1
|
Pathak GN, Agarwal P, Wolfe SM, Patel KH, Dhillon J, Rao BK. Pemphigus relapse: Mechanisms, risk factors, and agents associated with disease recurrence. J Dermatol 2024. [PMID: 39460496 DOI: 10.1111/1346-8138.17505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
Pemphigus represents a spectrum of potentially life-threatening autoimmune-mediated skin blistering conditions caused by antibody production against desmoglein 1 and 3 (anti-DSG 1 and 3) in keratinocytes. Greater than 50% of pemphigus patients experience relapse, which complicates long-term medical management, including risks associated with re-treatment and complications such as infection and dehydration. This review aims to elucidate mechanisms, risk factors, and medications associated with pemphigus relapse. Mechanisms of relapse include the persistence of auto-reactive B-cell populations post-treatment and CD20- B-cell populations that reactivate after B-cell depletion therapy. Risk factors for relapse include high body surface area (BSA) of pemphigus involvement, high body mass index, high severity according to the Pemphigus Disease Area Index (PDAI) at onset, treatment delay, and high anti-DSG1 and DSG3 titers post-treatment. Targeted B-cell localization is associated with better clinical outcomes, including less frequent relapses. Rituximab is currently the gold standard of treatment for moderate-severe pemphigus and has relapse rates of 11%-44% in selected studies, with a mean time to relapse of 5.8 months to 36 months following treatment. Relapse rates across lymphoma dosing (375 mg/m2) versus rheumatoid arthritis dosing (1 g dosing weekly) was inconsistent; however, more frequent dosing, earlier treatment, and higher cumulative dosing were associated with lower relapse rates. Alternative agents that have clinical efficacy include corticosteroid monotherapy, mycophenolate mofetil, azathioprine, and intravenous immunoglobulin. Future studies should include head-to-head comparators over long follow-up periods to identify the best treatment agents associated with the least relapse risk.
Collapse
Affiliation(s)
- Gaurav N Pathak
- Department of Dermatology, Rutgers Robert Wood Johnson Medical School, Somerset, New Jersey, USA
| | - Priya Agarwal
- Department of Dermatology, Rutgers Robert Wood Johnson Medical School, Somerset, New Jersey, USA
| | - Sydney M Wolfe
- Department of Dermatology, Rutgers Robert Wood Johnson Medical School, Somerset, New Jersey, USA
| | - Kush H Patel
- Department of Dermatology, Rutgers Robert Wood Johnson Medical School, Somerset, New Jersey, USA
| | - Jimmy Dhillon
- Department of Dermatology, Rutgers Robert Wood Johnson Medical School, Somerset, New Jersey, USA
| | - Babar K Rao
- Department of Dermatology, Rutgers Robert Wood Johnson Medical School, Somerset, New Jersey, USA
- Department of Dermatology, Rao Dermatology, Atlantic Highlands, New Jersey, USA
| |
Collapse
|
2
|
Maurer M, Kolkhir P, Pereira MP, Siebenhaar F, Witte-Händel E, Bergmann KC, Bonnekoh H, Buttgereit T, Fluhr JW, Frischbutter S, Grekowitz EM, Herzog L, Kiefer LA, Krause K, Magerl M, Muñoz M, Neisinger S, Nojarov N, Prins S, Pyatilova P, Ramanauskaité A, Scheffel J, Terhorst-Molawi D, Treudler R, Weller K, Zuberbier T, Metz M. Disease modification in chronic spontaneous urticaria. Allergy 2024; 79:2396-2413. [PMID: 39044706 DOI: 10.1111/all.16243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024]
Abstract
Chronic spontaneous urticaria (CSU) is a debilitating, inflammatory skin condition characterized by infiltrating immune cells. Available treatments are limited to improving the signs and symptoms. There is an unmet need to develop therapies that target disease-driving pathways upstream of mast cell activation to inhibit or delay the progression of CSU and associated comorbidities. Here, we aim to define disease modification due to a treatment intervention and criteria that disease-modifying treatments (DMTs) must meet in CSU. We have defined disease modification in CSU as a favorable treatment-induced change in the underlying pathophysiology and, therefore, the disease course, which is clinically beneficial and enduring. A DMT must fulfil the following criteria: (1) prevents or delays the progression of CSU, (2) induces long-term, therapy-free clinical remission, which is the sustained absence of CSU signs and symptoms without the need for treatment, and (3) affects the underlying mechanism of CSU, as demonstrated by an effect on disease-driving signals and/or a biomarker. DMTs in CSU should slow disease progression, achieve long-lasting disease remission, target disease-driving mechanisms, reduce mast cell-activating IgE autoantibodies, target cytokine profile polarization, and normalize the gut microbiome and barrier. Treating CSU at the immune system level could provide valuable alternatives to pharmacotherapy in CSU management. Specific DMTs in CSU are yet to be developed, but some show potential benefits, such as inhibitors of Bruton's Tyrosine Kinase, IL-4 and IL-13. Future therapies could prevent CSU signs and symptoms, achieve long-term clinical benefits after discontinuing treatment, and prevent associated concomitant disorders.
Collapse
Affiliation(s)
- Marcus Maurer
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Pavel Kolkhir
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Manuel P Pereira
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Frank Siebenhaar
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Ellen Witte-Händel
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Karl-Christian Bergmann
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Hanna Bonnekoh
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Thomas Buttgereit
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Joachim W Fluhr
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Stefan Frischbutter
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Eva Maria Grekowitz
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Leonie Herzog
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Lea Alice Kiefer
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Karoline Krause
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Markus Magerl
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Melba Muñoz
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Sophia Neisinger
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Nicole Nojarov
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Samantha Prins
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Polina Pyatilova
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Aisté Ramanauskaité
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Jörg Scheffel
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Dorothea Terhorst-Molawi
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Regina Treudler
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Karsten Weller
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Torsten Zuberbier
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Martin Metz
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| |
Collapse
|
3
|
Benoit RY, Zagrodnik JL, Carew SJ, Moore CS. Bruton Tyrosine Kinase Inhibition Decreases Inflammation and Differentially Impacts Phagocytosis and Cellular Metabolism in Mouse- and Human-derived Myeloid Cells. Immunohorizons 2024; 8:652-667. [PMID: 39259208 PMCID: PMC11447691 DOI: 10.4049/immunohorizons.2400045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/12/2024] Open
Abstract
Bruton tyrosine kinase (BTK) is a kinase expressed by various immune cells and is often activated under proinflammatory states. Although the majority of BTK-related research has historically focused on B cells, understanding the role of BTK in non-B cell populations is critical given myeloid cells also express BTK at comparable levels. In this study, we investigated and compared how BTK inhibition in human and murine myeloid cells alters cell phenotype and function. All experiments were performed using two BTK inhibitors (evobrutinib and tolebrutinib) that are currently in late-stage clinical trials for the treatment of multiple sclerosis. Assays were performed to assess the impact of BTK inhibition on cytokine and microRNA expression, phagocytic capacity, and cellular metabolism. In all cells, both evobrutinib and tolebrutinib significantly decreased phosphorylated BTK and LPS-induced cytokine release. BTK inhibition also significantly decreased the oxygen consumption rate and extracellular acidification rate in myeloid cells, and significantly decreased phagocytosis in murine-derived cells, but not human macrophages. To further elucidate the mechanism, we also investigated the expression of microRNAs known to impact the function of myeloid cells. BTK inhibition resulted in an altered microRNA expression profile (i.e., decreased miR-155-5p and increased miR-223-3p), which is consistent with a decreased proinflammatory myeloid cell phenotype. In summary, these results provide further insights into the mechanism of action of BTK inhibitors in the context of immune-related diseases, while also highlighting important species-specific and cell-specific differences that should be considered when interpreting and comparing results between preclinical and human studies.
Collapse
Affiliation(s)
- Rochelle Y. Benoit
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Jennifer L. Zagrodnik
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Samantha J. Carew
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Craig S. Moore
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| |
Collapse
|
4
|
Choudhary R, Gupta V, Khandpur S. Updates on the Management of Autoimmune Bullous Diseases. Indian Dermatol Online J 2024; 15:758-769. [PMID: 39359305 PMCID: PMC11444445 DOI: 10.4103/idoj.idoj_740_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/09/2024] [Accepted: 02/11/2024] [Indexed: 10/04/2024] Open
Abstract
Background Autoimmune bullous diseases are associated with high morbidity and mortality. Traditionally, systemic corticosteroids and conventional immunosuppressive agents have been the mainstay of treatment, but their broad immunosuppressive effects and long-term complications have prompted the exploration of newer more targeted therapies. Materials and Methods This review explores the evolving landscape of therapeutic options for immunobullous diseases, with a particular focus on pemphigus, bullous pemphigoid (BP), and mucous membrane pemphigoid, by searching PubMed, clinicaltrials.gov, and Cochrane databases for published literature from 2014 to 2023. Results/Discussion We discuss emerging treatments for pemphigus such as B cell modulatory drugs, anti-inflammatory drugs, those inhibiting autoantibody half-life or blister-inducing activity, and stem cell therapy, while offering insights into the level of evidence, potential benefits, and limitations of each approach. The role of biologics and novel therapies like rituximab, omalizumab, and dupilumab in reshaping the management of BP is also discussed. Conclusion The article highlights the need for further research, clinical trials, and comparative studies to determine the most effective and safest treatment options for patients with immunobullous diseases.
Collapse
Affiliation(s)
- Rajat Choudhary
- Department of Dermatology and Venereology, All India Institute of Medical Sciences, New Delhi, India
| | - Vishal Gupta
- Department of Dermatology and Venereology, All India Institute of Medical Sciences, New Delhi, India
| | - Sujay Khandpur
- Department of Dermatology and Venereology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
5
|
Tavakoli GM, Yazdanpanah N, Rezaei N. Targeting Bruton's tyrosine kinase (BTK) as a signaling pathway in immune-mediated diseases: from molecular mechanisms to leading treatments. Adv Rheumatol 2024; 64:61. [PMID: 39169436 DOI: 10.1186/s42358-024-00401-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 08/07/2024] [Indexed: 08/23/2024] Open
Abstract
Bruton's tyrosine kinase (BTK), a nonreceptor tyrosine kinase, plays a remarkable role in the transmission and amplification of extracellular signals to intracellular signaling pathways. Various types of cells use the BTK pathway to communicate, including hematopoietic cells particularly B cells and T cells. The BTK pathway plays a role in controlling the proliferation, survival, and functions of B cells as well as other myeloid cells. First, second, and third-generation BTK inhibitors are currently being evaluated for the treatment of immune-mediated diseases in addition to B cell malignancies. In this article, the available evidence on the action mechanisms of BTK inhibitors is reviewed. Then, the most recent data obtained from preclinical studies and ongoing clinical trials for the treatment of autoimmune diseases, such as pemphigus vulgaris, pemphigus foliaceus, bullous pemphigoid, systemic lupus erythematosus, Sjögren's disease, rheumatoid arthritis, systemic sclerosis, multiple sclerosis, myasthenia gravis, and inflammatory diseases such as psoriasis, chronic spontaneous urticaria, atopic dermatitis, and asthma are discussed. In addition, adverse effects and complications associated with BTK inhibitors as well as factors predisposing patients to BTK inhibitors complications are discussed.
