keratinocytes apoptosis requires further clarification. OBJECTIVE OF THE STUDY To investigate the mechanism of QZLX in the treatment of psoriasis from the perspective of keratinocyte apoptosis. MATERIALS AND METHODS First, psoriasis-like mice with imiquimod (IMQ)-induced were given QZLX intragastric administration and Psoriasis Area Severity Index (PASI) scores were recored for 11 consecutive days to appraise the efficacy. Then, tissue samples were collected for transcriptome analysis. The DEseq2 method detected significantly differentially expressed genes (DEGs), Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway databases were used to analyze the functions and pathway enrichment of DEGs. After that, the therapeutic mechanisms of QZLX in intervening with psoriasis were explored using TUNEL, immunohistochemical staining, and western blotting. RESULTS QZLX ameliorated the symptoms and pathological characteristics of IMQ-induced psoriasis in mice. The epidermal cell hyperplasia in the skin was inhibited, in accordance with the suppressed expression of PCNA and Ki67 after treatment. Transcriptome sequencing showed that melanoma differentiation associated gene-5 (MDA-5) was downregulated. GO and KEGG enrichment analysis of the signaling pathways indicated that the differentially expressed genes were significantly enriched in apoptosis pathways. Besides, QZLX treatment decreased the apoptosis of keratinocyte as shown by reduced TUNEL-positive cells. As MDA-5 protein levels decreased, so did the expression of the downstream protein Caspase-8, which indicates that the apoptotic pathway was triggered. Furthermore, QZLX therapy might also help to balance the apoptotic Bcl-2 family expression. CONCLUSION QZLX restrains the apoptosis of keratinocyte in psoriasis-like mice by downregulating the MDA-5 pathway. The restoration of the balance between cell apoptosis and proliferation in the skin may lead to considerable psoriasis relief. Our study reveals the possible molecular processes behind the effects of QZLX therapy on the skin lesions of psoriasis, and lends support to its clinical efficacy.
Collapse
Affiliation(s)
- Guomi Wang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Tingting Xue
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Qi Zheng
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Xun Song
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Ying Zhang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Fang Shen
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Xuemin Wang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Wencheng Jiang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; China Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shaoqiong Xie
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Xin Ma
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China; Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xi Chen
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China.
| | - Bin Li
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China; China Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
5
|
Shi H, Chen D, Si J, Zou Q, Guo Y, Yu J, Li C, Wang F. Efficacy and Safety of Oxymatrine in the Treatment of Patients with Erythrodermic Psoriasis. Dermatol Ther (Heidelb) 2024; 14:1659-1670. [PMID: 38796792 PMCID: PMC11169162 DOI: 10.1007/s13555-024-01181-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
INTRODUCTION The management of erythrodermic psoriasis (EP), a rare but severe type of psoriasis, is challenging, especially in patients with concomitant chronic hepatitis B (CHB). We previously demonstrated that oxymatrine treatment alleviated severe plaque psoriasis, but its therapeutic potential in treating EP remains unexplored. This study was to assess the efficacy and safety of oxymatrine for the treatment of EP, with attention to concomitant CHB. METHODS In this investigator-initiated clinical trial, four consecutive patients with EP, including two (A and B) with concomitant CHB, were treated with intravenous administration of oxymatrine as monotherapy for 8 weeks, and scheduled to be followed up for a minimum of 24 weeks. The primary outcome was at least 75% improvement in the psoriasis area and severity index (PASI 75) at week 32. Secondary outcomes included the body surface area (BSA) score, dermatology life quality index (DLQI)], and safety. RESULTS Patients A, B, and C achieved PASI 75 at treatment completion and week 32, demonstrating improvements of 77.4%, 97.2%, and 100% in PASI, respectively. Their BSA and DLQI were also improved significantly at week 32 and throughout follow-up of 37, 57, and 105 weeks, respectively. The viral loads in patients A and B with CHB decreased modestly. Patient D discontinued after follow-up for 19 weeks, and the primary outcome could not be analyzed. No adverse events were reported during treatment and follow-up. CONCLUSION Oxymatrine appears to be efficacious and safe for the treatment of patients with EP, including those with concomitant CHB. TRIAL REGISTRATION This study was registered at the Chinese Clinical Trial Registry ( www.chictr.org.cn ; Registration number ChiCTR-TRC-14004301).
Collapse
Affiliation(s)
- Huijuan Shi
- Innovation Team for Skin Disease Diagnosis and Treatment Technology and Drug Discovery and Development, Department of Dermatovenereology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Yinchuan, 750004, Ningxia, China.
- Department of Dermatovenereology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| | - Dongmei Chen
- Innovation Team for Skin Disease Diagnosis and Treatment Technology and Drug Discovery and Development, Department of Dermatovenereology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Yinchuan, 750004, Ningxia, China
- Institute of Human Stem Cell Research, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Jiawei Si
- Clinical Medical School, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Qian Zou
- Clinical Medical School, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yatao Guo
- Clinical Medical School, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Jiayu Yu
- Clinical Medical School, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Cheng Li
- Clinical Medical School, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Fang Wang
- Clinical Medical School, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| |
Collapse
|
6
|
Wang J, Zhang CS, Zhang AL, Chen H, Xue CC, Lu C. Adding Chinese herbal medicine bath therapy to conventional therapies for psoriasis vulgaris: A systematic review with meta-analysis of randomised controlled trials. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155381. [PMID: 38537444 DOI: 10.1016/j.phymed.2024.155381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/26/2023] [Accepted: 01/20/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Chinese herbal medicine (CHM) bath is commonly used in China as an adjuvant therapy for managing psoriasis vulgaris. Previous systematic reviews showed that CHM bath therapy was effective and safe for psoriasis vulgaris, however, without exploration of the specifics of CHM bath therapy such as the optimal temperature, duration of each session, and the total treatment duration. PURPOSE To evaluate the add-on effects of CHM bath therapy to conventional therapies for adult psoriasis vulgaris. METHODS We conducted a comprehensive search in nine medical databases from inception to September 2022 to identify relevant randomised controlled trials (RCTs) published in Chinese or English. The included studies compared the combination of CHM bath therapy and conventional therapies to conventional therapies alone for adult psoriasis vulgaris. Methodological quality assessment of the included RCTs was performed using the Cochrane risk-of-bias tool 2 (RoB 2). Statistical analysis was carried out using RevMan 5.4, R 4.2.3 and Stata 12.0 software. The certainty of evidence of outcome measures was evaluated using the Grading of Recommendations Assessment, Development, and Evaluation Working Group (GRADE) system. RESULTS A total of 23 RCTs involving 2,183 participants were included in this systematic review. Findings suggested that the combination of CHM bath therapy and conventional therapies was more effective in reducing Psoriasis Area and Severity Index (PASI), Dermatology Life Quality Index (DLQI) and itch visual analogue scale, compared to using conventional therapies alone. These enhanced effects were notably observed when the CHM bath was set above 38 °C and had a duration of 20 and 30 min, as assessed by DLQI. Moreover, an eight-week treatment duration resulted in better effects for PASI compared to shorter durations. Additionally, the top ten frequently used herbs in the included studies were identified. Despite the findings, the certainty of evidence was rated as 'low' or 'moderate' based on the GRADE assessment, and significant heterogeneity was detected in subgroup and sensitivity analyses. CONCLUSION The CHM bath therapy combined with conventional therapies is more effective and safer than conventional therapies alone for adult psoriasis vulgaris. The results suggest a potential correlation between treatment effects and factors such as extended treatment duration, increased bath temperature, and longer bath sessions. However, the certainty of evidence was downgraded due to methodological limitations of the included studies. To confirm the findings of this systematic review, a double-blinded, placebo-controlled RCT is needed in the future.
Collapse
Affiliation(s)
- Junyue Wang
- The China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Claire Shuiqing Zhang
- The China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Anthony Lin Zhang
- The China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Haiming Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Charlie Changli Xue
- The China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China.