Collapse
Affiliation(s)
- Gita Manzari Tavakoli
- Student's Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niloufar Yazdanpanah
- Student's Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Tseng H, Murrell DF. The potential of Bruton's tyrosine kinase (BTK) inhibitors in the pharmacotherapeutic management of immune and dermatological disease. Expert Opin Pharmacother 2024; 25:1657-1665. [PMID: 39158385 DOI: 10.1080/14656566.2024.2393280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/29/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
INTRODUCTION The review article explores the evolving role of Bruton's tyrosine kinase (BTK) inhibitors in immune-mediated dermatological conditions, addressing significant gaps in current treatment approaches. AREAS COVERED The review comprehensively discusses the mechanisms of action of BTK inhibitors, including irreversible and reversible inhibitors. Clinical applications of BTK inhibitors in dermatological diseases such as pemphigus, chronic spontaneous urticaria (CSU), hidradenitis suppurativa (HS), systemic lupus erythematosus (SLE), and atopic dermatitis are explored, highlighting recent advancements and ongoing clinical trials. Potential advantages of BTK inhibitors over existing therapies and challenges in translating preclinical findings to clinical outcomes are discussed. EXPERT OPINION/COMMENTARY BTK inhibitors represent a promising therapeutic avenue for immune-mediated dermatological conditions, offering oral administration, targeted pathway inhibition, and a favorable safety profile compared to biologic therapies. Ongoing research and clinical trials hold the potential to address unmet needs and reshape the therapeutic landscape in dermatology.
Collapse
Affiliation(s)
- Henry Tseng
- Department of Dermatology, St. George Hospital, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW, Sydney, Australia
| | - Dédée F Murrell
- Department of Dermatology, St. George Hospital, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW, Sydney, Australia
| |
Collapse
|
7
|
Payne AS, Manfredo Vieira S. Bruton's Tyrosine Kinase Inhibition in Pemphigus: An Embattled Frontier. J Invest Dermatol 2024; 144:1667-1670. [PMID: 38691069 DOI: 10.1016/j.jid.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 05/03/2024]
Affiliation(s)
- Aimee S Payne
- Department of Dermatology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA.
| | - Silvio Manfredo Vieira
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Murrell DF, Caux F, Patsatsi A, Hagino O, Rudnicka L, Vassileva S, Uzun S, Ye J, Yen K, Arora P, Gourlay SG, Joly P, Werth VP. Efficacy and Safety of Rilzabrutinib in Pemphigus: PEGASUS Phase 3 Randomized Study. J Invest Dermatol 2024; 144:1762-1771.e6. [PMID: 38493933 DOI: 10.1016/j.jid.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/26/2024] [Accepted: 02/09/2024] [Indexed: 03/19/2024]
Abstract
TRIAL DESIGN Pemphigus is a rare but life-threatening autoimmune disease requiring long-term treatment that minimizes corticosteroid (CS) exposure while providing consistent disease control. The phase 2 pemphigus study of oral, reversible, covalent Bruton tyrosine kinase inhibitor rilzabrutinib demonstrated rapid and sustained efficacy with well-tolerated safety. METHODS Adults (aged 18-80 years) were randomized 1:1 to 400 mg rilzabrutinib (n = 65) or placebo (n = 66) twice daily (with CS ≤ 0.5 mg/kg/d) for 37 weeks in the phase 3 PEGASUS study in moderate-to-severe pemphigus vulgaris/pemphigus foliaceus. RESULTS The primary endpoint of complete remission from week 29 to week 37 with the amended endpoint CS dose ≤10 mg/d was not significant for 13 of 54 (24%) rilzabrutinib versus 10 of 55 (18%) placebo patients with PV (P = .45). Secondary endpoints showed numerical but nonsignificant improvements with rilzabrutinib (vs placebo) in reduced CS use, prolonged complete remission duration, and faster time to first complete remission. CONCLUSIONS Overall, rilzabrutinib was well-tolerated, with similar adverse events reported in both groups. Using minimal CS dose ≤10 mg/d and excluding remote observations, the primary efficacy endpoint was not met. However, results from a prespecified sensitivity analysis using CS dose ≤5 mg/d, considering all observations, and including all patients support Bruton tyrosine kinase inhibition as a viable therapeutic approach for pemphigus.
Collapse
Affiliation(s)
- Dedee F Murrell
- Department of Dermatology, St George Hospital, Faculty of Medicine, University of New South Wales, Sydney, Australia.
| | - Frédéric Caux
- Department of Dermatology, Groupe Hospitalier Paris Seine-Saint-Denis, AP-HP, Bobigny, France
| | - Aikaterini Patsatsi
- 2nd Dermatology Department, Papageorgiou General Hospital, Aristotle University School of Medicine, Thessaloniki, Greece
| | | | - Lidia Rudnicka
- Department of Dermatology, Medical University of Warsaw, Warsaw, Poland
| | - Snejina Vassileva
- Department of Dermatology and Venereology, University Hospital "Alexandrovska", Medical University - Sofia, Sofia, Bulgaria
| | - Soner Uzun
- Department of Dermatology and Venereology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Jenny Ye
- Sanofi, Bridgewater, New Jersey, USA
| | | | - Puneet Arora
- Principia Biopharma, South San Francisco, California, USA; Lassen Therapeutics, San Diego, California, USA
| | - Steven G Gourlay
- Principia Biopharma, South San Francisco, California, USA; Actinogen Medical, Sydney, Australia
| | - Pascal Joly
- Department of Dermatology, Rouen University Hospital, INSERM U1234, Normandie University, Rouen, France
| | - Victoria P Werth
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Rask-Madsen C, Katragadda S, Li M, Ucpinar S, Chinn L, Arora P, Smith P. Effects of Quinidine or Rifampin Co-administration on the Single-Dose Pharmacokinetics and Safety of Rilzabrutinib (PRN1008) in Healthy Participants. Clin Pharmacol Drug Dev 2024; 13:590-600. [PMID: 38623935 DOI: 10.1002/cpdd.1404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/14/2024] [Indexed: 04/17/2024]
Abstract
This open-label, phase 1 study was conducted with healthy adult participants to evaluate the potential drug-drug interaction between rilzabrutinib and quinidine (an inhibitor of P-glycoprotein [P-gp] and CYP2D6) or rifampin (an inducer of CYP3A and P-gp). Plasma concentrations of rilzabrutinib were measured after a single oral dose of rilzabrutinib 400 mg administered on day 1 and again, following a wash-out period, after co-administration of rilzabrutinib and quinidine or rifampin. Specifically, quinidine was given at a dose of 300 mg every 8 hours for 5 days from day 7 to day 11 (N = 16) while rifampin was given as 600 mg once daily for 11 days from day 7 to day 17 (N = 16) with rilzabrutinib given in the morning of day 10 (during quinidine dosing) or day 16 (during rifampin dosing). Quinidine had no significant effect on rilzabrutinib pharmacokinetics. Rifampin decreased rilzabrutinib exposure (the geometric mean of Cmax and AUC0-∞ decreased by 80.5% and 79.5%, respectively). Single oral doses of rilzabrutinib, with or without quinidine or rifampin, appeared to be well tolerated. These findings indicate that rilzabrutinib is a substrate for CYP3A but not a substrate for P-gp.
Collapse
Affiliation(s)
| | - Suresh Katragadda
- Department of Pharmacokinetics, Dynamics and Metabolism, Sanofi, Cambridge, MA, USA
| | - Mengyao Li
- Department of Pharmacokinetics, Dynamics and Metabolism, Sanofi, Bridgewater, NJ, USA
| | - Sibel Ucpinar
- Department of Pharmacokinetics, Dynamics and Metabolism, Sanofi, Bridgewater, NJ, USA
| | - Leslie Chinn
- Department of Pharmacokinetics, Dynamics and Metabolism, Sanofi, Bridgewater, NJ, USA
| | - Puneet Arora
- Department of Clinical, Inflammation and Immunology, Sanofi, South San Francisco, CA, USA
| | - Patrick Smith
- Integrated Drug Development, Certara, Parsippany, NJ, USA
| |
Collapse
|
10
|
Vafaeian A, Mahmoudi H, Daneshpazhooh M. What is novel in the clinical management of pemphigus vulgaris? Expert Rev Clin Pharmacol 2024; 17:489-503. [PMID: 38712540 DOI: 10.1080/17512433.2024.2350943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024]
Abstract
INTRODUCTION Pemphigus, an uncommon autoimmune blistering disorder affecting the skin and mucous membranes, currently with mortality primarily attributed to adverse reactions resulting from treatment protocols. Additionally, the existing treatments exhibit a notable recurrence rate. The high incidence of relapse and the considerable adverse effects associated with treatment underscore the imperative to explore safer and more effective therapeutic approaches. Numerous potential therapeutic targets have demonstrated promising outcomes in trials or preliminary research stages. These encompass anti-CD-20 agents, anti-CD-25 agents, TNF-α inhibition, FAS Ligand Inhibition, FcRn inhibition, BAFF inhibition, Bruton's tyrosine kinase (BTK) inhibition, CAAR T Cells, JAK inhibition, mTOR inhibition, abatacept, IL-4 inhibition, IL-17 inhibition, IL-6 inhibition, polyclonal Regulatory T Cells, and autologous hematopoietic stem cell transplantation. AREAS COVERED The most significant studies regarding the impact and efficacy of the mentioned treatments on pemphigus were meticulously curated through a comprehensive search conducted on the PubMed database. Moreover, the investigations of interest cited in these studies were also integrated. EXPERT OPINION The efficacy and safety profiles of the other treatments under discussion do not exhibit the same level of robustness as anti-CD20 therapy, which is anticipated to endure as a critical element in pemphigus treatment well into the foreseeable future.
Collapse
Affiliation(s)
- Ahmad Vafaeian
- Autoimmune Bullous Diseases Research Center, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Mahmoudi
- Autoimmune Bullous Diseases Research Center, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Daneshpazhooh
- Autoimmune Bullous Diseases Research Center, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Neys SFH, Heutz JW, van Hulst JAC, Vink M, Bergen IM, de Jong PHP, Lubberts E, Hendriks RW, Corneth OBJ. Aberrant B cell receptor signaling in circulating naïve and IgA + memory B cells from newly-diagnosed autoantibody-positive rheumatoid arthritis patients. J Autoimmun 2024; 143:103168. [PMID: 38350168 DOI: 10.1016/j.jaut.2024.103168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
OBJECTIVE Altered B cell receptor (BCR) signaling has been implicated in the pathogenesis of rheumatoid arthritis (RA). Here we aimed to identify signaling aberrations in autoantibody-positive and autoantibody-negative RA patients by performing a comprehensive analysis of the BCR signaling cascade in different B cell subsets. METHODS We first optimized phosphoflow cytometry for an in-depth analysis of BCR signaling across immunoglobulin isotypes in healthy donors. Subsequently, we compared BCR signaling in circulating B cell subsets from treatment-naïve, newly-diagnosed autoantibody-positive RA and autoantibody-negative RA patients and healthy controls (HCs). RESULTS We observed subset-specific phosphorylation patterns of the BCR signalosome in circulating B cells from healthy donors. Compared with HCs, autoantibody-positive RA patients displayed enhanced responses to BCR stimulation for multiple signaling proteins, specifically in naïve and IgA+ memory B cells. Whereas in unstimulated healthy donor B cells, the phosphorylation status of individual signaling proteins showed only limited correlation, BCR stimulation enhanced the interconnectivity in phosphorylation within the BCR signalosome. However, this strong interconnectivity within the BCR signalosome in stimulated B cells from HCs was lost in RA, especially in autoantibody-positive RA patients. Finally, we observed strong correlations between SYK and BTK protein expression, and IgA and IgG anti-citrullinated protein antibody concentrations in serum from autoantibody-positive RA patients. CONCLUSION Collectively, the isotype-specific analysis of multiple key components of the BCR signalosome identified aberrant BCR signaling responses in treatment-naïve autoantibody-positive RA patients, particularly in naïve B cells and IgA+ memory B cells. Our findings support differential involvement of dysregulated BCR signaling in the pathogenesis of autoantibody-positive and autoantibody-negative RA.
Collapse
Affiliation(s)
- Stefan F H Neys
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Judith W Heutz
- Department of Rheumatology, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | | | - Madelief Vink
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Ingrid M Bergen
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Pascal H P de Jong
- Department of Rheumatology, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Erik Lubberts
- Department of Rheumatology, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Odilia B J Corneth
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
12
|
Zhang Q, Wen C, Zhao L, Wang Y. A Comprehensive Review of Small-Molecule Inhibitors Targeting Bruton Tyrosine Kinase: Synthetic Approaches and Clinical Applications. Molecules 2023; 28:8037. [PMID: 38138527 PMCID: PMC10746017 DOI: 10.3390/molecules28248037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Bruton tyrosine kinase (BTK) is an essential enzyme in the signaling pathway of the B-cell receptor (BCR) and is vital for the growth and activation of B-cells. Dysfunction of BTK has been linked to different types of B-cell cancers, autoimmune conditions, and inflammatory ailments. Therefore, focusing on BTK has become a hopeful approach in the field of therapeutics. Small-molecule inhibitors of BTK have been developed to selectively inhibit its activity and disrupt B-cell signaling pathways. These inhibitors bind to the active site of BTK and prevent its phosphorylation, leading to the inhibition of downstream signaling cascades. Regulatory authorities have granted approval to treat B-cell malignancies, such as chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL), with multiple small-molecule BTK inhibitors. This review offers a comprehensive analysis of the synthesis and clinical application of conventional small-molecule BTK inhibitors at various clinical stages, as well as presents promising prospects for the advancement of new small-molecule BTK inhibitors.
Collapse
Affiliation(s)
- Qi Zhang
- Nanyang Central Hospital, Nanyang 473000, China; (Q.Z.); (C.W.)
| | - Changming Wen
- Nanyang Central Hospital, Nanyang 473000, China; (Q.Z.); (C.W.)
| | - Lijie Zhao
- The Rogel Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yatao Wang
- First People’s Hospital of Shangqiu, Shangqiu 476100, China
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| |
Collapse
|
13
|
Huang G, Hucek D, Cierpicki T, Grembecka J. Applications of oxetanes in drug discovery and medicinal chemistry. Eur J Med Chem 2023; 261:115802. [PMID: 37713805 DOI: 10.1016/j.ejmech.2023.115802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
The compact and versatile oxetane motifs have gained significant attention in drug discovery and medicinal chemistry campaigns. This review presents an overview of the diverse applications of oxetanes in clinical and preclinical drug candidates targeting various human diseases, including cancer, viral infections, autoimmune disorders, neurodegenerative conditions, metabolic disorders, and others. Special attention is given to biologically active oxetane-containing compounds and their disease-related targets, such as kinases, epigenetic and non-epigenetic enzymes, and receptors. The review also details the effect of the oxetane motif on important properties, including aqueous solubility, lipophilicity, pKa, P-glycoprotein (P-gp) efflux, metabolic stability, conformational preferences, toxicity profiles (e.g., cytochrome P450 (CYP) suppression and human ether-a-go-go related gene (hERG) inhibition), pharmacokinetic (PK) properties, potency, and target selectivity. We anticipate that this work will provide valuable insights that can drive future discoveries of novel bioactive oxetane-containing small molecules, enabling their effective application in combating a wide range of human diseases.
Collapse
Affiliation(s)
- Guang Huang
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Devon Hucek
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
14
|
Ghane Y, Heidari N, Heidari A, Sadeghi S, Goodarzi A. Efficacy and safety of Bruton's tyrosine kinase inhibitors in the treatment of pemphigus: A comprehensive literature review and future perspective. Heliyon 2023; 9:e22912. [PMID: 38125430 PMCID: PMC10731063 DOI: 10.1016/j.heliyon.2023.e22912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Bruton's tyrosine kinase (BTK) is a protein involved in B-cell-receptor signaling and B-cell proliferation. The pathophysiology of several autoimmune diseases, such as pemphigus disorder, relies on the BTK signaling pathway. Therefore, BTK inhibitors were found to be beneficial alternatives to conventional treatmentsThe current study aimed to assess the efficacy and safety of BTK inhibitors in treating pemphigus. A complete search was performed on databases including PubMed/MedLine, Scopus, Web of Science, as well as Google Scholar search engine for studies published by September 20th, 2023. The current review indicates that BTK inhibitors alone or in combination with conventional treatments are promising options in the management of pemphigus. The overall safety profile of BTK inhibitors has been acceptable, and the reported adverse reactions were not severe or life-threatening.
Collapse
Affiliation(s)
- Yekta Ghane
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazila Heidari
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Heidari
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sara Sadeghi
- Department of Medicine, New York Health System, South Brooklyn Hospital, NY, USA
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Goodarzi
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Yakobson A, Neime AE, Abu Saleh O, Al Athamen K, Shalata W. Bullous Pemphigoid Occurring after Stopping Imatinib Therapy of CML: Is a Continuation of Post-Treatment Follow-Up Needed? Clin Pract 2023; 13:1082-1089. [PMID: 37736932 PMCID: PMC10514788 DOI: 10.3390/clinpract13050096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023] Open
Abstract
Advancements and the use of tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of Chronic Myeloid Leukemia (CML), achieving unprecedented success rates and expanding their applications to various neoplasms. However, the use of TKIs is not without its drawbacks. Skin, gastrointestinal, and central nervous systems are particularly susceptible to adverse effects, including a higher incidence of autoimmune responses in treated individuals. In this report, we present a unique case of bullous pemphigoid, a rare autoimmune disease, which has not been previously associated with TKI therapy as an adverse effect, particularly appearing after discontinuing Imatinib® treatment.
Collapse
Affiliation(s)
- Alexander Yakobson
- The Legacy Heritage Cancer Center and Dr. Larry Norton Institute, Soroka Medical Center, Ben Gurion University, Beer Sheva 84105, Israel
| | - Ala Eddin Neime
- Department of Internal Medicine, Soroka Medical Center & Ben-Gurion University, Beer Sheva 84105, Israel
| | - Omar Abu Saleh
- Dermatology and Venereology, The Emek Medical Centre, Afula 18341, Israel
| | - Kayed Al Athamen
- The Legacy Heritage Cancer Center and Dr. Larry Norton Institute, Soroka Medical Center, Ben Gurion University, Beer Sheva 84105, Israel
| | - Walid Shalata
- The Legacy Heritage Cancer Center and Dr. Larry Norton Institute, Soroka Medical Center, Ben Gurion University, Beer Sheva 84105, Israel
| |
Collapse
|
16
|
Olbrich H, Sadik CD, Schmidt E. Autoimmune blistering diseases: promising agents in clinical trials. Expert Opin Investig Drugs 2023; 32:615-623. [PMID: 37526503 DOI: 10.1080/13543784.2023.2242778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023]
Abstract
INTRODUCTION Treatment options for autoimmune bullous diseases (AIBD) are currently limited to corticosteroids and traditional immunomodulants and immunosuppressants that are associated with unfavorable adverse effect profiles. The most frequent AIBDs, i.e. bullous pemphigoid, pemphigus vulgaris, and mucous membrane pemphigoid, impose a high disease burden onto affected patients and can be detrimental due to infections, exsiccosis, and impaired food intake. Significant progress has been made in elucidating disease mechanisms and key mediators by in vivo and in vitro models, thus identifying a multifaceted range of possible drug targets. However, except for rituximab for pemphigus vulgaris, no new drugs have been approved for the treatment of AIBDs in the last decades. AREAS COVERED This review covers new drug developments and includes ongoing or completed phase 2 and 3 clinical trials. Studies were identified by querying the registries of ClinicalTrials.gov and Cochrane Library. EXPERT OPINION Promising results were shown for a variety of new agents including nomacopan, efgartigimod, omalizumab, dupilumab, as well as chimeric autoantibody receptor T cells. Clinical translation in the field of AIBDs is highly active, and we anticipate significant advances in the treatment landscape.
Collapse
Affiliation(s)
- Henning Olbrich
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | | | - Enno Schmidt
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
17
|
Criado PR, Lorenzini D, Miot HA, Bueno-Filho R, Carneiro FRO, Ianhez M. New small molecules in dermatology: for the autoimmunity, inflammation and beyond. Inflamm Res 2023:10.1007/s00011-023-01744-w. [PMID: 37212867 DOI: 10.1007/s00011-023-01744-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/01/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023] Open
Abstract
OBJECTIVE AND DESIGN The discovery of new inflammatory pathways and the mechanism of action of inflammatory, autoimmune, genetic, and neoplastic diseases led to the development of immunologically driven drugs. We aimed to perform a narrative review regarding the rising of a new class of drugs capable of blocking important and specific intracellular signals in the maintenance of these pathologies: the small molecules. MATERIALS/METHODS A total of 114 scientific papers were enrolled in this narrative review. RESULTS We describe in detail the families of protein kinases-Janus Kinase (JAK), Src kinase, Syk tyrosine kinase, Mitogen-Activated Protein Kinase (MAPK), and Bruton Tyrosine Kinase (BTK)-their physiologic function and new drugs that block these pathways of intracellular signaling. We also detail the involved cytokines and the main metabolic and clinical implications of these new medications in the field of dermatology. CONCLUSIONS Despite having lower specificity compared to specific immunobiological therapies, these new drugs are effective in a wide variety of dermatological diseases, especially diseases that had few therapeutic options, such as psoriasis, psoriatic arthritis, atopic dermatitis, alopecia areata, and vitiligo.