| | - Chuanjian Lu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
7
|
He J, Qin W, Jiang S, Lin Y, Lin Y, Yang R, Xu M, Liu Q. Oxymatrine attenuates sepsis-induced inflammation and organ injury via inhibition of HMGB1/RAGE/NF-κB signaling pathway. Drug Dev Res 2024; 85:e22219. [PMID: 38845211 DOI: 10.1002/ddr.22219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 02/21/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024]
Abstract
Sepsis is a life-threatening organ dysfunction that endangers patient lives and is caused by an imbalance in the host defense against infection. Sepsis continues to be a significant cause of morbidity and mortality in critically sick patients. Oxymatrine (OMT), a quinolizidine alkaloid derived from the traditional Chinese herb Sophora flavescens Aiton, has been shown to have anti-inflammatory effects on a number of inflammatory illnesses according to research. In this study, we aimed to evaluate the therapeutic effects of OMT on sepsis and explore the underlying mechanisms. We differentiated THP-1 cells into THP-1 macrophages and studied the anti-inflammatory mechanism of OMT in a lipopolysaccharide (LPS)-induced THP-1 macrophage sepsis model. Activation of the receptor for advanced glycation end products (RAGE), as well as NF-κB, was assessed by Western blot analysis and immunofluorescence staining. ELISA was used to measure the levels of inflammatory factors. We found that OMT significantly inhibited HMGB1-mediated RAGE/NF-κB activation and downstream inflammatory cytokine production in response to LPS stimulation. Finally, an in vivo experiment was performed on septic mice to further study the effect of OMT on injured organs. The animal experiments showed that OMT significantly inhibited HMGB1-mediated RAGE/NF-κB activation, protected against the inflammatory response and organ injury induced by CLP, and prolonged the survival rate of septic mice. Herein, we provide evidence that OMT exerts a significant therapeutic effect on sepsis by inhibiting the HMGB1/RAGE/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Junbing He
- Jieyang Medical Research Center, Jieyang People's Hospital, Jieyang, China
| | - Wanbing Qin
- Jieyang Medical Research Center, Jieyang People's Hospital, Jieyang, China
| | - Shusong Jiang
- Jieyang Medical Research Center, Jieyang People's Hospital, Jieyang, China
| | - Yao Lin
- Jieyang Medical Research Center, Jieyang People's Hospital, Jieyang, China
| | - Yingying Lin
- Jieyang Medical Research Center, Jieyang People's Hospital, Jieyang, China
| | - Ruoxuan Yang
- Jieyang Medical Research Center, Jieyang People's Hospital, Jieyang, China
| | - Mingwei Xu
- Jieyang Medical Research Center, Jieyang People's Hospital, Jieyang, China
| | - Qinghua Liu
- Jieyang Medical Research Center, Jieyang People's Hospital, Jieyang, China
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| |
Collapse
|
8
|
Wu X, Zheng Q, Shen F, Song J, Luo Y, Fei X, Jiang W, Xie S, Ma X, Kuai L, Wang R, Ding X, Li M, Luo Y, Li B. The therapeutic efficacy and mechanism action of Si Cao formula in the treatment of psoriasis: A pilot clinical investigation and animal validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117662. [PMID: 38160866 DOI: 10.1016/j.jep.2023.117662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/17/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Psoriasis is a chronic inflammation and relapsing disease that affected approximately 100 million individuals worldwide. In previous clinical study, it was observed that the topical application of Si Cao Formula (SCF) ameliorated psoriasis skin lesions and reduced the recurrence rate of patients over a period of three months. However, the precise mechanism remains unclear. AIM OF THE STUDY The objective of this study was to assess the effectiveness and safety of SCF in patients diagnosed with psoriasis and explore the molecular mechanisms that contribute to SCF's therapeutic efficacy in psoriasis treatment. MATERIALS AND METHODS A randomized, controlled, and pilot clinical study was performed. This study assessed 30 individuals diagnosed with mild to moderate plaque psoriasis. 15 of them underwent local SCF treatment, the others received calcipotriol intervention. The outcome measure focused on Psoriasis Area and Severity Index (PASI), Dermatology Life Quality Index (DLQI), and recurrence rate. In addition, IMQ-induced psoriasis-like mice model were used to assess the impact of SCF on ameliorating epidermal hyperplasia, suppressing angiogenesis, and modulating immune response. Furthermore, we performed bioinformatics analysis on transcriptome data obtained from skin lesions of mice model. This analysis allowed us to identify the targets and signaling pathways associated with the action of SCF. Subsequently, we conducted experimental validation to confirm the core targets. RESULTS Our clinical pilot study demonstrated that SCF could ameliorate skin lesions in psoriasis patients with comparable efficacy of calcipotriol in drop of PASI and DLQI scores. SCF exhibited a significantly reduced recurrence rate within 12 weeks (33.3%). Liquid Chromatography Mass Spectrometry (LC-MS) identified 41 active constituents of SCF (26 cations and 15 anions). Animal experiments showed SCF ameliorates the skin lesions of IMQ-induced psoriasis like mice model and suppresses epidermal hyperkeratosis and angiogenesis. There were 845 up-regulated and 764 down-regulated DEGs between IMQ and IMQ + SCF groups. GO analysis revealed that DEGs were linked to keratinization, keratinocyte differentiation, organic acid transport epidermal cell differentiation, and carboxylic acid transport interferon-gamma production. KEGG pathway analysis showed that SCF may play a vital part through IL-17 and JAK/STAT signaling pathway. In addition, SCF could reduce the number of positive cells expressing PCNA, CD31, pSTAT3, CD3, and F4/80 within the epidermis of psoriatic lesions, as well as the expression of Il-17a and Stat3 in IMQ-induced psoriasis mice. CONCLUSIONS Our research suggests that SCF serves as a reliable and efficient local approach for preventing and treating psoriasis. The discovery of plausible molecular mechanisms and therapeutic targets associated with SCF may support its broad implementation in clinical settings.
Collapse
Affiliation(s)
- Xinxin Wu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Qi Zheng
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Fang Shen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jiankun Song
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yue Luo
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Xiaoya Fei
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Wencheng Jiang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Shaoqiong Xie
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Xin Ma
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ruiping Wang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Xiaojie Ding
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Miao Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Bin Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
9
|
Wu Y, Huang M, Chen X, Wu J, Li L, Wei J, Lu C, Han L, Lu Y. A genome-wide cross-trait analysis identifies shared loci and causal relationships of obesity and lipidemic traits with psoriasis. Front Immunol 2024; 15:1328297. [PMID: 38550599 PMCID: PMC10972863 DOI: 10.3389/fimmu.2024.1328297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/21/2024] [Indexed: 04/02/2024] Open
Abstract
Background Obesity and dyslipidemia, major global health concerns, have been linked to psoriasis, but previous studies faced methodological limitations and their shared genetic basis remains unclear. This study examines various obesity-related and lipidemic traits as potential contributors to psoriasis development, aiming to clarify their genetic associations and potential causal links. Methods Summary statistics from genome-wide association studies (GWAS) conducted for obesity-related traits (body mass index (BMI), waist-to-hip ratio (WHR), and waist-to-hip ratio adjusted for the body mass index (WHRadjBMI)) and lipidemic traits (high-density lipoprotein (HDL), LDL, triglyceride (TG), total Cholesterol (TC), apolipoprotein A1 (apoA1), apolipoprotein B (apoB), and apolipoprotein E (apoE)) and psoriasis, all in populations of European ancestry, were used. We quantified genetic correlations, identified shared loci and explored causal relationship across traits. Results We found positive genetic correlation between BMI and psoriasis (rg=0.22, p=2.44×10-18), and between WHR and psoriasis (rg=0.19, p=1.41×10-12). We further found the positive genetic correlation between psoriasis and WHRadjBMI(rg=0.07, p=1.81×10-2) the genetic correlation, in while the effect of BMI was controlled for. We identified 14 shared loci underlying psoriasis and obesity-related traits and 43 shared loci between psoriasis and lipidemic traits via cross-trait meta-analysis. Mendelian randomization (MR) supported the causal roles of BMI (IVW OR=1.483, 95%CI=1.333-1.649), WHR (IVW OR=1.393, 95%CI=1.207-1.608) and WHRadjBMI (IVW OR=1.18, 95%CI=1.047-1.329) in psoriasis, but not observe any significant association between lipidemic traits and the risk of psoriasis. Genetic predisposition to psoriasis did not appear to affect the risk of obesity and lipidemic traits. Conclusions An intrinsic link between obesity-related traits and psoriasis has been demonstrated. The genetic correlation and causal role of obesity-related traits in psoriasis highlight the significance of weight management in both the prevention and treatment of this condition.
Collapse
Affiliation(s)
- Yuan Wu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mengfen Huang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xueru Chen
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Wu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianan Wei
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuanjian Lu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ling Han
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Lu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
10
|
Lu J, Bian J, Wang Y, Zhao Y, Zhao X, Wang G, Yang J. Oxymatrine protects articular chondrocytes from IL-1β-induced damage through autophagy activation via AKT/mTOR signaling pathway inhibition. J Orthop Surg Res 2024; 19:178. [PMID: 38468339 PMCID: PMC10926585 DOI: 10.1186/s13018-024-04667-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/06/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a common degenerative joint disease characterized by persistent articular cartilage degeneration and synovitis. Oxymatrine (OMT) is a quinzolazine alkaloid extracted from the traditional Chinese medicine, matrine, and possesses anti-inflammatory properties that may help regulate the pathogenesis of OA; however, its mechanism has not been elucidated. This study aimed to investigate the effects of OMT on interleukin-1β (IL-1β)-induced damage and the potential mechanisms of action. METHODS Chondrocytes were isolated from Sprague-Dawley rats. Toluidine blue and Collagen II immunofluorescence staining were used to determine the purity of the chondrocytes. Thereafter, the chondrocytes were subjected to IL-1β stimulation, both in the presence and absence of OMT, or the autophagy inhibitor 3-methyladenine (3-MA). Cell viability was assessed using the MTT assay and SYTOX Green staining. Additionally, flow cytometry was used to determine cell apoptosis rate and reactive oxygen species (ROS) levels. The protein levels of AKT, mTOR, LC3, P62, matrix metalloproteinase-13, and collagen II were quantitatively analyzed using western blotting. Immunofluorescence was used to assess LC3 expression. RESULTS OMT alleviated IL-1β-induced damage in chondrocytes, by increasing the survival rate, reducing the apoptosis rates of chondrocytes, and preventing the degradation of the cartilage matrix. In addition, OMT decreased the ROS levels and inhibited the AKT/mTOR signaling pathway while promoting autophagy in IL-1β treated chondrocytes. However, the effectiveness of OMT in improving chondrocyte viability under IL-1β treatment was limited when autophagy was inhibited by 3-MA. CONCLUSIONS OMT decreases oxidative stress and inhibits the AKT/mTOR signaling pathway to enhance autophagy, thus inhibiting IL-1β-induced damage. Therefore, OMT may be a novel and effective therapeutic agent for the clinical treatment of OA.
Collapse
Affiliation(s)
- Jinying Lu
- Department of Biochemistry and Molecular Biology, Basic Medical College, Jinzhou Medical University, No.40, Section 3 Songpo Road, Linghe District, Jinzhou, Liaoning, 121001, China
| | - Jiang Bian
- Department of Biochemistry and Molecular Biology, Basic Medical College, Jinzhou Medical University, No.40, Section 3 Songpo Road, Linghe District, Jinzhou, Liaoning, 121001, China
| | - Yutong Wang
- Department of Biochemistry and Molecular Biology, Basic Medical College, Jinzhou Medical University, No.40, Section 3 Songpo Road, Linghe District, Jinzhou, Liaoning, 121001, China
| | - Yan Zhao
- Provincial Key Laboratory of Cardiovascular and Cerebrovascular Drug Basic Research, Jinzhou Medical University, No.40, Section 3 Songpo Road, Linghe District, Jinzhou, Liaoning, 121001, China
| | - Xinmin Zhao
- Department of Biochemistry and Molecular Biology, Basic Medical College, Jinzhou Medical University, No.40, Section 3 Songpo Road, Linghe District, Jinzhou, Liaoning, 121001, China
| | - Gao Wang
- Department of Biochemistry and Molecular Biology, Basic Medical College, Jinzhou Medical University, No.40, Section 3 Songpo Road, Linghe District, Jinzhou, Liaoning, 121001, China
| | - Jing Yang
- Provincial Key Laboratory of Cardiovascular and Cerebrovascular Drug Basic Research, Jinzhou Medical University, No.40, Section 3 Songpo Road, Linghe District, Jinzhou, Liaoning, 121001, China.
| |
Collapse
|
11
|
Ahmed S, Keniry M, Anaya-Barbosa N, Padilla V, Javed MN, Gilkerson R, Narula AS, Ibrahim E, Lozano K. Oxymatrine Loaded Cross-Linked PVA Nanofibrous Scaffold: Design and Characterization and Anticancer Properties. Macromol Biosci 2023; 23:e2300098. [PMID: 37270675 DOI: 10.1002/mabi.202300098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/08/2023] [Indexed: 06/05/2023]
Abstract
This study focuses on the fabrication, characterization and anticancer properties of biocompatible and biodegradable composite nanofibers consisting of poly(vinyl alcohol) (PVA), oxymatrine (OM), and citric acid (CA) using a facile and high-yield centrifugal spinning process known as Forcespinning. The effects of varying concentrations of OM and CA on fiber diameter and molecular cross-linking are investigated. The morphological and thermo-physical properties, as well as water absorption of the developed nanofiber-based mats are characterized using microscopical analysis, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. In vitro anticancer studies are conducted with HCT116 colorectal cancer cells. Results show a high yield of long fibers embedded with beads. Fiber average diameters range between 462 and 528 nm depending on OM concentration. The thermal analysis results show that the fibers are stable at room temperature. The anticancer study reveals that PVA nanofiber membrane with high concentrations of OM can suppress the proliferation of HCT116 colorectal cancer cells. The study provides a comprehensive investigation of OM embedded into nanosized PVA fibers and the prospective application of these membranes as a drug delivery system.