Collapse
Affiliation(s)
- Paulo Ricardo Criado
- Faculdade de Medicina Do ABC, Post-Graduation Program, Full Researcher, Santo André, Rua Carneiro Leão 33, Vila Scarpelli, Santo André, São Paulo, Brazil.
| | - Daniel Lorenzini
- Santa Casa de Misericórida de Porto Alegre, Porto Alegre, RS, Brazil
| | - Hélio Amante Miot
- Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, São Paulo, Brazil
| | - Roberto Bueno-Filho
- Ribeirão Preto Medical School-University of São Paulo, Ribeirão Preto, Brazil
| | | | - Mayra Ianhez
- Universidade Federal de Goiás (UFG) E Hospital de Doenças Tropicais (HDT-GO), Goiânia, Goiás, Brazil
| |
Collapse
|
18
|
Yamagami J. B-cell targeted therapy of pemphigus. J Dermatol 2023; 50:124-131. [PMID: 36478455 PMCID: PMC10107866 DOI: 10.1111/1346-8138.16653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 12/12/2022]
Abstract
Pemphigus is an autoimmune disease that causes blistering and erosion of the skin and mucous membranes because of autoantibodies against desmoglein, which plays an important role in adhesion between epidermal keratinocytes. Treatment of pemphigus has long been centered on corticosteroids, and the guidelines for management of pemphigus have recommended high-dose systemic corticosteroids as the first-line treatment. While guideline-based treatment has been shown to be beneficial in patients with pemphigus, it has also become clear that this treatment is accompanied by significant burden and risk. The challenge for future pemphigus treatment is to maximize efficacy while minimizing risk during the course of the disease. In this regard, treatment targeting B cells is expected to become increasingly important as autoreactive B cells in pemphigus patients are thought to play a major role in the production of autoantibodies, which form the basis of the pathogenesis. The recent expansion of insurance coverage to rituximab, a monoclonal antibody against CD20, for refractory pemphigus in the USA, Europe, and Japan has opened up a new era of pemphigus treatment by enabling treatment strategies with drugs targeting B cells in patients. Here, we discuss the current status and future prospects of pemphigus treatment, focusing on rituximab and Bruton's tyrosine kinase inhibitors, which are expected to become essential drugs for pemphigus treatment in the future.
Collapse
Affiliation(s)
- Jun Yamagami
- Department of Dermatology, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
19
|
Einhaus J, Han X, Feyaerts D, Sunwoo J, Gaudilliere B, Ahmad SH, Aghaeepour N, Bruckman K, Ojcius D, Schürch CM, Gaudilliere DK. Towards multiomic analysis of oral mucosal pathologies. Semin Immunopathol 2023; 45:111-123. [PMID: 36790488 PMCID: PMC9974703 DOI: 10.1007/s00281-022-00982-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/23/2022] [Indexed: 02/16/2023]
Abstract
Oral mucosal pathologies comprise an array of diseases with worldwide prevalence and medical relevance. Affecting a confined space with crucial physiological and social functions, oral pathologies can be mutilating and drastically reduce quality of life. Despite their relevance, treatment for these diseases is often far from curative and remains vastly understudied. While multiple factors are involved in the pathogenesis of oral mucosal pathologies, the host's immune system plays a major role in the development, maintenance, and resolution of these diseases. Consequently, a precise understanding of immunological mechanisms implicated in oral mucosal pathologies is critical (1) to identify accurate, mechanistic biomarkers of clinical outcomes; (2) to develop targeted immunotherapeutic strategies; and (3) to individualize prevention and treatment approaches. Here, we review key elements of the immune system's role in oral mucosal pathologies that hold promise to overcome limitations in current diagnostic and therapeutic approaches. We emphasize recent and ongoing multiomic and single-cell approaches that enable an integrative view of these pathophysiological processes and thereby provide unifying and clinically relevant biological signatures.
Collapse
Affiliation(s)
- Jakob Einhaus
- Department of Anesthesiology, Perioperative & Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Xiaoyuan Han
- Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, USA
| | - Dorien Feyaerts
- Department of Anesthesiology, Perioperative & Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - John Sunwoo
- Division of Head and Neck Surgery, Department of Otolaryngology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Brice Gaudilliere
- Department of Anesthesiology, Perioperative & Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Somayeh H Ahmad
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, 770 Welch Road, Palo Alto, CA, 94304, USA
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative & Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Karl Bruckman
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, 770 Welch Road, Palo Alto, CA, 94304, USA
| | - David Ojcius
- Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, USA
| | - Christian M Schürch
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Dyani K Gaudilliere
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, 770 Welch Road, Palo Alto, CA, 94304, USA.
| |
Collapse
|
20
|
Patil S, Mustaq S, Hosmani J, Khan ZA, Yadalam PK, Ahmed ZH, Bhandi S, Awan KH. Advancement in therapeutic strategies for immune-mediated oral diseases. Dis Mon 2023; 69:101352. [PMID: 35339251 DOI: 10.1016/j.disamonth.2022.101352] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Immune-mediated diseases are a diverse group of conditions characterized by alteration of cellular homeostasis and inflammation triggered by dysregulation of the normal immune response. Several immune-mediated diseases exhibit oral signs and symptoms. Traditionally, these conditions are treated with corticosteroids or immunosuppressive agents, including azathioprine, cyclophosphamide, and thalidomide. Recent research into the developmental pathways of these diseases has led to the exploration of novel approaches in treatment. This review examines newer treatment modalities for the management of immune-mediated diseases with oral presentations. Topical calcineurin inhibitors (TCIs) such as tacrolimus and pimecrolimus have been employed successfully in managing oral lichen planus and pemphigus vulgaris. Biologic agents, comprising monoclonal antibodies, fusion proteins, and recombinant cytokines, can provide targeted therapy with fewer adverse effects. Neutraceutical agents comprising aloe vera, curcumin, and honey are commonly used in traditional medicine and offer a holistic approach. They may have a place as adjuvants to current standard therapeutic protocols. Photodynamic therapy (PDT) and low-level laser therapy (LLLT) utilize a specific wavelength of light to achieve desired cellular change. While the use of PDT in immune-mediated diseases is contentious, LLLT has shown positive results. Newer therapeutic modalities involve kinase inhibitors, S1P1 receptor modulators, MSCs, and iRNA providing targeted treatment of specific diseases.
Collapse
Affiliation(s)
- Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Shazia Mustaq
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Jagadish Hosmani
- Oral Pathology Division, Department of Dental Sciences, College of Dentistry,King Khalid University, Abha, Saudi Arabia
| | - Zafar Ali Khan
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jouf University, Sakaka, Saudi Arabia
| | - Pradeep Kumar Yadalam
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600 077
| | - Zeeshan Heera Ahmed
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shilpa Bhandi
- Department of Restorative Dental Science, Division of Operative Dentistry, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia
| | - Kamran Habib Awan
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, Utah, United States.
| |
Collapse
|
21
|
Kocaturk E, Saini SS, Rubeiz CJ, Bernstein JA. Existing and Investigational Medications for Refractory Chronic Spontaneous Urticaria: Safety, Adverse Effects, and Monitoring. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:3099-3116. [PMID: 36241154 DOI: 10.1016/j.jaip.2022.09.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/14/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022]
Abstract
Treatment of chronic spontaneous urticaria (CSU) is responsive to H1 antihistamines administered up to four times the recommended US Food and Drug Administration dose in approximately 50% of patients. However, when patients do not respond to these first-line agents, evidence-based guidelines using Grading of Recommendations, Assessment, Development, and Evaluations methodology have provided direction for second- and third-line treatments that can effectively treat patients with CSU. Some patients remain refractory to these advanced treatments; therefore, alternative treatments with a lower certainty of evidence may be necessary. Regardless of the therapies used to treat CSU patients, it is essential for clinicians to be knowledgeable about the mechanism of action, efficacy, and safety and monitoring recommendations of the treatments prescribed. This review provides a comprehensive review of the adverse effects and monitoring recommendations for agents in use for CSU treatment as well as those currently undergoing investigation for CSU treatment.
Collapse
Affiliation(s)
- Emek Kocaturk
- Department of Dermatology, Koç University School of Medicine, Istanbul, Turkey; Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Department of Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
| | | | - Christine J Rubeiz
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jonathan A Bernstein
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Internal Medicine, Division of Rheumatology, Allergy, and Immunology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
22
|
Kussini J, Kaisers T, Sequeira Santos AM, Eming R, Didona D. [Pemphigus: current and future treatment strategies]. DERMATOLOGIE (HEIDELBERG, GERMANY) 2022; 74:915-926. [PMID: 37902884 DOI: 10.1007/s00105-023-05246-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/02/2023] [Indexed: 11/01/2023]
Abstract
Pemphigus diseases are a group of organ-specific autoimmune diseases which are characterised by the production of autoantibodies against intra-epidermal adhesion molecules and structural proteins of skin and mucosae. Depending on the entity, patients develop blisters and erosions on the skin and/or mucosae. According to the AWMF S2k guidelines for diagnosis and therapy of pemphigus diseases, a systemic therapy is recommended. Initially, high-dose, oral corticosteroids in combination with immunosuppressive drugs as corticosteroid-sparing agent, usually azathioprine or mycophenolate mofetil, can be used. Furthermore, rituximab, a monoclonal antibody directed against CD20 on B cells, was recently approved for pemphigus vulgaris and moderate or severe pemphigus foliaceus.
Collapse
Affiliation(s)
- Jacqueline Kussini
- Klinik für Dermatologie und Allergologie, Philipps-Universität Marburg, Baldingerstr., 35043, Marburg, Deutschland
| | - Tabea Kaisers
- Klinik III Dermatologie, Venerologie & Allergologie, Bundeswehrzentralkrankenhaus Koblenz, Koblenz, Deutschland
| | | | - Rüdiger Eming
- Klinik für Dermatologie und Allergologie, Philipps-Universität Marburg, Baldingerstr., 35043, Marburg, Deutschland
- Klinik III Dermatologie, Venerologie & Allergologie, Bundeswehrzentralkrankenhaus Koblenz, Koblenz, Deutschland
| | - Dario Didona
- Klinik für Dermatologie und Allergologie, Philipps-Universität Marburg, Baldingerstr., 35043, Marburg, Deutschland.
| |
Collapse
|
23
|
Alu A, Lei H, Han X, Wei Y, Wei X. BTK inhibitors in the treatment of hematological malignancies and inflammatory diseases: mechanisms and clinical studies. J Hematol Oncol 2022; 15:138. [PMID: 36183125 PMCID: PMC9526392 DOI: 10.1186/s13045-022-01353-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/07/2022] [Indexed: 11/28/2022] Open
Abstract
Bruton's tyrosine kinase (BTK) is an essential component of multiple signaling pathways that regulate B cell and myeloid cell proliferation, survival, and functions, making it a promising therapeutic target for various B cell malignancies and inflammatory diseases. Five small molecule inhibitors have shown remarkable efficacy and have been approved to treat different types of hematological cancers, including ibrutinib, acalabrutinib, zanubrutinib, tirabrutinib, and orelabrutinib. The first-in-class agent, ibrutinib, has created a new era of chemotherapy-free treatment of B cell malignancies. Ibrutinib is so popular and became the fourth top-selling cancer drug worldwide in 2021. To reduce the off-target effects and overcome the acquired resistance of ibrutinib, significant efforts have been made in developing highly selective second- and third-generation BTK inhibitors and various combination approaches. Over the past few years, BTK inhibitors have also been repurposed for the treatment of inflammatory diseases. Promising data have been obtained from preclinical and early-phase clinical studies. In this review, we summarized current progress in applying BTK inhibitors in the treatment of hematological malignancies and inflammatory disorders, highlighting available results from clinical studies.