Collapse
Affiliation(s)
- Salahuddin Ahmed
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Megan Keniry
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Narcedalia Anaya-Barbosa
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Victoria Padilla
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Md Noushad Javed
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Robert Gilkerson
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | | | - Eman Ibrahim
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Karen Lozano
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| |
Collapse
|
12
|
Fang Z, Wang Y, Huang B, Chen X, Jiang R, Yin M. Depletion of G9A attenuates imiquimod-induced psoriatic dermatitis via targeting EDAR-NF-κB signaling in keratinocyte. Cell Death Dis 2023; 14:627. [PMID: 37739945 PMCID: PMC10517171 DOI: 10.1038/s41419-023-06134-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/24/2023]
Abstract
Psoriasis is a common and recurrent inflammatory skin disease characterized by inflammatory cells infiltration of the dermis and excessive proliferation, reduced apoptosis, and abnormal keratosis of the epidermis. In this study, we found that G9A, an important methyltransferase that mainly mediates the mono-methylation (me1) and di-methylation (me2) of histone 3 lysine 9 (H3K9), is highly expressed in lesions of patients with psoriasis and imiquimod (IMQ)-induced psoriasis-like mouse model. Previous studies have shown that G9A is involved in the pathogenesis of various tumors by regulating apoptosis, proliferation, differentiation, and invasion. However, the role of G9A in skin inflammatory diseases such as psoriasis remains unclear. Our data so far suggest that topical administration of G9A inhibitor BIX01294 as well as keratinocyte-specific deletion of G9A greatly alleviated IMQ-induced psoriatic alterations in mice for the first time. Mechanistically, the loss function of G9A causes the downregulation of Ectodysplasin A receptor (EDAR), consequently inhibiting the activation of NF-κB pathway, resulting in impaired proliferation and increased apoptosis of keratinocytes, therefore ameliorating the psoriatic dermatitis induced by IMQ. In total, we show that inhibition of G9A improves psoriatic-like dermatitis mainly by regulating cell proliferation and apoptosis rather than inflammatory processes, and that this molecule may be considered as a potential therapeutic target for keratinocyte hyperproliferative diseases such as psoriasis.
Collapse
Affiliation(s)
- Zhiqin Fang
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Clinical Research Center for Cancer Immunotherapy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
| | - Yutong Wang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bo Huang
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Clinical Research Center for Cancer Immunotherapy, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Xiang Chen
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Clinical Research Center for Cancer Immunotherapy, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China.
| | - Rundong Jiang
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Clinical Research Center for Cancer Immunotherapy, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China.
| | - Mingzhu Yin
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Clinical Research Center for Cancer Immunotherapy, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China.
- Clinical Research Center, Medical Pathology Center, Cancer Early Detection and Treatment Center, Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China.
- Translational Medicine Research Center, School of Medicine Chongqing University, Shapingba, Chongqing, China.
| |
Collapse
|
13
|
Ye T, Ge Y, Jiang X, Song H, Peng C, Liu B. A review of anti-tumour effects of Ganoderma lucidum in gastrointestinal cancer. Chin Med 2023; 18:107. [PMID: 37641070 PMCID: PMC10463474 DOI: 10.1186/s13020-023-00811-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/22/2023] [Indexed: 08/31/2023] Open
Abstract
Gastrointestinal (GI) cancer is the most common cancer in the world and one of the main causes of cancer-related death. Clinically, surgical excision and chemotherapy are the main treatment methods for GI cancer, which is unfortunately accompanied with serious adverse reactions and drug toxicity, bringing irreversible damage to patients and seriously affecting the quality of life. Ganoderma lucidum (G. lucidum) has a long history of medicinal and edible use in China. Its bioactive compounds mainly include polysaccharides, triterpenes, and proteins, which have potential anti-tumor activities by inhibiting proliferation, inducing apoptosis, inhibiting metastasis, and regulating autophagy. Currently, there is no in-depth review on the anti-tumor effect of G. lucidum in GI cancer. Therefore, this review is an attempt to compile the basic characteristics, anti-GI caner mechanisms, and clinical application of G. lucidum, aiming to provide a reference for further research on the role of G. lucidum in the prevention and treatment of GI cancer from the perspective of traditional Chinese and western medicine.
Collapse
Affiliation(s)
- Ting Ye
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yang Ge
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaoying Jiang
- Department of Technology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Hang Song
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, 233030, China.
| | - Can Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Bin Liu
- Cancer Research Centre, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China.
| |
Collapse
|
14
|
Zhou Z, Liao B, Wang S, Tang J, Zhao H, Tong M, Li K, Xiong S. Improved Production of Anti-FGF-2 Nanobody Using Pichia pastoris and Its Effect on Antiproliferation of Keratinocytes and Alleviation of Psoriasis. Arch Immunol Ther Exp (Warsz) 2023; 71:20. [PMID: 37632545 DOI: 10.1007/s00005-023-00685-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/14/2023] [Indexed: 08/28/2023]
Abstract
Fibroblast growth factor 2 (FGF-2) is not only an angiogenic factor, but also a mitogen for epidermal keratinocytes. FGF-2 has been shown to be positively immunoreactive in the basal layer of psoriatic lesions. In previous work, we used the Escherichia coli (E. coli) expression system to biosynthesize a biologically active anti-FGF-2 nanobody (Nb) screened by phage display technology, but the low yield limited its clinical application. In this study, we aimed to increase the yield of anti-FGF-2 Nb, and evaluate its therapeutic potential for psoriasis by inhibiting FGF-2-mediated mitogenic signaling in psoriatic epidermal keratinocytes. We demonstrated a 16-fold improvement in the yield of anti-FGF-2 Nb produced in the Pichia pastoris (P. pastoris) compared to the E. coli expression system. In vitro, the FGF-2-induced HaCaT cell model (FHCM) was established to mimic the key feature of keratinocyte overproliferation in psoriasis. Anti-FGF-2 Nb was able to effectively inhibit the proliferation and migration of FHCM. In vivo, anti-FGF-2 Nb attenuated the severity of imiquimod (IMQ)-induced psoriatic lesions in mice, and also improved the inflammatory microenvironment by inhibiting the secretion of inflammatory cytokines (IL-1β, IL-6, IL-23, and TNF-α), chemokines (CXCL1 and CCL20), and neutrophil infiltration in skin lesions. These were mainly related to the suppression of FGF-2-mediated mitogenic signaling in psoriatic keratinocytes. In conclusion, we have improved the production of anti-FGF-2 Nb and demonstrated the modality of attenuating the abnormal proliferative behavior of psoriatic keratinocytes by inhibiting FGF-2-mediated mitogenic signaling, which offers the possibility of treating psoriasis.
Collapse
Affiliation(s)
- Zhenlong Zhou
- Institute of Biomedicine and National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, People's Republic of China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Baixin Liao
- Institute of Biomedicine and National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Shengli Wang
- Institute of Biomedical Transformation, School of Basic Medicine and Public Health, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Jian Tang
- Institute of Biomedicine and National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Hui Zhao
- Institute of Biomedicine and National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Mingjie Tong
- Institute of Biomedicine and National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Keting Li
- Institute of Biomedicine and National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Sheng Xiong
- Institute of Biomedicine and National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, People's Republic of China.
| |
Collapse
|
15
|
Cai Z, Wang W, Zhang Y, Zeng Y. Curcumin alleviates imiquimod-induced psoriasis-like inflammation and regulates gut microbiota of mice. Immun Inflamm Dis 2023; 11:e967. [PMID: 37647442 PMCID: PMC10411394 DOI: 10.1002/iid3.967] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND As a polyphenolic compound originated from the food spice turmeric, curcumin (CUR) has various pharmacological effects, such as anti-inflammatory, antioxidation, antiproliferative, and antiangiogenic activities. Psoriasis is centered on the overproduction of Th1- and Th2-related cytokines (e.g., interleukin [IL]-23, IL-17, TNF-α, IL-22), which is involved in the occurrence and development of its pathogenesis. However, whether CUR is involved in the treatment of psoriasis and its specific mechanisms are not fully understood. METHODS In this study, we detected the therapeutic effect of CUR (100 mg/kg/day) on IMQ-induced dermatitis in mice, analyzed by PASI scores, ELISA, HE staining, immunofluorescence. Moreover, we further confirmed the alteration in the relative abundance of the gut microbiota through 16sRNA to explore whether CUR could regulate the gut microbiota of IMQ-induced mice. RESULT Through intragastric administration, CUR can alleviate psoriasis-like lesions of mice by decreasing PASI scores, reducing the level of IL-6, IL-17A, IL-22, IL-23, TNF-α, and TGF-β1, promoting the expression of IL-10. Moreover, 16sRNA sequencing revealed that CUR could regulate the alteration in the abundance alteration of gut microbiota related to inflammation, such as Alistipes, Mucispirillum, and Rikenella at genus level. The correlation analysis further confirmed the close association between important microflora and psoriasis-like inflammation indicators. CONCLUSIONS CUR exerts the effect of alleviating dermatitis of psoriatic mice by regulating Th-17 related inflammatory factors. Moreover, the changes in gut microbiota via CUR may be another factor of relieving IMQ-induced lesions in mice. Therefore, CUR may be a highly promising candidate for the treatment of psoriasis.