Collapse
Affiliation(s)
- Aqu Alu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hong Lei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xuejiao Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
24
|
Leitinger DE, Kaplan DZ. BTK Inhibitors in Haematology: Beyond B Cell Malignancies. Transfus Med Rev 2022; 36:239-245. [DOI: 10.1016/j.tmrv.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/25/2022] [Indexed: 11/27/2022]
|
25
|
Mohme S, Goebeler M, Benoit S. Blasenbildende Autoimmundermatosen – Klinik, Diagnostik und
neue Therapieansätze. AKTUEL RHEUMATOL 2022. [DOI: 10.1055/a-1771-2096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
ZusammenfassungDiese Arbeit gibt eine Übersicht über die Gruppe blasenbildender
Autoimmundermatosen und stellt deren wichtigste Vertreter, das bullöse
Pemphigoid, den Pemphigus vulgaris sowie den Pemphigus foliaceus, vor. Die
häufigste der insgesamt seltenen blasenbildenden Autoimmundermatosen ist
das bullöse Pemphigoid (BP). Es betrifft vor allem Patienten jenseits
des 60. Lebensjahrs. Charakterisiert ist es typischerweise durch das Auftreten
praller Blasen, die mit einem heftigen Juckreiz einhergehen. Ein
längeres, sogenanntes prämonitorisches Stadium ohne
Blasenbildung ist nicht ungewöhnlich. Es gibt außerdem Varianten
mit anderem Erscheinungsbild wie das lokalisierte BP. Der diagnostische
Goldstandard ist die direkte Immunfluoreszenzmikroskopie einer
periläsional entnommenen Hautbiopsie, welche lineare Ablagerungen von
IgG und C3 an der Basalmembran zeigt. Vervollständigt wird die
Diagnostik durch die indirekte Immunfluoreszenzmikroskopie sowie
weiterführende ELISA-Untersuchungen, mittels derer zirkulierende
Autoantikörper im Patientenserum nachgewiesen werden können. Das
wichtigste Zielantigen ist BP180, ein hemidesmosomales, von Keratinozyten
exprimiertes Protein. Ergänzend kann eine histopathologische
Untersuchung erfolgen, die allerdings nur Hinweise zur Spaltebene und zum (meist
Eosinophilen-dominierten) Infiltratmuster geben kann und alleine nicht zur
Diagnosestellung ausreicht. Die Pathogenese des BP ist Gegenstand der
wissenschaftlichen Diskussion. Medikamente wie Dipeptidylpeptidase-4-Inhibitoren
können Auslöser sein; Assoziationen zu neurologischen
Erkrankungen finden sich häufig. Entsprechend aktueller Leitlinien wird
das BP mit topischen bzw. systemischen Glukokortikoiden ggf. in Kombination mit
Doxyzyklin, Dapson oder einem Immunsuppressivum behandelt. Bei Therapieresistenz
werden intravenöse Immunglobuline oder der anti-CD-20-Antikörper
Rituximab eingesetzt. Aufgrund einer vergleichsweise hohen Mortalität
bedingt durch Patientenalter und iatrogener Immunsuppression werden neue
Therapieansätze gesucht. Fallserien, Kohortenanalysen und Phase
1-/2-Studien mit anti-IgE-Antikörpern und Inhibitoren der
eosinophilen Granulozyten sowie des Komplementsystems zeigen teils
vielversprechende Effekte. Die wichtigsten Vertreter der Pemphiguserkrankungen
sind der Pemphigus vulgaris (PV), der Pemphigus foliaceus (PF) und der sehr
seltene paraneoplastische Pemphigus (PNP). Klinisch präsentiert sich der
PV mit meist enoralen Schleimhauterosionen und teilweise zusätzlichen
Erosionen an der freien Haut. Der PF manifestiert sich nur an der freien Haut.
Wie beim BP wird die Diagnose mittels direkter Immunfluoreszenzmikroskopie
gestellt, welche beim PV und PF netzförmige Ablagerungen von IgG und C3
innerhalb der Epidermis zeigt. Die häufigsten Zielantigene sind die
Desmogleine 1 und 3. Genetische Prädispositionen für den PV und
PF sind bekannt und Grund für eine global unterschiedliche
Häufigkeit. Der PNP ist immer mit einer malignen Erkrankung assoziiert
und von einem progredienten Verlauf mit hoher Mortalität
geprägt. Therapeutisch erfordern die Pemphiguserkankungen oft
aggressivere Ansätze als das BP. Neben systemischen Glukokortikoiden und
Immunsuppressiva wird für den PV und PF der
anti-CD-20-Antikörper Rituximab empfohlen. Neue Therapieansätze
sind die Hemmung der Bruton-Tyrosinkinase sowie des neonatalen Fc-Rezeptors
(FcRN). In einer Phase 2-Studie zeigte Efgartigimod, ein Antagonist des FcRN,
eine hohe Therapieeffektivität für Patienten mit PV und PF.
Collapse
Affiliation(s)
- Sophia Mohme
- Dermatologie, Universitätsklinikum Würzburg,
Würzburg, Germany
| | | | - Sandrine Benoit
- Dermatologie, Universitätsklinikum Würzburg,
Würzburg, Germany
| |
Collapse
|
26
|
Chu KY, Yu HS, Yu S. Current and Innovated Managements for Autoimmune Bullous Skin Disorders: An Overview. J Clin Med 2022; 11:3528. [PMID: 35743598 PMCID: PMC9224787 DOI: 10.3390/jcm11123528] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Autoimmune bullous skin disorders are a group of disorders characterized by the formation of numerous blisters and erosions on the skin and/or the mucosal membrane, arising from autoantibodies against the intercellular adhesion molecules and the structural proteins. They can be classified into intraepithelial or subepithelial autoimmune bullous dermatoses based on the location of the targeted antigens. These dermatoses are extremely debilitating and fatal in certain cases, depending on the degree of cutaneous and mucosal involvement. Effective treatments should be implemented promptly. Glucocorticoids serve as the first-line approach due to their rapid onset of therapeutic effects and remission of the acute phase. Nonetheless, long-term applications may lead to major adverse effects that outweigh the benefits. Hence, other adjuvant therapies are mandatory to minimize the potential harm and ameliorate the quality of life. Herein, we summarize the current therapeutic strategies and introduce promising therapies for intractable autoimmune bullous diseases.
Collapse
Affiliation(s)
- Kuan-Yu Chu
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
| | - Hsin-Su Yu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Sebastian Yu
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
- Department of Dermatology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| |
Collapse
|
27
|
Yuan H, Pan M, Chen H, Mao X. Immunotherapy for Pemphigus: Present and Future. Front Med (Lausanne) 2022; 9:901239. [PMID: 35783635 PMCID: PMC9240651 DOI: 10.3389/fmed.2022.901239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Pemphigus is a chronic and severe autoimmune bullous disease caused by autoantibodies targeting adhesion molecules between keratinocytes. It requires 2–3 years on average to manage the disease. To date, although Rituximab combined with short-term systemic glucocorticoids was accepted as first-line therapy, systemic glucocorticoids remain the primary therapeutic option for pemphigus patients, successfully decreasing morbidity and mortality from pemphigus. However, novel therapeutic strategies are desirable due to the low efficacy in some subset of patients and the long-term severe adverse effects of traditional therapies. Recently, immunotherapy has proved to be encouraging for disease control or cure. Based on the current understanding of the immune mechanisms of pemphigus, we review the immune targets and corresponding agents applied in practice or under clinical trials. The goals of the novel treatments are to improve the quality of life of pemphigus patients by improving efficacy and safety, minimizing side effects, achieving fast disease control, or curing the disease.
Collapse
Affiliation(s)
- Huijie Yuan
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Meng Pan
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxiang Chen
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuming Mao
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Xuming Mao
| |
Collapse
|
28
|
Murrell DF, Patsatsi A, Stavropoulos P, Baum S, Zeeli T, Kern JS, Sinclair R, Neale A, Arora P, Sugerman PB, Shi G, Werth VP, Caux F, Joly P. Phase 2 BELIEVE study part B: Efficacy and safety of rilzabrutinib for patients with pemphigus vulgaris. J Eur Acad Dermatol Venereol 2022; 36. [PMID: 35686647 DOI: 10.1111/jdv.18318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Affiliation(s)
- D F Murrell
- Department of Dermatology, St George Hospital, University of New South Wales Faculty of Medicine, Sydney, Australia
| | - A Patsatsi
- 2nd Dermatology Department, Aristotle University Faculty of Medicine, Papageorgiou General Hospital, Thessaloniki, Greece
| | - P Stavropoulos
- 1st Department of Dermatology, National and Kapodistrian University, School of Medicine, Athens, Greece
| | - S Baum
- Department of Dermatology, Sheba Medical Center, Ramat Gan, Israel and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - T Zeeli
- Department of Dermatology, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - J S Kern
- Dermatology Department, The Royal Melbourne Hospital, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Victoria, Australia
| | - R Sinclair
- University of Melbourne and Sinclair Dermatology, Victoria, Australia
| | - A Neale
- Principia Biopharma Inc, a Sanofi Company, South San Francisco, California, United States
| | - P Arora
- Principia Biopharma Inc, a Sanofi Company, South San Francisco, California, United States
| | - P B Sugerman
- Global Medical Affairs, Sanofi Genzyme, Cambridge, Massachusetts, United States
| | - G Shi
- Biostatistics, Sanofi US Services Inc., Bridgewater, New Jersey, United States
| | - V P Werth
- University of Pennsylvania Perelman School of Medicine and Corporal Michael J. Crescenz VAMC, Philadelphia, Pennsylvania, United States
| | - F Caux
- Department of Dermatology, Groupe Hospitalier Paris Seine-Saint-Denis, AP-, HP, Bobigny, France
| | - P Joly
- Department of Dermatology, Rouen University Hospital, Centre de Référence des Maladies Bulleuses Autoimmunes, and INSERM U1234, Normandie University, Rouen, France
| |
Collapse
|
29
|
Ucpinar S, Darpo B, Neale A, Nunn P, Shu J, Chu KA, Kavanagh M, Xue H, Phiasivongsa P, Thomas D, Smith PF. A thorough QTc study to evaluate the effects of oral rilzabrutinib administered alone and with ritonavir in healthy subjects. Clin Transl Sci 2022; 15:1507-1518. [PMID: 35301810 PMCID: PMC9199881 DOI: 10.1111/cts.13271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/25/2022] [Accepted: 02/28/2022] [Indexed: 11/29/2022] Open
Abstract
This study aimed to define the clinically relevant supratherapeutic dose of rilzabrutinib, an oral Bruton tyrosine kinase (BTK) inhibitor, and evaluate potential effects of therapeutic and supratherapeutic exposures on cardiac repolarization in healthy subjects. This was a two-part phase I study (anzctr.org.au ACTRN12618001036202). Part A was a randomized, open-label, three-period, single-dose crossover study (n = 12) with rilzabrutinib 100 mg ± ritonavir 100 mg or rilzabrutinib 1200 mg. Part B was a randomized, double-blind, placebo-controlled, four-way, single-dose crossover study (n = 39) with matched placebo, rilzabrutinib 400 mg ± ritonavir 100 mg, or moxifloxacin (positive control). Primary objectives: part A - pharmacokinetics (PK) of rilzabrutinib ± ritonavir, safety, and optimal dose for Part B; Part B - effect of rilzabrutinib therapeutic and supratherapeutic concentration on electrocardiogram (ECG) parameters. ECGs and PK samples were serially recorded before and post-dose. In part A, rilzabrutinib 100 mg + ritonavir led to 17-fold area under the concentration-time curve (AUC0-∞ ) and 7-fold maximum plasma concentration (Cmax ) increases over rilzabrutinib alone. Rilzabrutinib 1200 mg was discontinued due to mild-to-moderate gastrointestinal intolerance. In Part B, rilzabrutinib 400 mg + ritonavir increased rilzabrutinib mean AUC0-∞ from 454 to 3800 ng h/mL and Cmax from 144 to 712 ng/mL. The concentration-QTc relationship was slightly negative, shallow (-0.01 ms/ng/mL [90% CI -0.016 to -0.001]), and an effect >10 ms on QTcF could be excluded within the observed range of plasma concentrations, up to 2500 ng/mL. Safety was similar to other studies of rilzabrutinib. In conclusion, rilzabrutinib, even at supratherapeutic doses, had no clinically relevant effects on ECG parameters, including the QTc interval.