Collapse
Affiliation(s)
- Zhenguo Cai
- Department of Dermatology, Minhang HospitalFudan University/Central Hospital of Minhang DistrictShanghaiChina
| | - Wuqing Wang
- Department of DermatologyShuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yao Zhang
- Department of Dermatology, Minhang HospitalFudan University/Central Hospital of Minhang DistrictShanghaiChina
| | - Yibin Zeng
- Department of Dermatology, Minhang HospitalFudan University/Central Hospital of Minhang DistrictShanghaiChina
- Dermartment of DermatologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
16
|
Li L, Liu C, Fu J, Wang Y, Yang D, Peng B, Liu X, Han X, Meng Y, Feng F, Hu X, Qi C, Wang Y, Zheng Y, Li P. CD44 targeted indirubin nanocrystal-loaded hyaluronic acid hydrogel for the treatment of psoriasis. Int J Biol Macromol 2023; 243:125239. [PMID: 37295696 DOI: 10.1016/j.ijbiomac.2023.125239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/30/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Despite advances in transdermal drug delivery for treating psoriasis, there are still unmet medical needs, hyaluronic acid (HA)-based topical formulations as nanocarriers, which can increase drug concentration in psoriatic skin through CD44-assisted targeting. Here, HA was utilized as a matrix for nanocrystal-based hydrogel (NC-gel) to deliver indirubin topically for psoriasis treatments. Indirubin nanocrystals (NCs) were prepared through wet media milling and were then mixed with HA to create indirubin NC/HA gels. A mouse model of imiquimod (IMQ)-induced psoriasis and M5-induced keratinocyte proliferation were established. Then, the efficacy of indirubin delivery targeted at CD44, and anti-psoriatic efficacy using indirubin NC/HA gels (HA-NC-IR group) were evaluated. The HA hydrogel network embedding indirubin NCs enhanced cutaneous absorption of poorly water-soluble indirubin. The co-localization of CD44 and HA in psoriasis-like inflamed skin was highly elevated, suggesting that indirubin NC/HA gels specifically adhered to CD44, leading to an increase in indirubin accumulation in the skin. Additionally, indirubin NC/HA gels enhanced the anti-psoriatic effect of indirubin in both a mouse model and HaCaT cells stimulated with M5. The results indicate that NC/HA gels targeting overexpressed CD44 protein can improve the delivery of topical indirubin to psoriatic inflamed tissues. This suggests that a topical drug delivery system could be a viable approach for formulating multiple insoluble natural products to treat psoriasis.
Collapse
Affiliation(s)
- Lin Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
| | - Chang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau
| | - Jing Fu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
| | - Yan Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
| | - Danyang Yang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
| | - Bing Peng
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
| | - Xin Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
| | - Xuyang Han
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
| | - Yujiao Meng
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
| | - Fang Feng
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
| | - Xueqing Hu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
| | - Cong Qi
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
| | - Yazhuo Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau.
| | - Ping Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China.
| |
Collapse
|
17
|
Zhou K, Liu D, Jin Y, Xia W, Zhang P, Zhou Z. Oxymatrine ameliorates osteoarthritis via the Nrf2/NF-κB axis in vitro and in vivo. Chem Biol Interact 2023; 380:110539. [PMID: 37196756 DOI: 10.1016/j.cbi.2023.110539] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/25/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
PURPOSE Osteoarthritis (OA) is a common degenerative joint disorder. Currently, the underlying etiology of OA is still far from fully elucidated and there is no cure for OA progression. Previous studies have demonstrated that oxymatrine (OMT) could inhibit inflammation and oxidative stress in several animal models. However, the potential effects of OMT on OA remain largely elusive. The aim of the study is to investigate the anti-inflammatory and chondrocyte protective effect of OMT, and delineate the potential mechanism in vitro and in vivo. METHODS Western blotting, RT-qPCR, ELISA and tissue staining were employed to explore the mechanisms by which OMT exerted a protective effect on IL-1β-induced production of pro-inflammation cytokines and extracellular matrix (ECM) degradation in primary murine chondrocytes and DMM mouse models. RESULTS The results showed that OMT reduced the IL-1β-induced over-production of pro-inflammation cytokines and ECM degradation. Mechanistically, OMT inhibited the NF-κB pathway via activating Nrf2. In vivo studies also demonstrated that OMT ameliorated OA progression. CONCLUSIONS OMT reduced pro-inflammation cytokines, ECM degradation and OA progression via activating Nrf2 and inhibiting NF-κB pathway.
Collapse
Affiliation(s)
- Kailong Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Dong Liu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yesheng Jin
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China
| | - Wei Xia
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Peng Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Zhiqiang Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
18
|
Feng T, Duan R, Zheng P, Qiu J, Li Q, Li W. Oxymatrine inhibits TGF‑β1‑mediated mitochondrial apoptotic signaling in alveolar epithelial cells via activation of PI3K/AKT signaling. Exp Ther Med 2023; 25:198. [PMID: 37090069 PMCID: PMC10119625 DOI: 10.3892/etm.2023.11897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/24/2023] [Indexed: 04/25/2023] Open
Abstract
Although pulmonary fibrosis (PF) causes respiratory failure and death, effective therapies for PF have not been developed. Oxymatrine (OMT), an active ingredient in the Chinese herb Sophora flavescens, exerts antifibrotic effects; however, its effect on PF remains unclear. The present study aimed to determine whether OMT decreases transforming growth factor-β1 (TGF-β1)-induced PF in human lung cancer A549 cells by inhibiting apoptosis and targeting the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway. To construct a PF cell model, A549 cells were stimulated with TGF-β1. The experimental groups were as follows: control (untreated cells grown in complete medium), TGF-β1 (cells treated with 5 ng/ml TGF-β1), OMT (cells treated with 5 ng/ml TGF-β1 and 0.25, 0.50, or 1.00 mg/ml OMT), and OMT + LY294002 (cells treated with 5 ng/ml TGF-β1, 1.0 mg/ml OMT. and 25 µmol/l LY294002). The effects of OMT on cell morphology (via electron microscopy), apoptosis (via Annexin V-PI staining), mitochondrial apoptosis signaling [using JC-1 method to analyze mitochondrial membrane potential (MMP)], and Bcl-2, as well as Bax expression (via western blotting and reverse transcription-quantitative polymerase chain reaction), were analyzed. OMT significantly protected cells against TGF-β1-induced PF by inhibiting apoptosis. The specific manifestations were cell injury, as evidenced by morphological changes and decreased MMP. Following OMT treatment, the expression of the pro-apoptotic protein Bax increased, whereas that of the anti-apoptotic protein Bcl-2 decreased. The PI3K/AKT-specific inhibitor LY294002 significantly inhibited the ameliorative effects of OMT on TGF-β1-induced apoptosis. Collectively, OMT attenuated TGF-β1-mediated mitochondrial apoptosis of alveolar epithelial cells by activating the PI3K/AKT signaling pathway. Therefore, OMT may be a promising drug for PF treatment.
Collapse
Affiliation(s)
- Tong Feng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
- Key Laboratory of Geriatrics Respiratory Disease Education Department of Sichuan, Chengdu, Sichuan 610500, P.R. China
| | - Ran Duan
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
- Department of Cardiology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Pengcheng Zheng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Jing Qiu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Qingyuan Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
- Key Laboratory of Geriatrics Respiratory Disease Education Department of Sichuan, Chengdu, Sichuan 610500, P.R. China
| | - Wancheng Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
- Key Laboratory of Geriatrics Respiratory Disease Education Department of Sichuan, Chengdu, Sichuan 610500, P.R. China
- Correspondence to: Professor Wancheng Li, Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Avenue, Xindu, Chengdu, Sichuan 610599, P.R. China
| |
Collapse
|
19
|
Yang L, Lu Y, Zhang Z, Chen Y, Chen N, Chen F, Qi Y, Han C, Xu Y, Chen M, Shen M, Wang S, Zeng H, Su Y, Hu M, Wang J. Oxymatrine boosts hematopoietic regeneration by modulating MAPK/ERK phosphorylation after irradiation-induced hematopoietic injury. Exp Cell Res 2023; 427:113603. [PMID: 37075826 DOI: 10.1016/j.yexcr.2023.113603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/04/2023] [Accepted: 04/16/2023] [Indexed: 04/21/2023]
Abstract
Hematopoietic toxicity due to ionizing radiation (IR) is a leading cause of death in nuclear incidents, occupational hazards, and cancer therapy. Oxymatrine (OM), an extract originating from the root of Sophora flavescens (Kushen), possesses extensive pharmacological properties. In this study, we demonstrate that OM treatment accelerates hematological recovery and increases the survival rate of mice subjected to irradiation. This outcome is accompanied by an increase in functional hematopoietic stem cells (HSCs), resulting in an enhanced hematopoietic reconstitution ability. Mechanistically, we observed significant activation of the MAPK signaling pathway, accelerated cellular proliferation, and decreased cell apoptosis. Notably, we identified marked increases in the cell cycle transcriptional regulator Cyclin D1 (Ccnd1) and the anti-apoptotic protein BCL2 in HSC after OM treatment. Further investigation revealed that the expression of Ccnd1 transcript and BCL2 levels were reversed upon specific inhibition of ERK1/2 phosphorylation, effectively negating the rescuing effect of OM. Moreover, we determined that targeted inhibition of ERK1/2 activation significantly counteracted the regenerative effect of OM on human HSCs. Taken together, our results suggest a crucial role for OM in hematopoietic reconstitution following IR via MAPK signaling pathway-mediated mechanisms, providing theoretical support for innovative therapeutic applications of OM in addressing IR-induced injuries in humans.
Collapse
Affiliation(s)
- Lijing Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Yukai Lu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Zihao Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Yin Chen
- Department of Gynaecology and Obstetrics, 958 Hospital of PLA Army, Chongqing, 400038, China.
| | - Naicheng Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Fang Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Yan Qi
- Department of Hematology, Daping Hospital, Third Military Medical University, Chongqing, 400038, China.
| | - Changhao Han
- Department of Hematology, Daping Hospital, Third Military Medical University, Chongqing, 400038, China.
| | - Yang Xu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Mo Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Mingqiang Shen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Song Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Hao Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Yongping Su
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Mengjia Hu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China; Chinese PLA Center for Disease Control and Prevention, No. 20 Dongda Street, Fengtai District, Beijing, 100071, China.
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
20
|
Hu W, Jiang Y, Wen C, Zeng Y, Jia M. MiR-149-5p inhibits cell proliferation, promotes cell apoptosis and retards cell cycle of IL-22-stimulated HaCaT and NHEK keratinocytes via regulating PDE4D. Cytokine 2023; 164:156123. [PMID: 36796259 DOI: 10.1016/j.cyto.2023.156123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/02/2022] [Accepted: 12/30/2022] [Indexed: 02/16/2023]
Abstract
BACKGROUND Psoriasis is a chronic autoimmune skin disease with unclear pathogenesis. It was found that miR-149-5p was significantly decreased in psoriatic lesion tissues. In this study, we aims to investigate the role and related molecular mechanism of miR-149-5p on psoriasis. METHOD IL-22 was used to stimulate HaCaT and NHEK cells to establish psoriasis model in vitro. The miR-149-5p and phosphodiesterase 4D (PDE4D) expression levels were detected by quantitative real-time PCR. HaCaT and NHEK cells proliferation was determined by Cell Couting Kit-8 assay. The cell apoptosis and cell cycle were detected by flow cytometry. The cleaved Caspase-3, Bax and Bcl-2 protein expressions were detected by western blot. The targeting relationship between PDE4D and miR-149-5p was predicted and confirmed by Starbase V2.0 and dual-luciferase reporter assay, respectively. RESULT There was a low expression level of miR-149-5p and a high expression of PDE4D in psoriatic lesion tissues. MiR-149-5p could target PDE4D. IL-22 promoted HaCaT and NHEK cells proliferation, while inhibited cell apoptosis and accelerated cell cycle. Moreover, IL-22 decreased the expressions of cleaved Caspase-3 and Bax, and increased the expression of Bcl-2. And the overexpressed miR-149-5p promoted HaCaT and NHEK cells apoptosis, inhibited cell proliferation and retarded cell cycle, meanwhile increased the cleaved Caspase-3 and Bax expressions, decreased the Bcl-2 expression. In addition, PDE4D overexpression has the opposite effect as miR-149-5p. CONCLUSION The overexpressed miR-149-5p inhibits IL-22-stimulated HaCaT and NHEK keratinocytes proliferation, promotes cell apoptosis and retards cell cycle by down-regulating the expression of PDE4D, which could be the promising therapeutic target of psoriasis.
Collapse
Affiliation(s)
- Wentao Hu
- Department of Dermatology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, China
| | - Yifang Jiang
- Department of Endocrinology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, China
| | - Changhui Wen
- Department of Dermatology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, China
| | - Yiyan Zeng
- Department of Dermatology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, China
| | - Min Jia
- Department of Dermatology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, China.
| |
Collapse
|
21
|
He Y, Jia H, Yang Q, Shan W, Chen X, Huang X, Liu T, Sun R. Specific Activation of CB2R Ameliorates Psoriasis-Like Skin Lesions by Inhibiting Inflammation and Oxidative Stress. Inflammation 2023:10.1007/s10753-023-01805-6. [PMID: 37000322 DOI: 10.1007/s10753-023-01805-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 04/01/2023]
Abstract
Psoriasis is a chronic inflammatory skin disease. Inflammation and oxidative stress play crucial roles in the pathogenesis of psoriasis. Cannabinoid receptor type 2 (CB2R) is an attractive target for treating various inflammatory disorders. However, the precise role and mechanism of CB2R activation in psoriasis remain to be further elucidated. In this study, imiquimod (IMQ)-induced experimental psoriasis mice and tumor necrosis factor-α (TNF-α)-activated keratinocytes (HaCaT) were used to examine the effect of CB2R activation on psoriasis-like lesions and the mechanism in vivo and in vitro. Our results demonstrated that activation of CB2R by the specific agonist GW842166X (GW) significantly ameliorated IMQ-induced psoriasiform skin lesions in mice by reducing epidermal thickness and decreasing plaque thickness. On the one hand, GW alleviated inflammation by decreasing inflammatory cytokines and abating inflammatory cell infiltration. On the other hand, this treatment reduced the level of iNOS and downregulated the expression of CB2R in psoriatic skin tissue. Further studies suggested that the Kelch-like ECH-associated protein 1/nuclear factor erythroid-2-related factor (Keap1/Nrf2) signaling pathway might be involved. Our findings reveal that selective activation of CB2R may serve as a new strategy for the treatment of psoriasis.
Collapse
Affiliation(s)
- Yufeng He
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Honglin Jia
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Qunfang Yang
- Department of Pharmacology, College of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, 400038, China
| | - Wenjun Shan
- Department of Pharmacology, College of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, 400038, China
| | - Xiaohong Chen
- Department of Pharmacology, College of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, 400038, China
| | - Xianqiong Huang
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Tao Liu
- Department of Pharmacology, College of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, 400038, China.
| | - Renshan Sun
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, 400042, China.
- Department of Dermatology, Health Science Center, South China Hospital, Shenzhen University, Guangdong, 518116, China.
| |
Collapse
|
22
|
Hidden allergens: erythema and swelling around arteriovenous fistula sites: a case report. Int Urol Nephrol 2023:10.1007/s11255-023-03509-0. [PMID: 36773218 DOI: 10.1007/s11255-023-03509-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/04/2023] [Indexed: 02/12/2023]
|
23
|
Fu Z, He Y, Gao L, Tong X, Zhou L, Zeng J. STAT2/Caspase3 in the diagnosis and treatment of psoriasis. Eur J Clin Invest 2023; 53:e13959. [PMID: 36708067 DOI: 10.1111/eci.13959] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/29/2023]
Abstract
BACKGROUND Psoriasis is a classic chronic recurrent inflammatory skin disease characterized by skin inflammation and abnormal biological behaviour of keratinocytes. Although Signal Transducer And Activator Of Transcription 2 (STAT2) was found to play an important role in the Janus kinase (JAK)-STAT signalling pathway and contribute to the pathogenesis of psoriasis, its exact role in psoriasis remains unclear. METHODS Using bioinformatics analysis, we identified the key pathways that significantly impacted psoriatic lesions. After identifying the critical molecule gene differentially expressed in multiple public databases using the Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment analysis, clinical samples were collected to validate the gene's significance. Its functions and underlying mechanism were also investigated in vitro. Lastly, we evaluated the diagnostic and therapeutic power of the target gene using the receiver operating characteristic curve (ROC), and gene association was assessed using Spearman correlation. RESULTS A significant correlation was found between cysteine-aspartic acid protease3 (Caspase3) and STAT2, and functional enrichment analysis revealed that they were both significantly up-regulated in psoriatic skin lesions compared to non-lesional tissues. Functional analysis revealed that Caspase3 functioned downstream of STAT2 in psoriasis. Lastly, we found that Caspase3 and STAT2 could be potential biomarkers for diagnosing and treating psoriasis. CONCLUSIONS In summary, STAT2 overexpression contributes to psoriasis progression by regulating Capase3 phosphorylation to induce excessive apoptosis of keratinocytes. Meanwhile, STAT2 and Capase3 were identified as promising biomarkers for the diagnosis and treatment of psoriasis and could be used for individualized treatments.
Collapse
Affiliation(s)
- Zhibing Fu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi He
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Lihua Gao
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoliang Tong
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lu Zhou
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinrong Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
24
|
Xue X, Guo Y, Zhao Q, Li Y, Rao M, Qi W, Shi H. Weighted Gene Co-Expression Network Analysis of Oxymatrine in Psoriasis Treatment. J Inflamm Res 2023; 16:845-859. [PMID: 36915614 PMCID: PMC10008007 DOI: 10.2147/jir.s402535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Purpose Psoriasis is a common, chronic, inflammatory, recurrent, immune-mediated skin disease. Oxymatrine is effective for treating moderate and severe psoriasis. Here, transcriptional changes in skin lesions before and after oxymatrine treatment of patients with psoriasis were identified using full-length transcriptome analysis and then compared with those of normal skin tissues. Patients and Methods Co-expression modules were constructed by combining the psoriasis area and severity index (PASI) score with weighted gene co-expression network analysis to explore the action mechanism of oxymatrine in improving clinical PASI. The expression of selected genes was verified using immunohistochemistry, quantitative real-time PCR, and Western blotting. Results Kyoto Encyclopedia of Gene and Genome pathway analysis revealed that oxymatrine treatment reversed the abnormal pathways, with an improvement in lesions and a reduction in PASI scores. Gene Ontology (GO) analysis revealed that oxymatrine treatment led to altered GO terms being regulated with a decrease in the PASI score in patients. Therefore, oxymatrine treatment may improve the skin barrier, differentiation of keratinocytes, and alleviate abnormality of organelles such as desmosomes. Protein-protein interaction network interaction analysis revealed that the top five hub genes among many interrelated genes were CNFN, S100A8, SPRR2A, SPRR2D, and SPRR2E, associated with the epidermal differentiation complex (EDC). EDC regulates keratinocyte differentiation. This result indicates that oxymatrine treatment can restore keratinocyte differentiation by regulating the expression of EDC-related genes. Conclusion Oxymatrine can improve erythema, scales, and other clinical symptoms of patients with psoriasis by regulating EDC-related genes and multiple pathways, thereby promoting the repair of epithelial tissue and maintaining the dynamic balance of skin keratosis.
Collapse
Affiliation(s)
- Xiaoxiao Xue
- Department of Dermatovenereology, the General Hospital of Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Yatao Guo
- Dermatological Department, Baoji Central Hospital, Shaanxi, 721008, People's Republic of China
| | - Qianying Zhao
- Medical Experimental Center, the General Hospital of Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Yongwen Li
- Department of Dermatovenereology, the General Hospital of Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Mi Rao
- Department of Dermatovenereology, the General Hospital of Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Wenjing Qi
- Department of Dermatovenereology, the General Hospital of Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Huijuan Shi
- Department of Dermatovenereology, the General Hospital of Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| |
Collapse
|
25
|
Chen X, Chen Y, Ou Y, Min W, Liang S, Hua L, Zhou Y, Zhang C, Chen P, Yang Z, Hu W, Sun P. Bortezomib inhibits NLRP3 inflammasome activation and NF-κB pathway to reduce psoriatic inflammation. Biochem Pharmacol 2022; 206:115326. [DOI: 10.1016/j.bcp.2022.115326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/02/2022]
|
26
|
Oxymatrine Protects Chondrocytes against IL-1β-triggered Apoptosis in Vitro and Inhibits Osteoarthritis in Mice Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2745946. [PMID: 36204118 PMCID: PMC9532098 DOI: 10.1155/2022/2745946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022]
Abstract
Background Osteoarthritis (OA) is a multifactorial disease with various risk factors, resulting in the degeneration of articular cartilage and whole joints. However, to date, no effective disease-modifying therapy for OA has been developed. Oxymatrine (OMT) is associated with many pharmacological effects, including anti-inflammatory, antiapoptotic, and antioxidative properties. However, the role of OMT in OA remains unclear. Materials and Methods An IL-1β-induced chondrocyte model and anterior cruciate ligament transection (ACLT)-induced murine model of OA were constructed. The effect of OMT on chondrocyte viability was assessed using the CCK-8 assay. The protein level was assessed by Western blot analysis, and the apoptosis rate was assessed by flow cytometry in vitro and TUNEL staining in OA model mice. The effect of OMT on the degradation of articular cartilage in ACLT-induced OA mice was assessed by histological analysis. Results OMT at 0–2 mg/mL showed no conspicuous cytotoxicity on chondrocytes after 24 hours of incubation. OMT at 0.5, 1, and 2 mg/mL inhibited IL-1β-triggered apoptosis, upregulated MMP13, MMP9, and Col X, and upregulated Col II in chondrocytes in vitro. OMT represses the NF-κB signaling cascade in IL-1β-triggered chondrocytes in vitro. In an in vivo study, OMT decreased the apoptosis rate of chondrocytes and exerted a protective effect against the degradation of articular cartilage in ACLT-triggered OA mice. Conclusion OMT plays a protective role against chondrocyte injury induced by IL-1β in vitro or ACLT in vivo. OMT may play a role in chondrocytes during OA by inhibiting NF-κB signaling by decreasing the phosphorylation of p65 and IκB. OMT treatment may be a promising chondroprotective approach to delay OA cartilage progression.