Collapse
Affiliation(s)
- Sibel Ucpinar
- Principia Biopharma Inc., A Sanofi CompanySouth San FranciscoCaliforniaUSA
| | | | - Ann Neale
- Principia Biopharma Inc., A Sanofi CompanySouth San FranciscoCaliforniaUSA
| | - Philip Nunn
- Principia Biopharma Inc., A Sanofi CompanySouth San FranciscoCaliforniaUSA
| | - Jin Shu
- Principia Biopharma Inc., A Sanofi CompanySouth San FranciscoCaliforniaUSA
| | - Katherine A. Chu
- Principia Biopharma Inc., A Sanofi CompanySouth San FranciscoCaliforniaUSA
| | - Marianne Kavanagh
- Principia Biopharma Inc., A Sanofi CompanySouth San FranciscoCaliforniaUSA
| | | | - Pasit Phiasivongsa
- Principia Biopharma Inc., A Sanofi CompanySouth San FranciscoCaliforniaUSA
| | - Dolca Thomas
- Principia Biopharma Inc., A Sanofi CompanySouth San FranciscoCaliforniaUSA
| | | |
Collapse
|
30
|
Brescacin A, Baig Z, Bhinder J, Lin S, Brar L, Cirillo N. What protein kinases are crucial for acantholysis and blister formation in pemphigus vulgaris? A systematic review. J Cell Physiol 2022; 237:2825-2837. [PMID: 35616233 PMCID: PMC9540544 DOI: 10.1002/jcp.30784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 01/18/2023]
Abstract
Pemphigus vulgaris (PV) is a potentially fatal autoimmune blistering disease characterized by cell-cell detachment (or acantholysis) and blister formation. While the signaling mechanisms that associate with skin/mucosal blistering are being elucidated, specific treatment strategies targeting PV-specific pathomechanisms, particularly kinase signaling, have yet to be established. Hence, the aim of this review was to systematically evaluate molecules in the class of kinases that are essential for acantholysis and blister formation and are therefore candidates for targeted therapy. English articles from PubMed and Scopus databases were searched, and included in vitro, in vivo, and human studies that investigated the role of kinases in PV. We selected studies, extracted data and assessed risk of bias in duplicates and the results were reported according to the methodology outlined by the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA). The risk of bias assessment was performed on in vivo studies utilizing SYRCLE's risk of bias tool. Thirty-five studies were included that satisfied the pathogenicity criterion of kinases in PV, the vast majority being experimental models that used PV sera (n = 13) and PV-IgG (n = 22). Inhibition of kinase activity (p38MAPK, PKC, TK, c-Src, EGFR, ERK, mTOR, BTK, and CDK2) was achieved mostly by pharmacological means. Overall, we found substantial evidence that kinase inhibition reduced PV-associated phosphorylation events and keratinocyte disassociation, prevented acantholysis, and blocked blister formation. However, the scarce adherence to standardized reporting systems and the experimental protocols/models used did limit the internal and external validity of these studies. In summary, this systematic review highlighted the pathogenic intracellular events mediated by kinases in PV acantholysis and presented kinase signaling as a promising avenue for translational research. In particular, the molecules identified and discussed in this study represent potential candidates for the development of mechanism-based interventions in PV.
Collapse
Affiliation(s)
- Adriano Brescacin
- Melbourne Dental School, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Carlton, Victoria, Australia
| | - Zunaira Baig
- Melbourne Dental School, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Carlton, Victoria, Australia
| | - Jaspreet Bhinder
- Melbourne Dental School, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Carlton, Victoria, Australia
| | - Sen Lin
- Melbourne Dental School, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Carlton, Victoria, Australia
| | - Lovejot Brar
- Melbourne Dental School, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Carlton, Victoria, Australia
| | - Nicola Cirillo
- Melbourne Dental School, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Carlton, Victoria, Australia
| |
Collapse
|
31
|
Egu DT, Schmitt T, Waschke J. Mechanisms Causing Acantholysis in Pemphigus-Lessons from Human Skin. Front Immunol 2022; 13:884067. [PMID: 35720332 PMCID: PMC9205406 DOI: 10.3389/fimmu.2022.884067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Pemphigus vulgaris (PV) is an autoimmune bullous skin disease caused primarily by autoantibodies (PV-IgG) against the desmosomal adhesion proteins desmoglein (Dsg)1 and Dsg3. PV patient lesions are characterized by flaccid blisters and ultrastructurally by defined hallmarks including a reduction in desmosome number and size, formation of split desmosomes, as well as uncoupling of keratin filaments from desmosomes. The pathophysiology underlying the disease is known to involve several intracellular signaling pathways downstream of PV-IgG binding. Here, we summarize our studies in which we used transmission electron microscopy to characterize the roles of signaling pathways in the pathogenic effects of PV-IgG on desmosome ultrastructure in a human ex vivo skin model. Blister scores revealed inhibition of p38MAPK, ERK and PLC/Ca2+ to be protective in human epidermis. In contrast, inhibition of Src and PKC, which were shown to be protective in cell cultures and murine models, was not effective for human skin explants. The ultrastructural analysis revealed that for preventing skin blistering at least desmosome number (as modulated by ERK) or keratin filament insertion (as modulated by PLC/Ca2+) need to be ameliorated. Other pathways such as p38MAPK regulate desmosome number, size, and keratin insertion indicating that they control desmosome assembly and disassembly on different levels. Taken together, studies in human skin delineate target mechanisms for the treatment of pemphigus patients. In addition, ultrastructural analysis supports defining the specific role of a given signaling molecule in desmosome turnover at ultrastructural level.
Collapse
|
32
|
Maho-Vaillant M, Sips M, Golinski ML, Vidarsson G, Goebeler M, Stoevesandt J, Bata-Csörgő Z, Balbino B, Verheesen P, Joly P, Hertl M, Calbo S. FcRn Antagonism Leads to a Decrease of Desmoglein-Specific B Cells: Secondary Analysis of a Phase 2 Study of Efgartigimod in Pemphigus Vulgaris and Pemphigus Foliaceus. Front Immunol 2022; 13:863095. [PMID: 35663943 PMCID: PMC9157593 DOI: 10.3389/fimmu.2022.863095] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/29/2022] [Indexed: 12/26/2022] Open
Abstract
Background Immunoglobulin G (IgG) levels are maintained by the IgG-recycling neonatal Fc-receptor (FcRn). Pemphigus vulgaris and pemphigus foliaceus are debilitating autoimmune disorders triggered by IgG autoantibodies against mucosal and epidermal desmogleins. Recently, a phase 2 clinical trial (NCT03334058; https://clinicaltrials.gov/NCT03334058) was completed in participants with pemphigus using efgartigimod, an FcRn inhibitor, in combination with prednisone. Efgartigimod demonstrated an early effect on diease activity and was well tolerated. In addition to the safety and efficacy assessment, clinical trials present an opportunity to gain more insights into the mechanism of disease, the mode of action of treatment, and potential for corticosteroid-sparing activity. Objective The aim of our study was to assess the impact of FcRn antagonism by efgartigimod on immunological parameters known to be directly involved in pemphigus pathology, such as cellular and serological responses. Methods We investigated total and antigen-specific IgG subclass level kinetics during and after treatment, assessed antigen-specific B-cell responses, followed T- and B-cell immunophenotypes, and analyzed how different immunophenotypes link to clinical response. Results Treatment resulted in reduction of total IgG as well as autoreactive IgG antibody levels. Surprisingly, unlike total IgG and vaccine- or natural-infection-elicited IgG, which returned to baseline levels after stopping efgartigimod treatment, autoreactive antibody levels remained low in several study participants. Efgartigimod showed no effect on total leukocytes, neutrophils, monocytes, or lymphocytes in patients treated with extended efgartigimod therapy. Intriguingly, antigen-specific analyses revealed a loss of desmoglein-specific B cells in several participants responding to efgartigimod, in line with prolonged reduction of pathogenic IgG levels. Conclusions Efgartigimod treatment of participants with pemphigus improved their conditions and exerted an immunomodulatory effect beyond the blockade of IgG recycling. Further studies in larger populations with an appropriate placebo control are needed to confirm these potentially important observations to establish long-term clinical responses in autoimmune diseases.
Collapse
Affiliation(s)
- Maud Maho-Vaillant
- Department of Dermatology, Rouen University Hospital, Rouen, France
- INSERM U1234, Normandie University, Rouen, France
| | | | - Marie-Laure Golinski
- Department of Dermatology, Rouen University Hospital, Rouen, France
- INSERM U1234, Normandie University, Rouen, France
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Matthias Goebeler
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Johanna Stoevesandt
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | | | | | | | - Pascal Joly
- Department of Dermatology, Rouen University Hospital, Rouen, France
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | | |
Collapse
|
33
|
Robak E, Robak T. Bruton's Kinase Inhibitors for the Treatment of Immunological Diseases: Current Status and Perspectives. J Clin Med 2022; 11:2807. [PMID: 35628931 PMCID: PMC9145705 DOI: 10.3390/jcm11102807] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
The use of Bruton's tyrosine kinase (BTK) inhibitors has changed the management of patients with B-cell lymphoid malignancies. BTK is an important molecule that interconnects B-cell antigen receptor (BCR) signaling. BTK inhibitors (BTKis) are classified into three categories, namely covalent irreversible inhibitors, covalent reversible inhibitors, and non-covalent reversible inhibitors. Ibrutinib is the first covalent, irreversible BTK inhibitor approved in 2013 as a breakthrough therapy for chronic lymphocytic leukemia patients. Subsequently, two other covalent, irreversible, second-generation BTKis, acalabrutinib and zanubrutinib, have been developed for lymphoid malignancies to reduce the ibrutinib-mediated adverse effects. More recently, irreversible and reversible BTKis have been under development for immune-mediated diseases, including autoimmune hemolytic anemia, immune thrombocytopenia, multiple sclerosis, pemphigus vulgaris, atopic dermatitis, rheumatoid arthritis, systemic lupus erythematosus, Sjögren's disease, and chronic spontaneous urticaria, among others. This review article summarizes the preclinical and clinical evidence supporting the role of BTKis in various autoimmune, allergic, and inflammatory conditions.