Collapse
|
27
|
Zhang S, Wang J, Liu L, Sun X, Zhou Y, Chen S, Lu Y, Cai X, Hu M, Yan G, Miao X, Li X. Efficacy and safety of curcumin in psoriasis: preclinical and clinical evidence and possible mechanisms. Front Pharmacol 2022; 13:903160. [PMID: 36120325 PMCID: PMC9477188 DOI: 10.3389/fphar.2022.903160] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/01/2022] [Indexed: 12/09/2022] Open
Abstract
Background: Psoriasis is a chronic and immune-mediated inflammatory skin disease. Many studies have shown that curcumin (CUR) has strong anti-inflammatory effects and can improve psoriasis; however, its efficacy and safety have not been confirmed, and the specific mechanism remains to be elucidated. Objective: To evaluate the efficacy, safety, and possible mechanisms of CUR in the treatment of psoriasis. Methods: The Cochrane Library, Embase, PubMed, Web of Science, China National Knowledge Infrastructure, Wanfang, and VIP (China Science and Technology Journal Database) were systematically searched for clinical trials and preclinical studies on the use of CUR in psoriasis treatment. All databases were searched from inception to January 2022. The meta-analysis was performed using RevMan 5.3 software. Results: Our meta-analysis included 26 studies, comprising seven clinical randomized controlled trials and 19 preclinical studies. A meta-analysis of clinical trials showed that both CUR monotherapy and combination therapy improved Psoriasis Area and Severity Index (PASI) scores in patients compared to controls (standard mean difference [std.MD]: −0.83%; 95% confidence interval [CI]: −1.53 to 0.14; p = 0.02). In preclinical studies, CUR showed better performance in improving the phenotype of psoriatic dermatitis mice compared to controls, including total PASI score (std.MD: 6.50%; 95% CI: 10.10 to −2.90; p = 0.0004); ear thickness (p = 0.01); and the expression of inflammatory cytokines such as interleukin (IL)-17, tumor necrosis factor (TNF)-α, IL-17F, and IL-22 (p < 0.05). In cell studies, CUR inhibited cell proliferation (p = 0.04) and the cell cycle (p = 0.03) and downregulated the inflammatory cytokines IL-6 and IL-8 (p < 0.05). Conclusions: CUR has excellent efficacy and broad potential to treat psoriasis in multiple ways. Its use also plays a crucial role in improving the psoriasis phenotype and reducing the inflammatory microenvironment. In conclusion, our findings suggest that CUR alone or in combination with other conventional treatments can effectively treat psoriasis.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiao Wang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liu Liu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoying Sun
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yaqiong Zhou
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Siting Chen
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Lu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoce Cai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Manqi Hu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ge Yan
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Miao
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Xin Li, ; Xiao Miao,
| | - Xin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Xin Li, ; Xiao Miao,
| |
Collapse
|
28
|
Liang S, Yang Z, Hua L, Chen Y, Zhou Y, Ou Y, Chen X, Yue H, Yang X, Wu X, Hu W, Sun P. Ciclopirox inhibits NLRP3 inflammasome activation via protecting mitochondria and ameliorates imiquimod-induced psoriatic inflammation in mice. Eur J Pharmacol 2022; 930:175156. [PMID: 35868446 DOI: 10.1016/j.ejphar.2022.175156] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022]
Abstract
The maturation and secretion of interleukin-1β (IL-1β) mediated by NLRP3 inflammasome activation plays an important role in the progression of many inflammatory diseases. Inhibition of NLRP3 inflammasome activation may be a promising strategy to treat these inflammation-driven diseases, such as psoriasis. As a broad-spectrum antifungal agent, ciclopirox (CPX) is widely used in the treatment of dermatomycosis. Although CPX has been reported to have anti-inflammatory effects in many studies, there has been little research into its underlying mechanisms. In our study, CPX reduced lipopolysaccharide (LPS)/nigericin-induced NLRP3 inflammasome activation (IC50: 1.684 μM). Mechanistically, CPX upregulated peroxisome proliferator-activated receptor-γ coactivator-1α expression (by 82.7% at 5 μM and 87.5% at 10 μM) to protect mitochondria. Our studies showed that CPX reduced mitochondrial reactive oxygen species production, increased mitochondrial membrane potential, elevated mitochondrial biosynthesis, and up-regulated intracellular adenosine triphosphate level. Furthermore, treatment with CPX promoted the up-regulation of mRNA expression, which involved mitochondrial biosynthesis (NRF1, NRF2, TFAM) and antioxidation (SOD1 and CAT). In addition, CPX ameliorated inflammatory response in imiquimod-induced psoriasis mice. This study provides a potential pharmacological mechanism for CPX to treat psoriasis and other NLRP3-driven inflammatory diseases.
Collapse
Affiliation(s)
- Shuli Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhongjin Yang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Lei Hua
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yanhong Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yinghua Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yitao Ou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiuhui Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Hu Yue
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiangyu Yang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xinyi Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wenhui Hu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Ping Sun
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
29
|
Xue X, Yu J, Li C, Wang F, Guo Y, Li Y, Shi H. Full-Length Transcriptome Sequencing Analysis of Differentially Expressed Genes and Pathways After Treatment of Psoriasis With Oxymatrine. Front Pharmacol 2022; 13:889493. [PMID: 35721124 PMCID: PMC9204044 DOI: 10.3389/fphar.2022.889493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Psoriasis is a recurrent chronic inflammatory skin disease. Unlike many of the latest psoriasis treatments that only confer limited curative effects and have certain side effects, oxymatrine effectively improves severe plaque psoriasis with mild adverse reactions. Here, we explored the genes and pathways underlying the effects of oxymatrine on psoriasis. Briefly, patients with severe plaque psoriasis were treated with oxymatrine and their lesioned skin samples were sequenced by full-length transcriptomics. Next, the differentially expressed genes (DEGs) in psoriatic lesions were identified and compared in oxymatrine-treated patients and healthy controls, their genes were functionally annotated, and protein–protein interaction network analysis and immunohistochemistry were performed. Both Psoriasis Area and Severity Index (PASI) and Body Surface Area (BSA) scores were recovered significantly from all 16 patients (all p < 0.001). The number of DEGs in patients before and after oxymatrine treatment was 4232, and 4105 DEGs were found between the psoriasis group (before oxymatrine treatment) and the normal control group [p < 0.01, |log2 fold change, (FC)| >1.5]. While most of the DEGs recovered significantly after oxymatrine treatment, only 650 DEGs were observed between the psoriasis group (after oxymatrine treatment) and the normal control group (p < 0.01, |log2FC|> 1.5). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that 64 pathways were significantly activated after oxymatrine treatment (p < 0.05). Only 12 pathways were statistically significant between after oxymatrine treatment and the normal control group (p < 0 .05). Among all the restored pathways, the improvement of the IL-17 signaling pathway was the most significant (p = 1.18E-06). Gene loci of oxymatrine action was assessed by protein interaction analysis on 205 DEGs that were co-expressed in 5 patients before and after oxymatrine treatment (p < 0.05, FC > 1.5). After oxymatrine treatment, the expression of two mitosis-related genes namely, cyclin dependent kinase 1 (CDK1) and cyclin B1 (CCNB1), that affect cell proliferation recovered significantly. In light of these results, we conclude that oxymatrine likely alters the abnormal expression of some genes and pathways in psoriasis patients. Multipathway and multitarget therapy can greatly ameliorate abnormalities in genes and pathways and effectively treat psoriasis. Importantly, among the DEGs, the proliferation-related genes, such as CDK1 and CCNB1, are likely important targets for treating psoriasis by oxymatrine. We believe that these findings may lead to a new treatment strategy for psoriasis.
Collapse
Affiliation(s)
- Xiaoxiao Xue
- Department of Dermatovenereology, The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jiayu Yu
- Dermatological Department, Wuzhong People's Hospital, Ningxia, China
| | - Cheng Li
- Department of Dermatovenereology, The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Fang Wang
- Department of Dermatovenereology, The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yatao Guo
- Dermatological Department, Baoji Central Hospital, Shaanxi, China
| | - Yongwen Li
- Department of Dermatovenereology, The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Huijuan Shi
- Department of Dermatovenereology, The General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
30
|
Jiménez C, Bordagaray MJ, Villarroel JL, Flores T, Benadof D, Fernández A, Valenzuela F. Biomarkers in Oral Fluids as Diagnostic Tool for Psoriasis. Life (Basel) 2022; 12:life12040501. [PMID: 35454992 PMCID: PMC9027180 DOI: 10.3390/life12040501] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/11/2022] [Accepted: 03/27/2022] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a prevalent worldwide chronic immuno-inflammatory skin disease with various variants and atypical cases. The use of biomarkers for the diagnosis of psoriasis can favor timely treatment and thus improve the quality of life of those affected. In general, the search for biomarkers in oral fluids is recommended as it is a non-invasive and fast technique. This narrative review aimed to identify biomarkers in gingival crevicular fluid (GCF) and saliva to diagnose psoriasis. To achieve this goal, we selected the available literature using the following MESH terms: “psoriasis”, “saliva” and “gingival crevicular fluid”. The studies analyzed for this review cover original research articles available in English. We found three full articles available for psoriasis biomarkers in GCF and ten articles available for psoriasis biomarkers in saliva. Studies showed that in the saliva of healthy individuals and those with psoriasis, there were differences in the levels of inflammatory cytokines, immunoglobulin A, and antioxidant biomarkers. In GCF, individuals with psoriasis showed higher levels of S100A8, IL-18 and sE-selectin in comparison to healthy individuals, independent of periodontal status. Despite these findings, more studies are required to determine an adequate panel of biomarkers to use in saliva or GCF for psoriasis.
Collapse
Affiliation(s)
- Constanza Jiménez
- Faculty of Dentistry, Universidad Andres Bello, Santiago 8370133, Chile; (C.J.); (D.B.)
| | - María José Bordagaray
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile;
| | - José Luis Villarroel
- Department of Dermatology, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - Tania Flores
- Research Centre in Dental Science (CICO), Faculty of Dentistry, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Dafna Benadof
- Faculty of Dentistry, Universidad Andres Bello, Santiago 8370133, Chile; (C.J.); (D.B.)
| | - Alejandra Fernández
- Faculty of Dentistry, Universidad Andres Bello, Santiago 8370133, Chile; (C.J.); (D.B.)