Collapse
Affiliation(s)
- Ewa Robak
- Department of Dermatology, Medical University of Lodz, 90-647 Lodz, Poland;
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland
- Department of General Hematology, Copernicus Memorial Hospital, 93-510 Lodz, Poland
| |
Collapse
|
34
|
Naik PP. Translational autoimmunity in pemphigus and the role of novel Bruton tyrosine kinase inhibitors. J Transl Autoimmun 2022; 5:100156. [PMID: 35493759 PMCID: PMC9046865 DOI: 10.1016/j.jtauto.2022.100156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/02/2022] [Accepted: 04/11/2022] [Indexed: 11/24/2022] Open
Abstract
Bruton tyrosine kinase (BTK) is involved in a multifarious inflammatory and autoimmune process. As a result, BTK has emerged as a promising novel remedial target for amalgamated autoimmune diseases. Medicament corporations have recently devoted considerable attention to the evolution of BTK inhibitors. Pemphigus is an uncommon and often fatal autoimmune illness. Blisters and erosions on cutaneous surfaces and mucous membranes are crippling symptoms of pemphigus vulgaris, which are caused by immunoglobulin G autoantibodies binding to keratinocyte proteins, resulting in keratinocyte adhesion defects. Although systemic corticosteroids and adjuvant medications are used to treat pemphigus, some patients are resistant to these. BTK inhibitors inhibit B-cell signaling, which is clinically useful in treating pemphigus. Assorted clinical trials are underway to assess the safety, tolerability, and pharmacokinetics of distinct BTK inhibitors, including PRN473 and remibrutinib. The current review evaluates translational autoimmunity in pemphigus and discusses BTK inhibitors in the treatment of pemphigus. Pemphigus is severe, and potentially fatal B-cell-mediated autoimmune illness. •Systemic corticosteroids are used to treat pemphigus, some patients are resistant. •Bruton Tyrosine Kinase (BTK) is involved in a variety of auto-immune processes. •As a result, BTK has emerged as a new therapeutic target including pemphigus. •The current review evaluates the translational autoimmunity in pemphigus. •This review also depicts the role of BTK inhibitors in treatment of pemphigus.
Collapse
|
35
|
Owens TD, Brameld KA, Verner EJ, Ton T, Li X, Zhu J, Masjedizadeh MR, Bradshaw JM, Hill RJ, Tam D, Bisconte A, Kim EO, Francesco M, Xing Y, Shu J, Karr D, LaStant J, Finkle D, Loewenstein N, Haberstock-Debic H, Taylor MJ, Nunn P, Langrish CL, Goldstein DM. Discovery of Reversible Covalent Bruton's Tyrosine Kinase Inhibitors PRN473 and PRN1008 (Rilzabrutinib). J Med Chem 2022; 65:5300-5316. [PMID: 35302767 DOI: 10.1021/acs.jmedchem.1c01170] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bruton's tyrosine kinase (BTK), a Tec family tyrosine kinase, is critical in immune pathways as an essential intracellular signaling element, participating in both adaptive and immune responses. Currently approved BTK inhibitors are irreversible covalent inhibitors and limited to oncology indications. Herein, we describe the design of covalent reversible BTK inhibitors and the discoveries of PRN473 (11) and rilzabrutinib (PRN1008, 12). These compounds have exhibited potent and durable inhibition of BTK, in vivo efficacy in rodent arthritis models, and clinical efficacy in canine pemphigus foliaceus. Compound 11 has completed phase 1 trials as a topical agent, and 12 is in phase 3 trials for pemphigus vulgaris and immune thrombocytopenia.
Collapse
Affiliation(s)
- Timothy D Owens
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - Ken A Brameld
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - Erik J Verner
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - Tony Ton
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - Xiaoyan Li
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - Jiang Zhu
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - Mohammad R Masjedizadeh
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - J Michael Bradshaw
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - Ronald J Hill
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - Danny Tam
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - Angelina Bisconte
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - Eun Ok Kim
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - Michelle Francesco
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - Yan Xing
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - Jin Shu
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - Dane Karr
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - Jacob LaStant
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - David Finkle
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - Natalie Loewenstein
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - Helena Haberstock-Debic
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - Michael J Taylor
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - Philip Nunn
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - Claire L Langrish
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - David M Goldstein
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| |
Collapse
|
36
|
Mendes‐Bastos P, Brasileiro A, Kolkhir P, Frischbutter S, Scheffel J, Moñino‐Romero S, Maurer M. Bruton's tyrosine kinase inhibition-An emerging therapeutic strategy in immune-mediated dermatological conditions. Allergy 2022; 77:2355-2366. [PMID: 35175630 PMCID: PMC9545595 DOI: 10.1111/all.15261] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023]
Abstract
Bruton's tyrosine kinase (BTK), a member of the Tec kinase family, is critically involved in a range of immunological pathways. The clinical application of BTK inhibitors for B‐cell malignancies has proven successful, and there is strong rationale for the potential benefits of BTK inhibitors in some autoimmune and allergic conditions, including immune‐mediated dermatological diseases. However, the established risk‐to‐benefit profile of “first‐generation” BTK inhibitors cannot be extrapolated to these emerging, non‐oncological, indications. “Next‐generation” BTK inhibitors such as remibrutinib and fenebrutinib entered clinical development for chronic spontaneous urticaria (CSU); rilzabrutinib and tirabrutinib are being studied as potential treatments for pemphigus. Promising data from early‐phase clinical trials in CSU suggest potential for these agents to achieve strong pathway inhibition, which may translate into measurable clinical benefits, as well as other effects such as the disruption of autoantibody production. BTK inhibitors may help to overcome some of the shortcomings of monoclonal antibody treatments for immune‐mediated dermatological conditions such as CSU, pemphigus, and systemic lupus erythematosus. In addition, the use of BTK inhibitors may improve understanding of the pathophysiological roles of mast cells, basophils, and B cells in such conditions.
Collapse
Affiliation(s)
| | - Ana Brasileiro
- Department of Dermatology Hospital Santo António dos Capuchos Centro Hospitalar Universitário Lisboa Central Lisbon Portugal
- NOVA Medical School Universidade NOVA de Lisboa Lisbon Portugal
| | - Pavel Kolkhir
- Dermatological Allergology, Allergie‐Centrum‐Charité, Department of Dermatology and Allergy, Charité‐Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Berlin Germany
- Division of Immune‐Mediated Skin Diseases I.M. Sechenov First Moscow State Medical University (Sechenov University) Moscow Russia
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology Berlin Germany
| | - Stefan Frischbutter
- Dermatological Allergology, Allergie‐Centrum‐Charité, Department of Dermatology and Allergy, Charité‐Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Berlin Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology Berlin Germany
| | - Jörg Scheffel
- Dermatological Allergology, Allergie‐Centrum‐Charité, Department of Dermatology and Allergy, Charité‐Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Berlin Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology Berlin Germany
| | - Sherezade Moñino‐Romero
- Dermatological Allergology, Allergie‐Centrum‐Charité, Department of Dermatology and Allergy, Charité‐Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Berlin Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology Berlin Germany
| | - Marcus Maurer
- Dermatological Allergology, Allergie‐Centrum‐Charité, Department of Dermatology and Allergy, Charité‐Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Berlin Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology Berlin Germany
| |
Collapse
|
37
|
Lim YL, Bohelay G, Hanakawa S, Musette P, Janela B. Autoimmune Pemphigus: Latest Advances and Emerging Therapies. Front Mol Biosci 2022; 8:808536. [PMID: 35187073 PMCID: PMC8855930 DOI: 10.3389/fmolb.2021.808536] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022] Open
Abstract
Pemphigus represents a group of rare and severe autoimmune intra-epidermal blistering diseases affecting the skin and mucous membranes. These painful and debilitating diseases are driven by the production of autoantibodies that are mainly directed against the desmosomal adhesion proteins, desmoglein 3 (Dsg3) and desmoglein 1 (Dsg1). The search to define underlying triggers for anti-Dsg-antibody production has revealed genetic, environmental, and possible vaccine-driven factors, but our knowledge of the processes underlying disease initiation and pathology remains incomplete. Recent studies point to an important role of T cells in supporting auto-antibody production; yet the involvement of the myeloid compartment remains unexplored. Clinical management of pemphigus is beginning to move away from broad-spectrum immunosuppression and towards B-cell-targeted therapies, which reduce many patients’ symptoms but can have significant side effects. Here, we review the latest developments in our understanding of the predisposing factors/conditions of pemphigus, the underlying pathogenic mechanisms, and new and emerging therapies to treat these devastating diseases.
Collapse
Affiliation(s)
- Yen Loo Lim
- Department of Dermatology, National Skin Centre, Singapore
| | - Gerome Bohelay
- Department of Dermatology and INSERM U1125, Avicenne Hospital, Bobigny, France
| | - Sho Hanakawa
- A*STAR Skin Research Labs (ASRL), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Philippe Musette
- Department of Dermatology and INSERM U1125, Avicenne Hospital, Bobigny, France
| | - Baptiste Janela
- A*STAR Skin Research Labs (ASRL), Agency for Science, Technology and Research (A*STAR), Singapore
- Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), Singapore
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore
- Singapore Immunology network, Agency for Science, Technology and Research (A*STAR), Singapore
- *Correspondence: Baptiste Janela,
| |
Collapse
|
38
|
Song A, Lee SE, Kim JH. Immunopathology and Immunotherapy of Inflammatory Skin Diseases. Immune Netw 2022; 22:e7. [PMID: 35291649 PMCID: PMC8901701 DOI: 10.4110/in.2022.22.e7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 12/01/2022] Open
Abstract
Recently, there have been impressive advancements in understanding of the immune mechanisms underlying cutaneous inflammatory diseases. To understand these diseases on a deeper level and clarify the therapeutic targets more precisely, numerous studies including in vitro experiments, animal models, and clinical trials have been conducted. This has resulted in a paradigm shift from non-specific suppression of the immune system to selective, targeted immunotherapies. These approaches target the molecular pathways and cytokines responsible for generating inflammatory conditions and reinforcing feedback mechanisms to aggravate inflammation. Among the numerous types of skin inflammation, psoriasis and atopic dermatitis (AD) are common chronic cutaneous inflammatory diseases. Psoriasis is a IL-17–mediated disease driven by IL-23, while AD is predominantly mediated by Th2 immunity. Autoimmune bullous diseases are autoantibody-mediated blistering disorders, including pemphigus and bullous pemphigoid. Alopecia areata is an organ-specific autoimmune disease mediated by CD8+ T-cells that targets hair follicles. This review will give an updated, comprehensive summary of the pathophysiology and immune mechanisms of inflammatory skin diseases. Moreover, the therapeutic potential of current and upcoming immunotherapies will be discussed.