- Correspondence: (A.F.); (F.V.); Tel.: +56-2-2661-5834 (A.F.); +56-2-2978-8173 (F.V.)
| | - Fernando Valenzuela
- Department of Dermatology, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
- Correspondence: (A.F.); (F.V.); Tel.: +56-2-2661-5834 (A.F.); +56-2-2978-8173 (F.V.)
| |
Collapse
|
31
|
Potential Therapeutic Applications of Plant-Derived Alkaloids against Inflammatory and Neurodegenerative Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7299778. [PMID: 35310033 PMCID: PMC8926539 DOI: 10.1155/2022/7299778] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 12/14/2022]
Abstract
Alkaloids are a type of natural compound possessing different pharmacological activities. Natural products, including alkaloids, which originate from plants, have emerged as potential protective agents against neurodegenerative disorders (NDDs) and chronic inflammations. A wide array of prescription drugs are used against these conditions, however, not free of limitations of potency, side effects, and intolerability. In the context of personalized medicine, further research on alkaloids to unravel novel therapeutic approaches in reducing complications is critical. In this review, a systematic survey was executed to collect the literature on alkaloids and their health complications, from which we found that majority of alkaloids exhibit anti-inflammatory action via nuclear factor-κB and cyclooxygenase-2 (COX-2), and neuroprotective interaction through acetylcholinesterase (AChE), COX, and β-site amyloid precursor protein activity. In silico ADMET and ProTox-II-related descriptors were calculated to predict the pharmacological properties of 280 alkaloids isolated from traditional medicinal plants towards drug development. Out of which, eight alkaloids such as tetrahydropalmatine, berberine, tetrandrine, aloperine, sinomenine, oxymatrine, harmine, and galantamine are found to be optimal within the categorical range when compared to nicotine. These alkaloids could be exploited as starting materials for novel drug synthesis or, to a lesser extent, manage inflammation and neurodegenerative-related complications.
Collapse
|
32
|
Selenium-Rich Yeast Peptide Fraction Ameliorates Imiquimod-Induced Psoriasis-like Dermatitis in Mice by Inhibiting Inflammation via MAPK and NF-κB Signaling Pathways. Int J Mol Sci 2022; 23:ijms23042112. [PMID: 35216231 PMCID: PMC8875820 DOI: 10.3390/ijms23042112] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 02/05/2023] Open
Abstract
Psoriasis, a chronic and immune-mediated inflammatory disease, adversely affects patients’ lives. We previously prepared selenium-rich yeast peptide fraction (SeP) from selenium-rich yeast protein hydrolysate and found that SeP could effectively alleviate ultraviolet radiation-induced skin damage in mice and inhibited H2O2-induced cytotoxicity in cultured human epidermal keratinocyte (HaCaT) cells. This study aimed to investigate whether SeP had a protective effect on imiquimod (IMQ)-induced psoriasis-like dermatitis in mice and the underlying mechanisms. Results showed that SeP significantly ameliorated the severity of skin lesion in IMQ-induced psoriasis-like mouse model. Moreover, SeP treatment significantly attenuated the expression of key inflammatory cytokines, including interleukin (IL)-23, IL-17A, and IL-17F, in the dorsal skin of mice. Mechanistically, SeP application not only inhibited the activation of JNK and p38 MAPK, but also the translocation of NF-κB into the nucleus in the dorsal skin. Furthermore, SeP treatment inhibited the levels of inflammatory cytokines and the activation of MAPK and NF-κB signaling induced by lipopolysaccharide in HaCaT cells and macrophage cell line RAW264.7. Overall, our findings showed that SeP alleviated psoriasis-like skin inflammation by inhibiting MAPK and NF-κB signaling pathways, which suggested that SeP would have a potential therapeutic effect against psoriasis.
Collapse
|
33
|
Effects and Mechanism of Oxymatrine Combined with Compound Yinchen Granules on the Apoptosis of Hepatocytes through the Akt/FoxO3a/Bim Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8644356. [PMID: 35036441 PMCID: PMC8758272 DOI: 10.1155/2022/8644356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/08/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022]
Abstract
The aim of the present study was to investigate the effects and mechanism of oxymatrine (OMT) combined with compound yinchen granules (CYG) on the apoptosis of hepatocytes through the Akt/FoxO3a/Bim pathway in rats with acute liver failure. The rat model of acute liver failure was established using lipopolysaccharide/D-galactosamine (LPS/D-GalN). The expression of proteins in rat liver tissues was detected by western blot analysis. The mRNA expression of FoxO3a, Bim, Bax, Bcl-2, and caspase-3 in rat liver tissues was detected by RT-qPCR. The apoptosis rate of rat hepatocytes was determined by flow cytometry. Western blots showed that when compared with the normal group, the expression of p-Akt and p-FoxO3a in the model group was decreased (
), while the expression of Bim was increased (
). Compared with the model group, the expression of p-Akt and p-FoxO3a in the OMT group and the OMT combined with CYG groups was increased (
or
), while the expression of Bim was decreased (
). The Bax/Bcl-2 ratio and caspase-3 protein expression in the model group were significantly higher than those in the normal group (
). The Bax/Bcl-2 ratio and the expression of caspase-3 protein in the OMT group and the OMT combined with CYG groups were significantly lower than those in the model group (
). The results of RT-qPCR were consistent with those of western blot. The results of flow cytometry showed that the apoptosis rate of hepatocytes in the OMT group and the OMT combined with CYG groups was significantly lower than that in the model group (
or
). We concluded that LPS/D-GalN can induce apoptosis of hepatocytes in rats with acute liver failure through the Akt/FoxO3a/Bim pathway. OMT combined with CYG inhibits apoptosis of hepatocytes in rats with acute liver failure via the Akt/FoxO3a/Bim pathway.
Collapse
|
34
|
Wang L, Xie X, Ke B, Huang W, Jiang X, He G. Recent advances on endogenous gasotransmitters in inflammatory dermatological disorders. J Adv Res 2021; 38:261-274. [PMID: 35572410 PMCID: PMC9091779 DOI: 10.1016/j.jare.2021.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/20/2022] Open
Abstract
Endogenous gasotransmitters nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2S), and potential candidates sulfur dioxide (SO2), methane (CH4), hydrogen gas (H2), ammonia (NH3) and carbon dioxide (CO2), are generated within the human body. Endogenous and potential gasotransmitters regulate inflammation, vasodilation, and oxidation in inflammatory dermatological disorders. Endogenous and potential gasotransmitters play potential roles in psoriasis, atopic dermatitis, acne, and chronic skin ulcers. Further research should explore the function of these gases and gas donors and inhibitors in inflammatory dermatological disorders.
Background Endogenous gasotransmitters are small gaseous mediators that can be generated endogenously by mammalian organisms. The dysregulation of the gasotransmitter system is associated with numerous disorders ranging from inflammatory diseases to cancers. However, the relevance of these endogenous gasotransmitters, prodrug donors and inhibitors in inflammatory dermatological disorders has not yet been thoroughly reviewed and discussed. Aim of review This review discusses the recent progress and will provide perspectives on endogenous gasotransmitters in the context of inflammatory dermatological disorders. Key scientific concepts of review Endogenous gasotransmitters nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) are signaling molecules that regulate several physiological and pathological processes. In addition, sulfur dioxide (SO₂), methane (CH4), hydrogen gas (H2), ammonia (NH3), and carbon dioxide (CO2) can also be generated endogenously and may take part in physiological and pathological processes. These signaling molecules regulate inflammation, vasodilation, and oxidative stress, offering therapeutic potential and attracting interest in the field of inflammatory dermatological disorders including psoriasis, atopic dermatitis, acne, rosacea, and chronic skin ulcers. The development of effective gas donors and inhibitors is a promising alternative to treat inflammatory dermatological disorders with controllable and precise delivery in the future.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Xin Xie
- College of Medical Technology and School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Bowen Ke
- Laboratory of Anaesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Corresponding authors at: Department of Dermatology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (X. Jiang and G. He). Laboratory of Anaesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (B.-W. Ke).
| | - Wei Huang
- College of Medical Technology and School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
- Corresponding authors at: Department of Dermatology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (X. Jiang and G. He). Laboratory of Anaesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (B.-W. Ke).
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
- Corresponding authors at: Department of Dermatology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (X. Jiang and G. He). Laboratory of Anaesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (B.-W. Ke).
| |
Collapse
|
35
|
Lan X, Hu YH, Li X, Kong DJ, Qin YF, Wang H. Oxymatrine protects cardiac allografts by regulating immunotolerant cells. Int Immunopharmacol 2021; 100:108080. [PMID: 34454287 DOI: 10.1016/j.intimp.2021.108080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 11/28/2022]
Abstract
Organ transplantation is an effective treatment strategy for patients with irreversible organ failure or congenital organ dysfunction. Oxymatrine (OMT) is a quinolizidine alkaloid with protective and anti-inflammatory effects on tissues and organs. The objective of this study was to investigate whether OMT could exert protective effects in cardiac allografts by regulating immune cells. In vitro cell proliferation and co-culture experiments were used to measure the effects of OMT on splenocyte proliferation and differentiation. In the in vivo study, C57BL/6 mice transplanted with BALB/c cardiac grafts were randomly divided into untreated, low-dose OMT treated, middle-dose OMT treated, high-dose OMT treated, and rapamycin-treated groups. Haematoxylin and eosin and immunohistochemical staining were used to assess pathological changes in the grafts, and fluorescence-activated cell sorting analysis was performed to measure the percentages of immune cells. The results showed that, in the in vitro study, OMT inhibited splenocyte proliferation, decreased the percentage of mature dendritic cells (DCs), and increased the percentage of regulatory T cells (Tregs) and regulatory B cells (Bregs). In the in vivo study, OMT exerted allograft protective effects by prolonging survival time, alleviating pathological damages to the cardiac allograft, decreasing intragraft CD3+ cell and increasing intragraft Foxp3+ cell infiltration, decreasing the percentages of mature DCs, increasing the percentages of Tregs and Bregs, and inhibiting the function of DCs. In conclusion, our study demonstrates that OMT exerted a protective effect on cardiac allografts by regulating immunotolerant cells. More in-depth studies of OMT may provide additional insight into the use of immunosuppressive drugs as a post-transplantation treatment strategy.