Collapse
Affiliation(s)
- Ahreum Song
- Department of Dermatology, Gangnam Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Eun Lee
- Department of Dermatology, Gangnam Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Hoon Kim
- Department of Dermatology, Gangnam Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
39
|
Duan R, Goldmann L, Brandl R, Spannagl M, Weber C, Siess W, von Hundelshausen P. Effects of the Btk-Inhibitors Remibrutinib (LOU064) and Rilzabrutinib (PRN1008) With Varying Btk Selectivity Over Tec on Platelet Aggregation and in vitro Bleeding Time. Front Cardiovasc Med 2021; 8:749022. [PMID: 34631841 PMCID: PMC8498029 DOI: 10.3389/fcvm.2021.749022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/31/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Bruton tyrosine kinase inhibitors (BTKi) are used in B-cell malignancies and in development against various autoimmune diseases. Since Btk is also involved in specific pathways of platelet activation, BTKi might be considered to target platelet GPVI/GPIb-mediated atherothrombosis and platelet FcγRIIA-dependent immune disorders. However, BTKi treatment of patients with B-cell malignancies is frequently associated with mild bleeding events caused possibly by off-target inhibition of Tec. Here, we compared the platelet effects of two novel BTKi that exhibit a high (remibrutinib) or low (rilzabrutinib) selectivity for Btk over Tec. Methods and Results: Remibrutinib and rilzabrutinib were pre-incubated with anticoagulated blood. Platelet aggregation and in vitro bleeding time (closure time) were studied by multiple electrode aggregometry (MEA) and platelet-function analyzer-200 (PFA-200), respectively. Both BTKi inhibited atherosclerotic plaque-stimulated GPVI-mediated platelet aggregation, remibrutinib being more potent (IC50 = 0.03 μM) than rilzabrutinib (IC50 = 0.16 μM). Concentrations of remibrutinib (0.1 μM) and rilzabrutinib (0.5 μM), >80% inhibitory for plaque-induced aggregation, also significantly suppressed (>90%) the Btk-dependent pathways of platelet aggregation upon GPVI, von Willebrand factor/GPIb and FcγRIIA activation stimulated by low collagen concentrations, ristocetin and antibody cross-linking, respectively. Both BTKi did not inhibit aggregation stimulated by ADP, TRAP-6 or arachidonic acid. Remibrutinib (0.1 μM) only slightly prolonged closure time and significantly less than rilzabrutinib (0.5 μM). Conclusion: Remibrutinib and rilzabrutinib inhibit Btk-dependent pathways of platelet aggregation upon GPVI, VWF/GPIb, and FcγRIIA activation. Remibrutinib being more potent and showing a better profile of inhibition of Btk-dependent platelet activation vs. hemostatic impairment than rilzabrutinib may be considered for further development as an antiplatelet drug.
Collapse
Affiliation(s)
- Rundan Duan
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Luise Goldmann
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Richard Brandl
- Institute for Vascular Surgery and Phlebology am Marienplatz, Munich, Germany
| | - Michael Spannagl
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, Ludwig-Maximilians University, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany.,German Centre for Cardiovascular Research, Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Wolfgang Siess
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany.,German Centre for Cardiovascular Research, Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Philipp von Hundelshausen
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany.,German Centre for Cardiovascular Research, Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
40
|
Patent highlights April–May 2021. Pharm Pat Anal 2021. [DOI: 10.4155/ppa-2021-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
41
|
Neys SFH, Rip J, Hendriks RW, Corneth OBJ. Bruton's Tyrosine Kinase Inhibition as an Emerging Therapy in Systemic Autoimmune Disease. Drugs 2021; 81:1605-1626. [PMID: 34609725 PMCID: PMC8491186 DOI: 10.1007/s40265-021-01592-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2021] [Indexed: 12/14/2022]
Abstract
Systemic autoimmune disorders are complex heterogeneous chronic diseases involving many different immune cells. A significant proportion of patients respond poorly to therapy. In addition, the high burden of adverse effects caused by "classical" anti-rheumatic or immune modulatory drugs provides a need to develop more specific therapies that are better tolerated. Bruton's tyrosine kinase (BTK) is a crucial signaling protein that directly links B-cell receptor (BCR) signals to B-cell activation, proliferation, and survival. BTK is not only expressed in B cells but also in myeloid cells, and is involved in many different signaling pathways that drive autoimmunity. This makes BTK an interesting therapeutic target in the treatment of autoimmune diseases. The past decade has seen the emergence of first-line BTK small-molecule inhibitors with great efficacy in the treatment of B-cell malignancies, but with unfavorable safety profiles for use in autoimmunity due to off-target effects. The development of second-generation BTK inhibitors with superior BTK specificity has facilitated the investigation of their efficacy in clinical trials with autoimmune patients. In this review, we discuss the role of BTK in key signaling pathways involved in autoimmunity and provide an overview of the different inhibitors that are currently being investigated in clinical trials of systemic autoimmune diseases, including rheumatoid arthritis and systemic lupus erythematosus, as well as available results from completed trials.
Collapse
Affiliation(s)
- Stefan F H Neys
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jasper Rip
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| | - Odilia B J Corneth
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
42
|
Patsatsi A, Murrell DF. Bruton Tyrosine Kinase Inhibition and Its Role as an Emerging Treatment in Pemphigus. Front Med (Lausanne) 2021; 8:708071. [PMID: 34447768 PMCID: PMC8382970 DOI: 10.3389/fmed.2021.708071] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/19/2021] [Indexed: 12/03/2022] Open
Abstract
Bruton Tyrosine Kinase (BTK) has a key role in multiple pathways involved in inflammation and autoimmunity. Therefore, BTK has become a new therapeutic target for a group of hematologic and autoimmune disorders. The pharmaceutical industry has invested in the clinical development of BTK inhibitors during the last decade. Ibrutinib, for example, which was the first BTK inhibitor to be used in clinical trials, has two approved indications, mantle cell lymphoma and chronic lymphocytic leukemia, and remains under evaluation for additional indications. Rillzabrutinib (PRN1008) is a new, highly potent and selective inhibitor of BTK. Early studies performed in canine pemphigus demonstrated effectiveness. A proof-of-concept, multicenter, phase 2 trial has recently showed the efficacy and safety of oral rilzabrutinib in pemphigus vulgaris. In this mini review, we present evidence regarding the mechanisms affected by BTK inhibition and the concept of BTK inhibition as an emerging new treatment in pemphigus.
Collapse
Affiliation(s)
- Aikaterini Patsatsi
- Autoimmune Bullous Diseases Unit, 2nd Dermatology Department, Aristotle University School of Medicine, Thessaloniki, Greece
| | - Dedee F Murrell
- Department of Dermatology, St George Hospital, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
43
|
Kaur B, Kerbrat J, Kho J, Kaler M, Kanatsios S, Cirillo N. Mechanism-based therapeutic targets of pemphigus vulgaris: A scoping review of pathogenic molecular pathways. Exp Dermatol 2021; 31:154-171. [PMID: 34435386 DOI: 10.1111/exd.14453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/20/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022]
Abstract
Pemphigus vulgaris (PV) is a potentially fatal autoimmune blistering disease characterised by cell-cell detachment or acantholysis. The mechanisms which follow antibody (Ab) binding and culminate in acantholytic changes and skin/mucosal blistering have not been fully clarified. Current treatment strategies are not specific to PV pathophysiology and although life-saving, harbour considerable side effects. We aimed to systematically assess the molecules amenable to targeted treatments that follow Ab binding and are associated with PV acantholysis. The resulting scoping review was conducted under PRISMA-ScR guidelines with clear inclusion and exclusion criteria and focused specifically on kinases, caspases, proteases, hydrolytic enzymes and other molecules of interest postulated to take part in the pathophysiology of PV. The review process resulted in the identification of 882 articles, of which 56 were eligible for qualitative synthesis. From the included articles, the majority (n = 42) used PV-IgG as the pathogenic agent, mainly via in vitro (n = 16) and in vivo (n = 10) models. Twenty-five molecules were found to play a pathogenic role in PV, including uPA, ADAM10, EGFR, Src, PKC, cdk2, ERK, PLC, calmodulin, NOS, p38MAPK and caspase-3. Selective inhibition of these molecules resulted in varying degrees of reduction in acantholysis and blistering. The pathogenic molecules identified in this review represent potential candidates for clinical translation.
Collapse
Affiliation(s)
- Bavleen Kaur
- Melbourne Dental School, The University of Melbourne, Carlton, Victoria, Australia
| | - Jenna Kerbrat
- Melbourne Dental School, The University of Melbourne, Carlton, Victoria, Australia
| | - Jia Kho
- Melbourne Dental School, The University of Melbourne, Carlton, Victoria, Australia
| | - Manreet Kaler
- Melbourne Dental School, The University of Melbourne, Carlton, Victoria, Australia
| | - Stefanos Kanatsios
- Melbourne Dental School, The University of Melbourne, Carlton, Victoria, Australia
| | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Carlton, Victoria, Australia
| |
Collapse
|
44
|
Xing Y, Chu KA, Wadhwa J, Chen W, Zhu J, Bradshaw JM, Shu J, Foulke MC, Loewenstein N, Nunn P, By K, Phiasivongsa P, Goldstein DM, Langrish CL. Preclinical Mechanisms of Topical PRN473, a Bruton Tyrosine Kinase Inhibitor, in Immune-Mediated Skin Disease Models. Immunohorizons 2021; 5:581-589. [PMID: 34326199 DOI: 10.4049/immunohorizons.2100063] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 11/19/2022] Open
Abstract
The expression of Bruton tyrosine kinase (BTK) in B cells and innate immune cells provides essential downstream signaling for BCR, Fc receptors, and other innate immune cell pathways. The topical covalent BTK inhibitor PRN473 has shown durable, reversible BTK occupancy with rapid on-rate and slow off-rate binding kinetics and long residence time, resulting in prolonged, localized efficacy with low systemic exposure in vivo. Mechanisms of PRN473 include inhibition of IgE (FcεR)-mediated activation of mast cells and basophils, IgG (FcγR)-mediated activation of monocytes, and neutrophil migration. In vivo, oral PRN473 was efficacious and well tolerated in the treatment of canine pemphigus foliaceus. In this study, we evaluated in vitro selectivity and functionality, in vivo skin Ab inflammatory responses, and systemic pharmacology with topically administered PRN473. Significant dose-dependent inhibition of IgG-mediated passive Arthus reaction in rats was observed with topical PRN473 and was maintained when given 16 h prior to challenge, reinforcing extended activity with once-daily administration. Similarly, topical PRN473 resulted in significant dose-dependent inhibition of the mouse passive cutaneous anaphylaxis IgE-mediated reaction. Multiday treatment with topical PRN473 in rodents resulted in low-to-no systemic accumulation, suggesting that efficacy was mainly due to localized exposure. Reduced skin Ab inflammatory activity was also confirmed with oral PRN473. These preclinical studies provide a strong biologic basis for targeting innate immune cell responses locally in the skin, with rapid onset of action following once-daily topical PRN473 administration and minimal systemic exposure. Dose-dependent inhibition in these preclinical models of immune-mediated skin diseases support future clinical studies.
Collapse
Affiliation(s)
- Yan Xing
- Principia Biopharma Inc., a Sanofi Company, South San Francisco, CA
| | - Katherine A Chu
- Principia Biopharma Inc., a Sanofi Company, South San Francisco, CA
| | - Jyoti Wadhwa
- Principia Biopharma Inc., a Sanofi Company, South San Francisco, CA
| | - Wei Chen
- Principia Biopharma Inc., a Sanofi Company, South San Francisco, CA
| | - Jiang Zhu
- Principia Biopharma Inc., a Sanofi Company, South San Francisco, CA
| | | | - Jin Shu
- Principia Biopharma Inc., a Sanofi Company, South San Francisco, CA
| | - Matthew C Foulke
- Principia Biopharma Inc., a Sanofi Company, South San Francisco, CA
| | | | - Philip Nunn
- Principia Biopharma Inc., a Sanofi Company, South San Francisco, CA
| | - Kolbot By
- Principia Biopharma Inc., a Sanofi Company, South San Francisco, CA
| | | | | | | |
Collapse
|
45
|
Drucker AM, Shear NH. Bruton tyrosine kinase inhibition warrants further study for pemphigus. Br J Dermatol 2021; 185:691-692. [PMID: 34318490 DOI: 10.1111/bjd.20623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 11/29/2022]
Affiliation(s)
- A M Drucker
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Medicine and Women's College Research Institute, Women's College Hospital, Toronto, ON, Canada
| | - N H Shear
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|