Collapse
Affiliation(s)
- Xu Lan
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Yong-Hao Hu
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiang Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China
| | - De-Jun Kong
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China
| | - Ya-Fei Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China.
| |
Collapse
|
36
|
Zhao Z, Liu T, Zhu S, Pi J, Guo P, Qi D, Liu Z, Li N. Natural medicine combined with nanobased topical delivery systems: a new strategy to treat psoriasis. Drug Deliv Transl Res 2021; 12:1326-1338. [PMID: 34287767 DOI: 10.1007/s13346-021-01031-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 12/23/2022]
Abstract
Psoriasis, an autoimmune inflammatory skin disorder, is one of the commonest immune-mediated disease conditions affecting individuals globally. At the moment, the conventional methods applied against psoriasis treatment have various drawbacks involving limited efficacy, skin irritation, immunosuppression, etc. Therefore, it is important for scientists to find a more potent and alternative drug approach towards psoriasis therapeutics. Natural medicine still remains an important source for new drug discovery due to its therapeutical significance in various drug administration routes. However, the traditional formulation of topical therapies for psoriasis is limited in efficacy, which limits the use of natural medicine. Based on the aforementioned limitations, the use of nanocarriers in preparation of these topical herbal products could be tremendously beneficial in enhancing the efficacy of topical medications. Growing pieces of evidence have proposed that the utilization of nanocarriers in transdermal preparation as a prospective technique, with regards to better potency, directs drug absorption to site of action, and minimum toxicity effect respectively. In the course of this review, we emphasized the pathological mechanism of psoriasis, natural medicine formula, active components of natural medicine, and nanopreparations used in the treatment of psoriasis.
Collapse
Affiliation(s)
- Zhiyue Zhao
- State Key Laboratory of Component Natural Medicine, Tianjin University of Traditional Chinese Medicine, 88 Yuquan Road, Tianjin, 301617, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tao Liu
- State Key Laboratory of Component Natural Medicine, Tianjin University of Traditional Chinese Medicine, 88 Yuquan Road, Tianjin, 301617, China
| | - Shan Zhu
- State Key Laboratory of Component Natural Medicine, Tianjin University of Traditional Chinese Medicine, 88 Yuquan Road, Tianjin, 301617, China
| | - Jiaxin Pi
- State Key Laboratory of Component Natural Medicine, Tianjin University of Traditional Chinese Medicine, 88 Yuquan Road, Tianjin, 301617, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Pan Guo
- State Key Laboratory of Component Natural Medicine, Tianjin University of Traditional Chinese Medicine, 88 Yuquan Road, Tianjin, 301617, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Dongli Qi
- State Key Laboratory of Component Natural Medicine, Tianjin University of Traditional Chinese Medicine, 88 Yuquan Road, Tianjin, 301617, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhidong Liu
- State Key Laboratory of Component Natural Medicine, Tianjin University of Traditional Chinese Medicine, 88 Yuquan Road, Tianjin, 301617, China. .,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Nan Li
- State Key Laboratory of Component Natural Medicine, Tianjin University of Traditional Chinese Medicine, 88 Yuquan Road, Tianjin, 301617, China. .,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
37
|
Xie J, Huang S, Huang H, Deng X, Yue P, Lin J, Yang M, Han L, Zhang DK. Advances in the Application of Natural Products and the Novel Drug Delivery Systems for Psoriasis. Front Pharmacol 2021; 12:644952. [PMID: 33967781 PMCID: PMC8097153 DOI: 10.3389/fphar.2021.644952] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/01/2021] [Indexed: 12/16/2022] Open
Abstract
Psoriasis, an incurable autoimmune skin disease, is one of the most common immune-mediated disorders. Presently, numerous clinical research studies are underway, and treatment options are available. However, these treatments focus on improving symptoms of the disease and fail to achieve a radical cure; they also have certain toxic side effects. In recent years, natural products have increasingly gained attention because of their high efficiency and low toxicity. Despite their obvious therapeutic effects, natural products’ biological activity was limited by their instability, poor solubility, and low bioavailability. Novel drug delivery systems, including liposomes, lipospheres, nanostructured lipid carriers, niosomes, nanoemulsions, nanospheres, microneedles, ethosomes, nanocrystals, and foams could potentially overcome the limitations of poor water solubility and permeability in traditional drug delivery systems. Thus, to achieve a therapeutic effect, the drug can reach the epidermis and dermis in psoriatic lesions to interact with the immune cells and cytokines.
Collapse
Affiliation(s)
- Jin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengjie Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haozhou Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuan Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pengfei Yue
- State Key Laboratory of Innovation Medicine and High Efficiency and Energy Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ming Yang
- State Key Laboratory of Innovation Medicine and High Efficiency and Energy Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ding-Kun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,State Key Laboratory of Innovation Medicine and High Efficiency and Energy Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
38
|
Zhang X, Li X, Chen Y, Li B, Guo C, Xu P, Yu Z, Ding Y, Shi Y, Gu J. Xiao-Yin-Fang Therapy Alleviates Psoriasis-like Skin Inflammation Through Suppressing γδT17 Cell Polarization. Front Pharmacol 2021; 12:629513. [PMID: 33935720 PMCID: PMC8087247 DOI: 10.3389/fphar.2021.629513] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/30/2021] [Indexed: 01/20/2023] Open
Abstract
Psoriasis is an immune-mediated chronic inflammatory skin disease primarily mediated by the activation of interleukin (IL)-17-producing T cells. Traditional Chinese Medicine (TCM) represents one of the most effective complementary and alternative medicine (CAM) agents for psoriasis, which provides treasured sources for the development of anti-psoriasis medications. Xiao-Yin-Fang (XYF) is an empirically developed TCM formula that has been used to treat psoriasis patients in Shanghai Changhai Hospital for over three decades. Imiquimod (IMQ)-induced psoriasis-like dermatitis mouse model was utilized to investigate the therapeutic effects of XYF by the assessment of disease severity and skin thickness. Flow cytometric assay was performed to explore the influence of XYF on skin-related immunocytes, primarily T cells. And, RNA sequencing analysis was employed to determine the alternation in gene expression upon XYF therapy. We discovered that XYF alleviated psoriasis-like skin inflammation mainly through suppressing dermal and draining lymph-node IL-17-producing γδT (γδT17) cell polarization. Moreover, XYF therapy ameliorated the relapse of psoriasis-like dermatitis and prohibited dermal γδT cell reactivation. Transcriptional analysis suggested that XYF might regulate various inflammatory signaling pathways and metabolic processes. In conclusion, our results clarified the therapeutic efficacy and inner mechanism of XYF therapy in psoriasis, which might promote its clinical application in psoriasis patients and facilitate the development of novel anti-psoriasis drugs based on the bioactive components of XYF.
Collapse
Affiliation(s)
- Xilin Zhang
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China.,Department of Dermatology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiaorui Li
- Department of Dermatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Youdong Chen
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China.,Department of Dermatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bingjie Li
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Chunyuan Guo
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Peng Xu
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China.,Department of Dermatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zengyang Yu
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Yangfeng Ding
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Yuling Shi
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Jun Gu
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China.,Department of Dermatology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Department of Dermatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
39
|
Oxymatrine ameliorates imiquimod-induced psoriasis pruritus and inflammation through inhibiting heat shock protein 90 and heat shock protein 60 expression in keratinocytes. Toxicol Appl Pharmacol 2020; 405:115209. [PMID: 32835761 DOI: 10.1016/j.taap.2020.115209] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022]
Abstract
In this work, we aimed to investigate whether oxymatrine exerts its anti-pruritic and anti-inflammatory efficacy in the imiquimod-induced psoriasis mice and the related mechanism. We established the psoriasis model by applying the imiquimod ointment topically and oxymatrine was injected intraperitoneally as the treatment. The behavior and skin morphology results indicated that oxymatrine inhibits imiquimod-induced pruritus alleviating keratinization of skin and inflammatory infiltration. Moreover, we examined the expression of various indicators and found heat shock protein (HSP) 90 and 60 upregulated in model group, which were reversed in oxymatrine treated groups. Molecular docking and the studies in vivo confirmed that HSP90 and HSP60 participate in the inhibitory effect of oxymatrine on the phenotypes of psoriasis mice. Mechanically, immunofluorescence staining demonstrated that oxymatrine-induced downregulation of HSP90 and HSP60 was mainly in keratinocytes. In vitro results showed that oxymatrine decreases the expression of HSP90 and HSP60 upregulated by TNF-α and IFN-γ in HaCaTs cells and the siRNA mediated HSP90 and HSP60 silencing reverses inflammation inhibited by oxymatrine. Taken together, these results indicate that oxymatrine relieves psoriasis pruritic and inflammation by inhibiting the expression of HSP90 and HSP60 in keratinocytes through MAPK signaling pathway.
Collapse
|
40
|
Krawczyk A, Miśkiewicz J, Strzelec K, Wcisło-Dziadecka D, Strzałka-Mrozik B. Apoptosis in Autoimmunological Diseases, with Particular Consideration of Molecular Aspects of Psoriasis. Med Sci Monit 2020; 26:e922035. [PMID: 32567582 PMCID: PMC7331484 DOI: 10.12659/msm.922035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/18/2020] [Indexed: 12/29/2022] Open
Abstract
Apoptosis is a natural physiological process involving programmed cell death. Thanks to this process, it is possible to maintain the homeostasis of the body and the immune system. Dysfunctions of this mechanism lead to development of autoimmune diseases such as psoriasis; these diseases are chronic and treatment is extremely difficult. In psoriasis (a skin disease), apoptosis disorders are manifested by keratinocyte proliferation dysfunction. Autoimmune diseases coexisting with psoriasis include multiple sclerosis, autoimmune thyroid disease, and diabetes, but the common pathogenesis of these diseases is not fully understood. Given the heterogenous nature and chronic and recurrent course of psoriasis, the selection of an effective therapeutic strategy is still a problem. This literature review was focused on the process of apoptosis as a factor in the development of autoimmune diseases, with particular emphasis on psoriasis. The work also includes a review of therapeutic methods of psoriasis based on the latest literature.
Collapse
Affiliation(s)
- Agata Krawczyk
- Department of Nutrigenomics and Bromatology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Joanna Miśkiewicz
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Karolina Strzelec
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Dominika Wcisło-Dziadecka
- Department of Cosmetology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Barbara Strzałka-Mrozik
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| |
Collapse
|
41
|
Lan X, Zhao J, Zhang Y, Chen Y, Liu Y, Xu F. Oxymatrine exerts organ- and tissue-protective effects by regulating inflammation, oxidative stress, apoptosis, and fibrosis: From bench to bedside. Pharmacol Res 2020; 151:104541. [DOI: 10.1016/j.phrs.2019.104541] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/20/2019] [Accepted: 11/11/2019] [Indexed: 12/19/2022]
|
42
|
Groma G. Oxymatrine may represent an additional therapeutic tool in severe plaque psoriasis management. Br J Dermatol 2019; 181:891-892. [PMID: 31390049 DOI: 10.1111/bjd.18299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- G Groma
- University of Szeged, Department of Dermatology and Allergology, Szeged, Hungary.,MTA-SZTE Dermatological Research Group, Szeged, Hungary
| |
Collapse
|